
Journal of Applied Mechanics and Technical Physics, Vol. 40, No. 3, 1999 

P R O P A G A T I O N  OF D I S T U R B A N C E S  IN T H R E E - D I M E N S I O N A L  

S U P E R S O N I C  B O U N D A R Y  L A Y E R S  

It. V. Krechetnikov and I. I. Lipatov 1 UDC 532.526 

The propagation of disturbances in three-dimensional boundary layers under the conditions of a 
global and a local strong inviscid-viscous interaction is analyzed. A system of subcharacteristics 
is found based on the condition for the pressure-related subcharacteristic, and an algebraic 
relation that gives the propagation velocity of disturbances is obtained. The velocity of 
propagation of disturbances is calculated for two- and three-dimensional flows. The studied 
problem is of great importance for accurately formulating problems for three-dimensional 
unsteady boundary-layer equations and for constructing adequate computational models. 

I n t roduc t i on .  The development of disturbances is a constituent of the problem of hydrodynamic 
stability. Analysis of disturbance propagation in a boundary layer corresponds to studying stability against 
long-wave disturbances. This analysis is required for accurately formulating various problems for three- 
dimensional unsteady boundary layer equations and for constructing various computational models. 

Analyzing three-dimensional boundary layer equations, Wang showed [1, 2] that, in this case, the 
characteristics are the lines normal to the streamlined surface. This property of the characteristics is related 
to higher-order derivatives which describe the propagation of disturbances with infinite velocities in the 
direction normal to the surface. 

In [1, 2], based on analysis of the characteristics and the subcharacteristics, Wang gave an accurate 
formulation of the problem for two- and three-dimensional unsteady boundary layers. A study of the boundary- 
layer flow with return streams allowed the authors of [3] to separate a discontinuous solution formed during 
an unsteady process [3]. 

For the case where the pressure distribution is unknown and should be determined in the course of the 
solution of the problem, there is an additional mechanism of disturbance propagation which is related to the 
propagation of pressure waves. The possibility of the upstream propagation of these waves in supersonic and 
hypersonic-flow regions stems from the existence of a subsonic-flow region near the surface. The induced 
pressure distribution, which is unknown in advance, is characteristic of the processes of inviscid-viscous 
interaction. The strong linear interaction processes occurring during the reflection of a shock from a boundary 
layer was studied by Lighthill [4]. The role of these process was found to be substantial also for separation 
flows, flows with high local gradients [5, 6], and hypersonic boundary-layer flows [7, 8]. 

Analysis of disturbance propagation in three-dimensional boundary layers for a regime of strong 
hypersonic inviscid-viscous interaction allowed the author [9] to determine the subcharacteristic surfaces 
which separate the region of subcritical (subsonic in the mean) flow from the region of transcritical (supersonic 
in the mean) flow. According to [10], these flows are called subcritical flows if the disturbances in them can 
propagate upstream over distances far exceeding the boundary-layer thickness, and transcritical flows if the 
disturbances in them can propagate only over distances comparable with this thickness. 

Two-dimensional unsteady flows were studied by Lipatov in [11-13]. The spatial unsteady propagation 
of disturbances is the subject of the present study. Two states which correspond to the global and local regimes 
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of strong interaction are studied. In the first case, the disturbances propagate over a distance comparable with 
the characteristic length of a body. This regime is observed when the parameter of the hypersonic interaction 
[14] assumes large values [7]. The second regime is characterized by small values of this parameter. In this 
case, the disturbances propagate over distances which are small compared with the body length but exceed 
the characteristic boundary-layer thickness. 

1. Global  S t r o n g  In t e rac t ion .  We consider a hypersonic flow of a viscous gas around a fiat zero- 
incidence surface in a regime of strong hypersonic inviscid-viscous interaction [14] under the conditions 

Moo --* ~ ,  Mc~r --* or (1.1) 

where Moo is the Mach number of the undisturbed inviscid flow and r is the dimensionless boundary-layer 
thickness. 

The following notation is used for the Cartesian coordinates reckoned in the direction of free flow, 
along the normal to the surface, and in the transverse direction, for the time, and the corresponding velocity 
components, density, pressure, total enthalpy, and dynamic viscosity: lx, ly, lz, lt/uoo, uoou, uoov, uoow, 
poop, poou2p, u~H/2,  and #0g. The parameter I is the characteristic length (for example, the length of 
the generatrix stretching in the streamwise direction), v = (poouool/#o) -U4 (the subscript cx) denotes the 
dimensional quantities in free flow), and go is the dynamic viscosity at the stagnation temperature. The gas is 
assumed to be thermodynamically perfect and characterized by a constant ratio of specific heats % Although, 
in a hypersonic flow, the effects of a real gas can be significant, they are ignored in our consideration, since the 
inclusion of them does not change substantially the form of the relationships obtained below. The Reynolds 
number is large, but it does not exceed the critical value at which the laminar-turbulent transition occurs. 
The Reynolds number for super- and hypersonic flows is known to be sufficiently large [15]. 

In accord with the theory of strong interaction [14], the disturbed flow region can be divided into two 
subregions: a shock-layer subregion I, and a boundary-layer subregion II (Fig. 1). The specific regions near the 
leading edge and in the temperature transient layer in the vicinity of the outer boundary-layer region are not 
considered here, since the flow in this region does not affect, in a first-order approximation, the boundary-layer 
flOW. 

In subregion I, the flow and coordinate functions [14] are presented in the form 

(p, p, H) = (r2pl + . . . ,  pl + . . . ,  HI + . . . ) .  

Substitution of the above expansions into the system of Navier-Stokes equations and the limiting 
transition (1.1) yield the system of nonlinear equations which describes a disturbed inviscid flow in the shock 
layer [14] 

(~Pl (~Pl G~plV______~I --0, G~vl (~vl GQVl 1 (~pl 0 (p~)  G ~ (P117) 
0t---~ q- ~Xl q- COyl ~ 1  "~- ~ -[- Yl ~Yl -[- --,o1 --COy 1 ---- 0, ~Xl -b Yl ~Yl ----- 0 
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with the boundary conditions in the shock wave 

3 '+1  
Yl =9i(xl, t l) ,  P l = - - ,  Pl= 

3 ' - 1  

and at the outer border of the boundary layer 

(3' + 2 (cog  og ) 
2 , v l -  + 

2 ( CO~I CO~I "~ 
Yl = 51(xl,tl), V 1 = -1- 

3"  11J 
For further analysis, it is required to establish the relation between the boundary-layer thickness (or 

the vertical velocity at the outer border of the boundary layer) and the induced pressure disturbance. We use 
the following approximate relation: 

3' + i v2 ' (1.2) pl - - - ~  

which is an extension of the tangent-wedge formula to the nonstationary case. 
For subregion II, the following asymptotic representations are characteristic: 

(~, y, z, t) = ( x l ,  ~y l ,  z~, t~); (1.3) 

(u, v, w) = (u2 + . . . ,  rv2 + . . . ,  w2 + . . . ) ,  (p, p, H) = (r2p2 + . . . ,  "r2p2 "4- . . . , /-/2 + . . . ) .  (1.4) 

Substitution of (1.3) and (1.4) into the system of Navier-Stokes equations and the limiting transition 
(1.1) result in the following system for a three-dimensional unsteady boundary layer: 

OU ( OU OF OU O@ OU) F COU ~ I  p O2U 
X - ~  + X U OX OX OY OZ " ~  4 0 Y  +t3 Q= Co OY 2' 

OW ( OW OF OW Or OW) F OW ~ 1  P O~W 
x - g y  + x u - $ ~  - - - -  OX OY OZ OY 4 OY + 13 Q= Co OY 2' 

OG ( cOG OF COG COr COG) F COG_xQ3"-l  cOP P 02G 
X -~-~ + X U COX COX COY cO Z - ~  4 cOY 3, cO--:~ + "~o cO Y-'--~ ' 

OP 2X OP [(3' - 1)Co] 1/2 
OF=~ 13=-l+--Fox,  ~x = ( ~ p  ] ~ &  dY' 

0 

(1.5) 

(o,", OA' I  
2 + x  E Z + b - y ) j ,  Q = G -  - 

7 -- 1 1/2X71/4 Y~ _3/4 A OF 0'~ 
Here Y 

0 

P2 = x[U2P, p2 = z'll/2R, Co = P(O, T), and G = / / 2 .  
We note that ,  in the boundary-layer approximation, the equation for the transverse component  of the 

momentum degenerates, which shows that the functions P and 13 are independent of the transverse coordinate 
Y. Without loss of generality, one can assume that  the viscosity depends linearly on the temperature,  and the 
Prandtl  number equals unity. The solution of the system of equations should satisfy the following boundary 
conditions at the surface and the outer border of the boundary layer: 

U = F = ~ = 0 ,  G=gw, Y = 0 ,  U = c o s a ,  W = s i n a ,  G = I ,  Y = e ~ .  (1.6) 

Here a is the angle between the direction of the main stream and the OX axis. To determine the unique 
solution, one should set an additional condition at a certain line downstream of the leading edge, e.g., the 
bo t tom pressure at the leading edge [7]. This condition is related to the upstream propagation of disturbances 
and their influence on the boundary-layer flow: 

P[X, Z = s T] = ~2(X, T). (1.7) 
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This pressure disturbance is given by the solution of the problem which describes the flow in the bottom 
region. At the same time, in the case of a flow around a plate of zero thickness, the unique solution of the 
problem considered is given by the smoothness condition in the transition from a subsonic to a supersonic (in 
the mean) flow in the wake [16, 17]. 

2. D e t e r m i n a t i o n  of Subcharae te r i s t ie  Surfaces.  The characteristic (subcharacteristic) surface 
12(X, Z, T) related to the function P(X, Z, T) is the surface at which the derivative 0P/012 is not determined. 
The procedure used below is only applicable under conditions where the pressure distribution in the system of 
boundary-layer equations is unknown in advance and is determined in the course of the solution. To do this, 
the system of equations should contain the additional interaction condition (1.2) and the additional boundary 
conditions (1.7). Among problems of this type is the problem of disturbance propagation in channels, where 
the continuity equation written in integral form is used to determine the pressure distribution. 

After introducing the new variables X, Y, Z, T ~ Ft(X, Z, T), Y, Z, T, the boundary-value problem 
(1.5)-(1.7) takes the form 

) ( Or OPOFt OU (OFt OFt 012 OU OF OFt ~ " ~  OFt OX 

OW OFt OFt 012 OW OF OFt - - O - Z  2-~-~ OZ 
012 --O-f + U - ~  + W - ~  - -..~- - - ~ - -  + + - -  - Bw, (2.1) OX 012 

012 \ - ~  + V-~-~ + W-~-~ - OY k Ofl O----X + O---fl " ~  + A3"~  OT 

p = 7 + l r  0/X / 012 012) 3A 6A]2 
2 ' 

(2 .2 )  

a l  = A2 = ('y - 1)Q A3 = ('y - 1)Q 
23'P ' 7P 

Below, the expressions for the right-hand parts of Eqs. (2.1) are not used. Using the determination of the 
boundary thickness of displacement of the layer, one can write the derivative on the right-hand side of 
expression (2.2): 

oa ,oP i ] 
012 - [ 2"~fi'2 J --~ HY p 012 Q dY . 

0 0 

To find the derivative OQ/O~l, we transform system (2.1) to one equation for the function 

OF 012 O~ OFt 
D =  ~ - - + ~ - -  

0120X 012 OZ" 
Adding the first equation multiplied by 012/0X to the second equation multiplied by 012/0Z, we obtain 

the equation 

OD OAo 7 - 1 0 P  
Ao - ~  + D - - ~  + B1Q 2"I P Off 

oft o12 oft ( o12 ( ~ 2 
w h e r e A 0 = ~ - ~ + V ~ - ~ - 4 - W ~ - ~ a n d  B I =  \ ~ ]  + \ ~ ' ~ ]  �9 

Equation (2.3) has the solution 

dY + D = -B1Ao -~ f i  012 o 

which yields the following expressions for the derivatives: 

OU 1 (D OU 0P012 ) OW 
OFt = A-'-'o ~ - A1 0"~ O--'X + Bu , OFt 

- -  = B0, (2.3) 

Y B0 

0 

1 ( D  DW 
= A o  

OP Off ) 
Off O---Z + Bw , 
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OG 1 (DOG 0P 012 ) 
O---fl = A'---o - ~  + A3 0"---'~ 0-~ "~ Bg . 

Finally, we have the following expression for the derivative of the induced pressure along the direction 
perpendicular to the subcharacteristic surface: 

OP p B , / ( N { 0 1 2  Off (oa)2] 
0---~= \ \ ~ ' ~ + ~ - ~ ) ) ,  N -  2 [ \0-X] +\0--Z]  ] 11-1~ 

(2.4) 
_ w2)2_.  + u- - 012 + W-oz)- 012",: ,o: < ' -  , , :  I 

0 0 

After introducing the displacement velocity of the characteristic surface 

1 012 012 1 012 012 
az = a cos w ---- az -= a sin w = 

Ba OX OT' B10Z OT' 
where w is the angle between the OX axis and the direction of disturbances propagation in the plane XZ,  
the expression for N in (2.4) takes the form 

N = 7 - 1 7  ( G - U 2 - W 2 )  2 
2 ( a - U c o s w - W s i n w )  2 d Y -  ( G - U 2 - W 2 ) d Y "  

0 0 

The characteristic surface 12(X, Z, T) is specified by the condition 

N = 0. (2.5) 

In a particular case, this condition leads to the expressions obtained for two-dimensional steady [18], three- 
dimensional steady [9], and two-dimensional unsteady [11] flows. Equation (2.5) gives the mean velocity of 
disturbances provided that the velocity vector and the enthalpy profiles are known. Although formula (2.5) is 
derived using a number of assumptions concerning the conditions of the interaction, one can show that this 
formula is valid for other regimes of interaction. Moreover, the same expression gives the propagation velocity 
of disturbances in turbulent boundary layers. 

Therefore, if the surface fl(X, Z, T) exists, it divides the flow into regions in which disturbances either 
propagate upstream (the subcritical-flow region) or do not propagate (the transcritical-flow regions). One can 
see a direct analogy between the problems considered here and the gas-dynamic problems. The transition from 
a supersonic to a subsonic flow can be accompanied by the formation of a shock. Discontinuous structures 
can also form upon the transition from a supercritical to a subcritical flow. This transition was discussed for 
steady [16, 17, 19] and unsteady [13] two-dimensional flows. 

It is noteworthy that the subcharacteristic surface, which is common for all unknown functions 
~I(X ,Y ,Z ,T) ,  can be determined based on analysis of system (2.1), (2.2), (2.5) written in the form 

IIEH~-~ = B,  where the matrix IIEI] and the vector S have the form / 0000 / 
0 Ao 0 0 A2 W 

]IEII= Cx C2 C3 0 0 , S =  V , 

0 0 0 Ao A3 G 

0 0 0 0 A4 P 

012 O~'l OFt 1012 0~ \ 
CI = OX' C2 = - ~ ,  C3 = OY' A4 = N t  + - ~  " 

The subcritical surface is determined by the equation det]iEII = 0. 
3. Resu l t s  of N u m e r i c a l  Analysis .  To determine the velocity of disturbances, one should know 

the velocity and the enthalpy profiles across the boundary layer. Provided that the amplitude of unsteady 

465 



disturbances is low and the undisturbed flow in the boundary layer is statior_~-y, one can use Eq. (2.5) to 
determine the velocity of disturbances, where the velocity and the enthalpy pro:_~.~,~ can be found by solving 
two- and three-dimensional stationary boundary-layer equations. In the genev~ aase, this solution can be 
obtained numerically. 

We consider flows in two- and three-dimensional boundary layers in ~:__e cases where these flows are 
described by self-similar solutions. An example is the flow around a flat plate of  ~:~_nite span with a sharp 
leading edge located at zero angle of attack to the approach of the hypersonic flow c / a  viscous heat-conducting 
gas provided that  the pressure distribution in the outside inviscid hypersonic f io~ :~ known and depends only 
on the streamwise coordinate X. It is assumed that either the plate is semi-imC~:e ~__ ~he streamwise direction 
or the pressure, which corresponds to the self-similar solution, is specified at t~e  r - ~  edge of a plate of finite 
length. After introducing the Dorodnitsyn-Lees variables 

X Yl 
1 

o o 
y 7/ 

/ =  fudo, =/wdr/,  g = (3.1) 
0 0 

we have a self-similar system of three-dimensional boundary-layer equations 

2 s in  2 a )  = 0. fn~n -4- film + fl(g - f2 cos 2 a - qa n 

(3.2) 
= 7 - 1  n 1 ~ n n + f ~ = 0 ,  

7 n + 1 cos 2 a '  

where @ = ~ and g,v7 + fgn = 0, with the boundary conditions 

,1=0:  f = f w ,  f , = ~ = 0 ,  g = # ~ .  

~7=oo: f ~ = ~ =  1, g = l .  

Here 3' is the adiabatic exponent and n is the power exponent in the  pressure-d~---~--bution law p = c l X  n. In 
this work, we studied two types of flow, which correspond to the induced pr~_.~-~-e_ ~s t r ibut ion (n = -0 .5)  
and the unfavorable pressure gradient preset in the outside flow (n > 0). Sy~e'-__ 3 .2 )  was written in the 
linearized form 

f~" + fk- , f~'  + ~(gk-,  - f k - l f k  cos2 a -- r 1 sin 2 a)  = t~. 
~11 ~1 I 
~k-1 -4- fk-lC2k_l = O, 9~-1 "+ fk- lVk-1 = 0 

(k is the order of approximation) and was approximated with a second-order d:.--~--~-~ce scheme. 
In the case n = -0 .5 ,  with given boundary conditions, the first equatio~ ~ was solved by the four- 

diagonal sweep method. The last two equations have solutions which can be wr:A.=~ ~a analytical form 

~k-l(r/) = I(TI)/I(o0), 

I(~/) = / e x p  ( - -  / fk-1 drl)dfl and gk_l( r / )=  gw + ( 1 -  gw)~k-l(q).  
% 

where 
0 0 

In the case n > 0, the region of definition of the desired functions was di::.dr ~ . o  two segments [0, r/*] 
and [q*, r/col (Fig. 2), and the general problem split into two problems: a lower bc~:~E~"3--value problem I with 
the upper boundary condition f '  = 0 for the function f at the point ,7* and t e e  ~--~_ _-o~_ boundary problem II 
with the lower boundary conditions f '  = 0, f = fi(r/*) for the function f ,  wE .ere ~i.:7") is the value of the 
solution on the segment I at the point ,7*. 

Next, the difference between the second-order one-sided derivatives at : k e  ~ ; : ~  ,7* was found: A = 
I I  * II * f~ ( q )  - f~I(r/ )- With the use of an iteration process (e.g., the dichotomy m e t h o d .  ~ point r/* was chosen so 
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as to minimize the value of [A[ with preset accuracy. The velocity profile determined by the above-described 
method corresponds to one branch of solution, i.e., a return flow with f~ < 0 [20]. 

After determining the velocity and enthalpy profiles, relation (2.5) written in terms of the variables 
(3.1) was used to find the velocity of disturbances propagation 

"7--1 7 (G-U2-W2) 2 f 
2 ( a - ' V c o s ~  Wsinod) 2 d r / -  (G-U2-W2)dTI =0' 

0 0 

where G = g, U = f~ cos a, and W = ~5 sin a. 
Below, the results of numerical and theoretical analysis of disturbance propagation with varied 

characteristic parameters of the problem for two- and three-dimensional flows are given. 
T w o - D i m e n s i o n a l  Flows. Figure 3a and b shows the graphs of the upstream (a_) and downstream 

(a+) velocities of disturbances in the range of variation of the parameters fw G [-1, 1] and gw G [0, 1]. The 
nonzero stream function at the surface (fw # 0) corresponds to a power law of distribution of the suction or 
blowing rate. An increase in the suction rate decreases the velocity a_ owing to the relative decrease in the 
subsonic-flow region in the boundary layer. The increase in the blowing rate leads to the opposite tendency. 
The temperature factor gw equals the ratio between the surface and stagnation temperatures. Heating gives 
rise to the increase in the boundary-layer thickness and the relative thickness of the subsonic-flow region. As a 
result, the velocity of the upstream disturbances increases. One can see that, as gw tends to zero, the velocity 
of the upstream disturbances also tends to zero. Thus, the disturbances do not propagate upstream at zero 
surface temperature. A similar result was obtained in [21-23], where the eigenvalues of the two-dimensional 
stationary boundary-value problem (1.5) were studied. 
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The self-similar solution of this system for a laminar boundary layer with pressure rise in the outside 
flow corresponds to the negative values of the parameter ~ in system (3.1). It is known [20] that the solution 
of the problem of interest is not unique under these conditions, and one of the branches describes flow 
with return streams. The occurrence of return flows in the boundary layer gives rise to the convective 
mechanism of upstream propagation of disturbances. It is important  that, in this case, the characteristics 
of the propagation of pressure disturbances also change. This fact is supported by calculation results. Figure 
4 shows the dependence of the velocity of upstream disturbances in a hypersonic boundary layer a_ on the 
parameter f w  for gw = 1 and a power-law pressure distribution in the outside stream p = c l X  ~ for a branch 
of solution of (3.1) that corresponds to the negative surface friction. It should be noted that the formation of 
return-flow regions appreciably increases the velocity of upstream disturbances. 

T h r e e - D i m e n s i o n a l  B o u n d a r y  Layer.  The self-similar solution of Eqs. (3.1) describes a boundary- 
layer flow over a yawed wing of infinite span. This solution was used to find the vector a = (a=, az) as a 
function of the temperature factor gw and the incidence angle a (the angle between the O X  axis and the 
approach-stream direction). Figure 5 shows the directional pattern of the propagation velocity of disturbances 
in a laminar boundary layer over a yawed wing in a regime of strong hypersonic inviscid-viscous interaction 
for gw = 0 and a = 30 ~ (quantitatively, this pattern is similar to that for a zero-incidence wing [12]). 

4. Local  S t r o n g  In te rac t ion .  In this paper, the term "strong interaction" corresponds to a regime 
in which the boundary-layer flow introduces only small disturbances into an outside inviscid flow. At the 
same time, the induced disturbances are assumed to affect the boundary-layer flow already in a first-order 
approximation. This regime of strong interaction can be either global (manifesting itself over the entire body 
length) or local (manifesting itself over small distances compared with the characteristic length). The regime 
of strong local interaction between a boundary-layer flow with an outside hypersonic flow is characterized 
by the following limiting relations: M~ ~ ~ ,  M ~ ' I  --* 0, and 7"1 = O((pouool / l~o) - l /2 ) .  In this case, the 
disturbance-induced effect is observed in a short region whose dimensions exceed the boundary-layer thickness 
[17]. We consider a flow over a plate (or a wedge surface) under the assumption that, at a finite distance from 
the leading edge, the boundary-layer flow is affected by a source of disturbances (e.g., varied bottom pressure 
or a jump of varying intensity). The following limiting relations are assumed to be fulfilled [19, 24]: 

_ 2+~,,,,-1 0(1), w/2 0(1), (poucJ/#o) -I12, (4.1) gw ~ O, ~ogw ivi~ = /XpMoog~ = ~o = 

where Ap is the amplitude of the disturbances and I~ = C~,T ~. As shown in [19, 24], in this interaction regime, 
a three-scale scheme similar to the scheme arising during the supersonic interaction [5, 6] can be realized. In 
this case, new effects related to the formation of the total displacement thickness can appear. For example, 
during strong wall cooling, the displacement thickness of the boundary layer varies not only in the near-wall 
region, but also in the main region of the boundary-layer flow, provided that conditions (4.1) hold. Under 
the assumption that the flows in the outside inviscid stream and in the main part of the boundary layer are 
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two-dimensional, the boundary-value problem which describes the flow in the near-wall region takes the form 

where 

OUo OUo OUo OUo OPo 02Uo 
OTo + U ~  + V~ + W o - ~ o  + OXo - OYo 2 ' 

OWo OWo OWo OWo OPo 02Wo OUo OVo OWo _ 0, 
O- o + g~ + V~ + w~ + o z----; - ' o x---7 + Woo + O Zo 

Y 0 = 0 ,  Uo = Wo = O, Yo ~ cx), Uo = Yo + A + o(1), Wo = O, 

Xo = (x _ t)kaog 5 (2+,0)/4~0-3~3,,,~j~1/4; Y0 = y(a3gw(2+,o)/4eo5Mco)l/4; 

, 5 (2+,0)/4 - 3 . . 3  ,1/4 + / _ 2 A 2 + , 0 ) / 2 ~ - 2 ~ 2  ~1/4. 
Zo = z(aog w e o lvl~) ; To = ~t,~o~w ~o ~"ooJ , 

( 1 ) ~ - 1 - ~  
Uo = u(aogw(2+,o)/4eolM~)l/4; Po = P 7f f i2  (aogweoMoo ) . 

After introducing the new variables Xo, Yo, Zo, To --* f~o(Xo, Zo, To), Yo, Zo, To and some transformations, we 
obtain 

OPo _ Po OQO[L [ ( 0 a o ~  2 ( 0 a o ~ 2 ] h } ,  
Of~o No' No = - ~ o  [ + t \-OXoo ] + \ O Zo ] J 

7(Oao oa Oao -2 
I 2 = J  k OT ~ + U o - ~ o  + W o - ~ o  ] dgo, 

0 

where L (dT1/dp) 5/4 (2+,0)/2 ~ -1 /4  ~--- a 0 g w  ~ 0  •  �9 

After introducing the velocity components az = a s inw  and ax = acosw, the condition No = 0, which 
gives the characteristic surface, takes the form 

L + (a - U0 cos w - W0 sin w) 2 = 0. (4.2) 
0 

Thus, provided that  the solution of a stationary problem which describes a three-dimensional disturbed 
flow in the near-wall region is known, one can use formula (4.2) to determine the velocity of disturbance 
propagation under  the conditions of strong local hypersonic interaction. 

C o n c l u s i o n s .  The effects of disturbance propagation play an important  role in the problems of flow 
sensitivity and stability (generally, they are ignored). Pressure disturbances can change the characteristics 
of the initial boundary layer. Moreover, conditions under which the upstream and downstream waves can 
interact with each other can arise. It should be noted that  these effects are insignificant in subsonic flows. 
]~his is, probably, connected with the fact that  the hypersonic boundary layer acts as a waveguide in which the 
~mplitude of the disturbances propagating upstream decays to a considerably lesser extent than in supersonic 
~nd subsonic boundary layers. The near-surface subsonic sublayer, in which the disturbances just propagate, 
?lays an impor tant  part in the development of disturbances. The results show that ,  in numerical modeling 
)f viscous-gas hypersonic flows, it is important  to accurately reproduce flow not only in the boundary later, 
)ut also in the subsonic sublayer. Neglect of the effects associated with disturbances propagation can result 
n qualitatively incorrect results, computational instability, etc. 

In addition, when the disturbances attain a certain high amplitude, a "jump" which separates the 
"egions of supersonic and subsonic flows can occur. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant 98-01-00660.) 
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