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Abstract. This work is devoted to the investigation of self-similar solutions for steady wall
jets. The problem is considered in the context of two- and three-dimensional Prandtl boundary
layer equations, and three-dimensional parabolized Navier–Stokes equations for Newtonian and non-
Newtonian fluids. In contrast to dimensional analysis, which does not allow the determination of
self-similar solutions in this case, a generating functions approach elaborated by Vinogradov [Soviet
Math. Dokl., 19 (1978), pp. 144–148] enables one to derive conservation laws for the above-mentioned
problems and, as a consequence, to find new self-similarities of the Navier–Stokes equations.
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1. Introduction. Since Prandtl [39] introduced the concept of the laminar boun-
dary layer and Blasius [9] reported the exact self-similar solution for the two-dimen-
sional (2D) boundary layer equations, self-similar solutions of a wide variety of bound-
ary problems have appeared in the literature. Moreover, a number of new and more
general techniques have been devised to take into account different boundary condi-
tions. In particular, laminar boundary layers with cross flow (see [58] and references
therein), Falkner–Skan flow past stretching boundaries [40], submerged [44] and wall
[1, 15] jets, and boundary layers in a stream with uniform shear [34] have been studied.
Also, one may encounter many thin layer type of problems of practical importance
involving convection mechanisms in Newtonian and non-Newtonian fluids [36, 20].
Most reductions are the result of the standard application of dimensional analysis
and were determined long ago [44, 46, 31]. An interesting class is represented by
problems of the second kind of self-similarity [7] and, in particular, by problems of
hidden invariances [17], like submerged and wall jets. This class incorporates more
than just dimensional analysis, since the appropriate conservation laws need to be
applied for closure of the problem.

In this paper we are concerned with the investigation of self-similar solutions for
three-dimensional (3D) wall jets, which fall into the paradox of hidden invariances
as classified by [17]. This corresponds to the situation in which one would think
under conditions of rational statement that there is insufficient data for determination
of all parameters of the solution. The way out of this state of affairs is to find
nontrivial hidden invariances, which entirely determine the leading asymptotic form
of the solution. A well-known example of such a situation is the 2D submerged jet [43].

The importance of wall jet flows can be observed from the impressive number of
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references to one of the original works [15], well known in the West. The applications
range from wall jet electrodes in electrochemistry [24, 47], boundary layer separa-
tion control [57] in aerodynamics, control of air contaminants [13, 18] in ecology and
process hygiene, and coastal currents [48] in oceanology to processes of cooling and
evaporation enhancement [27], just to name a few. This variety of applications ne-
cessitated further research on wall jet problems: stability and receptivity properties
[6, 30, 22, 45, 50]; effects of compressibility [41]; effects of blowing, suction, and mov-
ing walls [32]; effects of ribbed walls [14]; and heat transfer [33]. However, all the
above works are restricted to planar flow [1, 15], while the more important 3D case
remains unexplored theoretically. Jet flows, in particular wall jets, not only play an
important practical role, but also have nontrivial theoretical features. In contrast to
the classical Prandtl boundary layer theory, the entrained velocity field outside the
jet proper is described by the Navier–Stokes equations. Essentially, a wall jet is a
thin layer of fluid directed tangential to a wall: the total flow field consists of an inner
region, which resembles the conventional wall boundary layer, and an outer region
more akin to a free shear layer. Such a flow may be produced either by a jet of liquid
from a tap falling into a partially full sink and spreading out over the bottom, or by a
downwards-directed jet from a vertical-take-off aircraft spreading out over the ground.

The following analysis is based on the results on higher local infinitesimal sym-
metries and conservation laws found by Vinogradov in 1975–1977 [51]. Other authors
(Ibragimov [23], Olver [37], Tsujishita [49]) have developed similar ideas in the field
of symmetry theory. The theory used here makes it possible to find all higher con-
servation laws for arbitrary nonlinear differential equations. In particular, it works
effectively in situations when the Noether theorem, as well as other symmetry consid-
erations, are not applicable. The adjective higher is used to stress that the symmetries
and conservation laws under consideration are described by means of expressions con-
taining arbitrary order derivatives of dependent variables that appear in the governing
partial differential equations. The adjective local is used to point out that we deal with
symmetries and conservation laws which admit localizations on arbitrary domains in
the space of independent variables and which must be expressed by local, that is,
differential, operators.

The paper proceeds as follows. In section 2 we provide the reader with an outline
of the methods used throughout the paper. Then in section 3 we describe completely
all results concerning 2D wall jets in order to illustrate the effectiveness of the gen-
erating functions approach for constructing conservation laws. In sections 4 and 5
we study 3D jets of a Newtonian fluid using Prandtl boundary layer and parabolized
Navier–Stokes equations, respectively. Section 6 is devoted to an investigation of wall
jets in a non-Newtonian fluid. A discussion of results and concluding remarks are
given in section 7.

2. Outline of the method. One can encounter self-similar solutions in all
branches of mathematical physics. For a discussion of the conceptual importance
of self-similar solutions in the genesis of mathematically well-grounded theories, see
[52]. The determination of self-similarities attracts great attention, especially since
in complex nonlinear problems the discovery of these solutions is frequently the only
way to overcome analytical difficulties and obtain a qualitative understanding of the
underlying physics. Moreover, self-similar solutions are used as standards for the
evaluation of various approximate methods, regardless of the actual importance of
the problem. It is essential to stress that self-similar solutions represent basic value
not only as exact solutions of individual, maybe actual concrete problems, but also
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as intermediate asymptotic representations of solutions of an immeasurably wider
range of problems. Self-similar solutions always arise out of problems in which the
parameters of dimensionality of independent variables are zero or infinite; that is,
as a rule, self-similar solutions meet singular initial or boundary conditions. There-
fore self-similar solutions usually represent intermediate asymptotics of solutions of
nondegenerate problems.

There is a widespread opinion that similarity variables are always obtained through
the application of dimensional analysis, that is, with similarity reasoning, and that
this always leads to a form of solution in terms of those self-similar variables. After
determining this solution it is easy to find a class of nondegenerate problems for which
the considered self-similar solution is an intermediate asymptotic. It is clear that if
a mathematical formulation is known, then, instead of dimensional analysis based on
invariances relative to a subgroup of the similarity transformation group, one can re-
duce the number of function arguments by establishing the invariance of the problem
relative to some group of continuous transformations. As a rule, the state of affairs is
different—there are vast classes of problems for which, even though there exists a self-
similar intermediate asymptotic, one cannot obtain the asymptotic solution form from
the original problem statement by application of dimensional analysis. The form of
self-similar variables can be obtained by solving a nonlinear eigenvalue problem and,
in some cases, from some additional reasoning. In conclusion, note that consideration
of self-similar solutions as intermediate asymptotic representations is aligned closely
with singular perturbation methods [7] and renormalization groups [16]. That is to
say, self-similar solutions are external and internal asymptotics of solutions of general
problems, depending on the scale of independent variable used in the analysis of the
intermediate asymptotics. And so the determination of constants incorporated into
self-similar solutions of the second kind, according to Barenblatt’s classification [7],
can be carried out by matching an asymptotic solution with additional asymptotics.

The notion of a conservation law for a given differential equation is a concept
“dual” with the concept of symmetry. A relation between them is established in
some cases by the famous Noether theorem [35]. But implementation of the Noether
theorem requires knowledge of a Lagrangian of the corresponding system of differen-
tial equations which, in the case of the Prandtl boundary layer and Navier–Stokes
equations, does not exist, and one needs to find the differential consequences of the
original equations, for which there is a weak Lagrangian. The determination of this
weak Lagrangian is associated with specific computational difficulties. A substan-
tial advancement in the calculation of conservation laws for nonlinear equations was
achieved in connection with the development of higher symmetries theory, which can
be distinguished from the classical theory, originating from the works of Lie [28, 29],
in that symmetries are described in terms of derivatives of arbitrarily high order.

Here we provide a summary of the known methods for the determination of con-
servation laws; they may be obtained

1. by the reduction of equations for solving variational problems and acquisition
of conservation laws on the basis of possible transformation groups [35]. Until recently
this was the unique constructive method.

2. by the addition of expressions like

n∑
i=1

Ji(u) = 0,

with unknown Ji, to original system of equations F(u) = 0 and subsequent investiga-
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tion of the question of compatibility of the overdetermined system that results. One
can rarely perform all the necessary calculations using this method, as was noted by
Ovsjannikov [38].

3. through use of the determination of conservation currents [55, 56].
4. through use of the composite variational principle [10]. At this moment,

in view of “nonlocal trends” [2, 52], it becomes obvious that this approach cannot
guarantee the complete set of conserved vectors.

5. by the generating functions method [26]. According to [53], for l-normal
systems there is a unique conservation law for each generating function.

6. by direct construction of conservation laws from field equations [3]. Anco
and Bluman [3, 4] have promised to prove in a forthcoming paper the ability of this
algorithm to construct all local conservation laws.

7. using the neutral action method [21, 11], which is a systematic procedure
for construction of conservation laws determined using the concept of the Gâteaux
derivative.

It is interesting to note that the equivalence between the earlier method of gener-
ating functions and the two methods that follow it remains to be established, despite
some apparent similarities, like an identity of the linearization of system by Anco and
Bluman [2], the Gâteaux derivative by Honein, Chien, and Herrmann [21], and the
universal linearization operator by Krasil’shchik and Vinogradov [26].

In addition there are some specific methods like web geometry used in the theory
of nonlinear wave interaction [8]. However, as noted in the introduction, our analysis
is based on generating functions. A short description of this method is provided below
for the reader’s convenience.

2.1. The generating functions method. It is known that the problem of de-
termination of all symmetries and conservation laws for a given system of PDEs is
equivalent to the consideration of a new nonlinear system of PDEs more complicated
than the original one. However, an adaptation of the infinitesimal standpoint substan-
tially simplifies analysis of the symmetry fields, whose flows transform the solutions
of the system with n independent and m dependent variables,

ε = {F = 0}, F = (F1, . . . , Fl),(2.1)

into themselves. Such a field is a higher infinitesimal symmetry of (2.1) if it is tangent
to the infinite prolongation ε∞ of (2.1) defined by

Dσ(Fi) = 0 ∀σ, i,

where

Dσ =
∂

∂xσ
+ ui

σ

∂

∂ui
+ · · ·+ ui

σ,j1,...,jm

∂

∂ui
j1,...,jm

+ · · ·(2.2)

is the full derivative operator.
Elaboration of this theory by Vinogradov [51] has led to a determination of the

higher symmetries by finding the corresponding generating functions as solutions of

lFϕ = 0 ⇐⇒ Sym ε = Ker lF ,(2.3)

where lF is the universal linearization operator calculated in the case of n independent
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and m dependent variables according to

lεF =
∑
σ


∂F1

∂p1
σ

. . . ∂F1

∂pm
σ

. . . . . . . . .
∂Fl

∂p1
σ

. . . ∂Fl

∂pm
σ

Dσ, pjσ =
∂|σ|uj

∂xσ
,(2.4)

and restricted on ε∞, that is, on the internal coordinates which are the maximal
functionally independent part of coordinates x, u, piσ on ε∞.

As noted by Noether in [35] for Lagrangian systems, and by Vinogradov in [53]
for general systems of PDEs, the notion of a conservation law for a given differential
equation is a concept dual in the sense of the concept of symmetry. However, as was
demonstrated in [53], not every conservation law is a reflection of some symmetry.

Let S = (S1, . . . , Sn) be a conservation current for (2.1). Then one can consider
S on the infinite prolongation ε∞. The conservation law is defined as

n∑
i=1

Di(Si) =

l∑
j=1

Aj(Fj),(2.5)

where l is the number of equations and

Aj =
∑
σ

ajσDσ(2.6)

are scalar C-differential operators. Now, we introduce the definition of formally con-
jugated operators.

Definition 2.1. An operator formally conjugated to A is built by the rule

A∗
j =

∑
σ

(−1)|σ|Dσ ◦ ajσ.(2.7)

If A = ‖Aij‖ is a matrix C-differential operator, then A∗ = ‖A∗
ji‖.

One can then formulate the following theorem.
Theorem 2.2. Let A1, . . . , Al be operators which satisfy (2.5). Then the re-

striction Ω = (A∗
1(1), . . . , A

∗
l (1))|ε∞ of the vector-function (A∗

1(1), . . . , A
∗
l (1)) onto

equation ε∞ satisfies the equation

(lεF )
∗
(Ω) = 0.(2.8)

Thus, on the strength of the equality Ω = (A∗
1(1), . . . , A

∗
l (1))|ε∞ , one finds Aj =∑

σ ajσDσ. The following result will be used in the course of our analysis.
Theorem 2.3. If the system of equations is l-normal (regular and definite, l =

m), then the generating function Ω corresponds to each conservation law identically.
Remark . Not all solutions of (2.8) are generating functions [26].

3. A 2D jet.

3.1. Mathematical formulation of the problem. In Cartesian coordinates
the governing system for flow due to a jet spreading out over a planar surface in the
Prandtl boundary layer approximation for an incompressible fluid is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,(3.1)

∂u

∂x
+

∂v

∂y
= 0,
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with boundary conditions

y = 0 : u = v = 0,(3.2)

y = ∞ : u = 0.(3.3)

In view of the fact that problem (3.1) is invariant under the dilation group, one
can introduce the following change of variables:

Ψ = νx1−kf (η) , η =
y

xk
,

where Ψ stands for the 2D stream-function introduced according to Ψy = u, Ψx = −v,
and k is a parameter of the self-similarity which generates the nonlinear eigenvalue
problem. Use of these variables yields the boundary eigenvalue problem:

fηηη + (1− k)ffηη + (2k − 1)f2
η = 0,(3.4)

η = 0 : f = fη = 0,

η = ∞ : fη = 0.

The hidden invariant in this problem has been found by Akatnov [1] and Glauert
[15]. Modern methods of investigation of nonlinear equations allow one to find that
conservation law and prove its uniqueness.

3.2. Calculation of conservation laws. The conjugated operator to the op-
erator of universal linearization computed with the help of (2.4)–(2.7) is

(lεF )
∗
=

( ∂u
∂x − L− νD2

y −Dx
∂u
∂y −Dy

)
, L = uDx + vDy.(3.5)

The final system is (lεF )
∗
(Ω) = 0 with Ω = (ϕ1, ϕ2)

T
or

u
∂ϕ1

∂x
+ v

∂ϕ1

∂y
+ ϕ1

∂v

∂y
+

∂ϕ2

∂x
+ ν

∂2ϕ1

∂y2
= 0,(3.6)

ϕ1
∂u

∂y
− ∂ϕ2

∂y
= 0.

Dropping the index for convenience, elimination of ϕ2 yields

ν
∂3ϕ

∂y3
− ∂Ψ

∂x

∂2ϕ

∂y2
− 2

∂2Ψ

∂x∂y

∂ϕ

∂y
+ 2

∂2Ψ

∂y2

∂ϕ

∂x
+

∂Ψ

∂y

∂2ϕ

∂x∂y
= 0,

which contains Ψx, Ψy, Ψxy, Ψyy and derivatives ϕx, ϕy, ϕxy, ϕyy, ϕyyy. So one
can assume only the dependence ϕ = ϕ(Ψ); the highest derivative Ψyyy must be
excluded with the help of (3.1) . As a result we obtain ϕΨΨ = 0, which gives the
two solutions ϕ = 1 and ϕ = Ψ to an approximation of a constant multiplier. The
first one corresponds to a free submerged jet, and the second to a wall jet. Using
Theorem 2.2 and expression (2.5), we obtain the conserved currents for the wall jet as

S =

(
u2Ψ

uvΨ + u2

2 −Ψ∂u
∂y

)
.
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The integral form of this conservation law gives the well-known result

∂

∂x

[∫ +∞

0

u2Ψdy

]
= 0.(3.7)

The form of this invariant in self-similar variables,

∂

∂x
I = 0, I = ν2x3−4k

∫ +∞

0

ff2
ηdη,(3.8)

gives rise to the value k = 3/4 for the self-similar parameter.

4. 3D jet described by the 3D Prandtl boundary layer equations. This
problem corresponds to the flow of a jet spreading out over a plane surface from a
slit, the vertical dimension of which is much less than its horizontal dimension, at a
distance from the slit of the order of its horizontal dimension.

4.1. Mathematical formulation of the problem. In Cartesian coordinates
the determinative system of 3D Prandtl boundary layer equations for an incompress-
ible fluid is

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂y2
,

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= ν

∂2w

∂y2
,(4.1)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

to be solved with boundary conditions

y = 0 : u = v = w = 0, y = ∞ : u = w = 0,

z = 0 :
∂u

∂z
=

∂w

∂z
= 0, z = ±∞ : u = w = 0.

In this 3D problem one can introduce the stream-function vector (Ψ1,Ψ2) according to

u =
∂Ψ1

∂y
, w =

∂Ψ2

∂y
, v = −∂Ψ1

∂x
− ∂Ψ1

∂z
.

Group analysis suggests the following similarity variables:

Ψ1 = νx1−kf(η, ζ), Ψ2 = νx1−kϕ(η, ζ), η =
y

xk
, ζ =

z

xl
,

in which k and l are parameters of the self-similarity which generates the nonlinear
eigenvalue problem. Substitution in (4.1) furnishes the eigenvalue problem

fηηη + [ϕζfηη − ϕηfζη] + lζ [fηfζη − fζfηη] + (1− k)ffηη + (2k − 1)f2
η = 0,

ϕηηη + [ϕζϕηη − ϕηϕζη] + lζ [fηϕζη − fζϕηη] + (1− k)fϕηη + (2k − 1)ϕ2
η = 0,

with boundary conditions

η = 0 : fη = ϕη = (1− k)f − lζfζ + ϕζ = 0,

η = ∞ : fη = ϕη = 0, ζ = ±∞ : fη = ϕη = 0.
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4.2. Calculation of conservation laws. The operator of universal lineariza-
tion is found as

lεF =


∂u
∂x + L− νD2

y
∂u
∂y

∂u
∂z

∂w
∂x

∂w
∂y

∂w
∂z + L− νD2

y

Dx Dy Dz

 , L ≡ uDx + vDy + wDz,(4.2)

and the conjugated operator is

(lεF )
∗
=


∂u
∂x − L− νD2

y
∂w
∂x −Dx

∂u
∂y

∂w
∂y −Dy

∂u
∂z

∂w
∂z − L− νD2

y −Dz

 .(4.3)

The final system is (lεF )∗(Ω) = 0 with Ω = (ϕ1, ϕ2, ϕ3)
T or[

∂u

∂x
− L− νD2

y

]
ϕ1 +

∂w

∂x
ϕ2 −Dxϕ3 = 0,

∂u

∂y
ϕ1 +

∂w

∂y
ϕ2 −Dyϕ3 = 0,(4.4)

∂u

∂z
ϕ1 +

[
∂w

∂z
− L− νD2

y

]
ϕ2 −Dzϕ3 = 0.

A local coordinate system on the infinite prolongation ε∞ is given by xj , u
i
j1,...,jk

,

where if i = 1 (u1 = u), etc., then jk �= 1 by virtue of the continuity equation. Using
mathematical induction from the first and third equations of (4.4), one can show that
ϕ1, ϕ2 are functions only of coordinates xj , a consequence of which is the dependence
ϕ3 = ϕ3(xj , u

i). A unique solution of (4.4) is then given by

Ω =

 z
−x

uz − wx

 ,(4.5)

and the corresponding conservation law is

S =

 u (uz − wx)
v (uz − wx)− ν

(
z ∂u
∂y − x∂w

∂y

)
w (uz − wx)

 =

 u (uz − wx)
Sy

Sz

 .(4.6)

Now the integral variant of the conservation law is given by

∂

∂x

[∫ +∞

−∞
dz

∫ +∞

0

u (uz − wx) dy

]
+

∫ +∞

−∞
Sy|+∞

y=0 dz +

∫ +∞

0

Sz|+∞
z=−∞ dy = 0.

(4.7)

In terms of the similarity variables, the conservation law takes the form

∂

∂x
I = 0, I = ν2x2−3k+2l

∫ +∞

−∞
dζ

∫ +∞

0

fη [ζfη − ϕη] dη,(4.8)

which requires that 2− 3k + 2l = 0.
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4.3. Analysis in the plane of symmetry. Since we investigate self-similar
solutions of the 3D Prandtl equations, the existence of the symmetry plane is a con-
sequence of such a consideration. The leading order terms of the solution expansion
near the symmetry plane are

u = u(x, y), v = v(x, y), w = zW (x, y),

so that the governing system of equations in this plane takes the form

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

u
∂W

∂x
+ v

∂W

∂y
+ W 2 = ν

∂2W

∂y2
,(4.9)

∂u

∂x
+

∂v

∂y
+ W = 0, W =

∂w

∂z
,

with associated boundary conditions

y = 0 : u = v = W = 0, y = ∞ : u = W = 0.

Introduction of the self-similar variables η = y/xk, Ψ1 = νx1−kf(η), and Ψ2
z =

νx−kΦ(η) furnishes the ODEs

fηηη + (1− k)ffηη + (2k − 1)f2
η = −Φfηη,(4.10)

Φηηη + ΦΦηη − Φ2
η = −(1− k)fΦηη − 2kfηΦη,

with boundary conditions

η = 0 : f = fη = Φ = Φη = 0,

η = ∞ : fη = Φη = 0.

Numerical solutions of this system corresponding to profiles of the longitudinal
velocity u = fη for several values of k are displayed in Figure 4.1. Integrating the first
equation from η to ∞ yields

fηη + (1− k)ffη + (2− 3k)F = −Φfη −G,(4.11)

F =

∫ +∞

η

f2
ηdη, G =

∫ +∞

η

Φηfηdη.

Multiplying this result by fη and integrating from η to ∞ gives

f2
η

2
+ (k − 1)fF + (4k − 3)

∫ +∞

η

fηFdη = ΦF +

∫ +∞

η

[ΦηF + fηG] dη.

For η = 0 the above result gives

(4k − 3)

∫ +∞

0

fηFdη =

∫ +∞

0

ΦηFdη +

∫ +∞

0

fηGdη.

Assuming “nonreversed” velocity profiles fη and Φη, we conclude that k > 3
4 by virtue

of the positiveness of all integrals in the equation. In the 2D case, k = 3
4 because the
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Fig. 4.1. Profiles of the longitudinal velocity u = fη in the plane of symmetry.

integrals on the right-hand side are equal to zero, which asserts the uniqueness of the
solution of the appropriate eigenvalue problem. From the above expression one can
determine the admissible spectrum of eigenvalues k, l:

k ∈
(

3

4
,+∞

)
, l ∈

(
1

8
,+∞

)
.(4.12)

It should be noted that the set and structure of conservation laws changes drastically
if the problem defined by (4.1) is oversimplified. The following example provides a
demonstration of this fact.

4.4. Example of a 3D jet described by 2D equations. Let us represent an
initial condition on the time-similar coordinate in the following form:

u = u0(0, y, z), w = f0(z)u0(0, y, z).(4.13)

This representation of w0 entails an absence of secondary flows that enables one to
search for a solution of the general problem in the form

u = u(x, y, z), w = f(x, z)u(x, y, z).(4.14)

With that representation, the system of equations becomes

u
∂u

∂x
+ v

∂u

∂y
+ uf

∂u

∂z
= ν

∂2u

∂y2
,(4.15)

∂f

∂x
+ f

∂f

∂y
= 0,

∂u

∂x
+

∂v

∂y
+

∂uf

∂z
= 0,

with associated boundary conditions

x = 0 : f = f0(z),

y = 0 : u = v = 0, y = ∞ : u = 0,(4.16)

z = ±∞ : u = 0.
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The equation for f is a nonlinear wave equation, solutions of which are both continuous
and discontinuous functions. Let us confine ourselves to continuous functions, which
have the implicit form

f(x, z) = f0[z − xf(x, z)].(4.17)

For the sake of convenience let us represent this solution in the parametric form

f(x, z) = f0(s), s = z − xf(x, z) = z − xf0(s),(4.18)

and we use the variables (x, y, s) instead of (x, y, z). As a result, we arrive at the
system

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
+ u

f ′
0

1 + xf ′
0

= 0.

One can convert this system to the 2D boundary layer equations with the help of
the substitution (x, y, s) ⇒ (ξ(x, s), η(x, y, s), s). An appearance of new variables is
determined by zeroing appropriate terms in the system. From the continuity equation,
we find that η = y[1 + xf ′], and from the momentum equation, ξ = [1 + xf ′]3/3f ′.
As a result,

u
∂u

∂ξ
+ ṽ

∂u

∂η
= ν

∂2u

∂η2
,(4.19)

∂u

∂ξ
+

∂ṽ

∂η
= 0,

where

ṽ =
v + auy

ηy
, a =

f ′
0

1 + xf ′
0

.

An invariant for this problem was already obtained in section 3, viz.,

∂

∂ξ

∫ +∞

0

ΨΨ2
ηdη = 0, u = Ψη, ṽ = −Ψξ.(4.20)

5. 3D jet described by the 3D parabolized Navier–Stokes equations.
These Navier–Stokes equations must be parabolized when the horizontal dimension
of the slit is of the same order as its vertical dimension (circular pipe, for example).
Assuming the existence of a local streamwise flow direction, designated herein as x,
such that the effects of viscous diffusion in this direction are of higher order in the
parameter Re−n, for n > 0 and Re � 1, for large Re, these streamwise diffusion
terms can be neglected at lowest order. In view of the absence of an outer flow, the
pressure gradient in the x direction is asymptotically small, thus making the resulting
governing system mathematically parabolic in x. Subsequently, marching or initial
value methods can be applied [12, 42].
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5.1. Formulation of the problem. In Cartesian coordinates the system of
parabolized Navier–Stokes equations for an incompressible fluid is

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

[
∂2u

∂y2
+

∂2u

∂z2

]
,(5.1)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

[
∂2v

∂y2
+

∂2v

∂z2

]
,

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

[
∂2w

∂y2
+

∂2w

∂z2

]
,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

to be solved with boundary conditions

y = 0 : u = v = w = 0, y = ∞ : u = w = 0,

z = 0 :
∂u

∂z
=

∂w

∂z
= 0, z = ±∞ : u = w = 0.

Also, it is necessary to impose specified boundary conditions on the pressure func-
tion p, which will be determined later. Once again, group analysis brings about the
following variable transformation:

Ψ1 = νx1−kf(η, ζ), Ψ2 = νϕ(η, ζ), p1 = ρν2x−2kg(η, ζ); η =
y

xk
, ζ =

z

xk
,

where k is a parameter of the self-similarity which generates the nonlinear eigenvalue
problem. Note the difference of this problem from that of a Prandtl boundary layer,
wherein the eigenvalue problem contains two parameters, k and l.

5.2. Calculation of conservation laws by the generating functions method.
The operator of universal linearization,

lεF =


∂u
∂x + L− ν� ∂u

∂y
∂u
∂z 0

∂v
∂x

∂v
∂y + L− ν� ∂v

∂z
1
ρDy

∂w
∂x

∂w
∂y

∂w
∂z + L− ν� 1

ρDz

Dx Dy Dz 0

 ,(5.2)

� = D2
y + D2

z ,

has for its conjugated operator

(lεF )
∗
=


∂u
∂x + L∗ − ν� ∂v

∂x
∂w
∂x −Dx

∂u
∂y

∂v
∂y + L∗ − ν� ∂w

∂y −Dy

∂u
∂z

∂v
∂z

∂w
∂z + L∗ − ν� −Dz

0 − 1
ρDy − 1

ρDz 0

 ,(5.3)

L∗ ≡ −[uDx + vDy + wDz].
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The final system is (lεF )∗(Ω) = 0 for Ω = (ϕ1, ϕ2, ϕ3, ϕ4)
T . Solutions of this system are

Ω1 =


y
−x
0

uy − vx

 , Ω2 =


z
0
−x

uz − wx

 , Ω3 =


0
z
−y

vz − wy

 ,

Ω4 = a


1
0
0
u

 , Ω5 = b


0
1
0
v

 , Ω6 = c


0
0
1
w

 , Ω7 = d


0
0
0
1

 ,

(5.4)

where a, b, c, and d are constants.
Let us consider the first three conservation laws, appropriate to Ω1, Ω2, and Ω3.

For Ω1 the operators Aj take the form

A1 = y, A2 = −x, A3 = 0, A4 = uy − vx.(5.5)

Then the differential form of conservation law (2.5) is

∂

∂x
[u (yu− xv)] +

∂

∂y

[
v (yu− xv)− x

p

ρ
− ν

(
y
∂u

∂y
− u− x

∂v

∂x

)]
+

∂

∂z

[
w (yu− xv)− ν

(
y
∂u

∂z
+ x

∂v

∂z

)]
= 0,(5.6)

which has the corresponding conservation current

S =

 u (uy − vx)

v (uy − vx)− xp
ρ − ν

(
y ∂u
∂y − u− x∂v

∂y

)
w (uy − vx)− ν

(
y ∂u
∂z + x∂v

∂z

)
 =

 u (uy − vx)
Sy

Sz

 .(5.7)

The integral variant of this conservation law is

∂

∂x

[∫ +∞

−∞
dz

∫ +∞

0

u (uy − vx) dy

]
+

∫ +∞

−∞
Sy|+∞

y=0 dz +

∫ +∞

0

Sz|+∞
z=−∞ dy = 0.

Hence one can find the boundary condition to impose on the pressure, namely,

p(x, y, z)|y=0 = p(x, y, z)|y=+∞ .(5.8)

The form of the invariant in self-similar variables is

∂

∂x
I = 0, I = ν2x2−k

∫ +∞

−∞
dζ

∫ +∞

0

fη [(1− k)ηfη + (1− k)f − kζfζ + ϕζ ] dη,

(5.9)

which produces k = 2.
For Ω2 we have

S =


u (uz − wx)

v (uz − wx)− ν
(
z ∂u
∂y − x∂w

∂y

)
w (uz − wx)− xp

ρ − ν
(
z ∂u
∂z − u− x∂w

∂z

)
 =

 u (uz − wx)
Sy

Sz

 ,(5.10)
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which has for its integral variant

∂

∂x

[∫ +∞

−∞
dz

∫ +∞

0

u (uz − wx) dy

]
+

∫ +∞

−∞
Sy|+∞

y=0 dz +

∫ +∞

0

Sz|+∞
z=−∞ dy = 0.

(5.11)

Hence another boundary condition to be imposed on the pressure is

p(x, y, z)|z=−∞ = p(x, y, z)|z=+∞.(5.12)

Here the parameter of self-similarity is also k = 2.
For Ω3, the conservation law takes the form

S =


u (vz − wy)

v (vz − wy) + z p
ρ − ν

(
y ∂w

∂y − w − z ∂v
∂y

)
w (vz − wy)− y p

ρ + ν
(
y ∂w

∂z − v − z ∂v
∂z

)
 =

 u (vz − wy)
Sy

Sz

 ,(5.13)

with integral variant

∂

∂x

[∫ +∞

−∞
dz

∫ +∞

0

u (vz − wy) dy

]
+

∫ +∞

−∞
Sy|+∞

y=0 dz +

∫ +∞

0

Sz|+∞
z=−∞ dy = 0.

Again, the parameter of self-similarity is k = 2. It is obvious that conservation laws
appropriate to Ω1, Ω2, and Ω3 give the same similarity exponent k = 2. A search of
all solutions has been fulfilled similarly to that of section 4. As for conservation laws
appropriate to Ω4 − Ω7, the integral forms under specified conditions are not physi-
cally relevant. An analogous analysis conducted for the incompressible Navier–Stokes
equations has shown that there are only seven conservation laws: three conserva-
tion laws of the impulse components, three conservation laws of the impulse moment
components, and mass conservation [10, 19].

6. Wall jets for non-Newtonian fluids. For simplicity we have chosen one
class of time-independent fluids for which the shear rate at any point is a function
of only the local shear stress; these are called dilatant fluids, the behavior of which
can be described by the empirical functional relation known as the Ostwald–de Waele
power law model with n > 1. In the case of rheological dilatancy, an increase in
apparent viscosity with increasing shear rate occurs. The case n < 1 corresponding
to pseudoplastic fluids is not considered here. The momentum equation takes the
following appearance in tensor notation:

∂ρui

∂t
+

∂ρuiuk

∂xk
= −∂pδik

∂xk
+

∂σ′
ik

∂xk
,(6.1)

σ′
ik = κ

∣∣∣∣ ∂ui

∂xk
+

∂uk

∂xi

∣∣∣∣n−1(
∂ui

∂xk
+

∂uk

∂xi

)
.

6.1. The 2D case. In Cartesian coordinates the Prandtl boundary layer equa-
tions for an incompressible power-law liquid, after nondimensionalization of the vari-
ables, become

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y
,(6.2)

∂u

∂x
+

∂v

∂y
= 0,
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which must satisfy the boundary conditions

y = 0 : u = v = 0, y = ∞ : u = 0.

Let us try to determine the conservation laws using the generating functions
method, treating derivatives in a generalized sense. One thereby obtains the operator
of universal linearization

lεF =

 ∂u
∂x + L− n(n− 1)sign

(
∂u
∂y

) ∣∣∣∂u∂y ∣∣∣n−2
∂2u
∂y2 Dy − n

∣∣∣∂u∂y ∣∣∣n−1

D2
y

∂u
∂y

Dx Dy

 ,(6.3)

which furnishes the conjugated operator

(lεF )
∗
=

 ∂u
∂x − L− nDy

∣∣∣∂u∂y ∣∣∣n−1

Dy −Dx

∂u
∂y −Dy

 .(6.4)

The final system determined from (lεF )∗(Ω) = 0 with Ω = (ϕ1, ϕ2)
T is

∂u

∂x
ϕ1 − u

∂ϕ1

∂x
− v

∂ϕ1

∂y
− n

∂

∂y

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂ϕ1

∂y
− ∂ϕ2

∂x
= 0,

ϕ1
∂u

∂y
− ∂ϕ2

∂y
= 0.

Eliminating ϕ2, introducing the stream-function u = Ψy, v = −Ψx, and dropping the
subscripts, one obtains

2Ψxyϕy − 2Ψyyϕx + Ψxϕyy −Ψyϕxy − n
∂2

∂y2

[
|Ψyy|n−1

ϕy

]
= 0.(6.5)

Using analogous reasoning to that of section 3.2, we assume a solution only in the
form ϕ = ϕ (Ψ,Ψy). Eliminating Ψyyy, Ψyyyy with the help of (6.2) and its differential
consequences, we find ϕΨ = ϕΨy = 0, which leads to a conclusion of triviality of
the proposed solution ϕ and implies the absence of local conservation laws in this
case. One can generalize the problem statement (6.2) by considering an apparent
viscosity in a form f(∂u∂y ) or some more complicated dependence. Investigation of
that problem may give the proper limitations on the form of functional dependence
that is indispensable for the existence of invariants.

6.2. The 3D case. Introducing the asymptotic solution representation (ε � 1)

u ⇒ u0[u + εu′ + · · · ],
v ⇒ εu0[v + εv′ + · · · ],
w ⇒ εu0[w + εw′ + · · · ],
p ⇒ p0[1 + ε2p′ + · · · ],

and rescaling the coordinates according to

x ⇒ Lx, y ⇒ εLy, z ⇒ εLz,(6.6)
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after substitution into the Navier–Stokes equations, we obtain for the condition
(n > 1, Lnu2−n

0 ρε1+n/κ ∼ 1) the system of PDEs:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

∂

∂y

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y
+

∂

∂z

∣∣∣∣∂u∂z
∣∣∣∣n−1

∂u

∂z
,(6.7)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p′

∂y
+

∂

∂x

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y
,

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p′

∂z
+

∂

∂x

∣∣∣∣∂u∂z
∣∣∣∣n−1

∂u

∂z
,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

Following the same procedure as in previous sections, we need to solve the system
of equations (lεF )∗(Ω) = 0, Ω = (ϕ1, ϕ2, ϕ3, ϕ4)

T . Direct substitution of Ω1, obtained
in the previous section for n = 1, shows its validity. The appropriate differential form
of the conservation law is

∂

∂x

[
u (yu− xv) + x

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y

]
+

∂

∂y

[
v (yu− xv)− xp′ − y

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y

]

+
∂

∂z

[
w (yu− xv)− y

∣∣∣∣∂u∂z
∣∣∣∣n−1

∂u

∂z

]
= 0.(6.8)

Group analysis provides the appropriate similarity reduction form

u = x
k(1+n)−1

n−2 fu(η, ζ), v = x
k(2n−1)−(n−1)

n−2 fv(η, ζ),

w = x
k(2n−1)−(n−1)

n−2 fw(η, ζ), p′ = x2
k(2n−1)−(n−1)

n−2 fp(η, ζ),

η =
y

xk
, ζ =

z

xk
.

As a result, we have the integral constraint

∂

∂x

∫ +∞

−∞
dz

∫ +∞

0

[
u (uy − vx) + x

∣∣∣∣∂u∂y
∣∣∣∣n−1

∂u

∂y

]
dy = 0,(6.9)

or, in self-similar variables,

∂

∂x
I = 0, I = x2k+ 3kn−2

n−2

∫ +∞

−∞
dζ

∫ +∞

0

[
ηf2

u − fufv +

∣∣∣∣∂fu∂η

∣∣∣∣n−1
∂fu
∂η

]
dη,(6.10)

which requires the similarity exponent k = 2
5n−4 . Obviously, n → 1 corresponds to

k → 2, as was already found in section 5.

7. Discussion and conclusions. The notion of conservation laws used through-
out this paper is associated with equations describing the physical phenomenon but
not with the phenomenon itself. For this reason, it may happen that different equa-
tions describing the same physical situation have different groups of conservation laws.
For example, Euler and Lagrange approaches to the same continuum medium may
lead to different sets of conservation laws, because the transition from Euler to La-
grange coordinates is a nonlocal transformation. Once again it should be noted that
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the results obtained above were found in the frame of local conservation law theory.
However, the consideration of various types of nonlocality may, in principle, lead to
new conservation currents according to the hypothesis [53, 54] that there exists a com-
plete set of nonlocal conservation laws in a sufficiently small vicinity of any regular
point of the PDEs. We can give the following informal justification of this suggestion.
Consider an evolution system of PDEs,

∂U

∂t
= L(x,U)U, x ∈ Ω.

If the domain Ω is finite and the nonlinear operator L(x,U) contains no singularities,
one can apply Galerkin’s method, the convergence of which was proved by Keldysh
[25] and later by other authors, by representing the solution in a form

U =
∞∑

n=1

un(t)ϕn(x),

which leads to an infinite-dimensional system of ordinary differential equations

du

dt
= F(u), u = (u1, u2, . . . )

T .

Consider a truncation of this system such that u belongs to some domain U in m-
dimensional Euclidean space. It is known [5] that there exists a neighborhood of a
nonsingular point u such that the truncated system has m−1 functionally independent
first integrals, which are referred to as local first integrals. Now recalling that in the
case of orthogonal basis functions ϕn(x),

un(t) =
〈U, ϕn〉
〈ϕn, ϕn〉 ,

one concludes that the corresponding conservation laws for the original solution vector
U are nonlocal. The convergence of Galerkin’s method admits the limit m → ∞. In
this case the set of conservation laws is countable. One can expect in the case of
extended domain Ω a “continuous” spectrum of conservation laws, or both “discrete”
and “continuous” spectra.

In addition, one should mention that there is another question still pending about
the correspondence between a manifold of solutions obtained by determining hidden
invariances and a manifold of solutions for the associated nonlinear eigenvalue prob-
lem.

This study provides, for the first time, an overall picture for hidden invariances in
wall jet problems which are obtained with the help of constructive mathematical tools
for the determination of the local conservation laws of a given system of PDEs. First,
the classical result of Akatnov [1] and Glauert [15] was reproduced, and uniqueness of
the self-similarity exponent was demonstrated. Consideration of the 3D jet described
by the Prandtl boundary layer equations, along with an analysis in the plane of
symmetry, leads to a two-parameter self-similar solution with the admissible spectrum
of eigenvalues k, l:

k ∈
(

3

4
,+∞

)
, l ∈

(
1

8
,+∞

)
.

Analogously, the 3D wall jet described by the 3D parabolized Navier–Stokes equations
has been investigated, producing the unique self-similarity exponent k = 2.

Finally, time-independent dilitant non-Newtonian power-law liquids, for which
the consistency index satisfies n > 1, were considered in both 2D and 3D situations.
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For the 2D case an absence of local conservation laws was demonstrated. Analysis of
the 3D case, on the other hand, yielded a local conservation law under the requirement
that the similarity exponent k satisfy k = 2

5n−4 , consistent with the planar wall jet of
a Newtonian fluid for which n = 1 and k = 3/4.
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