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Abstract

Stickelberger ideals are known, in certain circumstances, to provide annihila-

tors for class-groups of number fields. Defined in terms of certain values of

L-functions, Stickelberger ideals are thus examples of a general phenomenon

sought after in arithmetic geometry in which analytically defined objects pass

information on algebraically defined objects. However, they do not give all re-

lations in the class-group in general, and are often zero. In this thesis, we study

the recently defined fractional Galois ideal of Snaith associated to an abelian

extension of number fields, which, by using leading coefficients of L-functions

rather than values, is hoped to improve on the annihilator relations provided by

the Stickelberger ideal.

We describe a general relationship of the fractional Galois ideal with the

conjectural Stark elements, which, should they exist, will be connected to class-

groups via the theory of Euler systems. This relationship will be examined

explicitly in some cyclotomic situations to illustrate that we do indeed obtain

more annihilators in this way, later being combined with results from Iwasawa

theory to show that a limit of the fractional Galois ideals in a Zp-extension gives

rise to Fitting ideals of limits of p-parts of class-groups.
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Chapter 1

Introduction

1.1 The analytic class number formula

The motivating principle of this thesis can be taken to be the desire to gener-

alize the analytic class number formula (see (1.1.1) below) in a Galois module-

theoretic way. This formula, usually stated in terms of the leading coefficient

(residue, in this case) ζ∗L(1) of the Dedekind ζ-function ζL(s) of a number field

L at s = 1, relates the orders of the class-group and group of roots of unity of

L via ζ∗L(1) and a quantity RL, the Dirichlet regulator of L. For our purposes,

it will be more convenient and natural to use the version obtained by means

of the functional equation for ζL(s). This incarnation of the formula involves

instead the leading coefficient ζ∗L(0) of ζL(s) at s = 0, and says

ζ∗L(0)
RL

= −|Cl(L)|
|µ(L)| , (1.1.1)

where Cl(L) is the class-group of L and µ(L) is the group of roots of unity in

L.

What we take from (1.1.1) is that it makes a connection between an analytic

object, the Dedekind ζ-function, and two important groups associated with L:

Cl(L) and µ(L). Even before the development of K-theory this was interesting,
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but we have since been able to view these groups as the torsion subgroups of

K0 and K1 respectively of the ring of integers OL in L. We will say more about

the general K-theoretic setting in Section 1.2.3, although in this thesis it will

serve only as motivation.

For the time being, let us give a name to the Z-submodule of R generated

by ζ∗L(0)
RL

; we shall call it J (L). Then straight off (1.1.1) tells us that J (L) in

fact lies in Q. However, it further tells us that

annZ(µ(L))J (L) ⊆ annZ(Cl(L)). (1.1.2)

Although the annihilator ideal of a module does not determine the isomorphism

class of that module, it nevertheless carries significant information, hence the

interest in an inclusion like (1.1.2).

1.1.1 Formulation in terms of Galois structure

The more structure with which we endow Cl(L) and µ(L), the more information

one is potentially capable of extracting, and so it is with this in mind that we

wish to view these objects not just as Z-modules, but as Galois modules, that

is, modules over the integral group-ring of a Galois group. This will of course

be a generalization of the above situation, since we can always take that Galois

group to be trivial, and (1.1.2) will serve as a model for this generalization. In

fact, J (L) is the first example of a “fractional Galois ideal at s = 0”, although

the “Galois” aspect does not play a role in this case because we have neglected

any kind of Galois action.

So, let us suppose we have a subfield K of L such that the extension L/K is

Galois, with Galois group G say. Cl(L) and µ(L) come with natural G-actions

and we consider them as Z[G]-modules.

Question 1.1.1 Is there a way of constructing non-trivial elements α ∈ Q[G]

such that

annZ[G](µ(L))α ⊆ annZ[G](Cl(L))?
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We could instead have viewed (1.1.1) in terms of the Fitting ideal of Cl(L)

(see Section 2.2), observing that it tells us

annZ(µ(L))J (L) = FittZ(Cl(L)).

Therefore when G is abelian (so that Z[G] is a commutative ring and Fitting

ideals for Z[G]-modules are defined), we could ask further:

Question 1.1.2 Is there an ideal A of Z[G] constructed by analytic methods

such that

annZ[G](µ(L))A = FittZ[G](Cl(L))?

1.2 Evidence and conjecture

1.2.1 Stickelberger elements

Given a pair (L/K,S) where L/K is an abelian extension of number fields and S

a finite set of places of K containing the infinite ones, we can define an element

θL/K,S ∈ C[G], where G = Gal(L/K), in terms of values of L-functions for the

pair (L/K,S). L-functions, which are meromorphic functions of the complex

plane, contain deep information about the given extension of number fields.

They will be defined and discussed in Section 2.3.1, but for the time being we

remark simply that we have such a function for each character χ of G, and that

it will be denoted LL/K,S(s, χ) where s is a complex variable. The Stickelberger

element is then defined as follows:

Definition 1.2.1

θL/K,S =
∑

χ∈Ĝ

LL/K,S(0, χ̄)eχ,

where eχ ∈ C[G] is the idempotent associated to χ. (LL/K,S(s, χ) is indeed

analytic at 0 and hence has a true value there.)
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On a first glance, one might believe that θL/K,S could have non-rational

complex coefficients. In fact, one has the following theorem, due to work of

Siegel on partial ζ-functions in [37]. (Partial ζ-functions will be discussed in

Section 2.3.5.)

Theorem 1.2.2 The Stickelberger element θL/K,S lies in Q[G].

In fact, when K is totally real there is a much stronger result of Deligne and

Ribet in [13]:

Theorem 1.2.3 If K is totally real and S contains the places which ramify in

L/K, then

annZ[G](µ(L))θL/K,S ⊆ Z[G].

1.2.2 Q as base-field

Let us consider the case when K = Q and S is the set consisting exactly of

the infinite place of Q and the places which ramify in L/Q. The next result is

classical in nature, first proven in essence by Stickelberger in 1890, although the

outward appearance of his version would have been somewhat different from

the more modern one, which we have opted to provide here. (His version of

θL/K,S differed slightly from the one given here and was not defined in terms of

L-function values.) We emphasize that L/Q is an arbitrary abelian extension

of number fields with Galois group G.

Theorem 1.2.4 Any Z[G]-multiple of θL/Q,S having integral coefficients anni-

hilates Cl(L).

A proof of Theorem 1.2.4 can be found in [45, Section 6.2], although it is

then necessary to make the transition from the form of the result found there

(akin to what Stickelberger proved) to the form above. This transition can be

found in the proof of the relevant case of the Brumer–Stark Conjecture found

in [29, Ch.15].
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We now see, by combining Theorems 1.2.3 and 1.2.4, that

annZ[G](µ(L))θL/Q,S ⊆ annZ[G](Cl(L)), (1.2.1)

and hence also that

annZ[G](µ(L))θL/Q,S ⊆ annZ[G](Cl(OL,S)) (1.2.2)

since Cl(OL,S) is a quotient of Cl(L). However, (1.2.1) and (1.2.2) are limited

in their usefulness, since we see readily from Definition 1.2.1 that θL/Q,S = 0

whenever all of the L-functions LL/Q,S(s, χ) vanish at s = 0. This certainly

can happen; for example, when L is totally real. Our attempt to overcome

this problem will involve constructing group-ring elements using the leading

coefficients of the L-functions at s = 0, rather than their actual values. This

construction will take place in Chapter 4.

1.2.3 The K-theoretic context

Notwithstanding what has been said in Section 1.2.2 concerning the vanishing

(in some cases) of the Stickelberger element, it is still interesting to ask the

following question: Suppose we are once again given an arbitrary abelian ex-

tension L/K of number fields with Galois group G and a finite set S of places

of K containing the infinite places and the ones which ramify in L/K. Do we

have

annZ[G](µ(L))θL/K,S ⊆ annZ[G](Cl(OL,S))? (1.2.3)

This is the conjecture known as Brumer’s Conjecture, and it is discussed in

more detail in [27, Section 4] for example.

In observing that one has

Cl(OL,S) = tors(K0(OL,S))

µ(L) = tors(K1(OL,S)),

it became natural to conjecture analogues of (1.2.3) involving the higher alge-

braic K-groups of OL,S .
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Definition 1.2.5 Let L/K and S be given as above. Then for k < 0, define

the Stickelberger element θL/K,S(k) ∈ C[G] by

θL/K,S(k) =
∑

χ∈Ĝ

LL/K,S(k, χ)eχ̄.

Remark. We point out that, as in Section 1.2.1, there is no need to assume

that the set S contains the ramified places in order to define θL/K,S(k).

We now come to a higher-dimensional analogue of the Brumer Conjecture,

posed when K is totally real, L is totally real or is a CM-field, and S contains

the places which ramify in L/K; see [38, Ch.7]. Whereas (1.2.3) asks about

L-function values at s = 0 (through θL/K,S), the following concerns values at a

negative integer k.

Conjecture 1.2.6 For any integer k < 0,

annZ[G](tors(K1−2k(OL,S)))θL/K,S(k) ⊆ annZ[G](K−2k(OL,S)).

We observe that we do not need to take the torsion in K−2k(OL,S) for k < 0,

because these groups are already torsion. The odd K-groups need not be torsion,

however.

1.2.4 Higher fractional ideals

As with (1.2.2), in which θL/K,S can be zero, the same problem could arise

in Conjecture 1.2.6. Now, under the assumption that L/K satisfies the higher

Stark Conjectures, Snaith shows in [40] how one can attach to L/K a family

{J k(L/K)}k∈Z<0 of Z[G]-submodules of Q[G], hoped to appear in a generaliza-

tion of Conjecture 1.2.6. Namely,

Conjecture 1.2.7 If L/K is an abelian extension of number fields with Galois

group G and S contains the places which ramify in L/K, then for each odd
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prime p and each k < 0,

annZp[G](tors(K1−2k(OL,S))⊗Z Zp)J k(L/K) ∩ Zp[G]

⊆ annZp[G](K−2k(OL,S)⊗Z Zp).

What is more, J k(L/K) will contain non-trivial elements even when

θL/K,S(k) is zero. Conjecture 1.2.7 is formulated in [40, Section 5.1], and

evidence for it is given in [40, Section 6] assuming the Lichtenbaum–Quillen

Conjecture (which relates étale cohomology to K-theory).

1.3 Return to L-functions at s = 0

1.3.1 Iwasawa theory and Stark elements

We now return our attention to the relationship of the behaviour of L-functions

at the integer k = 0 with class-groups. An important area of study for this

relationship is Iwasawa theory, which approaches the problem by considering

not just isolated extensions of number fields, but all the subextensions at once

of some given infinite extension whose Galois group G is a compact p-adic Lie

group. An advantage of such an idea is that one can make use of properties of

modules over the completed group-ring of G which are not exhibited by modules

over group-rings of finite Galois groups. For example, a classical theorem of

Iwasawa – proven largely by algebraic means – states that when G is isomorphic

to Zp, the growth of the orders of the Sylow p-subgroups of the class-groups in

the given extension is determined, at least sufficiently far up the Zp-extension,

by just three integers. The precise statement and proof can be found in [45,

Chapter 13].

It was an idea of Iwasawa himself that p-adic L-functions, meromorphic func-

tions of Cp obtained by interpolating p-adically the values of Artin L-functions

at negative integers, should carry strong information about the limit Cl∞ of p-

parts of class-groups in a Zp-extension. The conjecture he posed became known
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as the Main Conjecture of Iwasawa theory, and was proven by Mazur and Wiles

in [23], with Wiles later proving a generalization in [46]. A version suitable for

our needs is formulated precisely in Section 6.3.2. We observe, however, that

p-adic L-functions only tell us about the so-called minus part of Cl∞, i.e. the

part on which complex conjugation acts by −1. One might ask the question:

what analytic object would tell us about both the minus and plus parts for

complex conjugation?

There have since been further generalizations of the Main Conjecture posed,

all taking the form

Certain p-adic L-functions are closely related to a limit of

Selmer groups,

a Selmer group being an algebraically defined object containing deep arithmetic

information. Class-groups are, essentially, examples of Selmer groups.

Some of these conjectures have been proven, and one of the major approaches

in tackling them is the consideration of Euler systems. In principle, an Euler

system is a collection of Galois cohomology classes satisfying some coherence

property, and in terms of which bounds on the orders of associated Selmer

groups can be formed. However, as discussed in [34, Chapter 8], an important

aspect of the story is the expected relationship of Euler systems not just with

Selmer groups, but with p-adic L-functions as well, a relationship which has

been verified in a number of cases. Examples of Euler systems which have led

to proofs of main conjectures and related statements are given in Table 1.3.1

below.

The idea that leading coefficients of L-functions can be expressed in terms

of special elements (like cyclotomic units, elliptic units) has been formalized by

the “integral” versions of Stark’s Conjectures; see [33] and [26] for very general

formulations, and [41] and [43] for formulations in an important special case.

Furthermore, [32] and [26, Section 4] show how these Stark elements, as they are
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Table 1.3.1: Examples of Euler systems.

Euler system Used in

(i) Cyclotomic units Thaine [44] and Rubin [30], to construct

annihilators of class-groups of real abelian

extensions of Q from annihilators of units

modulo cyclotomic units

(ii) Elliptic units Rubin [31], to prove a main conjecture for

elliptic curves with complex multiplication

(iii) Heegner points Kolyvagin [19, 20], to bound the orders of

Selmer groups of elliptic curves

(iv) Beilinson elements Kato [17], to prove one direction of a main

conjecture for elliptic curves in a large class

of cases

sometimes called, give rise to Euler systems leading to a link with class-groups.

That Stark-type elements can give rise to annihilators of arithmetic objects like

Selmer groups is also discussed in [6] as part of the general framework of Burns

and Flach’s Equivariant Tamagawa Number Conjecture; see in particular [6,

Theorem 5.5]. This points to the Stark elements being a stepping stone be-

tween the analytic domain of L-functions and the algebraic one of class-groups.

Although the Stark elements are only conjectural in general, we shall see in

Section 3.6.1 a number of situations in which they are known to exist.

1.3.2 The fractional Galois ideal at s = 0

The central object of this thesis is an invariant J (L/K, S) associated to a

pair (L/K,S) where L/K is an abelian extension of number fields satisfying

Stark’s Conjecture – see Chapter 3 for a formulation of this conjecture – and

S is a finite set of places of K containing the infinite ones. Based on Snaith’s
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higher fractional ideals J k(L/K), it is a finitely generated Z[G]-submodule of

Q[G], G = Gal(L/K), defined in terms of leading coefficients of L-functions

at s = 0. We will provide evidence for J (L/K, S) improving on the role of

the Stickelberger element θL/K,S which, although contributing annihilators for

class-groups, is often zero, as discussed in Section 1.2.2.

The strength of J (L/K, S) over θL/K,S , or rather the module Z[G]θL/K,S it

generates, is that J (L/K, S) is never zero. We will see in Proposition 4.2.4 and

equation (4.2.1) a natural way to decompose J (L/K, S) according to the orders

of vanishing of L-functions at 0. The part corresponding to L-functions which

are non-zero at 0 will be exactly Z[G]θL/K,S . However, we will exhibit in The-

orem 4.3.3 a very general relationship between the various parts of J (L/K, S)

and the Stark elements discussed above. More precisely, Stark elements all come

with a rank, a non-negative integer r, and the part of J (L/K, S) corresponding

to L-functions with order of vanishing r at 0 will be closely tied in with the

rank r Stark elements, for any r ≥ 0.

This relationship in the case r = 1, together with a result of Rubin, will

allow us to demonstrate explicitly for certain cyclotomic fields the role of the

rank 1 part of the fractional ideal in providing annihilators for the plus part

of the class-group; see Proposition 6.2.1. Combined instead with a theorem

of Cornacchia and Greither [12] on the Fitting ideals of class-groups, and the

classical Main Conjecture of Iwasawa theory, we will be able to show how a

limit of the J (L/Q, S) “twisted” by certain characters is equal to the Fitting

ideal of the corresponding eigencomponent of Cl∞; see Theorem 6.3.1. Since

this will be proven for both even and odd characters (characters that act by

+1 and −1 respectively), we will have found an object analytic in nature which

gives information on both the plus and minus parts of Cl∞.

As remarked above, the proof of Theorem 6.3.1 uses a result of Cornacchia

and Greither comparing the Fitting ideals of units modulo cyclotomic units

and class-groups, stating that these Fitting ideals are equal. In fact, the proof
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of Theorem 6.3.1 only uses a form of this result obtained by tensoring with

Zp, and in Section 6.4 we give a new proof of one direction of this: that the

Fitting ideal of units modulo cyclotomic units (tensored with Zp) is contained

in that of the class-group (tensored with Zp). The basis of the proof of this

statement, which is Proposition 6.4.1, is to show that the information tied up

in the determinant (of a certain complex) concerning limits of cyclotomic units

and limits of class-groups in an extension of number fields can be “descended”

to give the required information on the individual class-groups themselves. The

contribution here is the descent, following [39], and not the calculation of the

determinant in question, which was done by Burns and Greither in [8].
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Chapter 2

Preliminary material

2.1 Representation theory

We include this section because it contains statements which, although basic,

will be referred to many times. We take as read the principal statements of the

representation theory (over C) of finite groups; namely that

• to each representation is associated a character

• two representations are isomorphic if and only if their characters

are equal

• the irreducible characters form an orthonormal basis (with respect

to a suitable Hermitian product) for the space of class functions

on a finite group G

• the character table of G exhibits row and column orthogonality.
We record here a selection of corollaries, although we do this only in the abelian

situation, which is sufficient for this thesis.

2.1.1 The isomorphism ϕG

Let G be a finite abelian group, Ĝ = Hom(G,C×) its character group and

R(G) its representation ring, and let Qc be the algebraic closure of Q in C.
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Row and column orthogonality of the character table of G show that the ring

homomorphism

ϕG : Map(Ĝ,C) → C[G]

h 7→
∑

χ∈Ĝ

h(χ)eχ, (2.1.1)

where eχ = 1
|G|

∑
σ∈G χ̄(σ)σ is the idempotent in C[G] associated to χ, is an

isomorphism. If we extend a character χ ∈ Ĝ linearly to C[G], then the inverse

of ϕG is given by sending a group-ring element α to the map χ 7→ χ(α).

We observe that the group of units in Map(Ĝ,C) is Map(Ĝ,C×), so that ϕG

induces a group isomorphism Map(Ĝ,C×) → C[G]×. It is also clear that ϕG

restricts to a ring isomorphism Map(Ĝ,Qc) → Qc[G].

Now, the Galois group GQ = Gal(Qc/Q) acts on Map(Ĝ,Qc) as follows:

Firstly, GQ acts on Ĝ (on the left) by χδ = δ ◦χ for δ ∈ GQ and χ ∈ Ĝ. Then if

h ∈ Map(G,Qc), δh is the map defined by (δh)(χ) = δ(h(χδ−1
)). On the other

hand, GQ acts on Qc[G] by acting on coefficients. It is straightforward to check

that the isomorphism ϕG respects these actions.

The above is summarized in the following lemma:

Lemma 2.1.1 The ring isomorphism ϕG : Map(Ĝ,C) → C[G] defined by

(2.1.1) restricts to give isomorphisms (of groups and rings as appropriate)

Map(Ĝ,C×) → C[G]×

Map(Ĝ,Qc) → Qc[G]

MapGQ(Ĝ,Qc) → Q[G].

Since the representation ring R(G) of G is generated freely as a group by

Ĝ, we can identify Map(Ĝ,C×) with Hom(R(G),C×). Then the main point to

draw from the above is

Lemma 2.1.2 ϕG : Hom(R(G),C×) → C[G]× restricts to an isomorphism

HomGQ(R(G), (Qc)×) → Q[G]×.
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2.1.2 Determinants of C[G]-endomorphisms

Maschke’s Theorem (for any finite group G and any field F whose characteristic

does not divide |G|) says that in any F [G]-module, all submodules are direct

summands. Hence every F [G]-module is projective. This allows us, when G is

abelian, to define the determinant of an endomorphism of any finitely generated

F [G]-module.

In fact, this can be done more generally. Let R be a commutative ring, M

a finitely generated projective R-module, and h ∈ EndR(M). We arbitrarily

choose a finitely generated R-module N such that M ⊕N is free, and extend h

to h⊕ 1 : M ⊕N → M ⊕N . Then we simply define detR(h) to be detR(h⊕ 1).

This is independent of the choice of N . We note that, as usual, detR(h1 ◦h2) =

detR(h1)detR(h2).

So, take G to be a finite abelian group. We will be interested in the following

situation: Let V, W be finitely generated C[G]-modules and h ∈ EndC[G](W ).

Then one obtains a C-linear map

hV,W : HomC[G](V,W ) → HomC[G](V, W )

φ 7→ h ◦ φ. (2.1.2)

Proposition 2.1.3 Let W be a finitely generated C[G]-module, h ∈ EndC[G](W ),

and V an irreducible C[G]-module with character χ. Then the determinant of

the C-linear map hV,W is χ(detC[G](h)).

Proof. We may reduce to the case that W is free. Indeed, choose W ′ finitely

generated such that W ⊕W ′ is free. We extend h to h⊕1 : W ⊕W ′ → W ⊕W ′,

and note that, by definition, detC[G](h) = detC[G](h⊕1). Introduce the notation

H(U) = HomC[G](V, U) for a C[G]-module U . Then from the commutativity of

H(W ⊕W ′)

²²

hV,W⊕W ′
// H(W ⊕W ′)

²²
H(W )⊕H(W ′)

hV,W⊕1// H(W )⊕H(W ′)
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we see that detC((h ⊕ 1)V,W⊕W ′) = detC(hV,W ). This completes the reduction

step.

Now assume that W is free as a C[G]-module, and let {β1, . . . , βn} be a

basis (over C[G]). Of course, any homomorphism in HomC[G](V, W ) has image

in eχW , and since {eχβ1, . . . , eχβn} is a C-basis for eχW , we can find a C-basis

for HomC[G](V, W ) as follows: Choose v0 ∈ V r{0} and for i = 1, . . . , n define

a C-linear map ηi : V → W by ηi(v0) = eχβi. Then the ηi are C[G]-module

homomorphisms, and {η1, . . . , ηn} is a C-basis for HomC[G](V, W ).

We let A = (ai,j) be the matrix representing h with respect to this basis.

A simple calculation shows that for j = 1, . . . , n, hV,W (ηj) = χ(a1,j)η1 + · · · +
χ(an,j)ηn, and so the matrix representing hV,W with respect to the ηi is χ(A).

The lemma follows.

In the situation where an endomorphism of a C[G]-module is given by mul-

tiplying by some fixed element of C[G], the determinant of that endomorphism

can be found easily, as the following lemma shows.

Lemma 2.1.4 Let G be a finite abelian group, M a finitely generated C[G]-

module with character χM , and α ∈ C[G]. Then the C[G]-determinant of the

multiplication-by-α map [α] : M → M is equal to

∑

χ∈Ĝ

α〈χ,χM 〉eχ,

where we understand α0 to be 1 always (including the case α = 0).

Proof. We may assume M is the direct sum
⊕

χ∈Ĝ(eχC[G])rχ for some non-

negative integers rχ. Of course, rχ is just 〈χ, χM 〉. Letting r = maxχ{rχ} and

N =
⊕

χ∈Ĝ(eχC[G])r−rχ , we see that M ⊕N is free of rank r. Now choose the

natural C[G] basis for M⊕N to work out the determinant of [α]⊕1 : M⊕N →
M ⊕N .
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We also observe the following lemma, which will be applied later in the case

R = C[G] with G finite abelian. The proof is straightforward, and omitted.

Lemma 2.1.5 Let R be a commutative ring, M a finitely generated projective

R-module and e ∈ R an idempotent. Then eM is also projective, and if α ∈
EndR(M),

edetR(α) = edetR(α|eM ).

2.1.3 Rank idempotents

Let G be a finite abelian group and M a finitely generated C[G]-module. If

〈·, ·〉G denotes the canonical Hermitian product on the space of class functions

of G, then we write

rM (χ) = 〈χ, χM 〉

for a character χ ∈ Ĝ, where χM is the character of M . We will call rM (χ) the

rank of χ in M .

Remark. It is important to empasize that the rank of a character does not

mean the dimension of the underlying vector space.

In subsequent chapters, we will often want to study the part of a module

corresponding to the characters of some fixed rank, and this can be achieved

with the aid of what will be called rank idempotents.

Definition 2.1.6 For each r ≥ 0, define eM [r] ∈ C[G] by

eM [r] =
∑

χ∈Ĝ
rM (χ)=r

eχ,

and call it the rth rank idempotent for M .

In our applications, the rank idempotents we will make use of will, in fact,

have rational coefficients.
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2.2 Fitting ideals

In this section, R can be any commutative ring with identity 1 6= 0. Given a

finitely presentable R-module M , the Fitting ideal of M (by which we mean

the zeroth Fitting invariant as defined in [25]) is an ideal in R, given as follows:

Choose positive integers a and b and an exact sequence

Ra φ→ Rb → M → 0.

Then FittR(M) is the ideal generated by all b × b minors of any matrix repre-

senting φ. This definition is independent of any choices.

To give some feel for the role of the Fitting ideal, first note that it is always

contained in the annihilator ideal; further, if M can be generated by n elements

then annR(M)n ⊆ FittR(M). For modules M of the form

R/I1 ⊕ · · · ⊕R/Im, (2.2.1)

FittR(M) = I1 · · · Im. Thus, in the case when R = Z and M is finite, we see that

FittZ(M) = |M |Z. For some rings R, torsion modules of the shape in (2.2.1)

can be infinite, though we might still want to measure their “size”. Often, the

Fitting ideal is the appropriate measure. In Iwasawa theory, inverse limits of

p-parts of class-groups, for a prime p, are important objects. While they are

not finite in general, they do have a Fitting ideal; we will say more about this

in Section 6.3.

We make one more remark concerning the relationship between Fitting ideals

and annihilator ideals which will help us later on. It is clear from the above

that if M is a cyclic R-module, then FittR(M) = annR(M). However, in the

case R = Z[G] for a finite cyclic group G, we can say more. Given a finite Z[G]-

module M , denote by M∨ the Z[G]-module HomZ(M,Q/Z), where the action

of G is given by (σf)(m) = f(σ−1m) for σ ∈ G, f ∈ M∨ and m ∈ M .

Proposition 2.2.1 Let M be a finite Z[G]-module (G finite cyclic). If either

M or M∨ is cyclic over Z[G], then FittZ[G](M) = annZ[G](M).
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Proof. If M is cyclic, the conclusion is obvious from the above, as re-

marked. Now, Proposition 1 of [23, Appendix] implies that FittZ[G](M) =

κ(FittZ[G](M∨)), where κ : Z[G] → Z[G] is the linear extension to Z[G] of the

automorphism of G sending each element to its inverse. So, if M∨ is cyclic over

Z[G],

FittZ[G](M) = κ(FittZ[G](M∨))

= κ(annZ[G](M∨))

= annZ[G](M),

the last equality being clear.

2.3 Artin L-functions

The theory of Artin L-functions (let alone L-functions in general) is far too

large a body of knowledge for any account possible here to be representative of

the whole. However, because Artin L-functions play such an important role in

what is to follow, it is deemed correct to give a summary of the main points. A

good introduction is [5].

Artin L-functions are attached to triples (L/K, S, χ) where L/K is a Galois

extension of number fields, S is a finite set of places of K containing the infinite

ones, and χ is a character of the Galois group G of L/K. They are meromorphic

complex functions which are defined, in the first instance, for complex numbers

having real part greater than 1.

The key idea rests in the fact that given a prime (by which we shall mean

a finite place) P of L one can associate to it canonically a class σP in GP/IP,

where GP and IP are (respectively) the decomposition and inertia groups of P.

Indeed, we let σP be the unique class mapping to the Frobenius automorphism

of the extension (OL/P)/(OK/p) of finite fields, where p is the prime below P.
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2.3.1 Definition of Artin L-functions

Suppose that V is a realization of a character χ of G. Any representative σ of the

class σP defines an automorphism of the vector space V IP of IP-fixed elements,

by v 7→ σv, and the automorphism is independent of the choice of σ ∈ σP.

Further, if P and P′ both lie above the same prime p of K, with P′ = τP say,

then one can obtain a representative σ′ for σP′ by conjugating a representative

σ for σP by τ , i.e. σ′ = τστ−1. Consequently, the automorphisms of V IP and

V IP′ defined as above fit into a commutative diagram

V IP //

²²

V IP

²²
V IP′ // V IP′ ,

where the two vertical maps are given by v 7→ τv. Hence the characteristic

polynomials charV,P(T ) and charV,P′(T ) of the horizontal maps agree. It is also

clear that charV,P does not depend upon the choice of realization V of χ. This

allows us to define, for any prime p of K, a polynomial charχ,p(T ) ∈ C[T ] by

setting

charχ,p(T ) = charV,P(T )

for any realization V of χ and any choice of P|p.

Remark. We use the following convention here for defining characteristic

polynomials: If α is an endomorphism of a finite dimensional vector space V ,

its characteristic polynomial is

char(T ) = det(id− TA)

for any matrix A representing α.

We finally come to the definition of Artin L-functions.
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Definition 2.3.1 For s ∈ C having real part greater than 1, define

LL/K,S(s, χ) =
∏

p 6∈S

(charχ,p(Np−s))−1,

where the product runs over all primes of K not in S.

The product in the definition of LL/K,S(s, χ) converges uniformly on com-

pact subsets of {s ∈ C | <(s) > 1}, and hence defines an analytic function

on this domain. Further, LL/K,S(s, χ) has a meromorphic continuation to C,

although this is not immediate.

2.3.2 Formal properties of Artin L-functions

Good sources for the properties of Artin L-functions (which from now on will

just be called L-functions unless otherwise stated) are [43, 22, 5]. The behaviour

under addition, inflation and induction of characters is given in Table 2.3.1

below. In property (ii), H is a normal subgroup of G and L′ its fixed field in L.

In property (iii), H is any subgroup of G, K ′ its fixed field in L, and S′ the set

of places of K ′ above those in S.

There is a special L-function ζL,S associated to a number field L and a finite

set S of places of L containing the infinite ones. It is defined to be the function

LL/L,S(s, 1), where 1 here is the trivial character of Gal(L/L), and is called the

Dedekind ζ-function (relative to S) of L. If L/K is Galois, then once we observe

that the character of Gal(L/K) induced by the trivial character of Gal(L/L) is

the character of the regular representation of Gal(L/K), properties (i) and (iii)

in the above table show that

ζL,S′(s) =
∏
χ

LL/K,S(s, χ)dχ , (2.3.1)

where the notation means the following: S is any finite set of places of K

containing the infinite ones and S′ is the set of places of L above those in S; the

product runs over all irreducible characters χ of Gal(L/K); dχ is the dimension

of χ.
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Table 2.3.1: Behaviour of L-functions.
(i) For any characters χ1, χ2 of G,

LL/K,S(s, χ1+χ2) = LL/K,S(s, χ1)LL/K,S(s, χ2).

(ii) If χ is a character of Gal(L′/K) = G/H and

Inf(χ) its inflation to G, then

LL/K,S(s, Inf(χ)) = LL′/K,S(s, χ).

L

G

H

L′

G/H

K

(iii) If χ is a character of Gal(L/K ′) = H and

Ind(χ) its induction to G, then

LL/K,S(s, Ind(χ)) = LL/K′,S′(s, χ).

L

G

H

K ′

K

If a is a non-zero ideal of OL, we shall write (a, S) = 1 if a is coprime to

every prime in S. Then the uniqueness of factorization of non-zero ideals into

prime ideals shows that ζL,S can also be expressed in the following way:

Proposition 2.3.2 For <(s) > 1, ζL,S(s) =
∑

(a,S)=1 Na−s.

2.3.3 Behaviour at s = 0

The behaviour of L-functions at the point s = 0 in the complex plane will be of

much interest to us. Indeed, the construction of J (L/K, S) in Chapter 4 relies

upon the truth of a conjecture concerning the leading coefficients of the Laurent

expansions of L-functions at s = 0.

It has already been stated that L-functions are meromorphic on C, but in

fact they are known to be analytic at 0. Hence an L-function LL/K,S(s, χ) has
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a Taylor series at s = 0, whose leading coefficient will be denoted L∗L/K,S(0, χ).

We will write rL/K,S(χ) for the order of vanishing at 0, or simply r(χ) when the

pair (L/K, S) is understood, and call this the rank of χ. The relation of r(χ) to

the ranks of characters defined in Section 2.1.3 will become clear after the next

lemma.

r(χ) has a number of descriptions besides simply its definition as an or-

der of vanishing of an L-function. To give as many of these descriptions as

possible, we introduce Z[G]-modules Y and X associated to a pair (L/K, S)

(G = Gal(L/K)). These modules, particularly X, will play an important role

in the main body of the thesis.

Definition 2.3.3 We define Y and X as follows:

(i) Let Y be the free abelian group on the set SL of places of L

above those in S.

(ii) Let X be the kernel of the degree map deg : Y → Z which

sums up the coefficients in an element of Y .

G acts on Y by permuting places in SL, and X is a Z[G]-submodule of Y .

Now, suppose V is a representation of G with character χ. Then for a place v

of K, the dimension of the subspace in V of elements fixed by the decomposition

group Gw of w|v is independent of the choice of w lying above v, and we call this

dimension d(V, v). Then we have the following lemma, which is [43, Prop.3.4

(Ch.I)].

Lemma 2.3.4 If V is a representation of G with character χ, then r(χ) is equal

to each of the following:

• ∑
v∈S d(V, v)− dimC V G.

• 〈χ, χX〉G, where χX is the character of X and 〈·, ·〉G is the

usual inner product of characters.

• dimCHomC[G](V ∗, X⊗ZC), where V ∗ is the dual represen-

tation of V .
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2.3.4 Rank idempotents revisited

Lemma 2.3.4 shows that if χ ∈ Ĝ, rL/K,S(χ) is the rank of χ in X ⊗Z C in the

sense of Section 2.1.3. In the future, the rank idempotents of Definition 2.1.6

that we will consider will be those for the module X ⊗Z C, and will be denoted

eL/K,S [r] or simply e[r].

Note that since Galois conjugate characters have the same rank, the rank

idempotents eL/K,S [r] have rational coefficients.

2.3.5 Partial ζ-functions

Let us assume in this section that L/K is an abelian extension of number fields

with Galois group G, and let S be again a finite set of places of K containing

the infinite ones. In Section 2.3.1, we saw that L-functions were associated to

elements of Ĝ. We now look at a sort of dual to this, namely partial ζ-functions,

which are associated to elements of G.

Definition 2.3.5 For σ ∈ G, define

ζL/K,S(s, σ) =
1
|G|

∑

χ∈Ĝ

χ̄(σ)LL/K,S(s, χ).

It follows from the orthogonality of the character table of G that

LL/K,S(s, χ) =
∑

σ∈G

χ(σ)ζL/K,S(s, σ)

for all χ ∈ Ĝ. Thus knowing all the L-functions LL/K,S(s, χ) (χ ∈ Ĝ) is

equivalent to knowing all the partial ζ-functions ζL/K,S(s, σ) (σ ∈ G).

When S contains the places of K which ramify in L/K, the partial ζ-

functions have a more meaningful description.

Proposition 2.3.6 If S contains the places which ramify in L/K, then

ζL/K,S(s, σ) =
∑

(a,S)=1
(a,L/K)=σ

Na−s
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for <(s) > 1, the sum running over non-zero ideals a of OK with (a, S) = 1 and

(a, L/K) = σ.

Proposition 2.3.6 justifies the use of the word partial in partial ζ-function,

because we see (recall Proposition 2.3.2) that

∑

σ∈G

ζL/K,S(σ, s) = ζK,S(s).
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Chapter 3

Stark’s Conjecture

As motivation for introducing Stark’s Conjecture, let us return our attention to

the analytic class number formula for a number field L, and remind ourselves

of the formulation involving the leading coefficient ζ∗L(0) of the ζ-function ζL(s)

of L at s = 0 (recall (1.1.1)):

ζ∗L(0)
RL

= −|Cl(L)|
|µ(L)| . (3.0.1)

(We shorten the notation ζL,S to ζL when S is the set of infinite places of L.)

In particular, it says that the quotient ζ∗L(0)/RL is rational; let us suppose for

the moment that this is all we are interested in, rather than what the rational

number actually is. Observe from (2.3.1) that

ζ∗L(0) =
∏

χ irred.

L∗L/K(0, χ)dχ .

In fact, Dirichlet’s regulator RL also splits up as a product over irreducible char-

acters, with the factors being so-called Stark regulators. If L/K is abelian, we

can combine these individual factors (the L-functions and the Stark regulators)

into a unit of the group ring C[G]. Does this element, as might be suggested by

the analytic class number formula, actually lie in Q[G]×? This is what Stark’s

Conjecture predicts in the abelian case of the conjecture. Of course, this needs
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to be made more precise, and we formulate that conjecture in Section 3.3 after

first introducing some notation.

3.1 Dirichlet’s regulator

We introduce the following notation, which will be used throughout the thesis.

For any number field F and any finite set S of places of F containing the infinite

ones, OF,S will denote the ring of S-integers in F , i.e. the subring of F consisting

of elements whose valuation at each prime of F not in S is non-negative. The

group O×F,S of units in OF,S is therefore the subgroup of F× of elements whose

valuation at each prime of F not in S is zero.

We now fix a pair (L/K, S) where L/K is a Galois extension of number

fields with Galois group G and S is a finite set of places of K containing the

infinite ones. By a slight abuse of notation, in this situation OL,S will always

mean OL,SL . This should not cause any confusion. Dirichlet’s regulator map is

then the R-linear map

λ : O×L,S ⊗Z R→ X ⊗Z R

defined by sending u ⊗ 1 (u ∈ O×L,S) to
∑

w∈SL
log ‖σ(u)‖ww. (Recall the

definition of X in Definition 2.3.3.) Here, the valuation ‖ · ‖w is normalized as

follows: If the place w corresponds to a prime ideal p of L, then for x ∈ L×,

‖x‖w = Np−vp(x) where vp is the p-adic valuation of L. If instead w comes from

an embedding ι : L → C, then

‖x‖w =




|ι(x)| if ι is real

|ι(x)|2 if ι is complex,

where | · | is the usual absolute value on C.

An algebraic integer (in some number field) having absolute value 1 at all

infinite places is necessarily a root of unity ([45, Lemma 1.6]), and so λ is

injective. The fact that it is an isomorphism is exactly Dirichlet’s Unit Theorem.
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3.2 Stark’s regulator

The construction of Stark’s regulator stems from the observation that Dirichlet’s

regulator λ : O×L,S⊗ZR→ X⊗ZR is not only an isomorphism of R-vector spaces,

but also an isomorphism of R[G]-modules. Now, by the remark immediately

after the proof of [36, Prop.33] (found in Section 12.1 there), we have:

Lemma 3.2.1 For any finite group G, if M and N are finitely generated Q[G]-

modules such that M ⊗Q C and N ⊗Q C are isomorphic as C[G]-modules, then

M and N are isomorphic as Q[G]-modules.

Hence there is a Q[G]-module isomorphism

f : O×L,S ⊗Z Q→ X ⊗Z Q. (3.2.1)

(We point out, however, that there is in general no canonical choice for f .) Then

for a finitely generated C[G]-module V , let Rf
V denote the determinant of the

C-linear map

HomC[G](V ∗, X ⊗Z C) → HomC[G](V ∗, X ⊗Z C)

φ 7→ λ ◦ f−1 ◦ φ,

where V ∗ is again the dual representation of V , and set

Af (V ) = L∗L/K,S(0, V ∗)/Rf
V ∗ .

If V has character χ, we also write Rf
χ = Rf

V and Af (χ) = Af (V ). We call the

non-zero complex number Rf
χ the Stark f -regulator for χ. We note that Af is

an element of Hom(R(G),C×).

3.3 The conjecture

We now reproduce Stark’s Conjecture as formulated in [43, Ch.I, Section 5].

In fact, the form here is due to Tate. We emphasize that there is no need to

assume G is abelian in order to formulate the conjecture.
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Conjecture 3.3.1 Let χ be a (not-necessarily irreducible) character of G. Then

(i) Af (χ) ∈ Q(χ), and

(ii) for every δ ∈ Gal(Q(χ)/Q), Af (χ)δ = Af (χδ).

Equivalently, the element Af of Hom(R(G),C×) lies in the subgroup

HomGQ(R(G), (Qc)×).

Remark. The truth, or otherwise, of Conjecture 3.3.1 is shown in [43, Ch.I,

Section 7] to be independent of the set S and the choice of Q[G]-module

isomorphism f . (Note however that Af is not independent of f . It is not

independent of S either, but we opt not to reflect the dependence on S in

the notation.) Thus the truth of the conjecture is a property solely of the

extension.

Stark’s conjecture originated in the 1970s, and is known to hold whenever L

is an abelian extension of either Q or an imaginary quadratic field, and is also

true for characters taking rational values; see [43].

We point out a minor discrepancy between Af (χ) as defined here and the

A(χ, f) as defined in [43, Conj.5.1 (Ch.I)]. Namely, Af (χ) = A(χ̄, f)−1. This

clearly has no effect on the conjecture, and the form we have chosen is more

convenient for our purposes.

3.3.1 The abelian case

As hinted at the beginning of Chapter 3, Stark’s Conjecture for abelian ex-

tensions L/K has an equivalent form which is reminiscent of the rationality

statement of the analytic class number formula, i.e. that ζ∗L(0)/RL ∈ Q×. In-

deed, define elements ZL/K,S and Rf
L/K,S of C[G] (for a choice of Q[G]-module
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isomorphism f as in (3.2.1)) by

ZL/K,S =
∑

χ∈Ĝ

L∗L/K,S(0, χ̄)eχ

Rf
L/K,S =

∑

χ∈Ĝ

Rf
χ̄eχ.

Since the complex numbers L∗L/K,S(0, χ) and Rf
χ are non-zero, ZL/K,S and

Rf
L/K,S are elements of C[G]×. Further, because of the relations LL/K,S(0, χ̄) =

LL/K,S(0, χ) and Rf
χ̄ = Rf

χ, ZL/K,S and Rf
L/K,S in fact lie in R[G]×, and we

can consider the element

ZL/K,S(Rf
L/K,S)−1 ∈ R[G]×.

Then in this situation, i.e. L/K abelian, Conjecture 3.3.1 is equivalent to

Conjecture 3.3.2 ZL/K,S(Rf
L/K,S)−1 ∈ Q[G]×.

Indeed, ZL/K,S(Rf
L/K,S)−1 = ϕG(Af ) by definition, and Conjecture 3.3.1 says

that the element Af of Hom(R(G),C×) actually lies in HomGQ(R(G), (Qc)×).

Now use Lemma 2.1.2.

3.4 Towards integrality

We remind the reader that our aim is to relate leading coefficients of L-functions

to class-groups, and so knowing a statement like Conjecture 3.3.2 will not be

enough since as it stands it only says (loosely)

L-functions divided by regulators are rational.

It is the word “rational” that is the problem; what we would like is to know that

leading coefficients of L-functions divided by regulators are equal to something

precise, and this is where Stark elements come into the picture. Initially, these

were conjectured by Stark to be S-units with a certain property. However, it was

later realised that in general these special elements might live in higher exterior
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powers of S-units. Therefore, in order to even discuss the existence of these

higher rank Stark elements, it is necessary to reformulate Stark’s Conjecture.

If G is a finite abelian group and M a Z[G]-module, then
∧r

M will mean
∧r
Z[G]M unless otherwise specified.

Definition 3.4.1 If G is a finite abelian group, M1 and M2 are Z[G]-modules

and φ : M1⊗ZC→ M2⊗ZC is a homomorphism of C[G]-modules, then for each

r ≥ 0 let φ(r) : (
∧r

M1)⊗ZC→ (
∧r

M2)⊗ZC be the C[G]-module homomorphism

obtained by using the natural isomorphisms (
∧r

Mi) ⊗Z C ' ∧r
C[G](Mi ⊗Z C).

We will use the same notation when C is replaced by any subring, eg Q or R.

For the remainder of the chapter, we fix an abelian extension of number

fields L/K with Galois group G, and a finite set of places S of K containing the

infinite ones.

Definition 3.4.2 If r ≥ 0, define θL/K,S [r] ∈ C[G] by

θL/K,S [r] =
∑

χ∈Ĝ
r(χ)=r

L∗L/K,S(0, χ)eχ̄.

Remark. It is important to point out here the distinction between the Stick-

elberger elements θL/K,S(k) defined in Chapter 1 for integers k < 0, and the

elements θL/K,S [r] defined above for integers r ≥ 0. The former are the usual

higher Stickelberger elements defined in terms of L-function values at nega-

tive integers, while the latter are defined in terms of leading coefficients of

L-functions strictly at the integer k = 0. We shall not refer to the θL/K,S(k)

again.

Observe that θL/K,S [0] is the usual Stickelberger element θL/K,S .

Proposition 3.4.3 Let r ≥ 0. Then the Stark Conjecture holds for the rank r

characters χ ∈ Ĝ if and only if

θL/K,S [r]
∧r

X ⊆ Qλ(r)(
∧rO×L,S). (3.4.1)
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Proof. See [33, Section 2.3].

Given that
∧r

X is finitely generated, we observe from Proposition 3.4.3 that

if L/K satisfies Stark’s Conjecture, then there is some lattice Ω in (
∧rO×L,S)⊗ZQ

such that θL/K,S [r]
∧r

X ⊆ Ω. In [33], Rubin conjectures what that lattice

should be, provides evidence for this and explains why some other natural

choices for Ω fail.

3.5 Rubin’s lattice

As explained in [33, Section 1.2], if M is a Z[G]-module (G an arbitrary finite

abelian group), then for each r ≥ 0 there is a well-defined homomorphism

∧rHomZ[G](M,Z[G]) → HomZ[G](
∧r

M,Z[G])

φ1 ∧ · · · ∧ φr 7→ (m1 ∧ · · · ∧mr 7→ det(φi(mj))) .

By abuse of notation, we will denote the image of φ1 ∧ · · · ∧ φr under this

map by the same symbol, so that given m1, . . . ,mr ∈ M we write simply

(φ1 ∧ · · · ∧ φr)(m1 ∧ · · · ∧mr) = det(φi(mj)).

We will also extend the map (φ1∧· · ·∧φr)(−) linearly to (
∧r

M)⊗ZQ→ Q[G].

Definition 3.5.1 For any Z[G]-module M and any r ≥ 0, define
∧r

0M to be

{m ∈ (
∧r

M)⊗ZQ | (φ1 ∧ · · · ∧ φr)(m) ∈ Z[G] for all φi ∈ HomZ[G](M,Z[G])}.

3.5.1 T -modified objects

Now let us return to our extension L/K. Rather than working in O×L,S itself,

we work inside a certain subgroup of finite index. Namely, choose a finite set of

places T of K disjoint from S, and define

US,T = {u ∈ O×L,S | u ≡ 1 mod P for all (finite) places P of L above T}.
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To accompany this replacement of O×L,S by US,T , we define also a T -modified

L-function LL/K,S,T (s, χ), for a character χ of the Galois group G, as follows:

LL/K,S,T (s, χ) = LL/K,S(s, χ)
∏

p∈T

charχ,p(Np1−s).

(Recall the definition of the polynomial charχ,p from Section 2.3.1.)

Definition 3.5.2 For r ≥ 0, define

θL/K,S,T [r] =
∑

χ∈Ĝ
r(χ)=r

L∗L/K,S,T (0, χ)eχ̄ ∈ C[G].

3.5.2 The lattice ΩS,T,r

Definition 3.5.3 Let r ≥ 0. Then we define ΩS,T,r ⊆
∧r

0US,T to be

ΩS,T,r = {u ∈ ∧r
0US,T | eχu = 0 for all χ ∈ Ĝ with r(χ) 6= r}.

3.6 The integral Stark Conjecture and Stark el-

ements

We now come to a vast refinement of Stark’s Conjecture, due to Rubin. Some

hypotheses on the sets S and T (always assumed disjoint) are needed.

(St1) S contains the (infinite and) ramified places.

(St2) S contains at least r places which split completely in L/K.

(St3) S contains at least r + 1 places.

(St4) US,T is Z-torsion free.

We note that (St4) forces T to be non-empty.

Since US,T has maximal rank in O×L,S , the natural map

ιr : (
∧r

US,T )⊗Z Q→ (
∧rO×L,S)⊗Z Q

is an isomorphism. The following is [33, Conjecture B].
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Conjecture 3.6.1 (Rubin) Choose r ≥ 0 and assume the hypotheses (St1) to

(St4) are satisfied. Then

θL/K,S,T [r]
∧r

X ⊆ λ(r) ◦ ιr(ΩS,T,r). (3.6.1)

Assuming this conjecture holds,

θL/K,S,T [r]
∧r

X = λ(r) ◦ ιr(ES,T,r) (3.6.2)

for some Z[G]-submodule ES,T,r of ΩS,T,r.

Definition 3.6.2 Suppose Conjecture 3.6.1 is satisfied. Then we call ES,T,r the

group of T -modified rank r Stark elements.

We may wish to consider at once all of the Stark elements as T varies through

all the permitted sets. Then it is possible to work inside ΩS,∅,r, which we write

simply ΩS,r. (Note that ΩS,T,r is still defined even if T is empty.)

Definition 3.6.3 Suppose Conjecture 3.6.1 holds for all T satisfying (St4).

Then denote by ES,r ⊆ ΩS,r the Z[G]-submodule generated by all the modules

ιr(ES,T,r).

3.6.1 Evidence for Conjecture 3.6.1

Conjecture 3.6.1, or a slightly weaker form due to Popescu (see [26, Section

2.3]), has been verified in a number of situations. Rubin’s Conjecture itself is

verified in the following cases:

(i) r = 0

(ii) K = Q, r arbitrary

(iii) K imaginary quadratic, r arbitrary

(iv) L/K any quadratic extension, r arbitrary

(v) S containing more than r places which split completely

(vi) A large class of multi-quadratic extensions when r = 1, with a

partial result holding for all multi-quadratic extensions (r = 1

again).
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(i) is an almost direct consequence of Deligne and Ribet [13]. (ii) is proven in

[41] when L is real and in [10] when L is imaginary. (iii) can again be found in

[41]. (iv) is treated in [33], where Rubin’s Conjecture is first formulated, as is

(v). For details of (vi), see [14].

Conjecture 3.6.1 also has the following base-change property (see [26, The-

orem 2.3.2] and the paragraph immediately after):

Suppose L/K satisfies Conjecture 3.6.1 with r = 1 and for some

choices of S and T . Then the quadruple (L/K ′, SK′ , TK′ , [K ′ : K])

also satisfies the conjecture for any K ′ lying between K and L.

This is to say that if the rank 1 Stark elements exist for the triple (L/K, S, T ),

then the rank [K ′ : K] Stark elements exist for the triple (L/K ′, SK′ , TK′).

We refer the reader to [26] for a formulation of Popescu’s Conjecture; we

mention here only that it is obtained by replacing the lattice ΩS,T,r by a larger

one. This weaker conjecture, as well as being true in (i)-(vi) above of course,

also satisfies a stronger base-change property: Fixing (L/K, S), if the rank 1

Stark elements exist for the triple (L/K, S, T ) for all T , then the rank [K ′ : K]

Stark elements exist for the triple (L/K ′, SK′ , T ′) for all K ′ between K and L

and all T ′.

3.6.2 Structure of e[r]
∧rX

We always view the Z-torsion free module
∧r

X as lying inside (
∧r

X) ⊗Z C.

Still assuming hypotheses (St1) to (St4), [33, Lemma 2.6] provides a generator

for θL/K,S,T [r]
∧r

X. Namely, if w1, . . . , wr are pairwise non-conjugate places

in SL having trivial decomposition group (possible by (St2)), and w ∈ SL is

conjugate to none of the wi (use (St3)), then

Z[G]θL/K,S [r]x = θL/K,S [r]
∧r

X
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where x = (w1 − w) ∧ · · · ∧ (wr − w). Hence also

Z[G]e[r]x = e[r]
∧r

X. (3.6.3)

In fact, we can go further than this and give the relations that x satisfies.

Indeed, one shows that e[r](
∧r

X)⊗Z C ∼= e[r]C[G], and hence if α ∈ C[G] has

αe[r]x = 0, then αe[r] = 0.

3.6.3 Finiteness of ΩS,T,r/ES,T,r

Proposition 3.6.4 ES,T,r has finite index in ΩS,T,r, and ES,r has finite index

in ΩS,r.

Proof. The second statement is immediate from the first. Now, the inclusions

|G|e[r]
∧r

0US,T ⊆ ΩS,T,r ⊆ e[r]
∧r

0US,T

show that rkZ(ΩS,T,r) = rkZ(e[r]
∧r

0US,T ). However, the Q-vector space that

e[r]
∧r

0US,T generates is isomorphic to e[r]((
∧r

X)⊗Z Q), so that

rkZ(ΩS,T,r) = dimQ(e[r]((
∧r

X)⊗Z Q)). (3.6.4)

On the other hand, rkZ(ES,T,r) = rkZ(θL/K,S,T [r]
∧r

X), and this in turn is

equal to

dimQ(Q[G]θL/K,S,T [r]x) = dimQ(Q[G]e[r]x)

= dimQ(e[r]((
∧r

X)⊗Z Q)).

Comparing this with (3.6.4), we have the proposition.
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Chapter 4

The fractional Galois ideal
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4.1 A second reformulation of Stark’s

Conjecture

In [40], Snaith defined a fractional Galois ideal J k
L/K in terms of leading co-

efficients of L-functions at s = k for each integer k ≤ 0. J 0
L/K was modified

in [4] to allow for the consideration of S-truncated L-functions LL/K,S(s, χ),

where S may contain finite as well as infinite places. This modified version

was shown in [4, Theorem 3.6] to be intimately related to the rank 1 Stark

elements (the classical Stark units). In order to obtain similar relations with

Stark elements of arbitrary rank, it is necessary to refine the definition of the

fractional Galois ideal even further. This refinement leaves unchanged the part

of the fractional Galois ideal concerned with characters of rank at most 1. In
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particular, any result in [4] concerning the fractional Galois ideal remains true

for the new version. To procede, we will need an equivalent form of the abelian

Stark Conjecture (Conjecture 3.3.1), more in the vein of (3.4.1).

4.1.1 The category WQ
Z[G]

Let G be a finite abelian group. Then we define a category WQ
Z[G] as follows.

Objects: Finitely generated Z[G]-modules M .

Morphisms M1 → M2 : Elements of

∞⊕
r=0

HomQ[G]((
∧r

M1)⊗Z Q, (
∧r

M2)⊗Z Q).

The sets of morphisms, endomorphisms, isomorphisms and automorphisms

in WQ
Z[G] will be denoted HomQ

Z[G](−,−), IsomQ
Z[G](−,−), EndQZ[G](−) and

AutQZ[G](−) resp.

4.1.2 The group-ring element Af

Choose f = (f0, f1, f2, . . .) ∈ IsomQ
Z[G](O×L,S , X). Then if χ ∈ Ĝ has realization

V , we define Rf
χ ∈ C× to be the determinant of the C-linear map

HomC[G](V ∗, (
∧r(χ)

X)⊗Z C) → HomC[G](V ∗, (
∧r(χ)

X)⊗Z C)

φ 7→ λ(r(χ)) ◦ f−1
r(χ) ◦ φ.

Definition 4.1.1 Having chosen f ∈ IsomQ
Z[G](O×L,S , X), define Af ∈ C[G]×

by

Af =
∑

χ∈Ĝ

L∗L/K,S(0, χ)

Rf
χ

eχ̄.

Also, given r ≥ 0, define Af [r] ∈ C[G] by

Af [r] =
∑

χ∈Ĝ
r(χ)=r

L∗L/K,S(0, χ)

Rf
χ

eχ̄.
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Observe that Af in fact lies in R[G]×. Note also that Af =
∑∞

r=0Af [r] and

Af [r] = e[r]Af .

Now, given an isomorphism f : O×L,S ⊗Z Q → X ⊗Z Q, we can define

f̄ ∈ IsomQ
Z[G](O×L,S , X) by taking exterior powers of f . To be explicit, f̄ =

(f (0), f (1), f (2), . . .), remembering Definition 3.4.1. Recall that when we were

setting up the formulation of Stark’s Conjecture in Section 3.2 we defined Rf
χ

and Af (the latter of which we view as an element in R[G]×), so it is natural

to wonder how Rf
χ and Rf̄

χ are related, and similarly Af and Af̄ . In fact,

Lemma 4.1.2 Rf
χ = Rf̄

χ, and Af = Af̄ .

Proof. The second equality follows from the first, which we prove as follows.

Suppose χ ∈ Ĝ has rank r, and observe that λ(r) ◦(f (r))−1 = (λ ◦ f−1)(r). Then

Rf
χ = χ̄(detC[G](λ ◦ f−1))

= χ̄(detC[G](λ ◦ f−1|e[r])) (Lemma 2.1.5)

= χ̄(detC[G](α))

where α extends λ ◦ f−1|e[r] to a C[G]-module isomorphic to C[G]r. Then this

is equal to

χ̄(detC[G](α(r)) = χ̄(detC[G](α(r)|e[r]))

= χ̄(detC[G]((α|e[r])
(r))

= χ̄(detC[G]((λ ◦ f−1)(r))

= Rf̄
χ.

Lemma 4.1.3 Choose f = (f0, f1, f2, . . .) ∈ IsomQ
Z[G](O×L,S , X) and suppose

h = (h0, h1, h2, . . .) ∈ AutQZ[G](X). Then for each r ≥ 0,

Ah◦f [r] = Af [r]detQ[G](hr).
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Proof. We use the following useful shorthand: If A is an abelian group

and R a subring of C, write RA for A ⊗Z R. Also, if V and W are finitely

generated C[G]-modules and h an endomorphism of W , denote by h(V,W ) the

endomorphism of HomC[G](V, W ) given by sending a homomorphism ψ to h◦ψ.

Choose realizations Vχ for the characters χ ∈ Ĝ. Then

Rh◦f
χ = Rf

χdetC(hr(Vχ̄,C
∧r

X))−1. (4.1.1)

However, by Proposition 2.1.3,

∑

χ∈Ĝ
r(χ)=r

detC(hr(Vχ,C
∧r

X))eχ = e[r]detQ[G](hr).

Combining this with (4.1.1) finishes the proof.

We see therefore that if f ∈ IsomQ
Z[G](O×L,S , X) and h = (h0, h1, h2, . . .) ∈

AutQZ[G](X), then

Ah◦f = Af
∞∑

r=0

detQ[G](hr)e[r]. (4.1.2)

We are now ready to reformulate Stark’s Conjecture in a more suitable form.

We continue to assume that L/K is abelian.

Proposition 4.1.4 Choose any f ∈ IsomQ
Z[G](O×L,S , X). For any r ≥ 0, Stark’s

Conjecture holds for all the rank r characters in Ĝ if and only Af [r] ∈ Q[G].

The extension L/K satisfies Stark’s Conjecture if and only if Af ∈ Q[G].

Proof. The second statement follows from the first being true for all r. Since,

by Lemma 4.1.3, the rationality of Af [r] is independent of the choice of f , we

may assume that f = f̄ for some isomorphism f : O×L,S ⊗Z Q → X ⊗Z Q. Now

use Lemma 4.1.2.
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4.2 Definition of J (L/K, S)

We have now prepared almost all that is necessary to define our fractional

ideal J (L/K, S) for abelian extensions L/K satisfying Stark’s Conjecture. We

already have half of the definition, namely the invertible group-ring element Af .

Definition 4.2.1 Take f ∈ IsomQ
Z[G](O×L,S , X). Then define If to be the Z[G]-

submodule of Q[G]-generated by
{ ∞∑

r=0

detQ[G](αr)e[r] | αr ∈ EndQ[G] ((
∧r

X)⊗Z Q) ,

αr ◦ fr

(∧r
0O×L,S

)
⊆ ∧r

X for all r
}

.

If h = (h0, h1, h2, . . .) ∈ AutQZ[G](X), then it is immediate that

Ih◦f =

( ∞∑
r=0

detQ[G](hr)−1e[r]

)
If .

Combining this with (4.1.2) and using Proposition 4.1.4, we see that

Proposition 4.2.2 (i) The Z[G]-submodule AfIf of R[G] is independent of

the choice of f ∈ IsomQ
Z[G](O×L,S , X). (ii) AfIf lies in Q[G] if and only if L/K

satisfies the Stark Conjecture.

This allows us to make the definition:

Definition 4.2.3 Assume L/K satisfies the Stark Conjecture. Then define

J (L/K, S) = AfIf for any f ∈ IsomQ
Z[G](O×L,S , X). Being a finitely gener-

ated Z[G]-submodule of Q[G], i.e. a fractional ideal in Q[G], J (L/K, S) will be

called the fractional Galois ideal associated to the pair (L/K,S).

We note an almost immediate observation concerning J (L/K,S), namely

its decomposition according to the rank idempotents e[r].

Proposition 4.2.4 For each r ≥ 0, e[r]J (L/K,S) ⊆ J (L/K,S).
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Proof. For any finitely generated C[G]-module M and any t ≥ 0,

eM [t]
∧t
C[G]M

∼= eM [t]C[G], so that the zero endomorphism of eM [t]
∧t
C[G]M

has determinant 1 − eM [t] over C[G]. In particular, if, for some t ≥ 0, β is

the zero endomorphism of (
∧t

X)⊗Z Q (which certainly satisfies the integrality

condition in the definition of If ), then detQ[G](β)e[t] = (1− e[t])e[t] = 0.

So, take maps αt as in the definition of If , and let βt be αr if t = r and the

zero endomorphism of (
∧t

X) ⊗Z Q otherwise. It is now clear from the above

that

e[r]
∞∑

t=0

detQ[G](αt)e[t] =
∞∑

t=0

detQ[G](βt)e[t],

which is again in If .

As a consequence of Proposition 4.2.4, J (L/K,S) decomposes as

J (L/K, S) =
∞⊕

r=0

e[r]J (L/K, S). (4.2.1)

We will turn in Section 4.3 to a general relationship of each of the direct sum-

mands e[r]J (L/K, S) with the Stark elements of Section 3.6. First, however,

let us make a straightforward observation concerning e[0]J (L/K,S) and the

Stickelberger element θL/K,S .

Proposition 4.2.5 e[0]J (L/K,S) = Z[G]θL/K,S.

Proof. Choose f = (f0, f1, f2, . . .) ∈ IsomQ
Z[G](O×L,S , X) such that f0 is the

identity map Q[G] → Q[G]. Then with f0 chosen this way, Rf
χ = 1 for all

χ of rank 0 and so Af [0] = θL/K,S . Bearing in mind the equality θL/K,S =

θL/K,Se[0], it remains to show that e[0]If = e[0]Z[G].

In the definition of If , the integrality condition on an endomorphism α0

of (
∧0

X) ⊗Z Q = Q[G] now becomes that α0(Z[G]) ⊆ Z[G], because of our

choice of f0. Identifying endomorphisms of Q[G] with elements of Q[G], we see

then that e[0]If is generated by elements e[0]α where α ∈ Q[G] and satisfies

αZ[G] ⊆ Z[G]. This simply says that e[0]If = e[0]Z[G].
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4.3 J (L/K, S) and Stark elements

The fractional Galois ideal J (L/K,S) is related to the Stark elements via an-

nihilators of µ(L).

Definition 4.3.1 Let T be a finite set of places of K not containing any ram-

ifying in L/K. Then define

DL/K,T =
∏

p∈T

(1−NpFrob−1
p ) ∈ Z[G].

The next lemma is proven in [10].

Lemma 4.3.2 The elements DL/K,T , as T runs through all sets satisfying

(St4), generate annZ[G](µ(L)) over Z[G].

The main result of this chapter is the following:

Theorem 4.3.3 Assume L/K satisfies the Stark Conjecture, and let S be a

finite set of places of K containing the infinite ones. Fix r ≥ 0 and T a finite

set of places of K disjoint from S and such that the hypotheses (St1) to (St4)

hold. Then assuming the rank r Stark elements ES,T,r of Definition 3.6.2 exist,

e[r]DL/K,TJ (L/K, S) ⊆ e[r]annZ[G](ΩS,T,r/ES,T,r). (4.3.1)

If in fact ES,T,r exists for all T satisfying (St4), then

e[r]annZ[G](µ(L))J (L/K, S) ⊆ e[r]annZ[G](ΩS,r/ES,r). (4.3.2)

Proof. Granted Lemma 4.3.2, the inclusion (4.3.2) is proven in exactly the

same way as (4.3.1), which we turn to now. Choose x as in Section 3.6.2, so

that e[r]x generates e[r]
∧r

X over Z[G]. Let ε ∈ ΩS,T,r be the unique element

such that λ(r)◦ιr(ε) = θL/K,S,T [r]x (recall (3.6.1)). Then ε generates ES,T,r over

Z[G], and ιr(ε) generates e[r](
∧rO×L,S) ⊗Z Q over Q[G] and satisfies the same
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relation as that by x described in Section 3.6.2. Therefore there is a unique

Q[G]-module homomorphism

e[r](
∧rO×L,S)⊗Z Q→ e[r](

∧r
X)⊗Z Q

sending ιr(ε) to e[r]x, and it is necessarily an isomorphism. We extend this

arbitrarily to an isomorphism

fr : (
∧rO×L,S)⊗Z Q→ (

∧r
X)⊗Z Q.

Choosing arbitrary isomorphisms ft : (
∧tO×L,S)⊗Z Q→ (

∧t
X)⊗Z Q for t 6= r,

let f = (f0, f1, f2, . . .) be the resulting element of IsomQ
Z[G](O×L,S , X).

Now, if χ ∈ Ĝ has rank r, then λ(r) ◦ f−1
r |eχ

is multiplication by Rf
χ̄, so

Rf
χ̄eχx = λ(r) ◦ f−1

r (eχx)

= eχλ(r) ◦ ιr(ε)

= L∗L/K,S,T (0, χ̄)eχx.

Therefore Rf
χ̄eχ = L∗L/K,S,T (0, χ̄)eχ. Hence, for all rank r characters χ ∈ Ĝ,

Rf
χ = L∗L/K,S,T (0, χ) and so

e[r]DL/K,TAf = e[r].

It remains to show that e[r]If is contained in the right-hand side of (4.3.1).

So, for each t ≥ 0, take αt ∈ EndQ[G]((
∧t

X)⊗Z Q) such that

αt ◦ ft(
∧t

0O×L,S) ⊆ ∧t
X.

Of course, we only need to consider αr. Now, αr|e[r] is multiplication by γ for

some γ ∈ Q[G], and e[r]detQ[G](αr) = e[r]γ. Therefore if u ∈ ΩS,T,r,

fr ◦ ιr(detQ[G](αr)u) = fr(ιr(γu))

= γfr(ιr(u))

= αr ◦ fr(ιr(u))

∈ e[r]
∧r

X

= fr ◦ ιr(ES,T,r),
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so detQ[G](αr)u ∈ ES,T,r. This shows that

e[r]If ⊆ {e[r]β | β ∈ Q[G], βΩS,T,r ⊆ ES,T,r}.

Suppose, then, that we have a β ∈ Q[G] with βΩS,T,r ⊆ ES,T,r. In particular,

βε ∈ ES,T,r and so is equal to β′ε for some β′ ∈ Z[G]. But then e[r]β = e[r]β′

(we can use Section 3.6.2 here), and β′ΩS,T,r ⊆ ES,T,r. Therefore

{e[r]β | β ∈ Q[G], βΩS,T,r ⊆ ES,T,r} = {e[r]β | β ∈ Z[G], βΩS,T,r ⊆ ES,T,r}

= e[r]annZ[G](ΩS,T,r/ES,T,r).

This completes the proof of the theorem.

To motivate Theorem 4.3.3, we reproduce a theorem of Büyükboduk on the

relationship between Stark elements and class-groups. It is the main theorem

of [9] and builds on ideas of Rubin [32] and Popescu [26].

Theorem 4.3.4 (Büyükboduk) Let K be a totally real number field and

χ : Gal(K̄/K) → Z×p an even character of order prime to p which is unrami-

fied at all primes above p. Then under some further technical assumptions and

assuming the integral Stark Conjecture (Conjecture 3.6.1) holds,

|Cl(L)χ| = |∧r(O×L ⊗Z Zp)χ : Zpε
χ
L|

where L is the fixed field in K̄ of Ker(χ) and εχ
L is a Stark element multiplied

by the idempotent for χ. (See [9] for details.)

We also cite [6, Theorem 5.5], which, although a statement whose precise

formulation would require more terminology than we can introduce here, is

again in the vein of relating annihilators of an exterior power of units modulo

special elements in the exterior power to class-groups, although in a more general

setting.

49



4.4 The rank 1 case

The most widely studied Stark elements are those arising for characters of rank

r = 1, in which case they are genuine S-units rather than elements in an exterior

power. Consequently, they are called Stark units, the prefix S- habitually being

dropped. In this section, we give a more tidy formulation of Theorem 4.3.3 in

the case when r = 1; this is Proposition 4.4.6. In fact, it will be more convenient

to use the definition of Stark units found in, for example, [43, Ch.IV] and [14].

4.4.1 The conjecture St(L/K, S)

We define two Z[G]-submodules of O×L,S which the Stark units are going to lie

in. Let µ = |µ(L)| denote the number of roots of unity in L.

Definition 4.4.1 Uab
L/K = {u ∈ O×L,S | L(u1/µ)/K is abelian}.

Definition 4.4.2 Suppose v ∈ S splits completely in L/K. We define U (v) in

two cases, namely:

(a) #S ≥ 3: U (v) = {u ∈ O×L,S | ‖u‖w′ = 1 for all w′ 6 | v}.
(b) #S = 2:

U (v) = {u ∈ O×L,S | ‖u‖w′ = ‖u‖w′′ for all w′, w′′ ∈ SLr{w|v}}.

For a place w of L in SL having trivial decomposition group in G, the fol-

lowing conjecture for the triple (L/K, S, w) will be referred to as St(L/K,S, w).

(It can be found in [43, Ch.IV].) It is shown in [33] to be equivalent to the r = 1

case of Conjecture 3.6.1 as T runs through all sets satisfying (St4).

Conjecture 4.4.3 Assume (St1), (St2) and (St3) hold for r = 1, and let v be

the place of k below w. Then there is ε ∈ Uab
L/K ∩ U (v) such that

log ‖ε‖σw = −µζ ′L/K,S(0, σ−1) for all σ ∈ G, (4.4.1)
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i.e.

L′L/K,S(0, χ) = − 1
µ

∑

σ∈G

χ̄(σ) log ‖ε‖σw for all χ ∈ Ĝ, (4.4.2)

i.e.
∑

χ∈Ĝ

L′L/K,S(0, χ)eχ̄ = − 1
µ

∑

σ∈G

log ‖ε‖σwσ. (4.4.3)

Remark. The equivalence of (4.4.1), (4.4.2) and (4.4.3) is nothing more than

row and column orthogonality of the character table of G.

If an ε satisfying St(L/K, S,w) exists then it is necessarily unique up to a

root of unity in L. We therefore see that the triple (L/K,S, w) defines a class

in O×L,S/µ(L), and in fact any element in this class satisfies the conjecture.

Definition 4.4.4 Suppose we have ε satisfying St(L/K,S, w). Then the class

εµ(L) will be denoted ε̄(L/K, S, w), and its elements will be called the Stark

units attached to w.

The conjectures St(L/K, S, w), as w runs through all places in SL having

trivial decomposition group, are equivalent, and we call them all just St(L/K, S).

Stark units

Assume St(L/K, S) holds and let w be a place of L lying above S and having

trivial decomposition group in G. Then the Z[G]-submodule of O×L,S generated

by µ(L) and a Stark unit for w is independent of the choice of w, and we denote

it E = EL/K,S . It will be called the group of Stark units for the pair (L/K, S).

Remark. The term Stark unit will be reserved for an element ε satisfying

St(L/K, S, w), rather than for any element of the group of Stark units. The

author hopes that this will not cause any confusion.
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4.4.2 The assumption on (L/K, S)

We here discuss the assumption to be made on the pair (L/K, S) (extra to the

hypotheses (St1), (St2) and (St3) which are required for the formulation of

St(L/K,S)) in order to state and prove Proposition 4.4.6.

Proposition 4.4.5 Assume (St1), (St2) and (St3) hold, with v splitting com-

pletely in L/K and v′ ∈ Sr{v}, and let w|v and w′|v′. Suppose St(L/K, S) is

true and let ε ∈ ε̄(L/K, S,w). Then the following are equivalent:

(i) ε generates O×L,S ⊗Z Q freely over Q[G].

(ii) O×L,S ⊗Z Q ∼= Q[G].

(iii) w′ − w generates X freely over Z[G].

(iv) X ∼= Z[G].

(v) r(χ) = 1 for all χ ∈ Ĝ.

Proof. (i) ⇒ (ii) ⇒ (v) and (iii) ⇒ (iv) ⇒ (v) are immediate from Lemma

2.3.4. To finish the proof, we show (v) ⇒ (i) and (v) ⇒ (iii). We do these

simultaneously.

Assuming (v), we know first of all (from Lemma 2.3.4) that S has two

elements, i.e. S = {v, v′}. But we also know from Lemma 2.3.4 that X ⊗Z C ∼=
C[G] and so

|G| = rk(X)

= #{places above v}+ #{places above v′} − 1

= |G|+ #{places above v′} − 1,

whence w′ is the unique place of L above v′. Thus we see already that w′ − w

necessarily generates X freely over Z[G], i.e. (iii) holds.

To continue, by definition of the regulator map λ,

λ(ε) =
∑

σ∈G

log ‖ε‖σwσw + log ‖ε‖w′w
′.
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Referring back to the statement of St(L/K, S, w) and noting that L′L/K,S(0, χ) =

L∗L/K,S(0, χ) for all χ ∈ Ĝ, we see then that

λ(ε) = −µ
∑

χ∈Ĝ

L∗L/K,S(0, χ)eχ̄w + log ‖ε‖w′w
′,

and so for σ ∈ G,

λ(εσ) = −µ
∑

χ∈Ĝ

χ̄(σ)L∗L/K,S(0, χ)eχ̄w + log ‖ε‖w′w
′. (4.4.4)

Now, suppose we have aσ ∈ Q for each σ ∈ G such that
∑

σ∈G εσ ⊗ aσ = 0 in

O×L,S⊗ZQ. Applying λ to both sides, we find using (4.4.4) that
∑

σ∈G aσχ(σ) =

0 for all χ ∈ Ĝ, i.e. aσ = 0 for all σ ∈ G. Since rk(O×L,S) = rk(X) = |G|, (i)

holds.

Now, the assumption we make on (L/K, S) is:

Assumption. (St1), (St2) and (St3) hold for S, and r(χ) = 1 for all χ ∈ Ĝ.

In particular r(1) = 1 so that #S = 2, and so by [43, Ch.IV, Prop.3.10],

St(L/K,S) holds automatically. Hence by Proposition 4.4.5, O×L,S ⊗Z Q and

X ⊗Z Q are rank 1 free Q[G]-modules and we have natural choices for free

generators.

4.4.3 Examples

In looking for examples of pairs (L/K, S) satisfying the above assumption, it is

perhaps more convenient to use its following form: S contains the infinite and

ramified places and equals {v, v′} where v splits completely and v′ is non-split.

We have the following examples: (We point out that if (L/K,S) satisfies the

assumption, then so does (E/K, S) for any subextension E/K.)
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(i) p an odd prime, K = Q, L = Q(ζpn)+, S = {∞, p}.
(ii) p an odd prime, K = Q, L/Q any finite subextension of the

Zp-extension of Q, S = {∞, p}.
(iii) p ≡ 3 mod 4, prime, K = Q(

√−p), L = Q(ζpr ), S = {v, p}
where v is the infinite place of k and p the unique place above

p.

(iv) K any imaginary quadratic field, p a prime which is non-split

in K/Q, L = EK where E/Q is a totally real abelian extension

of p-power conductor such that p remains non-split in EF (eg

if [E : Q] is odd), S consists of the infinite place of K and the

unique place above p.

Examples of (iv) can be obtained by taking a quadratic imaginary field K

and letting L be any finite subextension of the cyclotomic Zp-extension of K,

where p is odd and non-split in K.

4.4.4 Description of J (L/K, S), rank 1 case

We emphasize that we proceed under the assumption (discussed in Section 4.4.2)

that S satisfies (St1), (St2) and (St3) and r(χ) = 1 for all χ ∈ Ĝ. As mentioned,

St(L/K,S) holds in this case and we choose v, v′, w, w′, ε as in Proposition 4.4.5.

Proposition 4.4.6 Let E be the group of Stark units attached to (L/K, S), i.e.

the Z[G]-submodule of O×L,S generated by ε and the roots of unity in L. Then

J (L/K,S) =
1
µ

annZ[G](O×L,S/E).

The proof of this proposition uses exactly the same argument as that of

Theorem 4.3.3, and we will not reproduce it here. We only point out that in

this situation we can go further by making the containment an equality.
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Chapter 5

Cyclotomic examples

Contents Page

5.1 Q(ζ+
pn)/Q 56

5.2 Q(ζpn)/Q 58

5.3 Comparison of J (L/Q, S) and J (L+/Q, S) 58

5.4 Q(ζpn)/Q(
√−p), p ≡ 3 mod 4 59

5.5 Comparison of J (L/K, SK) and J (L+/Q, S) 61

5.6 Comparison of J (L/Q, S) and J (L/K, SK) 62

This chapter serves (i) to provide explicit examples of the fractional Galois

ideal J (L/K, S) in situations which are tangible and well-known, and (ii) to

illustrate by means of these examples the behaviour of J (L/K, S) under certain

canonical changes of extension.

We fix for the whole section the following notation: p is an odd prime, n

a positive integer, ζ a primitive pnth root of unity in a fixed algebraic closure

Q̄ of Q and L = Q(ζ). L+ will denote the maximal totally real subfield of L,

and we have the Galois groups G = Gal(L/Q) and G+ = Gal(L+/Q). S will be

the set {∞, p} of places of Q. We remark that the algebraic closure Q̄ should

be thought of as being distinct from the algebraic closure Qc of Q in C (as in
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Section 2.1) in which characters take their values.

In all of the examples we will consider, the ranks of the irreducible characters

of the Galois group are at most 1. This allows us to use the rank 1 version of

Theorem 4.3.3, namely Proposition 4.4.6, to relate the fractional Galois ideals

to Stark units, which always exist in the present situation.

5.1 Q(ζpn)+/Q

The following example of Stark units is worked out in [43, Ch.III, Section 5]. If

w is the infinite place of L+ arising from the embedding ζ+ζ−1 7→ exp(2πi/pn)+

exp(−2πi/pn), then ε̄(L+/Q, S, w) = {±(1− ζ)(1− ζ−1)}. Hence the group E+

of Stark units for the pair (L+/Q, S) is generated over Z[G+] by −1 and ε =

(1− ζ)(1− ζ−1). Because this is an important example, we restate Proposition

4.4.6 in this special case:

Proposition 5.1.1 J (L+/Q, S) = 1
2annZ[G+](O×L+,S/E+).

We interpret Proposition 5.1.1 in terms of the cyclotomic units of L+. These

are defined for a general cyclotomic field and its maximal totally real subfield

in [45, Section 8.1], and have the interesting property that they are of maximal

rank in the group of units. Let C denote the cyclotomic units in L+. Then [45,

Lemma 8.1] gives the following generators for C:

−1 and
{

ξa = ζ(1−a)/2 1− ζa

1− ζ
| 1 < a <

1
2
pn, p 6 | a

}
.

The equation

ξ2
a =

(1− ζa)(1− ζ−a)
(1− ζ)(1− ζ−1)

shows that the cyclotomic units in L+ are closely related to the Stark units.

We observe that there is of course an embedding of Z[G+]-modules

O×L+/O×L+ ∩ E+ → O×L+,S/E+. (5.1.1)
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Lemma 5.1.2 The embedding O×L+/O×L+ ∩ E+ → O×L+,S/E+ is an isomor-

phism.

Proof. This is immediate since ε generates the (unique) prime of L+ above

p.

Definition 5.1.3 Let U(p) = O×L+,S ⊗Z Zp and E+(p) = E+ ⊗Z Zp.

Proposition 5.1.4

J (L+/Q, S) ∩ Z[G+] = annZ[G+](O×L+/C)

and J (L+/Q, S) ⊆ annZp[G+](U(p)/E+(p)).

Proof. The second statement follows immediately from Proposition 4.4.6.

The first statement is shown as follows. From Proposition 4.4.6 and Lemma

5.1.2, we see

J (L+/Q, S) =
1
2
annZ[G+](λ(O×L+)/λ(O×L+ ∩ E+)).

One sees by looking at bases that λ(O×L+ ∩ E+) = 2λ(C). Then suppose

α is an element of annZ[G+](O×L+/C) = annZ[G+](λ(O×L+)/λ(C)). Given x ∈
λ(O×L+), αx ∈ λ(C) and so 2αx ∈ 2λ(C) = λ(O×L+ ∩ E+). Therefore 2α ∈
annZ[G+](λ(O×L+)/λ(O×L+ ∩ E+)), hence α ∈ J (L+/Q, S) ∩ Z[G+].

Conversely, suppose α ∈ J (L+/Q, S)∩Z[G+], and take x ∈ λ(O×L+). Writing

α = 1
2β with β ∈ annZ[G+](λ(O×L+)/λ(O×L+ ∩ E+)), we have

βx ∈ λ(O×L+ ∩ E+) = 2λ(C).

Therefore αx = 1
2βx ∈ λ(C). Thus α ∈ annZ[G+](λ(O×L+)/λ(C)), which is

annZ[G+](O×L+/C).
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5.2 Q(ζpn)/Q

Observe that the orders of vanishing of the L-functions LL/Q,S(s, ψ) are given

by

r(ψ) =





1 if ψ ∈ Ĝ is even

0 if ψ ∈ Ĝ is odd.

This shows that the rank idempotents eL/Q,S [r] = e[r] in this case are given

as follows: e[0] = e−, e[1] = e+ and e[r] = 0 for r ≥ 2, where e+ = 1
2 (1 + c)

and e− = 1
2 (1− c) are the plus and minus idempotents for complex conjugation

c ∈ G. Hence X ⊗Z Q ∼= e+Q[G].

Proposition 5.2.1 J (L/Q, S) = 1
2e+annZ[G](O×L,S/E) ⊕ Z[G]θL/Q,S, where E

is the Z[G]-submodule of O×L,S generated by 1− ζ.

Proof. By the decomposition in (4.2.1), we can break the proof up according

to rank idempotents. Of course, e−J (L/Q, S) = e[0]J (L/Q, S) = Z[G]θL/Q,S

by Proposition 4.2.5. We can find e+J (L/Q, S)(= e[1]J (L/Q, S)) by applying

Proposition 4.4.6, since the inflation property of L-functions, together with the

fact that we are dealing with even characters, shows that we can work with the

subextension L+/Q.

5.3 Comparison of J (L/Q, S) and J (L+/Q, S).

Comparing the descriptions of J (L+/Q, S) and J (L/Q, S) given in Propositions

5.1.1 and 5.2.1, we find

Proposition 5.3.1 With notation as above, J (L+/Q, S) is the image of

J (L/Q, S) under the natural map Q[G] → Q[G+].

Proof. Given that the idempotents e+ and e− map to 1 and 0 resp., it

remains to observe that O×L+,S/E+ ' O×L,S/E , which is straightforward.
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It may appear a convenient coincidence that the images of e+ and e− in

Q[G+] are 1 and 0. However, this fact is explained by the following general

property of rank idempotents, whose proof is straightforward:

Proposition 5.3.2 Let E/F be any abelian extension of number fields, M/F

any subextension, and S any finite set of places of F containing the infinite ones.

Then the map Q[Gal(E/F )] → Q[Gal(M/F )] sends eE/F,S [r] to eM/F,S [r] for

every r ≥ 0.

5.4 Q(ζpn)/Q(
√−p), p ≡ 3 mod 4

Assume p is a prime congruent to 3 mod 4, so that L = Q(ζ) contains the

imaginary quadratic field K = Q(
√−p), and let H = Gal(L/K). We let SK be

the set of places of K lying above those in S. Of course, SK consists exactly of

the infinite place of K and the unique place p above p. Let w be the infinite

place of L arising from the embedding ζ 7→ exp(2πi/pn), and w+ its restriction

to the maximal real subfield L+ of L.

Definition 5.4.1 Define the element θ̃L/Q,S ∈ Q[H] by

θ̃L/Q,S =
∑

σ∈H

ζL/Q,S(0, σ)σ−1.

This “half Stickelberger element” is obtained from the usual Stickelberger

element θL/Q,S by keeping only those terms corresponding to elements of the

index two subgroup H of G.

Proposition 5.4.2 Let θ̃ = θ̃L/Q,S be as in Definition 5.4.1, and µ the number

of roots of unity in L. Then (1−ζ)µθ̃ is a Stark unit for the triple (L/K, SK , w).

Proof. We show that (1−ζ)µθ̃ satisfies (4.4.2). (This is sufficient because p is

totally ramified in L/K, so that U (∞) is all of O×L,S .) Note that restriction gives
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an isomorphism H → G+. Then given χ ∈ Ĥ, let χ′ denote the corresponding

character of G+, and χ′′ the character

G → G+ χ′→ C×

of G. Also, let ρ be the non-trivial character of G extending the trivial character

of H. If χ ∈ Ĥ, then χ′′ and ρχ′′ are the two characters of G extending χ, and

so by Frobenius reciprocity and the inflation and induction properties of L-

functions,

LL/K,SK
(s, χ) = LL/Q,S(s, χ′′)LL/Q,S(s, ρχ′′)

= LL+/Q,S(s, χ′)LL/Q,S(s, ρχ′′).

Hence L′L/K,SK
(0, χ) = L′L+/Q,S(0, χ′)LL/Q,S(0, ρχ′′). Of course, if

ε ∈ ε̄(L+/Q, S, w+) then by Section 5.1 we have

L′L+/Q,S(0, χ′) = −1
2

∑

τ∈G+

χ̄′(τ) log ‖ε‖τw+

= −1
4

∑

σ∈H

χ̄(σ) log ‖ε‖σw

= −1
2

∑

σ∈H

χ̄(σ) log ‖1− ζ‖σw.

Now, let c ∈ G denote complex conjugation. One checks that if σ ∈ G then

ζL/Q,S(0, σc) = −ζL/Q,S(0, σ). (This is because L-functions of even characters

of G vanish at 0.) Hence, using the decomposition G = H〈c〉 and observing

that ρχ′′ is odd, we find

LL/Q,S(0, ρχ′′) = 2
∑

σ∈H

ζL/Q,S(0, σ)ρχ′′(σ)

= 2
∑

σ∈H

ζL/Q,S(0, σ)χ(σ).
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Putting this together, we obtain

L′L/K,SK
(0, χ) = −

(∑

σ∈H

χ̄(σ) log ‖1− ζ‖σw

)(∑

τ∈H

ζL/Q,S(0, τ)χ(τ)

)

= −
∑

τ∈H

ζL/Q,S(0, τ)
∑

σ∈H

χ(σ−1τ) log ‖1− ζ‖σw

= −
∑

τ∈H

ζL/Q,S(0, τ)
∑

σ∈H

χ̄(σ) log ‖(1− ζ)τ−1‖σw

= − 1
µ

∑

σ∈H

χ̄(σ) log ‖(1− ζ)µθ̃‖σw.

Using Proposition 4.4.6 and Proposition 5.4.2, we now have:

Proposition 5.4.3 J (L/K, SK) = 1
µannZ[H](O×L,S/Ẽ), where Ẽ is the Z[H]-

submodule of O×L,S generated by ζ and (1− ζ)µθ̃.

5.5 Comparison of J (L/K, SK) and J (L+/Q, S)

We continue with the notation of Section 5.4, and emphasise that p ≡ 3 mod 4.

We continue to let E+ be the Z[G+]-submodule of O×L+,S generated by −1 and

ε = (1 − ζ)(1 − ζ−1), and Ẽ the Z[H]-submodule of O×L,S generated by ζ and

(1− ζ)µθ̃.

Proposition 5.5.1 Let Φ : Q[H] → Q[G+] be the canonical isomorphism.

Then

Φ(J (L/K, SK)) = Φ(2θ̃)J (L+/Q, S), (5.5.1)

where θ̃ = θ̃L/Q,S is the “half Stickelberger element” of Section 5.4. Equivalently,

Φ(annZ[H](O×L,S/Ẽ)) = Φ(µθ̃)annZ[H](O×L+,S/E+), (5.5.2)

where µ is again the number of roots of unity in L.

Before proving Proposition 5.5.1, we give a lemma concerning θ̃.
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Lemma 5.5.2 θ̃ is invertible in the group-ring Q[H].

Remark. Observe that the full Stickelberger element θL/Q,S is not invertible,

since LL/Q,S(0, χ) = 0 for even characters χ of G.

Proof. (Lemma 5.5.2) It is a simple matter to check that (1− c)θ̃ = θL/Q,S ,

and hence for odd characters χ ∈ Ĝ, 2χ(θ̃) = χ(θL/Q,S) 6= 0. If χ ∈ Ĝ is instead

even, then ρχ is odd where ρ ∈ Ĝ is again the odd extension to G of the trivial

character of H. But as θ̃ ∈ Q[H], χ(θ̃) = ρχ(θ̃), which we have just shown to

be non-zero.

Proof. (Proposition 5.5.1) The equivalence of (5.5.1) and (5.5.2) is just

Proposition 4.4.6. The inclusion “⊇” in (5.5.2) is almost immediate when one

recalls that E+/tors is generated by (1− ζ)(1− ζ−1) while Ẽ/tors is generated

by (1− ζ)eθ̃. The other inclusion is obtained by using that θ̃ is invertible.

5.6 Comparison of J (L/Q, S) and J (L/K, SK)

We again assume p ≡ 3 mod 4, and continue with the above notation. The

above work allows us to provide an example of the behaviour of the fractional

ideal under passing to subgroups. It is akin to the base change for Stickelberger

elements described in [35]. Following [35], given χ ∈ Ĝ we define a map χ[·] :

C[G] → C[G] by

χ

[∑

σ∈G

aσσ

]
=

∑

σ∈G

aσχ(σ)σ.

χ[·] is characterized uniquely by the property that ψ(χ[x]) = (ψχ)(x) for all

x ∈ C[G] and all ψ ∈ Ĝ. Further, χ[·] is a C-algebra automorphism.
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Let

βG
H =

∏

χ∈Ĝr{1}
χ|H=1

χ[θL/Q,S ].

This is the element called β(0) in [35]. As proven in [35, Prop.1], it satisfies

θL/K,SK
= βG

HθL/Q,S .

(In fact, this is trivial in this case: both sides are easily seen to be zero. However,

this equality holds in general and for higher Stickelberger elements.)

In our case, βG
H takes a simple form.

Lemma 5.6.1 βG
H = (1 + c)θ̃, where c ∈ G is complex conjugation.

Proof. As in the proof of Proposition 5.4.2, let ρ be the unique non-trivial

extension to G of the trivial character of H. Then

βG
H = ρ[θL/Q,S ]

=
∑

σ∈G

ζL/Q,S(0, σ)ρ(σ−1)σ−1.

Using the decomposition G = H〈c〉 and observing that ρ(c) = −1 and

ζL/Q,S(0, cσ) = −ζL/Q,S(0, σ) for all σ, we obtain the lemma.

Proposition 5.6.2 Let πH : Q[G] → Q[H] be the ring homomorphism obtained

by extending linearly the projection G → H arising from the decomposition

G = H〈c〉. Then

J (L/K, SK) = πH(βG
HJ (L/Q, S)).

Proof. Observe first that Φ : Q[G] → Q[G+] followed by the canonical

isomorphism Q[G+] → Q[H] is just πH . We therefore see from Propositions

5.3.1 and 5.5.1 that J (L/K,SK) = 2θ̃πH(J (L/Q, S)). Now just use the fact

that πH is a ring homomorphism and the observation that πH(1 + c) = 2.
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Chapter 6

Connection with

class-groups
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6.3 Inverse limits of fractional Galois ideals 66

6.4 A new proof concerning Fitting ideals of class-groups 74

Having described in Chapter 4 how J (L/K,S) is tied in with Stark elements

and given explicit examples in Chapter 5, it is now time to illustrate the role

of the fractional Galois ideal in relation to class-groups. This will be done in

the setting of Chapter 5 and will build on the explicit descriptions involving the

cyclotomic units, the Stark units for cyclotomic extensions of Q.

We carry out three tasks:

(i) to give a consequence of a result of Rubin, the consequence being that

J (L/Q, S) gives a positive answer (up to an explicit power of 2) to Question

1.1.1 for certain fields L,
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(ii) to show that taking an inverse limit of certain fractional Galois ideals

J (L/Q, S) gives rise to the Fitting ideal of the inverse limit of p-parts of class-

groups (in a precise way; see Theorem 6.3.1), and

(iii) to provide a new proof of a relationship between cyclotomic units and class-

groups. This relationship is one direction of an equality of Fitting ideals given

by Cornacchia and Greither in [12] and used in (ii).

6.1 Notation and setup

Assume p is an odd prime. Given n ≥ 0, let Ln be the extension of Q obtained by

adjoining the pn+1th roots of unity in Q̄ and Q(n)/Q the degree pn subextension

of the Zp-extension Q(∞) of Q. We then have the field diagram

Ln

∆n

{{
{{

{{
{{

Γn

00
00

00
00

00
00

00
0

Q(n)

22
22

22
22

22
22

22
2

L0

∆||
||

||
||

Q

in which Q(n) ∩ L0 = Q and Q(n)L0 = Ln, so that the Galois group Gn =

Gal(Ln/Q) is the internal direct product of ∆n and Γn. S will denote the set

of places {∞, p} of Q.

By virtue of the natural isomorphism ∆n → ∆, characters of ∆n correspond

to characters of ∆. If δ ∈ ∆̂, we let δn denote the corresponding character in

∆̂n. Now, the idea is to view the group-ring C[Gn] as C[Γn][∆n]. In doing this,

we can define a projection πn(δ) : C[Gn] → C[Γn] by extending δn linearly (over

C[Γn]).

Finally, fix an isomorphism ν : Cp → C and let ω : ∆ → C× be the compo-
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sition of the Teichmüller character ∆ → C×p with ν : C×p → C×. Given δ ∈ ∆̂,

δ∗ will denote ωδ−1.

6.2 A consequence of a result of Rubin

We make use of the fact, essentially [30, Theorem 2.2], that if φ : O×
L+

n ,S
→ Z[G+

n ]

is a Z[G+
n ]-module homomorphism, then

4φ(E+
n ) ⊆ annZ[G+

n ](Cl(L+
n )). (6.2.1)

(We have used the second remark after [30, Theorem 1.3] to replace the units

and cyclotomic units by O×
L+

n ,S
and E+

n resp.)

Proposition 6.2.1 24annZ[Gn](µ(Ln))J (Ln/Q, S) ⊆ annZ[Gn](Cl(Ln)).

Proof. Using the fact that E+
n /±1 is generated freely over Z[G+

n ] by

(1− ζpn+1)(1− ζ−1
pn+1), we see easily from (6.2.1) that

4annZ[G+
n ](O×L+

n ,S
/E+

n ) ⊆ annZ[G+
n ](Cl(L+

n )). (6.2.2)

Now, by Proposition 5.2.1 an element of the left-hand side in Proposition 6.2.1

looks like 24β( 1
2e+α+θL/Q,S) with β ∈ annZ[G](µ(L)) and α ∈ annZ[G](O×L,S/E).

But βθL/Q,S ∈ annZ[G](Cl(L)) by Stickelberger’s Theorem, and O×L,S/E '
O×L+,S/E+ so that by (6.2.2),

4(1 + c)α ∈ annZ[G](Cl(L)).

(If x ∈ Cl(L), (1 + c)x can be identified with an element of Cl(L+).)

6.3 Inverse limits of fractional Galois ideals

For ease of notation, we will set Cln = Cl(Ln)⊗Z Zp, and let Cl∞ be the limit

of the Cln, viewed as a module over the Iwasawa algebra Zp[[G∞]]. If δ ∈ ∆̂,

66



then by abuse of notation we write eδ for the idempotent in Zp[[G∞]] associated

to the character of Gal(L∞/Q(∞)) corresponding to δ.

Theorem 6.3.1 Let δ ∈ ∆̂. (δ may be even or odd.)

FittZp[[Γ∞]](eδ∗Cl∞) =





lim
←n
Zpπn(δ∗)(J (Ln/Q, S)) if δ 6= 1

lim
←n
Zpπn(δ∗)((1− (1 + p)σ−1

n )J (Ln/Q, S)) if δ = 1

where σn = (1 + p, Ln/Q).

In particular, we will show during the proof of Theorem 6.3.1, which will

occupy the remainder of Section 6.3, that the limits given in the statement do

indeed define ideals in Zp[[Γ∞]].

6.3.1 p-adic L-functions

p-adic L-functions will play a crucial role in half of the proof of Theorem 6.3.1.

A full description of the theory of p-adic L-functions, including their definition

in the non-commutative settings of, for example, [11] and [15], would take us

further than is necessary. We content ourselves with the classical functions of

Kubota and Leopoldt in [21] which interpolate p-adically Dirichlet L-functions

at negative integers.

Kummer, with his famous congruences, observed an interesting arithmetic

property of the values of the Riemann ζ-function ζQ at negative integers. Namely,

these values, which were already known to be rational, exhibit a sort of inte-

grality and periodicity once viewed in the right way. Indeed, fixing a prime p,

the integrality statement is that if k 6≡ 1 mod p − 1 is a negative odd integer,

then ζQ(k) ∈ Zp, viewing Q inside Qp. The periodicity statement says that if k′

is another such integer and is congruent to k mod p− 1, then ζQ(k) and ζQ(k′)

define the same class in Fp = Zp/pZp.

These properties were summarised by Kubota and Leopoldt in the existence

of a Cp-valued continuous function on Zpr{1} interpolating ζQ at negative

integers. In fact, they did this for arbitrary Dirichlet L-functions.
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Theorem 6.3.2 (Kubota–Leopoldt) Let E/Q be an abelian extension with

Galois group G and let χ ∈ Ĝ. Then there is a unique continuous Cp-valued

function Lp(s, χ) on Zpr{1} such that

Lp(1− n, χ) = L(1− n, χω−n)charχω−n,p(p1−n)

for all integers n ≥ 1.

In fact, when χ is non-trivial, Lp(s, χ) is defined at 1 as well. This theorem is

only interesting for even characters χ, because when χ is odd the corresponding

L-function vanishes at all negative integers, so that Lp(s, χ) is necessarily zero.

6.3.2 Algebraic p-adic L-functions

Lp(s, χ) has a more algebraic interpretation, namely as an element in the com-

pleted group-ring Λ of a certain Zp-extension (after having made a choice of

topological generator for the Galois group of the extension). With this interpre-

tation, Iwasawa was able to conjecture a remarkable connection of Lp(s, χ) with

the Λ-module structure of the inverse limit of the (p-parts of the) class-groups in

the Zp-extension. This connection was proven by Mazur and Wiles in [23], and

later Wiles proved in [46] the more general statement for characters of abelian

extensions of totally real fields.

For our purposes, given δ ∈ ∆̂ even, the power series giving the p-adic L-

functions Lp(s, δnψ) for ψ ∈ Γ̂n will satisfy the following proposition. We let

hδ(T ) ∈ Zp[[T ]] be the power series 1 − 1+p
1+T if δ = 1 and 1 otherwise. The

following is proven in, for example, [13].

Proposition 6.3.3 Let δ ∈ ∆̂ be even. Then there is a unique power series

gδ(T ) ∈ Zp[[T ]] such that

Lp(s, δnψ) =
gδ(ψ(σn)−1(1 + p)s − 1)
hδ(ψ(σn)−1(1 + p)s − 1)

for all ψ ∈ Γ̂n. (Recall from the statement of Theorem 6.3.1 that σn is defined

to be (1 + p, Ln/Q), visibly an element of Γn.)
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Now, γ = (σn)n defines a topological generator for Γ∞, and we choose to

identify Zp[[Γ∞]] and Zp[[T ]] via γ 7→ 1 + T . Under this identification, we denote

by gδ the element of Zp[[Γ∞]] corresponding to gδ(T ).

We reproduce here the case we need of the Main Conjecture as proven by

Mazur and Wiles [23], opting not to provide the statement in its full generality

in order to avoid introducing notation we will not need afterwards.

Theorem 6.3.4 (Mazur–Wiles) If δ ∈ ∆̂ is even, then we have the following

equality of ideals in Zp[[Γ∞]]:

(gδ) = FittZp[[Γ∞]](eδ∗Cl∞).

6.3.3 Stickelberger elements

For ease of notation, θn will denote the Stickelberger element θLn/Q,S . Then

given δ ∈ ∆̂, we set θn(δ) = πn(δ)(θn).

Proposition 6.3.5 θn(δ) =
∑

τ∈Γn

(∑
σ∈∆n

ζLn/Q,S(0, σ−1τ−1)δ(σ)
)
τ .

Proof. This simply uses the description of θn in terms of partial ζ-functions.

It is straightforward to show that the fieldQ(n) is totally real, so that ∆n con-

tains the complex conjugation element c of Gn. Therefore, since ζLn/Q,S(0, cσ) =

−ζLn/Q,S(0, σ) for all σ ∈ Gn, we see from Proposition 6.3.5 that θn(δ∗) = 0

when δ is odd (i.e. when δ∗ is even).

Proposition 6.3.5 also tells us that θn(δ) ∈ Qp[Γn] (recall that δ has order

dividing p− 1). Actually, we can say a lot more.

Proposition 6.3.6 Given δ ∈ ∆̂r{1}, θn(δ∗) ∈ Zp[Γn].

Proof. We use some notation found in [45, Section 7.2], where most of the

work for the proof of this proposition is done. Set ξn(δ) = πn(δ∗)(θn − 1
2NLn

Q ),
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where NLn

Q ∈ Z[Gn] is the sum of the elements of Gn. (This is not how the

definition of ξn(δ) looked in [45], but it comes to exactly the same thing.) Then

we see easily that

θn(δ∗) =





1
2 |∆|

∑
τ∈Γn

τ + ξn(1) if δ = 1

ξn(δ) otherwise.

Now, [45, Prop.7.6(b)] says that when δ is even and non-trivial, ξn(δ) ∈ Zp[Γn],

dealing with the even characters. But of course, when δ is odd, θn(δ∗) is zero

anyway.

6.3.4 Limit of fractional ideals

If n is a positive integer, rn : C[Gn] → C[Gn−1] will denote the usual restriction

map.

Lemma 6.3.7 For any δ ∈ ∆̂ and any n ≥ 1, the diagram

C[Gn]
πn(δ) //

rn

²²

C[Γn]

rn

²²
C[Gn−1]

πn−1(δ)// C[Γn−1]

commutes.

Proof. All of the maps in the diagram are C-algebra homomorphisms, so it

is sufficient to check commutativity on elements of Gn. But

∆n
//

##FF
FF

FF
FF

F ∆n−1

²²
∆

commutes, so that δn−1 ◦ (rn)|∆n = δn. The lemma follows.

The obvious corollary to this lemma is:

70



Lemma 6.3.8 If we have subgroups An ⊆ C[Gn] forming a projective system

with respect to the maps C[Gn] → C[Gn−1], then the πn(δ)(An) form a projective

system with respect to the maps C[Γn] → C[Γn−1].

Lemma 6.3.9 When δ ∈ ∆̂ is non-trivial, the Zp-submodule

Zpπn(δ∗)(J (Ln/Q, S))

of Qp[Γn] is an ideal in Zp[Γn].

Proof. We use the description of J (Ln/Q, S) found in [4, Prop.4.10], namely,

J (Ln/Q, S) =
1
2
e+annZ[Gn](O×Ln,S/En)⊕ Z[Gn]θn. (6.3.1)

Of course, we only need to check that this set is mapped into Zp[Γn] under

πn(δ), and this is clear from Proposition 6.3.6.

It is not difficult to see in this situation that the natural projections Q[Gn] →
Q[Gn−1] map J (Ln/Q, S) into J (Ln−1/Q, S), so that the J (Ln/Q, S) form a

projective system. Hence, by Lemma 6.3.8, the Zpπn(δ∗)(J (Ln/Q, S)) form a

projective system also, and by Lemma 6.3.9 its limit is an ideal in the Iwasawa

algebra Zp[[Γ∞]].

We have been neglecting what happens when δ ∈ ∆̂ is the trivial character.

The quotient gδ(T )/hδ(T ) defining Lp(s, δ) when δ = 1 lies not in the power

series ring Zp[[T ]] but in its quotient field (analogous to the fact that the cor-

responding complex L-function has a pole at s = 1). To obtain an element of

Zp[[T ]] one needs to perform an operation (multiplying by hδ(T )) which is similar

to cancelling out the pole of the complex L-function at s = 1. This operation

must also be performed on the fractional Galois ideals in order to relate them

to the p-adic L-function for the trivial character: if δ = 1,

lim
←n
Zpπn(δ∗)((1− (1 + p)σ−1

n )J (Ln/Q, S))

is an ideal in Zp[[Γ∞]]. (Note that the element of Zp[[T ]] defined by the

1− (1 + p)σ−1
n (using the isomorphism γ 7→ 1 + T ) is just h1(T ).)
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Proposition 6.3.10 Let δ ∈ ∆̂ be even. Then we have the following equality

of ideals in Zp[[Γ∞]]:

(gδ) =





lim←n Zpπn(δ∗)(J (Ln/Q, S)) if δ 6= 1

lim←n Zpπn(δ∗)((1− (1 + p)σ−1
n )J (Ln/Q, S)) if δ = 1.

Proof. From (6.3.1), we see that Zpπn(δ∗)(J (Ln/Q, S)) = Zp[Γn]θn(δ∗)

when δ is even (i.e. δ∗ is odd). A simple topological argument found in the

Corollaire to [2, Prop.9] then shows that the limit of the right-hand side is

the principal ideal in Zp[[Γ∞]] generated by the element (θn(δ∗))n, assuming

δ 6= 1. We now appeal to Iwasawa’s construction of p-adic L-functions in terms

of Stickelberger elements, an exposition of which can be found in [45, Ch.7].

Specifically, we invoke [45, Theorem 7.10], which is exactly what is required to

prove the equality with (gδ). The case when δ = 1 is done entirely similarly.

Using the classical Main Conjecture of Iwasawa theory as proven by Mazur

and Wiles (Theorem 6.3.4 here), we now have the statement of Theorem 6.3.1

when δ is even.

6.3.5 Plus part of J (Ln/Q, S)

We now turn our attention to what happens when we take δ ∈ ∆̂ to be an

odd character, so that, via the projection πn(δ∗), we are working in the plus

part of J (Ln/Q, S), δ∗ being even. It will be fruitless to turn to p-adic L-

functions in this situation because, as remarked earlier, the p-adic L-functions

associated to odd characters are identically zero. It is a conjecture of Vandiver

that the corresponding parts eδ∗Cl∞ of Cl∞ are zero as well, but this is not yet

proven. The fractional Galois ideals side-step this issue in the sense that their

plus parts are equal to the Fitting ideals of units modulo cyclotomic units, and

these Fitting ideals are known to be equal to those of the class-groups.
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Lemma 6.3.11 Let ∆ be a finite abelian group, A an integral domain in which

|∆| is invertible and whose group of units contains an element of order equal to

the exponent of ∆, and B a commutative ring containing A as a subring. For a

character χ ∈ Hom(∆, A×), let eχ ∈ A[∆] ⊆ B[∆] be the associated idempotent

and π(χ) : B[∆] → B the ring homomorphism obtained by extending χ linearly

over B. Then for any B[∆]-module M , we have

(i) π(χ)(annB[∆](M)) = annB(eχM)

(ii) π(χ)(FittB[∆](M)) = FittB(eχM) if M is finitely presentable.

Proof. (i) is straightforward. For (ii), we use the fact that eχM and

B⊗B[∆]M are isomorphic as B-modules, where we view B as a B[∆]-module via

π(χ). Then FittB(eχM) = FittB(B ⊗B[∆] M), and this is π(χ)(FittB[∆](M))

by right-exactness of the tensor product.

Lemma 6.3.12 If δ ∈ ∆̂ is odd, then

Zpπn(δ∗)(J (Ln/Q, S)) = FittZp[Γn](eδ∗nCln).

Proof. Since δ∗ is even, using (6.3.1) we see straightaway that

Zpπn(δ∗)(J (Ln/Q, S)) = Zpπn(δ∗)(annZ[Gn](O×L+
n ,S

/E+
n )).

Now, ZpannZ[Gn](O×L+
n ,S

/E+
n ) ⊆ annZp[Gn]((O×L+

n ,S
/E+

n ) ⊗Z Zp) but in fact the

reverse inclusion holds as well: Take α in the right-hand side and choose a

sequence αi in annZ[Gn]((O×L+
n ,S

/E+
n )⊗Z Zp) converging to α in Zp[Gn]. Choose

also an integer d not divisible by p which annihilates the prime-to-p part of

O×
L+

n ,S
/E+

n . Then dαi is a sequence in annZ[Gn](O×L+
n ,S

/E+
n ) converging to dα in

Zp[Gn], but ZpannZ[Gn](O×L+
n ,S

/E+
n ) is closed in Zp[Gn] and hence contains dα.

As p 6 | d, it contains α as well.

Thus Zpπn(δ∗)(J (Ln/Q, S)) = πn(δ∗)(annZp[Gn]((O×L+
n ,S

/E+
n )⊗Z Zp). Now,

one can show that the dual of (O×
L+

n ,S
/E+

n )⊗Z Zp is cyclic over Zp[Gn] (we will

turn to this fact again in the proof Theorem 6.4.1); therefore, as Gn is cyclic,
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FittZp[Gn]((O×L+
n ,S

/E+
n ) ⊗Z Zp) is the whole of the annihilator ideal. However,

[12, Theorem 1] tells us (in particular), that

FittZp[Gn]((O×L+
n ,S

/E+
n )⊗Z Zp) = FittZp[Gn](Cl+n ).

We can therefore finish the proof by applying part (ii) of Lemma 6.3.11 with

A = Zp, B = Zp[Γn], ∆ = ∆n and χ = δ∗n.

Observing that the norm maps Cln+1 → Cln are surjective, taking Fitting

ideals commutes with taking inverse limits in this situation (see, for example,

[16, Theorem 2.1]) so that taking limits in Lemma 6.3.12 completes the proof

of Theorem 6.3.1 for δ odd. Combined with the analogous result for δ even in

Section 6.3.4, we have proven Theorem 6.3.1.

6.4 A new proof concerning Fitting ideals of

class-groups

Let Cn denote the group of cyclotomic units in O×
L+

n
, the units in the maximal

real subfield L+ of L. In this section, we prove

Proposition 6.4.1 For all n ≥ 0,

annZp[G+
n ]((O×L+

n
/Cn)⊗Z Zp) ⊆ FittZp[G+

n ](Cln).

As mentioned in Section 1, Snaith constructs (in [40]) Z[G]-submodules

J r(L/K) of Q[G] for abelian extensions L/K satisfying the Stark Conjecture

at r < 0. In [39], however, he had already constructed J r(L/Q) when L is the

maximal totally real subfield of a cyclotomic extension of Q. Further, in the

same paper he showed ([39, Theorem 1.8]) that the intersection of J r(L/Q)

with the p-adic group-ring Zp[G] (p an odd prime) lies in the annihilator of a

certain étale cohomology group when r < 0 is even. The methods used in the

proof of [39, Theorem 1.8] work in the setting of the fractional ideal J (L/K, S)
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defined in Section 4.2 when L = Q and L is the maximal totally real subfield of

a cyclotomic extension of Q having p-power conductor. In this case, the étale

cohomology becomes the p-part of the class-group of L. This section will give

an idea of the methods employed in the proof of [39, Theorem 1.8], but with

emphasis on the r = 0 setting that we need.

6.4.1 Quick overview

The idea will be as follows. Fix an odd prime p and a positive integer m 6≡
2 mod 4 which is prime to p, and consider the fields Lm

n = Q(ζmpn+1), n ≥ 0.

Of course, Lm
n /Q is abelian, and we denote its Galois group by Gm

n . Our interest

will lie in the ring Λm obtained as the inverse limit lim←n Zp[Gm
n ] of p-adic group

rings, and in a complex Cm of Λm-modules. Eventually, the integer m will be

taken to be 1, but much of the theory applies for any m, and so we work in more

generality as much as possible. However, for the purposes of this introductory

overview, let us take m = 1 now.

The cohomology of the Λ1-complex C1 is zero outside degrees 1 and 2, and

if one tensors C1 with one of the finite level group-rings Zp[G1
n], then the same

is true of the resulting complex C1
n of Zp[G1

n]-modules. For a suitable S, the

cohomology groups in degrees 1 and 2 are resp. (almost) the quotient of the

S-integers in L1
n by the cyclotomic units, and the p-part of the S-class-group of

L1
n. An entirely algebraic result of Snaith shows how one can form a relation

involving the annihilators of these two cohomology groups and the determinant

of C1
n. Thanks to [8], the determinant of Cm (and so in particular C1) is known,

and a careful “descent” argument allows one to deduce from this the determinant

of C1
n. Taking plus parts for the action of complex conjugation then gives us

the relation in Proposition 6.4.1.
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6.4.2 The complex Cm

The complex Cm of Λm-modules is built from the étale complexes

RΓ(OLm
n ,S ,Zp(1)), where S = {∞} ∪ {q|mp}. These complexes have coho-

mology groups Hi
ét(OLm

n ,S ,Zp(1)) with the following descriptions:

Lemma 6.4.2 Hi
ét(OLm

n ,S ,Zp(1)) = 0 for i 6= 1, 2. There is a canonical iso-

morphism

H1
ét(OLm

n ,S ,Zp(1)) ' O×Lm
n ,S ⊗Z Zp

of Zp[Gm
n ]-modules and a canonical short exact sequence

0 → Cl(OLm
n ,S)⊗Z Zp → H2

ét(OLm
n ,S ,Zp(1)) → Xm

n → 0

where Xm
n is the kernel of the degree map on the free Zp-module on the finite

places of Lm
n above S.

This lemma is [8, Lemma 3.2], where a proof can be found.

The inverse limit lim←n Hi
ét(OLm

n ,S ,Zp(1)) (with respect to the corestriction

maps) actually arises as a cohomology group. Let Ω denote the Galois group of

the maximal unramified-outside-S extension of Q, and for n ≥ 0 let Ωm
n be the

Galois group of the maximal unramified-outside-S extension of Lm
n . We take

the inverse limit of the standard complexes C•(Ω, IndΩ
Ωm

n
(ResΩΩm

n
µpn+1)), and call

the resulting complex RΓ(ZS ,Zp(1)m
∞). Then the cohomology Hi(ZS ,Zp(1)m

∞)

of RΓ(ZS ,Zp(1)m
∞) satisfies

Hi(ZS ,Zp(1)m
∞) ' lim

←n
Hi

ét(OLm
n ,S ,Zp(1)).

RΓ(ZS ,Zp(1)m
∞) is the complex we modify to obtain the promised complex Cm.

Proposition 6.4.3 (i) Hi
ét(ZS ,Zp(1)m

∞) = 0 for i 6= 1, 2.

(ii) There is a canonical isomorphism H1
ét(ZS ,Zp(1)m

∞) ' Um
∞, where Um

∞ is

the limit lim←nO×Lm
n ,S ⊗Z Zp with respect to the norm maps.
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(iii) There is a canonical short exact sequence

0 → Cl∞(p) → H2
ét(ZS ,Zp(1)m

∞) → Xm
∞ → 0

where Cl∞(p) = lim←n Cl(OLm
n ,S)⊗Z Zp and Xm

∞ = lim←n Xm
n .

Proof. See [8, Prop. 5.1]. (The principle is to show that the statements in

Lemma 6.4.2 pass to inverse limits over n.)

6.4.3 The Λm-module Bm,+

Let Bm
n be the Zp[Gm

n ]-module
⊕

Σ(Lm
n ) Zp where Σ(Lm

n ) is the set of embed-

dings of Lm
n into C. With the action of Gm

n on Bm
n coming from the action on

embeddings, Bm
n is a free rank one Zp[Gm

n ]-module. The maps Bm
n+1 → Bm

n

make (Bm
n )n into a projective system, and the limit Bm is a free Λm-module on

one generator. Generators of a certain form are given in [8, Section 5.1]. We

pick one of this form and denote it vm.

Now, the complex conjugation element c of Λm acts on Bm by permuting

embeddings of the fields Lm
n , and since 2 is invertible in Λm (p is odd), Bm is

the direct sum of the plus and minus parts for complex conjugation:

Bm = Bm,+ ⊕Bm,−

where Bm,+ = e+Bm and Bm,− = e−Bm with

e+ = 1
2 (1 + c) and e− = 1

2 (1− c) .

Note in particular that Bm,+ and Bm,− are projective Λm-modules. Now, we

wish to construct a cochain map Bm,+[−1] → RΓ(ZS ,Zp(1)m
∞). The following

proposition shows that this is, in principle, the same as giving a homomorphism

Bm,+ → Um
∞ of Λm-modules, where Um

∞ = lim←nO×Lm
n ,S ⊗Z Zp.

Proposition 6.4.4 There is a canonical isomorphism

HomD(Λm)(Bm,+[−1],RΓ(ZS ,Zp(1)m
∞)) ' HomΛm(Bm,+, Um

∞),
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where D(Λm) is the derived category of the homotopy category of bounded com-

plexes of Λm-modules.

Proof. Recall from Proposition 6.4.3 that H1
ét(ZS ,Zp(1)m

∞) ' Um
∞. Then

the idea is as follows. Given a cochain map α : Bm,+ → RΓ(ZS ,Zp(1)m
∞),

we obtain a Λm-module homomorphism H1(α) : H1(Bm,+[−1]) = Bm,+ →
H1

ét(ZS ,Zp(1)m
∞). Conversely, given a Λm-module homomorphism f : Bm,+ →

H1
ét(ZS ,Zp(1)m

∞), we can lift it to a homomorphism

α̃ : Bm,+ → Z1(RΓ(ZS ,Zp(1)m
∞))

since Bm,+ is projective. Clearly then α defined by

αi =





α̃ if i = 1

0 otherwise

is a cochain map with H1(α) = f .

Consider Soulé’s cyclotomic element

εm = ((1− ζp−n

m ζpn+1)(1− ζ−p−n

m ζ−1
pn+1))n

in Um
∞. Complex conjugation leaves εm fixed, so there is a homomorphism

Bm,+ → Um
∞ such that e+vm 7→ εm, and it is necessarily unique. By Proposition

6.4.4, this gives us a map cm : Bm,+[−1] → RΓ(ZS ,Zp(1)m
∞) of complexes, and

we denote its mapping cone by Cm.

Theorem 6.4.5 The complex Cm of Λm-modules is acyclic outside degrees 1

and 2, and we have:

(i) H1(Cm) ' Um
∞/Em where

Em = Im(Bm,+ → Um
∞).

(ii) There is a canonical short exact sequence

0 → Cl∞(p) → H2(Cm) → Xm
∞ → 0.
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Proof. Look at the long exact sequence in cohomology arising from the exact

sequence

0 → RΓ(ZS ,Zp(1)m
∞) → Cm → Bm,+[0] → 0

of complexes, and use Proposition 6.4.3.

6.4.4 Perfect complexes

If R is a ring, then a chain complex of R-modules is said to be perfect if it is

bounded and the modules making up the complex are finitely generated and

projective. Suppose we have an abelian group G and a prime p, and that we

have a perfect complex F• of Zp[G]-modules, all of whose homology groups are

finite. Then we can form an isomorphism

⊕

j

F2j ⊗Zp Qp →
⊕

j

F2j+1 ⊗Zp Qp (6.4.1)

using the exact sequences

0 → Bi(F•) → Zi(F•) → Hi(F•) → 0 (6.4.2)

and

0 → Zi+1(F•) → Fi+1 → Bi(F•) → 0. (6.4.3)

One uses that (6.4.3) splits after tensoring with Qp, and (6.4.2) gives isomor-

phisms Bi(F•)⊗Zp Qp
∼= Zi(F•)⊗Zp Qp. For details of how the isomorphism is

constructed, see [39, Section 2].

The determinant of the isomorphism in (6.4.1) is known to be well-defined

up to Zp[G]×, i.e. if different splittings are chosen then the determinant will

change by an element of Zp[G]× (see [42, Ch.15]). We denote the class of the

isomorphism in Qp[G]×/Zp[G]× by det(F•).
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Remark. This works more generally. Zp[G] and Qp[G] can be replaced by

any commutative rings R ⊆ S, and F• by a perfect complex of R-modules

which becomes exact on tensoring with S, though we must now assume that

the projectives in F• are in fact free. Then in the same way we obtain an

element det(F•) ∈ S×/R×. Further, the R-submodule of S that det(F•)
−1

generates (note the inverse) is equal to DR(F•), where DR is the determinant

functor introduced in [18].

The following proposition is [39, Cor. 2.11].

Proposition 6.4.6 Let G be a finite abelian group and p a prime, and suppose

that F• is a perfect complex of Zp[G]-modules with finite homology in degrees 0

and 1 and zero homology elsewhere. Then if Hom(H1(F•),Qp/Zp) is cyclic as

a Zp[G]-module, we have the containment

det(F•)−1annZp[G](H1(F•)) ⊆ annZp[G](H0(F•)). (6.4.4)

If further the Sylow p-subgroup of G is cyclic, then the annihilator ideal in the

right-hand side of (6.4.4) may be replaced by the Fitting ideal.

This is a special case of a more general theorem, namely [39, Theorem 2.4].

Proposition 6.4.6 as stated is sufficient for our purposes.

6.4.5 Application to étale cohomology

As explained in [39, p.563], after modifying Cm slightly if necessary, we may

assume that it is a bounded complex of finitely generated free modules. Consider

now the “finite level” complex Cm
n = Cm ⊗Λm Zp[Gm

n ]. Using [39, pp.573-575],

one finds that the cohomology groups are described as follows: Cm
n is acyclic

outside degrees 1 and 2, and there are exact sequences

0 → (Bm
n )+ → O×Lm

n ,S ⊗Z Zp → H1(Cm
n ) → 0 (6.4.5)
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0 → Cl(OLm
n ,S)⊗Z Zp → H2(Cm

n ) → Xm
n → 0, (6.4.6)

where the map (Bm
n )+ → O×Lm

n ,S ⊗Z Zp sends the image of e+vm in (Bm
n )+

(which generates (Bm
n )+ over Zp[Gm

n ]) to (1− ζp−n

m ζpn+1)(1− ζ−p−n

m ζ−1
pn+1).

Now let us take m = 1. Recalling the definition of Xm
n in Lemma 6.4.2,

we see that X1
n = 0. Also, by [45, Ch.8] the map (B1

n)+ → O×L1
n,S ⊗Z Zp has

finite cokernel. Therefore in order to apply Proposition 6.4.6, it would remain

to check that Hom(H1(C1
n),Qp/Zp) is cyclic as a Zp[G1

n]-module. In fact, as

explained in [39, pp.575,576], this is the case if we replace C1
n by C1,+

n , the

complex obtained by taking plus parts for complex conjugation. Proposition

6.4.6 then says

det(C1,+
n )−1annZp[Gn,+

1 ](U
n,+/En,+) ⊆ FittZp[Gn,+

1 ](Cl(OLn,+
1 ,S)⊗Z Zp) (6.4.7)

where Un,+ = O×
Ln,+

1 ,S
⊗Z Zp and En,+ is the Zp[G

n,+
1 ]-submodule of Un,+

generated by (1− ζpn+1)(1− ζ−1
pn+1).

6.4.6 Explicit descriptions of the determinants

For this section, we remove the assumption that m = 1. Let us first describe

det(Cm). Since Cm becomes acyclic after tensoring with the total quotient

ring Q(Λm) ([8, Lemma 5.2]), we see from the remark before Proposition 6.4.6

that DΛm(Cm) = Λmdet(Cm)−1. [8, Theorem 6.1] gives a basis for DΛm(Cm),

namely e++e−gm where gm is an “equivariant Stickelberger element”, obtained

as a limit of Stickelberger elements. (See [8, Sec.5.2] for the definition of gm,

though note that what we call gm is called −gm there.) Therefore det(Cm) =

e+ + e−gm mod Λ×m, and

det(Cm,+) = 1 mod (Λ+
m)× (6.4.8)

where Λ+
m = lim←n Zp[Gn,+

m ].
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Now, if we had a natural map

Q(Λ+
m)×/(Λ+

m)× → Qp[Gn,+
m ]×/Zp[Gn,+

m ]×, (6.4.9)

then by the naturality of the construction of det(Cm,+) and det(Cm,+
n ), the

latter would be the image of the former under this map. However, the projection

Λm → Zp[Gm,+
n ] does not pass to total quotient rings and so the map in (6.4.9)

does not exist.

6.4.7 Never-divisors-of-zero

This problem is solved by considering the set of so-called never-divisors-of-zero

in Λ+
m. This is defined to be the multiplicative subset of Λ+

m consisting of all

those elements in Λ+
m whose image in Zp[Gm,+

n ] is a non-zero-divisor for all

n. We let Q̃(Λ+
m) be the localization of Λ+

m at the never-divisors-of-zero, and

observe that Q̃(Λ+
m) is a subring of Q(Λ+

m).

Let us return to the situation m = 1. It is a direct consequence of [28,

Prop.4.4], [39, Prop.4.5] and the isomorphism H2(C1,+) ' Cl∞,+
p that

C1,+ ⊗Λ+
1

Q̃(Λ+
m) is exact. The naturality of the det construction in Section

6.4.4 then shows that det(C1,+
n ) is the image of det(C1,+) under

Q̃(Λ+
1 )×/(Λ+

1 )× → Qp[G1,+
n ]×/Zp[G1,+

n ]×.

Referring back to (6.4.8), we therefore see that det(C1,+
n ) = 1 mod Zp[G1,+

n ]×.

6.4.8 The annihilator statement

Having found det(C1,+
n ), we can conclude our description of the relationship be-

tween the fractional Galois ideal and class-groups in the present

situtation. Since the unique prime of L1
n above p is principal (generated by

(1 − ζpn+1)(1 − ζ−1
pn+1)), [24, Prop.11.6] shows that Cl(Ln,+

1 ) = Cl(OLn,+
1 ,S), so

(6.4.7) becomes

annZp[Gn,+
1 ](U

n,+/En,+) ⊆ FittZp[Gn,+
1 ](Cl(Ln,+

1 )⊗Z Zp).
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This completes the proof of Proposition 6.4.1, because of the isomorphism

Un,+/En,+ ' (O×
L+

n
/Cn)⊗Z Zp.

Remark. Although Vandiver’s Conjecture predicts the p-part of Cl(L+) to be

trivial, the techniques used here are hoped to be applicable to more general

fields.
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Chapter 7

Further questions

In this final chapter, we will turn to some of the questions raised by the work

carried out in the main body of the thesis, touching on whether the expected

unification of the equivariant motivic phenomena brought about by the Equiv-

ariant Tamagawa Number Conjecture [7, Conj.4] can help the fractional Galois

ideal find its proper place. We do not aim to provide conclusive answers; we

intend simply to ask questions that are natural and reasonable.

7.1 The ETNC

I am grateful to David Burns for having made me aware of [6]. For brevity,

many details and notational aspects have been condensed here.

The link between L-functions and class-groups is not an isolated phenomenon.

For example, in Chapter 1 we discussed briefly analogous behaviour for higher

K-groups. Also, the Selmer groups of elliptic curves are expected to be re-

lated in a similar way to values of L-functions of elliptic curves. These objects

– class-groups, K-groups, Selmer groups of elliptic curves – all have the com-

mon property of arising, in essence, as cohomology groups of cochain complexes

occurring naturally in arithmetic.
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To formulate the Equivariant Tamagawa Number Conjecture (ETNC) in

full generality would not be possible here. However, for a large class of motives,

we can give an idea of what it is saying. Take a Galois extension L/K of

number fields and suppose we have a motive M defined over K of the type

discussed in [6, Section 4.3] (the examples above all come from such motives).

We can form from this a motive ML which has an action of G = Gal(L/K),

and associated to ML we have a canonical element ζML in the centre of R[G]

defined in terms of special values of L-functions. On the other hand, one can

also attach to the motive a cochain complex CML
(together with a regulator

isomorphism λML
: H0(CML

) ⊗Z R → H1(CML
) ⊗Z R) that should contain

arithmetic information on the motive.

We can compare ζML
and CML

in a meaningful way by constructing from

each an element of the relative K-group K0(Z[G],R[G]). The ETNC then says

that these elements are in fact equal, predicting a deep link between analytically

defined and algebraically defined objects associated to the motive.

7.1.1 Generalizing fractional Galois ideals

An important consequence of the ETNC holding for a pair (L/K, M), where

M is a motive over K of the type required in the above discussion, is that

the natural analogue of the Stark Conjecture for the leading coefficients of the

associated L-functions holds. In this conjecture, the module X of Chapter 3 is

replaced by H1(CML
) and Dirichlet’s regulator by λML

.

Let us again assume that L/K is abelian (we will return to the non-abelian

case in Section 7.3.1); then our first question is:

Can we construct a fractional Galois ideal J (L/K,M) ⊆ Q[G]

in an analogous way to Chapter 4?

Recalling the definition of J (L/K, S), we see that all that was required was

a choice of lattice in (
∧rO×L,S) ⊗Z Q for each r ≥ 0. (In that situation, the
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lattice chosen was the image of
∧r

0O×L,S .) Of course, in order to be able to

relate J (L/K, S) to Stark elements using Theorem 4.3.3, it is important that

the lattice be large enough to contain the Stark elements. As we saw, this is

conjectured by Rubin to be the case for the lattices
∧r

0O×L,S . (This is taking the

viewpoint that the Stark elements always exist somewhere in (
∧rO×L,S) ⊗Z Q

so long as the Stark Conjecture holds, and it is a case of identifying what

denominators can come in.)

In general, it might not be clear what lattices to take inside

(
∧r

H1(CML
))⊗ZQ, so that a formulation of an integral Stark conjecture of the

required form, let alone a proof, may not be forthcoming. However, in the case

r = 1, [6, Remark 5.3] explains how the truth of the ETNC would give an explicit

lattice in which the rank 1 Stark elements would lie. Consequently, J (L/K,M)

could be defined so that at least e[0]J (L/K, M) and e[1]J (L/K,M) would

be meaningful. Indeed, the proof of Theorem 4.3.3 should carry over almost

without change, so that we ought to be able to construct from J (L/K,M)

annihilators of an appropriate lattice modulo the rank 1 Stark elements.

7.2 Annihilating arithmetic objects

Let us observe that in this thesis, the underlying motive has been (tacitly) the

Tate motive M = h0(Spec K)(0). In this case, tors(H1(CML)) = Cl(L), which

we have been seeking to construct annihilators for. The natural question to ask

is then

Does J (L/K, M) give rise to annihilators of tors(H1(CML
))

more generally?

In the case of the Tate motive M = h0(Spec K)(k) with k < 0, where

tors(H1(CML
)) is the torsion in an even K-group of L, J (L/K,M) is essentially

the fractional ideal J k(L/K) defined in [40], where Snaith gave a positive answer

to this question for K = Q assuming the Lichtenbaum–Quillen Conjecture.
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In the case where M is the motive h1(E)(1) for an elliptic curve over Q,

tors(H1(CML
)) is closely related to the Shafarevich–Tate group (the dual of

the torsion in the Selmer group) of E/L, further highlighting the significance of

H1(CML
) generally.

Supposing we do indeed have the desired relationship between J (L/K,M)

and Stark elements discussed in Section 7.1.1, the issue becomes one of con-

structing annihilators of H1(CML) from Stark elements. For evidence that such

constructions are possible, we cite [6, Theorem 5.5], which provides sufficient

conditions. We also recall the discussion in Section 1.3.1 concerning Rubin and

Popescu’s work on Euler systems arising from Stark elements, and draw at-

tention to recent work of Büyükboduk [9] which removes certain restrictions

which had been imposed on characters χ : Gal(K̄/K) → Z×p for studying the

corresponding parts of class-groups, where K is a totally real field.

7.2.1 Stark elements and splittings of localization

sequences

We remark on an interesting idea of Banaszak in [1]. The aim of [1] is to

show that for an even K-group of a number field L that is abelian over Q, the

corresponding (higher) Stickelberger element annihilates the group of divisible

elements, which lies in the K-group of the ring of integers. The method makes

use of an observation that a group-ring element α annihilates the group of

divisible elements if and only if a splitting of a certain map δ in the localization

sequence can be constructed so that δ followed by that splitting has the effect

of multiplying by α. In the case where α is a higher Stickelberger element, an

explicit splitting map is constructed in [1, Ch.IV, Section 1].

We remind the reader of the elements Af [r] defined in Section 4.1.2 for r ≥ 0,

and of the fact that f can be chosen such that Af [0] = θL/K,S . Is it possible

to define splittings as above in the case α = Af [r] for any r ≥ 0, making use
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of the relationship in (3.6.2) between θL/K,S [r] and the rank r Stark elements?

(Recall the definition of θL/K,S [r] in Definition 3.4.2, remembering that it means

a Stickelberger element defined in terms of rth derivatives at s = 0, not a higher

Stickelberger element defined at a negative integer.) The author is not aware

of any such approach having been attempted before, but perhaps it could be

fruitful as an alternative way of forming annihilators of class-groups from L-

function derivatives via Stark elements.

7.3 Iwasawa theory

In Section 6.3 we saw how a limit of fractional Galois ideals in a Zp-extension

gave rise to Fitting ideals of limits of class-groups. Can we expect similar

statements to hold in greater generality? Although explicit examples were not

given, the discussion in Section 4.4.3 and Proposition 4.4.6 show in particular

that if F is an imaginary quadratic field, p is an odd prime not splitting in F/Q,

and Fn is the degree pn subextension of the cyclotomic Zp-extension of F , then

J (Fn/F, S) can be described precisely in terms of Stark units, where S consists

of the infinite place of F and the unique place above p. Here the Stark units,

which are the elliptic units in this situation, are well known by Iwasawa theory

to be related to class-groups in a similar way to the case of cyclotomic units for

the base field Q. Could a limit of the J (Fn/F, S) therefore also be shown to

give rise to a Fitting ideal of a limit of class-groups? One would need to take

some care over what happens p-adically to the denominators in the J (Fn/F, S).

One would hope, as in Section 6.3, that multiplying by annihilators of roots of

unity would remove any denominators.

7.3.1 Non-commutative fractional Galois ideals

There is currently much interest in non-commutative Iwasawa theory, in which

the Galois groups of the infinite Galois extensions under consideration may be
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non-abelian p-adic Lie groups. This situation arises, for example, if one considers

the extension obtained by adjoining to the base field the coordinates of all points

of p-power order on the elliptic curve. Is it possible, then, to define fractional

Galois ideals for non-abelian Galois extensions? This question will be addressed

in the paper in preparation [3], where non-commutative fractional Galois ideals

are constructed for Tate motives h0(Spec K)(k). [3] will show that

(i) the natural maps on rational group-rings coming from quotient

maps on groups map fractional Galois ideals into fractional Galois

ideals,

(ii) if the commutative fractional Galois ideals can be made integral

(in a suitable way), then the same holds in the non-commutative

case, and

(iii) if the commutative fractional Galois ideals annihilate the corre-

sponding arithmetic objects (which in this situation are K-groups

in even degrees), then the same holds in the non-commutative

case.

One of the important contributions of [11] to Iwasawa theory was to show

how to define a characteristic ideal for a large class of finitely generated modules

over completed group-rings of compact p-adic Lie groups. It is by means of

characteristic ideals that one can compare the (conjectural) p-adic L-functions

to limits of algebraic objects like class-groups and Shafarevich–Tate groups.

(For example, in the simple case when the Galois group is the compact p-adic

Lie group Zp, characteristic ideals are Fitting ideals, as in Section 6.3.) This

prompts us to ask:

Can limits of fractional Galois ideals in (possibly non-abelian)

p-adic Lie extensions be viewed as characteristic ideals of limits

of suitable arithmetic objects?
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If this were the case, then the place of the fractional Galois ideal in Iwasawa

theory could be an interesting one. Indeed, its definition is not on the side of

Selmer groups, and yet nor is it defined in the same way as p-adic L-functions

– analytically defined p-adic L-functions (if they exist) are continuous p-adic

functions which interpolate complex L-functions at integers, while algebraic p-

adic L-functions (again, if they exist) are elements of localizations of K-groups

which interpolate complex L-functions “algebraically” at Artin representations.

An advantage brought about, should the above question have a positive answer,

is that the fractional ideals would arguably be a more concrete object to study

than characteristic ideals themselves, whose definition [11, (33)] is somewhat

abstract. One would then hope that the connection with p-adic L-functions

predicted by main conjectures in Iwasawa theory would be more explicit.
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15(1):83–97, 2003. Les XXIIèmes Journées Arithmetiques (Lille, 2001).

[15] Takako Fukaya and Kazuya Kato. A formulation of conjectures on p-adic

zeta functions in noncommutative Iwasawa theory. In Proceedings of the

St. Petersburg Mathematical Society. Vol. XII, volume 219 of Amer. Math.

Soc. Transl. Ser. 2, pages 1–85, Providence, RI, 2006. Amer. Math. Soc.

[16] C. Greither and M. Kurihara. Stickelberger elements, Fitting ideals of

class groups of CM fields, and dualisation. To appear in Mathematische

Zeitschrift.

92



[17] Kazuya Kato. p-adic Hodge theory and values of zeta functions of modular
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