Homework 1

(due at 11:00 am on January 28, 2014)
Problem 1. Integrate the following Cauchy problem for the first-order equation

$$
\begin{aligned}
u_{t}+u u_{x}+u & =0, \\
u(x, 0) & =f(x) .
\end{aligned}
$$

Problem 2. Obtain the complete integral of the following equation

$$
u_{x}^{2}+y u_{y}=u .
$$

Problem 3. Determine the time when the wave - the solution of the following equation - breaks in the usual sense of wave breaking,

$$
\begin{aligned}
u_{t}+C(u) u_{x} & =0, \\
u(x, 0) & =f(x) .
\end{aligned}
$$

Problem 4. Find where the following equation is elliptic, hyperbolic and parabolic:

$$
(l+x) u_{x x}+2 x y u_{x y}-y^{2} u_{y y}=0, l \in \mathbb{R}
$$

Problem 5. Reduce to the canonical form

$$
\begin{aligned}
& \text { (a) } u_{x x}+y u_{y y}+\frac{1}{2} u_{y}=0 \\
& \text { (b) } u_{x x} \sin ^{2} x-2 y u_{x y} \sin x+y^{2} u_{y y}=0 .
\end{aligned}
$$

Problem 6. Construct the Green's function for the Laplace equation in a half-space $(-\infty<x, y,<\infty, z \geq 0)$. Hint: use the method of reflections.

Problem 7. Construct the Green's function for the Laplace equation in a three-dimensional ball of radius a. Hint: use separation of variables.

Problem 8. Give a physical interpretation of the maximum principle for the Laplace equation, say in terms of temperature.

Problem 90. Find the volume ("domain") potential of a ball of radius a with a constant charge density ρ_{0}.

Problem 10. Find the single layer potential of a sphere of radius a with a constant charge density ν_{0}.

Problem 11. Find the double layer potential of an interval $[-a, a]$ with a constant dipole moment density.

