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Viscosity, surface tension and gravity effects on
acoustic reflection and refraction
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(Received 9 August 2018; revised 7 October 2018; accepted 4 November 2018)

The idea of the present work is to study from a unifying viewpoint the effects of
viscosity, surface tension and gravity on acoustic reflection and refraction at a fluid
interface, with the focus on modifications of Snell’s (Snell–Descartes’) law. While all
these effects can be treated individually due to separation of the associated time scales,
the contributions of surface tension to the gravity and viscosity cases are considered
as well. The analysis reveals a number of phenomena among which are dispersive
refraction laws, surface tension enhancing reflection, acoustic field generating vorticity
at the interface, and viscosity enhancing/suppressing reflection as well as giving rise
to extra reflected and transmitted waves.

Key words: acoustics, interfacial flows (free surface)

1. Introduction
Given a sound wave propagating in a medium with speed c, its wavelength
λ = 2πc/ω is set by the frequency ω, which is treated as a fixed parameter here:
we consider the physical situation of an acoustic source generating a plane wave of
frequency ω. From dimensional analysis, it follows that the presence of gravity sets up
three frequencies: ωg=g/c due to acceleration g, and ω′g=

√
g|ρ̇|/ρ and ω′′g = c

√
|ρ̈|/ρ

due to density stratification (ρ̇ and ρ̈ are the first and second derivatives of the
density ρ with respect to the stratification coordinate). The frequency ω′g is related to
buoyancy as encountered in the internal gravity wave theory (though it will prove to
be irrelevant for our purposes). Similarly, the surface tension σ between fluids leads
to the frequency ωσ = ρc3/σ , and the viscosity ν of the medium sets yet another
one ων = c2/ν. Typically, these frequencies range from infrasound to ultrasound:
ωg � ωσ � ων , with ωg disparate from ω′g and ω′′g . Examples of infrasound include
(Whitaker & Norris 2008) signals from animals (whales, elephants and giraffes),
avalanches, volcanoes, earthquakes, ocean waves, waterfalls and meteors, nuclear and
chemical explosions, engines, machinery and airplanes, which can be detected at
enormous distances due to very little attenuation. Moreover, in the ocean there exists
a horizontal layer of water – a sound fixing and ranging also known as a deep sound
channel – which acts as a waveguide for low-frequency sound waves converging
to it from a variety of sources (e.g. underwater landslides, earthquakes, explosions)
due to density stratification and travelling thousands of miles before attenuating
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FIGURE 1. (a) Setting: incident (i), reflected (r) and refracted (p) waves. (b) The change
of an acoustic beam cross-section A: Ai/Ap= cos θ1/cos θ2. (c) Two types of sound waves:
plane and a narrow beam (a ray).

(Munk et al. 1994). On the other hand, the viscosity and surface tension lead to
ultrasonic frequencies, which become important in modern applications, including
therapeutics up to 3 MHz (Watson & Young 2008), probing the underwater
environment up to 10 MHz (Dahl 2007), lab-on-a-chip surface acoustic waves
and microparticle manipulations up to 200 MHz (Drinkwater 2016), and acoustic
microscopy and sonography up to 4 GHz (Papadakis 1999). Viscous effects also
come into play in the geophysical context, again in the propagation and dissipation
of low-frequency hydro-acoustic waves in an ocean overlying a weakly compressible
viscous sediment layer (Abdolali, Kirby & Bellotti 2015). Naturally, in all the
above-mentioned situations, acoustic reflection and refraction from fluid interfaces
become important.

In the classical case of media with different densities ρ and sound speeds c
(cf. figure 1a), the solutions to the wave equations in each medium for the velocity
potential φ defined via ∇φ = v,

φn
tt − c2

n[φ
n
xx + φ

n
yy] = 0, for x ∈R, y ∈ (−1)nR+, n= 1, 2, (1.1)

satisfy the kinematic and dynamic conditions at the interface, linearized about its
undisturbed position and with the notation [· · ·]21 for the jump of a quantity between
two media represented as

y= 0: [φy]
2
1 = 0, [p]21 =−[ρφt]

2
1 = 0, (1.2a,b)

accounting for the continuity (across the interface) of the vertical velocity component
v = φy and the pressure p, respectively. Representing the incident, reflected and
transmitted waves as φ1

i = Aieiψi , φ1
r = Areiψr and φ2

p = Apeiψp , correspondingly, with
ψm = km · x− ωmt (entailing that v ≡ (u, v) is parallel to k), where we have kept the
frequencies ωm and wavenumbers km = (km

x , km
y ) independent, from (1.1) we find the

corresponding dispersion relations:

ω2
i = c2

1|ki|
2, ω2

r = c2
1|kr|

2, ω2
p = c2

2|kp|
2. (1.3a−c)

Substituting the velocity potentials into the boundary conditions (1.2) we conclude that
the only way for the latter to hold is if ki

x = kr
x = kp

x ≡ kx and ωi = ωr = ωp ≡ ω, i.e.
the x-component of the wavenumber remains unchanged and all three waves oscillate
at the same frequency ω.
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824 R. Krechetnikov

With these observations and the linear independence of the harmonics, equations
(1.2) reduce to an algebraic system, i.e. ki

yAi+ kr
yAr= kp

yAp and ρ1(Ai+Ar)= ρ2Ap, the
solution of which is

Γ ≡
Ar

Ai
=
ρ2ky − ρ1κy

ρ2ky + ρ1κy

(
=

ûr

ûi

)
,

Ap

Ai
=

2ρ1ky

ρ2ky + ρ1κy
. (1.4a,b)

Here the y-components of km are determined from (1.3), i.e. km2
y =ω

2
m − km2

x and

−kr
y = ki

y ≡ ky = kx/tan θ1, kp
y ≡ κy = kx/tan θ2, (1.5a,b)

after we have used the above established facts that kx and ω are the same in both
media. From the equality kr

y=−ki
y it follows that the angle of incidence is equal to the

angle of reflection, θi = θr ≡ θ1, measured with respect to the normal to the boundary
(cf. figure 1a). With further geometric considerations we arrive at Snell’s (also known
as Snell–Descartes’) law of refraction relating angles θ1 and θ2:

ki
x

kp
x
= 1=

|ki|

|kp|

sin θ1

sin θ2
=
ω/c1

ω/c2

sin θ1

sin θ2
⇒

sin θ1

sin θ2
=

c1

c2
, (1.6)

with well-known properties (Kinsler et al. 1999). As follows from (1.4a), (1.5) and
(1.6), for θ1>θc, where the critical angle θc is found from sin θ1= c1/c2 for c1< c2, κy
becomes imaginary and hence the transmitted wave evanescent (though the transmitted
wave energy is still non-zero), so that the Rayleigh reflection coefficient Γ in (1.4a) is
no longer real. In fact, Γ has complex conjugate numerator and denominator, meaning
that its amplitude |Γ |= 1 corresponds to total reflection, but since Γ is complex there
is a phase shift between the incident and reflected waves.

The energy conservation states that the averaged 〈 · 〉 energy flux density q= p′v=
ρc|v|2n over the period 2π/ω (here n = k/k and p′ is the pressure of the acoustic
wave) in the reflected and transmitted waves should add up to that of the incident
wave, 〈R0〉 + 〈T0〉 = 1, where the reflection and transmission coefficients are
〈R0〉 = 〈qr · nr〉/〈qi · ni〉 and 〈T0〉 = (Ap/Ai)〈qr · nr〉/〈qi · ni〉, respectively. Here we
have taken into account the change in the beam cross-section between the transmitted
Ap and incident Ai waves (with no change between incident and reflected waves);
cf. figure 1(b). When θ1 > θc, 〈R0〉 = 1, but the instantaneous R0 is different from
unity and, in fact, depends on ω. The sum of the instantaneous incident and reflected
energy fluxes is non-zero, thus explaining the penetration of the acoustic signal into
medium 2. The existence of the critical angle θc can be understood by rewriting
(1.1) with φn(t, x, y) = Φn(y)ei(kxx−ωt), leading to the stationary one-dimensional (1D)
Schrödinger equation Φn

yy + (ω
2/c2

n − k2
x)Φ

n
= 0, where the expression in brackets has

the meaning of the difference between the phonon energy E and potential barrier
size V (cf. figure 1a): E − V ∼ ω2/c2

n − k2
x with V ∼ ω2(1/c2

1 − 1/c2
2)= [ω

2/c2
]

1
2. For

c2 > c1 and θ1 >θc, the energy of the incident phonon is below V and hence it totally
reflects from the interface.

2. Surface tension effects
Proceeding in the order of increasing complexity, we first account for surface

(interfacial) tension σ between two fluids. The wave equations (1.1) and hence the
dispersion relation for sound propagation (1.3) stay intact as surface tension affects
only the boundary conditions: (1.2a) is appended with ht = φy and (1.2b) generalizes
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FIGURE 2. (Colour online) (a) Surface tension case: ω/ω(1)σ =5. (b) Gravity case: ω/ω(2)g =

0.55. (c,d) Viscous cases: ω/ω(2)ν = 1.0, σ = 0, with µ1/µ2 = 0.5 (c) and 3.5 (d). In all
plots c1/c2 = 1.5 and ρ1/ρ2 = 1.25. Ticks and lower/upper limits of the ordinate are the
same in (a–d). Solid lines correspond to 〈R〉 and dashed to 〈T 〉, while thin ones to the
classical 〈R0〉 and 〈T0〉.

to [ρφt]
2
1=−σhxx. With the argument of § 1 and with an extra harmonic representation

for the interfacial perturbation h = Ahei(kh
x x−ωht), we get three equations for unknown

amplitudes Ar, Ap and Ah with the resulting solutions:

{Ar, Ap, Ah}/Ai =∆
−1
{ρ2ky − ρ1κy + iσk2

xκyky/ω
2, 2ρ1ky, −2ρ1kyκy/ω}, (2.1)

where ∆ = ρ2ky + ρ1κy + iσk2
xκyky/ω

2 with the notation from (1.5). Notably, the
amplitude of the interfacial wave Ah does not vanish with σ , which is due to the
kinematic condition. The energy balance 〈R〉 + 〈T 〉 = 1 stays intact, i.e. in the steady
state the surface waves do not withdraw energy from the incident wave due to the
conservative nature of surface tension.

The complexity of the amplitudes, in particular Ar, implies that there is a phase ϕ
associated with it so that the corresponding reflected wave behaves as φ1

r ∼ ei(ψr+ϕ),
i.e. the phase constant ϕ tells us how much a signal is shifted in time and how
efficiently energy is transferred from the driver (incident wave) to the oscillator
system (reflected wave). Exploiting a simple relation between time averaging and
multiplication of complex amplitudes,

〈(Ae+ + A∗e−)(Be+ + B∗e−)〉 = 2(ArBr + AiBi), (2.2)

e.g. when B ≡ A, 〈(Ae+ + A∗e−)2〉 = 2|A|2, in the case of regular reflection, θ1 < θc,
we find

〈R〉 =
(kyρ2 − κyρ1)

2
+ σ 2k2

yκ
2
y k4

x/ω
4

(kyρ2 + κyρ1)2 + σ 2k2
yκ

2
y k4

x/ω
4
, tan ϕ =

2σρ1kyκ
2
y k2

x/ω
2

k2
yρ

2
2 − κ

2
yρ

2
1 + σ

2k2
yκ

2
y k4

x/ω
4
, (2.3a,b)

where ϕ = arg Γ . The latter expression (for ϕ) suggests that surface tension can
be responsible for both leading and lagging effects depending on the sign of the
denominator in the argument of tan−1. As follows from (2.3), the reflection phenomena
are characterized by three non-dimensional parameters, i.e. ρ1/ρ2, c1/c2 and ω/ω(1)σ
with ω(1)σ = c3

1ρ1/σ evaluated in medium 1, and for particular values are illustrated in
figure 2(a) exhibiting significant departures from the classical case when ω∼ωσ . The
value of 〈R〉 is closer to unity than that of 〈R0〉 and, in fact, the reflection becomes
stronger with increasing frequency ω, meaning that surface tension ‘rigidifies’ the
interface, leading to enhanced reflection. While, as is obvious from (2.3), perfect
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826 R. Krechetnikov

refraction is no longer possible in the presence of surface tension, one can still find
a minimum of reflection

〈R〉min =
σ 2(c2

1 − c2
2)k

6
x

σ 2k4
x(c

2
1 − c2

2)− 4ω4(c2
1ρ

2
1 − c2

2ρ
2
2)
, (2.4)

which occurs at the classical Brewster angle sin2 θB=[1− (ρ1c1/ρ2c2)
2
]/[1− (ρ1/ρ2)

2
].

In the case of total reflection, i.e. when θ1>θc with sin θc= c1/c2, the averaging gives
〈R〉 = 1.

3. Gravity effects
Starting from the Euler system for compressible flow in the gravity field g and

superimposing small perturbations of density ρ ′ and pressure p′ on the hydrostatic base
state (ρ0, p0) governed by p0=

∫
ρ0 g · dx, the linearized system for perturbation reads

∂ρ ′

∂t
+ ρ0∇ · v +∇ρ0 · v = 0,

∂v

∂t
=−

1
ρ0
∇p′ + g

ρ ′

ρ0
, (3.1a,b)

where the last term in (3.1a) comes from the base state density stratification and the
last term in (3.1b) has the meaning of buoyancy. The perturbation for pressure p′ is
found from

p= p0 + p′ = p0 + (∂p/∂ρ)s,ρ0ρ
′
+ · · · ⇒ p′ = (∂p/∂ρ)s,ρ0ρ

′
= c2

0ρ
′, (3.2)

after using the adiabatic assumption (constant entropy s) for sound wave propagation,
to be revisited in § 4. The corresponding interfacial conditions are again the kinematic
and dynamic

y= 0: ht = v
1
= v2, [p′]21 = [c

2
0ρ
′
]

2
1 = σhxx ⇒ [c2

0ρ
′

t ]
2
1 = σhtxx, (3.3a,b)

where in the latter condition we exploited (3.2) and differentiated with respect to time
as our goal is a closed system for velocity only. The time derivative of density is
found from the continuity equation (3.1a). In what follows we will consider the case
when gravitational acceleration is directed along the negative y-axis, g= (0,−g) with
g> 0 as per figure 1(a).

Eliminating ρ ′ from (3.1), we get a vector wave-like equation for the velocity field:

∂2v

∂t2
=

c2
0

ρ0
[(∇ρ0 + ρ0∇)∇ · v +∇(∇ρ0 · v)] − g̃

[
∇ · v +

1
ρ0
∇ρ0 · v

]
, (3.4)

where g̃ = g − (d2p0/dρ2
0)∇ρ0, and the term ∇(∇ρ0 · v) clearly contains vorticity

ω =∇ × v, which means that in the presence of stratification the flow is in general
no longer irrotational. Equation (3.4) illustrates how gravity enters under two guises:
(i) pure gravity effect in the term g∇ · v, and (ii) through explicit density stratification,
i.e. the terms involving ∇ρ0. Depending on the physical situation, one of these two
effects is dominant. Since we are interested in the interaction of sound waves with the
horizontal interface rather than propagation through media, which has been studied
before (Tolstoy 1963, 1965), for transparency we will first elaborate on the case (i)
when the explicit base state density stratification can be neglected, ∇ρ0 ' 0, and
also assume ρ0(d2p0/dρ2

0)/(dp0/dρ0)� 1, which allows us to neglect the variation of
the sound speed c0 with altitude y, for example, in the case of an ideal gas under

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

89
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f A

lb
er

ta
 L

ib
ra

ri
es

, o
n 

14
 D

ec
 2

01
8 

at
 1

8:
53

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.897
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Physical effects in acoustic reflection and refraction 827

isothermal conditions. The condition ∇ρ0 ' 0 is equivalent to assuming that ωg is
disparate from (either much smaller or much larger than) ω′g. Then (3.4) for velocity
v and the corresponding equation for density variation ρ ′ reduce to

∂2v

∂t2
= c2

0∇(∇ · v)− g∇ · v,
∂2ρ ′

∂t2
= c2

0∇
2ρ ′ − g · ∇ρ ′. (3.5a,b)

Plugging the solution of the form (uv)T = (û v̂)Teiψ in (3.5a) leads to the dispersion
relation

ω4
− [(k · k)c2

0 − igky]ω
2
= 0, (3.6)

where we have used the notation k · k to differentiate from |k|2 as the wavenumber
vector k is now complex as opposed to the classical case (§ 1). The dispersion relation
(3.6) is the deep water limit of that for acoustic gravity waves with a free surface
(Dalrymple & Rogers 2007; Kadri & Stiassnie 2013). Equation (3.6) yields two
solutions: the travelling ω2

1 = (k · k)c2
0 − igky and standing ω2

2 = 0 waves, which apply
in every medium with an appropriate speed of sound. The corresponding eigenvectors
provide a relation between the velocity components:

ω1: v̂ = û(ky − ig/c2
0)/kx, ω2: v̂ =−ûkx/ky, (3.7a,b)

i.e. the former is akin to the usual potential flow solution and the latter is a vorticity
mode with the velocity vector v no longer parallel to that of the wavenumber k.

Given that these modes are decoupled and we are interested in sound waves
of non-vanishing frequency, we will focus on the ‘potential flow’ case (though a
velocity potential as such does not exist). The dispersion relation (3.6) requires
further interpretation since the wavenumber k is always complex as opposed to the
classical case (§ 1). As follows from (3.6), if the y-component of the wavenumber
is zero, then we arrive at the classical acoustic dispersion (1.3), i.e. kxc0 = ω. This
means that the gravity vector introduces an anisotropy: when k= (kx, 0), gravity does
not have any effect on the sound wave (in the same way as gravity does not change
the horizontal velocity of a thrown stone), while for k = (0, ky) the wavenumber
becomes complex, with the imaginary part being responsible for decay/growth of
the sound wave amplitude. In general, the direction of a plane sound wave, even in
the presence of decay in a certain direction, is determined by the real part of the
wavenumber vector, so that in our case kx ≡ kr

x = k sin θ and kr
y = k cos θ are real,

while ky = kr
y + iki

y. Since k · k= k2
x + k2

y , then (3.6) yields

kx = k sin θ, ky =
ig±

√
−g2 + 4c2

0(ω
2 − k2

xc2
0)

2c2
0

, where k2
=
ω2

c2
0
−

g2

4c4
0
. (3.8a,b)

Note that k2
6= |k|2. An important conclusion from the above formula for ky and

(3.7a) is that the x-component of the velocity experiences a jump across the interface
since kx is the same for all waves in both media, but the vertical velocity component
is continuous based on (3.3a). Given the continuity of the x-component of the
wavenumber, we derive a modified Snell’s law:

ki
x

kp
x
=1=

ki

kp

sin θ1

sin θ2
=

√
ω2/c2

1 − g2/4c4
1√

ω2/c2
2 − g2/4c4

2

sin θ1

sin θ2
⇒

sin θ1

sin θ2
=

c1

c2

√
ω2 − g2/4c2

2√
ω2 − g2/4c2

1

, (3.9)
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828 R. Krechetnikov

which recovers the classical one (1.6) in the limit g→ 0. The case of pure gravity
effect without surface tension leads to a concise expression for the Rayleigh reflection
coefficient:

ûr

ûi
=
(g2
+ 4c4

2k2
2)(ig− 2c2

1k1 cos θ1)ρ2 − (g2
+ 4c4

1k2
1)(ig− 2c2

2k2 cos θ2)ρ1

(g2 + 4c4
1k2

1)(ig− 2c2
2k2 cos θ2)ρ1 − (g2 + 4c4

2k2
2)(ig+ 2c2

1k1 cos θ1)ρ2
, (3.10)

where k1,2 are given by (3.8) for the corresponding medium, and the angle θ2 is found
from (3.9).

Let us consider energy balance in the case treated here, i.e. when the explicit
gradient of the base state density can be neglected in (3.1). Taking the scalar product
of the velocity vector v with the momentum equation (3.1b) and using (3.2), we find

∂

∂t

[
1
2
ρ0v · v +

1
2

p′2

ρ0c2
0

]
=−∇ · (p′v)+ v · g

p′

c2
0
, (3.11)

which shows the dynamic energy balance for a sound wave in some control volume D.
The expression on the left is the sum of kinetic and potential compression energies,
while the first term on the right is the energy flux q= p′v through the boundary ∂D
and the second term is the production of energy inside the volume D by the gravity
force. Hence, the energy density flux is the same as in the classical case, though the
expression for p′ is different with the amplitude p̂ = ûωρ0/kx. The behaviour of the
reflection 〈R〉 and transmission 〈T 〉 coefficients corresponding to (3.10) for averaged
energy fluxes calculated with (2.2) is illustrated in figure 2(b) showing a significant
shift in total reflection compared to the classical case if ω ∼ ωg in accordance with
(3.9), the physics of which is explained below. As we can also see from figure 2(b),
the reflection coefficient increases and thus the transmission coefficient decreases due
to the pure gravity effect, which should be contrasted to the recent observation (Godin
2006; Godin & Fuks 2012) of increased sound transmission from a point source if it
is located close to the interface within a fraction of the wavelength and the base state
density variation is taken into account. A possibility of an analogous behaviour in the
context of the present analysis will be pointed out below when the case of density
stratification is addressed.

To proceed with the energy considerations, note that the wave equation for the
density variation (3.5b) is clearly not self-adjoint, thus having implications for energy
balance. With the change of variable ρ ′= e−ĝ·x/2ρ̃ ′, where ĝ=−g/c2

0, (3.5b) reduces to
a self-adjoint Klein–Gordon equation for particles with a non-zero mass (Fermi 1951):
∂2ρ̃ ′/∂t2

= c2
0∇

2ρ̃ ′− ρ̃ ′|g|2/4c2
0, as opposed to the massless D’Alembert equation (1.1).

Letting ρ̃ ′ ∼ ei(k·x−ωt), we recover the gravity-modified dispersion relation (3.8). Also,
following the analysis of § 1, with ρ̃ ′ = ρ̂ ′(y)ei(kxx−ωt) we get another stationary 1D
Schrödinger equation ρ̂ ′yy+ (ω

2/c2
− k2

x − g2/4c4
0)ρ̂
′
= 0, from which it follows that the

potential barrier size
V ∼ [ω2/c2

− g2/4c4
]

1
2 (3.12)

differs from the classical case (§ 1), affecting not only the total reflection angle θc,
but also the reflection/transmission even when the phonon energy E>V . Owing to the
conservative nature of gravity, the total energy balance is still the same, 〈R〉+ 〈T 〉=1.
The mass-like effect of gravity explains the increased reflection in figure 2(b) for the
configuration shown in figure 1(a).
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Physical effects in acoustic reflection and refraction 829

It is important to remark that, in the presence of stratification, ∇ρ0 6= 0, but when
the sound speed variation is neglected, (3.4) admits the potential flow (v = ∇φ)
formulation (Bondi 1947; Abdolali & Kirby 2017)

∂2φ

∂t2
= c2

0∇
2φ + g

∂φ

∂y
, (3.13)

which leads to exactly the same travelling wave solution as the dispersion relation
(3.6) in the above considered case (i) of the pure gravity effect and hence the same
modified Snell’s law (3.9).

In the general case, however, when both density stratification and sound speed
variation are taken into account (3.4), the initially plane wave neither stays plane nor
preserves its direction due to refraction (Brekhovskikh 1960), which can be easily
seen if one approximates the continuous stratification by discrete layers with different
sound speeds and then applies (3.9). Hence, in this case the universality of a Snell’s
type law is lost – the angle of incidence at a particular point of the interface depends
not only on the initial direction of the plane wave, but also on the distance travelled
and the particularities of the sound speed variation. Nevertheless, the dispersion
relation corresponding to (3.4) provides leading-order corrections (expanded here for
small ρ̇0, ρ̈0 and g assuming slow variation of ρ0 with y, so that ω1,2 and ky are slow
functions of y as well) to the frequencies ω1,2 determined above:

ω2
1 = (k · k)c

2
0 − ig̃ky − 2ikyc2

0
ρ̇0

ρ0
−

c2
0k2

y

(k · k)
ρ̈0

ρ0
, ω2

2 =−
c2

0k2
x

(k · k)
ρ̈0

ρ0
, (3.14a,b)

where ky is general, not undisturbed wavenumber component, and g̃=g− (d2p0/dρ2
0)ρ̇0.

Thus, the standing wave solution for ∇ρ0' 0 is no longer standing for ∇ρ0 6= 0, with
the corresponding eigenvectors again accounting for the potential and vorticity modes:

ω1: v̂ = û
ky

kx

(
1−

γ

ky
− i

g̃
c2

0ky

)
, (3.15a)

ω2: v̂ =−û
kx

ky

(
1+

γ

ky

)
, where γ = i

ρ̇0

ρ0
+

ky

(k · k)
ρ̈0

ρ0
. (3.15b)

Since the x-component of the wavenumber k is real and given upon arrival at the
interface, from (3.14a) we can find the y-component of the corresponding wavenumber
expanded here for both small base state density variations and gravity:

ky = k0y

(
±1−

c2
0

2ω2

ρ̈0

ρ0

)
+ i
ρ̇0

ρ0
+ i

g
2c2

0
+O(g2), k0y =

√
(ω/c0)2 − k2

x , (3.16)

where k0y is the undisturbed y-component of the wavenumber in the absence of gravity
(1.5). Given the relation between û and v̂, we can solve (3.3) perturbatively for the
amplitudes of the reflected and refracted waves in the presence of surface tension, e.g.
the correction δûr to ûr given by (2.1), so that the total solution is ûr + δûr, with the
singled out effect of density stratification reads

δûr

ûi
=−kyκyω

2 (κ · κ)(ikxκyσ +ω
2ρ2)ρ̈1 − (k · k)ω2ρ1ρ̈2

(k · k)(κ · κ)[κy(ik2
xkyσ +ω2ρ1)+ kyω2ρ2]

2
, (3.17)
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830 R. Krechetnikov

which is real-valued for σ = 0, and with the pure gravity effect (no explicit
stratification) reads

δûr

ûi
= kyρ1

σ [k4
xκy − (k · k)k2

xκy + k2
xkyκ

2
y ] − iω2

[(κ · κ)ρ1 − (k · k)ρ2]

[κy(ik2
xkyσ +ω2ρ1)+ kyω2ρ2]

2
g, (3.18)

which for σ = 0 is imaginary and tends to zero with increasing frequency ω as
opposed to (3.17). Both corrections may vanish depending on the incident ky and
transmitted κy wavenumbers as well as the density distribution of both media. The
buoyancy effects ρ̇1,2 proved to be irrelevant in the leading-order correction to
the reflection coefficient. As follows from (3.17), transmission may increase (and
thus reflection decrease) depending on stratifications in both media similar to
the observation by Godin (2006) and Godin & Fuks (2012), though the problem
formulation in the latter works differs from the present one as pointed out earlier.
While the coefficients 〈R〉 and 〈T 〉 corresponding to (3.17) are easy to compute, their
interpretation can be done only in the context of a concrete choice of stratification,
which is beyond the scope of the present study.

4. Viscosity effects
The decoupled acoustic equations with inclusion of viscous effects (in the absence

of gravity) are

∂2ρ ′

∂t2
=

[
c2

0 +
1
ρ0

(
λ+

4
3
µ

)
∂

∂t

]
1ρ ′, (4.1a)

∂2v

∂t2
=

[
c2

0 +
1
ρ0

(
λ+

4
3
µ

)
∂

∂t

]
1v +

[
c2

0 +
µ

ρ0

∂

∂t

]
∇×ω, (4.1b)

where µ and λ are shear and bulk viscosities, respectively. Plugging in (4.1b) the
anzatz (uv)T = (û v̂)Tei(k·x−ωt) furnishes the dispersion relation{

ω2
− (k · k)

[
c2

0 −
iω
ρ0

(
λ+

4
3
µ

)]}{
ω2
+ (k · k)

iω
ρ0

(
λ+

1
3
µ

)}
= 0. (4.2)

In the case of a freely propagating sound wave, isotropy of the viscosity action
naturally follows, i.e. we must assume that both kx= kr

x+ iki
x and ky= kr

y+ iki
y have real

and imaginary components. The direction of the plane wave is determined by the real
parts kr

x= kr sin θ and kr
y= kr cos θ and isotropy dictates that analogous expressions hold

for the imaginary parts ki
x= ki sin θ and ki

y= ki cos θ responsible for the (homogeneous)
decay of the sound wave due to viscosity. Therefore, the analysis of the dispersion
relation reduces to a single dimension since k · k= k2

x + k2
y = k2

r − k2
i + 2ikrki, i.e. only

for one complex wavenumber k= kr + iki. Linearizing for small values of viscosities,
we get a system of two equations for kr and ki:

ω2/c2
0 = k2

r − k2
i , 2krki = (λ+ 4/3µ)ω3/ρ0c4

0 ≡ b. (4.3a,b)

From the latter equation it follows that either kr > 0 and ki > 0 or kr < 0 and ki < 0,
i.e. the direction of the wave propagation correlates with the direction of decay.
Solving (4.3) we find k2

r = (ω
2/2c2

0)[1 ±
√

1+ b2c4
0/ω

4], k2
i = k2

r − ω
2/c2

0, where we
chose the plus sign since kr must be real; the corresponding x- and y-components of
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Physical effects in acoustic reflection and refraction 831

the real and imaginary parts of the two-dimensional wavenumber are then determined
by multiplying k with sin θ and cos θ , respectively. Obviously, in such a general
setting the standard analysis (§ 1) does not apply due to the decay of the signal in
the x-direction: amplitudes now depend on x and hence the problem should be treated
back in physical space. The only two situations (cf. figure 1c) when the standard
analysis would be relevant are: (i) the plane wave emitted with varying amplitude
along the phase ψ = kr

· x − ωt = const. (the closer to the interface, the lower the
amplitude at the source location), so that the amplitude of the sound wave arriving
at the interface is the same at all x locations effectively meaning that ki

x = 0; and
(ii) a sufficiently narrow sound beam (a ray), so that the decay is negligible in the
neighbourhood of its intersection with the interface (for angles of incidence away
from grazing) as long as d � c0λ

2/ν, where λ is the sound wavelength and d the
beam diameter. Together with the condition of negligible divergence of the beam
based on Huygens’ principle, we can quantify setting (ii):

√
lλ� d� c0λ

2/ν, (4.4)

where l is the beam length. Since ki
x = 0 and ki

y is small for low-viscosity fluids, we
get

k2
=ω2/c2

0, ki
y = b/(2k cos θ), (4.5a,b)

where in the latter expression one must assume b� k cos θ , which becomes impossible
for θ→π/2 since the magnitude of k is fixed. It is easy to show that this restriction
is not related to linearization for small viscosity, but, in fact, is a property of the
original system: as θ → π/2 it becomes impossible to deliver the same amplitude
(not decaying in x) signal to the interface over longer distance through the viscous
dissipating fluid. The first bracket in (4.2) gives the standard potential flow result for
ω1 with the corresponding y-component of the wavenumber:

ω1: v̂ = û
ky

kx
, ky =±k0y

(
1+

i
2
ω3
(
λ+ 4

3µ
)

ρ0c4
0k2

0y
+ · · ·

)
, (4.6)

where the expression for ky is valid provided the condition

ω3

ρ0c4
0

(
λ+

4
3
µ

)
� k2

0y ⇒ λ2
0y ≡

(
2π

k0y

)2

�
4π2ρ0c4

0

ω3

(
λ+

4
3
µ

)−1

(4.7)

is satisfied. The second bracket in (4.2) gives the vorticity-type solution ω2 denoted
by the wavenumbers k′r and k′p in figure 1(a) with the corresponding y-component:

ω2: v̂ =−û
kx

ky
, ky =±ei(π/4)

(
ρ0ω

λ+ 1
3µ

)1/2 [
1+ i

k2
x

2
λ+ 1

3µ

ρ0ω
+ · · ·

]
, (4.8)

which is a fast decaying (in space) mode for low-viscosity fluids, where we take
the plus sign for medium 2 (transmitted mode) and minus sign for medium 1
(reflected mode). This last mode is instrumental in resolving the problem of acoustic
reflection/refraction – without it, i.e. assuming that the acoustic field is potential
v = ∇φ, we get an overdetermined system, which physically means that interaction
of an oblique acoustic field with the fluid interface generates vorticity in analogy to
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832 R. Krechetnikov

an acoustic boundary layer in the reflection from a solid wall as alluded to by Pierce
(1989). However, this mode vanishes for normal incidence, θ1→ 0, as then ω= 0.

The corresponding linearized interfacial conditions, with τ being the viscous stress
tensor, read

y= 0: [v]21 = 0, ht = v, (4.9a)
[p′ − n · τ · n]21 = σhxx, where n · τ · n= (λ− 2µ/3)(ux + vy)+ 2µvy, (4.9b)

[t · τ · n]21 = 0, where t · τ · n=µ(uy + vx), (4.9c)

[u]21 = 0, (4.9d)

i.e. in (3.3) we have replaced (3.3b) by the normal stress balance (4.9b), and added
the tangential stress balance (4.9c) along with the no-slip condition (4.9d). Pressure
p′ in (4.9b) is found from (3.2) and the linearized continuity equation (3.1a), where
ρ0 = const. With the ansatz (uv)T = (û v̂)Tei(k·x−ωt) we first arrive at

∂ρ ′

∂t
=−ρ0∇ · v =−iρ0(kxû+ kyv̂)ei(k·x−ωt)

⇒ ρ ′ =−i
ρ0

ω
∇ · v, (4.10)

so that ρ̂ = (kxû + kyv̂)ρ0/ω and then p′ = c2
0ρ
′ with p̂ = (kxû + kyv̂)ρ0c2

0/ω as per
the adiabatic assumption (3.2). Altogether, we have five equations – two kinematic
(4.9a), dynamic normal (4.9b), dynamic tangent (4.9c) and no-slip (4.9d) boundary
conditions – for the interfacial amplitude ĥ, two reflected waves (ûr, v̂r) and (û′r, v̂

′

r),
and two refracted waves (ûp, v̂p) and (û′p, v̂

′

p). Note that the components in each pair
(ûm, v̂m) are related via either (4.6) or (4.8) depending on the nature of the acoustic
wave. Finally, the energy density flux in the classical acoustic case q= p′v is modified
to q= p′v− v · τ (Landau & Lifshitz 1987). Using the condition of velocity continuity
across the interface (no slip), which dictates the continuity of the real part of kx,
leads to the modification of Snell’s law (1.6) stated here along with the corresponding
potential barrier V as per the stationary 1D Schrodinger analysis (§ 1) applied to (4.1a)
with ρ ′ = ρ̃ ′(y)ei(kxx−ωt) yielding ρ̃ ′yy + [ω

2β/c2
0 − k2

x ]ρ̃
′
= 0:

sin θ1

sin θ2
=

c1

c2

1+
ω2

8ρ2
2 c4

2

(
λ2 +

4
3
µ2

)2

1+
ω2

8ρ2
1 c4

1

(
λ1 +

4
3
µ1

)2 ; V ∼
[
ω2β

c2

]1

2

, β =

c2
+

iω
ρ

(
λ+

4
3
µ

)
c2 +

ω2

ρ2c2

(
λ+

4
3
µ

)2 ,

(4.11a,b)
both exhibiting significant departures from the classical case (§ 1); notably, V is
complex now with the imaginary part being responsible for adsorption.

First, let us consider the case when both viscosities are small and of the same order,
µ1 = O(µ2). In the case of one medium only (so that ρ2 and µ2 both vanish), the
potential flow correction (4.6) of (2.1) due to viscosity reads

δûr

ûi
=−σω

(
µ1 +

4
3
λ1

)
k2

x(k
2
x − k2

y)
2

ky(iσkyk2
x +ω

2ρ1)2
, (4.12)

where here and in the following expressions ky and κy are undisturbed wavenumbers.
The interesting fact is that (4.12) vanishes in the absence of surface tension, that
is, reflection is the same as if medium 1 is inviscid. However, retaining inertia of
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Physical effects in acoustic reflection and refraction 833

medium 2, as follows from the discussion below, leads to a non-zero correction. In
the case of increasing incidence angle θ1, ky decreases and thus the correction (4.12)
grows, which is the consequence of increasing effect of viscosity due to enhanced
friction/shear with the interface (especially when a sound wave propagates close to
parallel to it), but ky is bound from below as per the restriction (4.7). When both
media are present, without bulk viscosity, in the near-normal incidence case, θ1→ 0
and thus kx→ 0, we find

δûr

ûi
=

4ikyκy

3ω
µ1ρ2k2

y −µ2ρ1κ
2
y

(κyρ1 + kyρ2)2
+O(k2

x), (4.13)

i.e. the leading-order term does not depend on surface tension. The limit of µ2→ 0
does not lead to vanishing δûr if one retains the inertia of the second medium, ρ2 6= 0.
In the near-normal incidence case the correction to the reflection coefficient 〈R〉 −
〈R0〉 corresponding to (4.13) then becomes

−
16ω2(ρ1c2

1µ2 − ρ2c2
2µ1)[2ρ3

1 c4
1µ2 − 2ρ3

2 c4
2µ1 + 3ρ1ρ2c2

1c2
2(ρ1µ1 − ρ2µ2)]

9ρ1ρ2c3
1c3

2(ρ1c1 + ρ2c2)4
, (4.14)

which changes sign at µ1/µ2 = (2ρ2
1 c2

1 − 3ρ2
2 c2

2)/(2ρ
2
2 c2

2 − 3ρ2
1 c2

1) and at µ1/µ2 =

ρ1c2
1/ρ2c2

2. Figures 2(c) and 2(d) demonstrate both positive and negative cases of
(4.14) confirming the trend suggested by (4.13) that viscosity may both enhance and
suppress reflection/transmission due to the imaginary part of the potential barrier
(4.11b), which effectively makes it active. Therefore, even though an infinitesimally
thin (Gibbs) interface cannot accumulate energy, the energy density flux of the
reflected and transmitted modes is not conserved 〈R〉 + 〈T 〉 < 1, cf. figure 2(c,d).
These same plots indicate that transmission increases with the incidence angle θ1 –
this behaviour is analogous to increasing adsorption with θ1 in the reflection of a
plane acoustic wave from a solid wall (Pierce 1989). Without both surface tension
and bulk viscosities and when there is viscous stratification, µ2� µ1, the correction
to (1.4a) is of the form

δûr

ûi
=

(1+ i)ρ2

3ωky(kyρ2 + κyρ1)2

{
2(1+ i)κyµ1(k2

x − k2
y)

2

+ i
√

6ω1/2k2
xk2

y
√
ρ2µ2(

√
ρ1/ρ2 −

√
ρ2/ρ1)

2
}
+O[(µ2/µ1)

3/2
]. (4.15)

The secondary reflected mode (4.8) amplitude, which is of rotational type, in the
absence of surface tension and bulk viscosities and for µ1 =O(µ2), reads

û′r
ûi
= 2ky

ρ1 − ρ2

(κyρ1 + kyρ2)(1+
√
ρ1µ1/ρ2µ2)

+O(µ1, µ2), (4.16)

and vanishes when ρ1 − ρ2 = 0. As follows from (4.16), lowering µ1/µ2 increases
the amplitude of this vorticity mode, which (due to energy conservation) reduces
the reflection of an acoustic wave as seen in figure 2(c). In the case of viscous
stratification, µ2�µ1, we get

û′r
ûi
= 2ky

(ρ1 − ρ2)
√
ρ2µ2/ρ1µ1 +

√
2/3(1− i)κy

√
ρ1µ1/ω

κyρ1 + kyρ2
+O(µ2/µ1), (4.17)
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which diverges at low frequencies ω → 0. The frequency at which the effect of
the vorticity mode (4.17) is O(1), i.e. û′r ∼ ûi, is found from k

√
µ/ωρ ∼ 1, which

gives ω ∼ c2/ν ≡ ων ; e.g. for water the frequency f = ω/2π is far in the ultrasound
range '1011 Hz, for glycerol '109 Hz, and for air '1010 Hz. For rarefied gases,
we can estimate ων ∼ c2/ν ∼ SρNc ∼ SρN

√
kBT , where ρN is molecular density

and S the effective collision cross-section. Thus, the critical frequency ων decreases
when ρN is lowered, making the vorticity effect more pronounced and observable at
common frequencies. Also, for rarefied gases, thermal conductivity is estimated as
λT ∼ cVµ and hence thermal diffusivity α ∼ µ/ρ = ν, thus prompting us to revisit
the adiabatic assumption (3.2). Because the equation of state is linear for waves of
small amplitude, then both pressure and temperature vary as ∼sin(kx−ωt). Given the
sound wavelength λ, the regions of high and low pressure (and thus of temperature)
are separated by a distance λ/2. Hence, the condition for validity of (3.2) is that
negligible heat flow should occur between these two regions in the course of a
half-period π/ω of the wave during which the temperature distribution is reversed.
Since the distance over which heat diffuses in time t is (αt)1/2, the assumption (3.2)
is valid provided (Fletcher 1974)

(απ/ω)1/2� λ/2 ⇒ ω�πc2/α ≡ωa. (4.18)

For air we find f =ω/2π� c2/α' 1010 Hz. Hence, for (rarefied) gases, the frequency
ωa at which the adiabatic assumption fails is of the same order as the frequency ων at
which the vorticity mode becomes important. The condition under which the vorticity
mode will appear while the assumption (3.2) remains valid, i.e. when ων � ωa, is
for the Prandtl number to be Pr = ν/α� 1. While for gases Pr = 0.7–1, for water
Pr= 1–10 and for oils Pr= 50–2000, i.e. for the latter media no generalization of the
sound propagation theory to the non-adiabatic case is needed as follows from (4.18).

5. Conclusions and further comments
Revisiting the classical Snell’s law (1.6) with the goal to include the ubiquitous

physical effects – viscosity, surface tension and gravity – generalized the classical
analysis (Landau & Lifshitz 1987) and revealed not only modified laws of refraction
(3.9) and (4.11a), which are now dispersive (frequency-dependent) and explained here
with the help of the corresponding potential barriers (3.12) and (4.11b), but also other
phenomena, in particular surface tension enhancing reflection, acoustic field generating
vorticity near the interface between fluids, and viscosity enhancing/suppressing
reflection as well as giving rise to extra reflected and transmitted waves. The latter
observation is analogous to the Klein paradox (Klein 1929; Dombey & Calogeracos
1999), in which the potential barrier emits electron–positron pairs when an electron
of mass m and energy E is incident on the potential barrier V > E + m. The
complex nature of V in the presence of viscosity (4.11b) also explains energy losses,
〈R〉 + 〈T 〉< 1.

In summary, the effects of gravity, surface tension and viscosity can be considered
separately provided the characteristic frequencies defined in § 1 are disparate:

ωg�ωσ �ων, (5.1)

and therefore lead to separation of the corresponding time scales. Each effect becomes
relevant when the acoustic wave frequency ω is comparable to the corresponding
characteristic frequency in either medium. Surface tension proved not to affect the
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classical Snell’s law, but the reflection and transmission coefficients do change. The
pure gravity effect ω∼ ωg, i.e. when the base state density stratification is neglected,
can be considered in isolation provided ωg is either much larger or much smaller
than ω′g and ω′′g . The corresponding Snell’s law (3.9) remains valid, however, even
when ωg ∼ ω

′

g as long as the speed of sound does not vary appreciably. Viscosity
also modifies the Snell’s law to (4.11a) with the adiabatic approximation for sound
propagation (3.2) justified in the viscous case ω ∼ ων provided Pr � 1. In some
particular situations, depending on the fluid properties the characteristic frequencies
may becomes comparable, e.g. ωσ ∼ ων requires µ ∼ σ/c, which is conceivable for
some liquids.

While here we focused on the phenomena admitting universal refraction laws in
order to make the comparison to the classical Snell’s law (1.6) transparent, among
the questions requiring further study are relaxing the conditions (3.2) and (4.7) in the
viscous case and accounting for the effects of sound speed variation in continuously
stratified fluids (Zhang & Swinney 2017), for example, in the case of water as dictated
by Tait’s equation of state. Relaxing the adiabatic assumption (3.2) in the viscous case
should lead to the existence of entropy waves decaying fast similar to the vorticity
waves near a solid boundary (Pierce 1989). Also, we naturally considered the systems
homogeneous in the x-direction (along the interface), which enabled conservation of
the corresponding component of the momentum and hence that of the wavenumber
(Landau & Lifshitz 1987). However, in the geophysical context the x invariance is
broken by the seabed topography such as a shelf break, which together with the finite
depth of the ocean may lead to the generation of a countable infinity of reflected and
transmitted modes (Kadri & Stiassnie 2012).
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