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Introduction
History of the problem and motivation

The fact that chemically-induced Marangoni ef-
fects can transfer chemical into mechanical en-
ergy directly has been known for a long time,
e.g. in the context of camphor scrapings (Mens-
brugghe 1869, Rayleigh 1890) or ameba-like mo-
tions at the oil-water interface (Magome and
Yoshikawa, 1996).

Among the regimes of interfacial mechanical mo-
tion are violent and erratic pulsations (Garner et
al. 1955, Haydon 1955, Lewis 1953); such mo-
tions may even lead to localized eruptions (Mans-
field 1952).

It is this latter circumstance that is of central interest to this work, namely,
the formation of interfacial singularities due to Marangoni effects.
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Introduction
Paradigm problem: Marangoni-driven tip-streaminga

Rediscovered in the course of pendant drop measurements with acid/alkaline
reaction at the oil/water interface.

0.5 mm

Nonlinear oscillations of a pendant drop
shape

20 µm

Tip-streaming and droplets
splitting

aFernandez & Homsy; Krechetnikov & Homsy, Phys. Fluids (2004)
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Introduction
Paradigm problem: Marangoni-driven tip-streaming

Γ >Γ0

Γ0

A chemical reaction between the two phases –
surrounding more viscous phase 2 (oil + acid) and
less viscous phase 1 in the pendant drop (water
+ alkaline) – produces surfactant non-uniformly
distributed along the interface.

The latter drives Marangoni flow and sweeps sur-
factant towards the tip of the conical drop. The
resulting ultra low interfacial tension in the tip
area allows the interface to tear up and to cre-
ate a thin thread through which the phase 1 is
ejected into phase 2.

It is remarkable that this physical system demonstrates a substantial sepa-
ration of scales: the pendant drop is of 0.5mm diameter, while the thread
is about 5µm thick, i.e. the tip area appears as a singularity.
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Introduction
Key problem

Predicting a scaling for the thread diameter, which is the
key question in the tip-streaming phenomena, was left
unanswered in Krechetnikov and Homsy (2004). Devel-
oping an asymptotic theory for the scaling of the size of
the thread is the main goal for this study.

the key problem is a resolution of the following paradox:
(I) on one hand, in order to get a conical drop with

a pointed end of an infinite curvature one needs the in-
terfacial tension to diverge, σ → ∞ as r → 0, which
follows from the self-similar solution construction;

(II) on the other hand, in order to get tip-streaming,
one needs the interfacial tension σ → 0, since p ∼ σ/r
and, for the fixed finite pressure p and small size emitted
droplets, σ should be small too.

Thus, the problem is to reconcile (I) and (II).
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Marangoni-driven tip-streaming
Problem setup
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Figure: Cone set-up in spheri-
cal system of coordinate; θ∗ is the
cone semi-angle.

Since the tangential boundary con-
dition (Marangoni stresses) drives
the phenomena, the appropriate non-
dimensional notations (without intro-
duction of new variables) read

r → lc r , v→
σ0
µ

v,

p → σ0
lc

p, σ → σ0σ,

where lc =
√
σ0/ρg is the capillary

length, µ the dynamic viscosity of
each medium, and σ0 the interfacial
tension in the clean interface case.
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Marangoni-driven tip-streaming
Steady tip streaming self-similarity: Ψ = rnϕ(cos θ)
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In the Stokes regime,

Mo1 � Mo2 � 1,Mo = gµ4/ρσ3
0 ,

only the case n = 1 gives a physically
realizable self-similar solution

Ψi = rϕi (cos θ), σ =
σmin

r
, p =

π(cos θ)

r2
,

where

ϕ1 = −σminδ

2

(1− x)(x − ξ)√
1− ξ2

1 + ξ

1 + δ − ξ(1− δ)
,

ϕ2 = −σmin

2

(1 + x)(x − ξ)√
1− ξ2

1− ξ
1 + δ − ξ(1− δ)

.
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Marangoni-driven tip-streaming
Steady tip streaming self-similarity: meaning and existence
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Meaning: The case n = 1 conforms
with the experimental observation that
the flow is driven from the base of the
drop towards its tip. It is also the lowest
order solution in the following senses: (a)
σ ∼ r−1 is the slowest decay of interfacial
tension as r → ∞, which allows for the
flow towards the drop tip; (b) ψ ∼ r is
the least singular at r = 0. The along-
the-axis singularity is observed for n > 1.

Existence is evidenced experimentally as
well as surfactant transport equation sup-
ports the self-similar solution feasibility.
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Marangoni-driven tip-streaming
Thread solution in tip-streaming: slender jet approximation
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Interfacial boundary conditions (with ε = h∞/lc � 1):

−p + σ

[
ε

h
√

1 + ε2h2z
− ε3hzz

]
= −2ε2 [uρ − hzwρ] + O(ε4),

wρ = −εσz + O(ε2),

u − whz = 0.
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Singularity structure
Thread solution in tip-streaming

The leading order equation is

−εh
4

2

[
σz
h
− σhz

h2

]
− σmin tan θ∗

(
h2 − ĥ2∞

)
= 0,

z → −∞ : hz → 0,

z → +∞ : hz → 2σmin tan θ∗/ε.

The scaling for the thread radius:

h∞ ∼ lc tan θ∗ σmin

Since the interfacial tensions in the clean and surfactant interface cases

differ by two orders of magnitude, this equation gives the right estimate

for the experimentally observed difference between the drop size ∼ 0.5mm

and the thread diameter ∼ 5µm.
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)
= 0,

z → −∞ : hz → 0,

z → +∞ : hz → 2σmin tan θ∗/ε.

The scaling for the thread radius:

h∞ ∼ lc tan θ∗ σmin

Since the interfacial tensions in the clean and surfactant interface cases

differ by two orders of magnitude, this equation gives the right estimate

for the experimentally observed difference between the drop size ∼ 0.5mm

and the thread diameter ∼ 5µm.

2010 APS DFD Annual Meeting - p. 11/ 12



Introduction Analysis Conclusions

Conclusions

In this work a systematic study of Marangoni-driven singularities is
presented, which involved finding a self-similar solution in the neigh-
borhood of a singularity as well as the resolution of this singularity
via the construction of a thread solution with singular perturbation
analysis.

The scaling law for the thread thickness is determined,

h∞ ∼ lc tan θ∗ σmin,

which demonstrates the dependence on the lowest value of the in-
terfacial tension, σmin, the cone semi-angle θ∗.

While the analysis is done in the context of surfactant Marangoni-
driven singularities, the results are general and independent of the
nature of the Marangoni stresses. However, one has yet to discover
experimentally interfacial singularities driven by temperature and
electric field gradients.
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