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Abstract

For an abelian extension L/K of number fields, the Equivariant Tamagawa
Number Conjecture at s = 0, which is equivalent to the Lifted Root
Number Conjecture, implies Rubin’s Conjecture by work of Burns. We
show that, for relative biquadratic extensions L/K satisfying a certain
condition on the splitting of places, Rubin’s Conjecture in turn implies
the ETNC/LRNC. We conclude with some examples.
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1 Introduction

The Equivariant Tamagawa Number Conjecture (ETNC), formulated by Burns–
Flach in [6], is a deep conjecture concerning leading coefficients of Taylor series
of L-functions associated to motives defined over number fields. We will be inter-
ested in the case where the motive in question is the Tate motive h0(Spec(L))(0)
with the natural action by Z[Gal(L/K)], where L/K is a Galois extension of
number fields. In this setting, the ETNC is equivalent [2, Thm. 2.3.3] to the
Lifted Root Number Conjecture (LRNC) of Gruenberg–Ritter–Weiss formulated
in [14], and it is this version of the conjecture that we choose to work with in
the present article. In order not to favour either name (ETNC/LRNC) in our
discussions, we refer to both conjectures as Z(L/K).

To put Z(L/K) in context, it can be viewed as an integral refinement of
Stark’s Conjecture—see [29, Ch. I, Conj. 5.1] and [25] for example. Thus,
in some sense, Z(L/K) might be considered an analytic class number formula
over Z[G]. However, there is another (and earlier) integral refinement of Stark’s
Conjecture, namely Rubin’s Conjecture [22, Conj. B]. Burns showed in [3, Cor.
9.2] that Z(L/K) implies Rubin’s Conjecture. Our aim in this article is to
show that, for certain (relative) biquadratic extensions, the reverse implication
holds. This will need to be made more precise, since Z(L/K) depends only on
the extension while Rubin’s Conjecture takes extra data as input. The exact
statement can be found in Theorem 8.3.

We briefly remark on the type of biquadratic extension L/K to which our
results apply: we assume that all infinite places split completely, only one place
ramifies, and the ramified place has full decomposition group. This condition
will be rephrased in Lemma 8.1. Biquadratic extensions of this type exist. We
conclude with some examples, two of which are concrete ones in which Z(L/K) is
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shown to hold (see Section 11.3). These examples do not follow from previously
known results.

Concerning work already in the literature, we highlight in particular the
articles of Dummit–Sands–Tangedal [10], Sands [23], and Macias Castillo [17],
since they all deal with multiquadratic extensions. The first proves, under
certain assumptions, the integral Stark conjecture for L-functions whose order
of vanishing is 1 at s = 0, in other words, Rubin’s Conjecture when r = 1 (see
Section 3). The second deals with a slight weakening of Rubin’s Conjecture,
referred to as Popescu’s Conjecture; see [20] for a formulation. The third article
proves results concerning the annihilation of class-groups using derivatives of
L-functions, cleverly avoiding having to prove Z(L/K) in full.

The author would like to thank Al Weiss for many helpful discussions and
Daniel Macias Castillo and Henri Johnston for making useful remarks. The
author is also indebted to the referee for making extensive suggestions for im-
provement.

2 L-functions and basic notation

Let L/K be a Galois extension of number fields and S a finite set of places of
K containing the infinite ones. We assume knowledge of the definition of the
S-truncated Artin L-function LL/K,S(s, χ) associated to a character χ of the
Galois group G of L/K. For example, see [29, Ch. 0, Section 4] and [29, Ch. I,
Section 3].

We will also need the (S, T )-modified L-function LL/K,S,T (s, χ), where T is
a finite set of places of K that is disjoint from S. To define it, we assume for
simplicity that L/K is abelian and that S contains the ramified places (this will
be assumed throughout the paper) so that T necessarily consists of unramified

places. Then for χ ∈ Ĝ = HomZ(G,C×),

LL/K,S,T (s, χ) = LL/K,S(s, χ)
∏
p∈T

(1− χ(Frp)Np1−s),

where Frp denotes the arithmetic Frobenius at p. In the case where χ is
the trivial character 1, we will set ζK,S(s) = LL/K,S(s,1) and ζK,S,T (s) =
LL/K,S,T (s,1). For any complex function f(s) that is analytic at the point
s0 ∈ C, f∗(s0) will denote the leading coefficient of the Taylor series of f(s) at
s = s0, and f (r)(s0) will denote the rth derivative at s = s0 for each r ≥ 0.

2.1 Notation

Let S be a finite set of places of K containing the infinite ones and T a finite
set of places of K disjoint from S. We will use the following notation:
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SL, TL : The set of places of L above those in S and T respectively
ClS(L) : The SL-class-group of L (or simply S-class-group)

ClS,T (L) : The (S, T )-class-group of L, i.e., the quotient of the group
of fractional ideals of OL,S prime to TL by the subgroup
of principal ideals aOL,S with a ≡ 1 mod P for all places
P ∈ TL

US : The group O×
L,S of SL-units in L (or simply S-units)

US,T : The group of (S, T )-units in L (see (3.1))
Gv : The decomposition group of the place v of K in G =

Gal(L/K) when L/K is abelian

Ĝ : HomZ(G,C×) if G is abelian

eχ : The idempotent in C[G] of the character χ ∈ Ĝ
YS : The free abelian group on SL

XS : The kernel of the augmentation map YS → Z
≃ : Canonical isomorphism
∼= : Non-canonical isomorphism

3 Rubin’s Conjecture

We now turn to the formulation of Rubin’s Conjecture. Background and results
on this conjecture can be found in the articles of Greither [13], Popescu [20, 21],
and Vallières [30].

Before stating the conjecture, we need to introduce some notation. As ex-
plained in [22, Section 1.2], if M is a Z[G]-module (where G is an arbitrary finite
abelian group for the time being), then for each r ≥ 0 there is a well-defined
homomorphism∧r

Z[G]HomZ[G](M,Z[G]) → HomZ[G](
∧r

Z[G]M,Z[G])

ϕ1 ∧ · · · ∧ ϕr 7→ (m1 ∧ · · · ∧mr 7→ det(ϕi(mj))) .

By abuse of notation, we will denote the image of ϕ1 ∧ · · · ∧ ϕr under this
map by the same symbol, so that given m1, . . . ,mr ∈ M we write simply

(ϕ1 ∧ · · · ∧ ϕr)(m1 ∧ · · · ∧mr) = det(ϕi(mj)).

We will also extend the map (ϕ1∧· · ·∧ϕr)(−) linearly to Q⊗Z(
∧r

Z[G]M) → Q[G].

Definition 3.1. For any Z[G]-module M and any r ≥ 0, define
∧r

0M to be

{m ∈ Q⊗Z(
∧r

Z[G]M) | (ϕ1 ∧ · · · ∧ ϕr)(m) ∈ Z[G] for all ϕi ∈ HomZ[G](M,Z[G])}.

Now suppose G is the Galois group of an abelian extension L/K of number
fields. We will once again take a finite set S of places of K containing the
infinite and ramified ones, and a finite set T of places of K, disjoint from S.
For a character χ of G, we let r(χ) = ⟨χ,C ⊗Z US⟩, which is also the order of
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vanishing of the L-function LL/K,S(s, χ) at s = 0 by [29, Ch.I, Prop.3.4]. (Note
that r(χ) depends only on S, not T .) Then set

US,T = {u ∈ US | u ≡ 1 mod P for all places P ∈ TL} (3.1)

and

ΩS,T,r = {u ∈
∧r

0US,T | eχu = 0 for all χ ∈ Ĝ with r(χ) ̸= r}. (3.2)

We assume the following hypotheses.

(St1) S contains the infinite and ramified places.
(St2) S contains at least r places that split completely in L/K.
(St3) S contains at least r + 1 places.
(St4) US,T is Z-torsion-free.

We point out that (St4) is satisfied in particular if T contains at least two
places of different residue characteristics. The hypotheses (St2) and (St3) en-
sure that the order of vanishing of LL/K,S,T (s, χ) at s = 0 is at least r for all

χ ∈ Ĝ; see [29, Ch. I, Prop. 3.4]. (Note, however, the comment concerning the
conjecture of Emmons and Popescu in Section 3.1.)

Definition 3.2. (i) A triple (S, T, r) satisfying hypotheses (St1) to (St4) is
called a Rubin datum for the extension L/K.

(ii) If (S, T, r) is a Rubin datum for L/K, let

θ
(r)
L/K,S,T =

∑
χ∈Ĝ

1

r!
L
(r)
L/K,S,T (0, χ̄)eχ.

We have introduced the term Rubin datum purely to make various state-
ments in the article more succinct.

Consider the regulator map λ : C⊗Z US → C⊗Z XS given by

1⊗ u 7→ −
∑

w∈SL

log ∥u∥w · w. (3.3)

Remark 3.3. The map λ in (3.3) differs from the usual Dirichlet regulator map
by a sign. This makes no difference to the formulation of Rubin’s Conjecture
but is crucial for Z(L/K).

Denote by λ(r) : R⊗Z (
∧r

Z[G]US) → R⊗Z (
∧r

Z[G]XS) the map induced by λ.

Also, if A is a subring of C and M is an A[G]-module, write
∧r

A[G],tfM for the

image of
∧r

A[G]M in C⊗A (
∧r

A[G]M). The following is [22, Conjecture B], which

we refer to as B(L/K, S, T, r). We will also refer to it as Rubin’s Conjecture
when the quadruple (L/K,S, T, r) is understood or not important.

Conjecture 3.4. If (S, T, r) is a Rubin datum for L/K, then

θ
(r)
L/K,S,T

∧r
Z[G],tfXS ⊆ λ(r)(ΩS,T,r).
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3.1 Known cases of Rubin’s Conjecture

Rubin’s Conjecture is known in the following cases:

(i) All extensions L/K such that L/Q is abelian;
(ii) K contains an imaginary quadratic field k of class number one

such that L/k is abelian and [L : K] is odd and divisible only by
rational primes that split in k/Q;

(iii) All abelian extensions L/K where K is an arbitrary imaginary
quadratic field, in the case r = 1;

(iv) Arbitrary quadratic extensions L/K;
(v) A large class of multiquadratic extensions, in the case r = 1;
(vi) char(K) > 0 (Rubin’s Conjecture may be formulated equally well

in positive characteristic; see, for example, [19]).

Recall that, by Burns [3, Cor. 9.2], Z(L/K) implies Rubin’s Conjecture for
all Rubin data (S, T, r) for L/K. Therefore, cases (i) and (ii) above follow from
the truth of Z(L/K) for L/K in the specified situations: (i) by Burns–Greither
[7] and Flach [12], and (ii) by Bley [1].

Case (iii) was proven in [25], where Stark formulated a conjecture that was
later generalized by Rubin to what we now call Rubin’s Conjecture. See also
[29, Ch. IV, Prop. 3.9].

Case (iv) was proven in [22] itself. As for case (v), the known cases of Rubin’s
Conjecture for multiquadratic extensions are due principally to Dummit–Sands–
Tangedal [10]; we refer the reader to that article for a precise description of the
assumptions made on L/K.

Case (vi) in the above list was done in part by Popescu—see [20]—and com-
pleted for arbitrary global function fields by Burns in [4]. In fact, [4] establishes
the truth of a stronger conjecture in the positive characteristic case, one that is
analogous to Z(L/K).

It is also worth pointing out that Emmons and Popescu have formulated
a version of Rubin’s Conjecture that weakens the hypotheses (St1) to (St4);
see [11]. Vallières [30] has shown that the conjecture of Emmens and Popescu
follows from Z(L/K), and so it holds in particular in cases (i) and (ii) above.

4 K-theory: definitions

Let G be a finite group. We will work with low-dimensional K-groups for
rings R equal to Z[G], Q[G], or a maximal order M in Q[G] containing Z[G].
Certain aspects of the theory (even the definition of K1) can be made simpler
by assuming right away that G is abelian, which we will therefore do.
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K0(R) : The Grothendieck group of the category of finitely gener-
ated, projective R-modules

K1(R) : For R as above, we may take this to be the group of units
R× in R

K0(R,F ) : The relative K0-group of R with coefficients in F , where F
is equal to Q or R and R is equal to Z[G] or M

When F = Q or R and R = Z[G] or M, K0(R,F ) is generated by triples
(P, f,Q), where P,Q are finitely generated, projectiveR-modules and f : F [G]⊗R

P → F [G] ⊗R Q is an F [G]-module isomorphism, subject to certain relations
which can be found in [26, p. 215]. In the case F = Q and R = Z[G], we will be
more interested in the description of K0(Z[G],Q) as the Grothendieck group of
finite, cohomologically trivial Z[G]-modules: if C is finite and cohomologically

trivial, then it has a projective resolution of the form 0 → P
f→ Q → C → 0,

and we identify the class of C with the element (P, 1 ⊗ f,Q) of K0(Z[G],Q),
where 1⊗ f : Q⊗Z P → Q⊗Z Q is the isomorphism arising from f .

There is a localization sequence

K1(Z[G]) → K1(Q[G]) → K0(Z[G],Q) → K0(Z[G]) → K0(Q[G])

in K-theory (see [9, (40.9)]). With the above description of K0(Z[G],Q), the
map K0(Z[G],Q) → K0(Z[G]) sends the class of the finite, cohomologically
trivial module C to [Q] − [P ], where 0 → P → Q → C → 0 is exact. The
map K1(Q[G]) → K0(Z[G],Q) sends an element of Q[G]× ∩Z[G] to the class of
the finite, cohomologically trivial module Z[G]/αZ[G]. This describes the map
completely, since every element of Q[G]× is a quotient of elements of Q[G]× ∩
Z[G].

We will need two subgroups of K0(Z[G]), namely the locally free class-group,
Cl(Z[G]), and the D-subgroup, D(Z[G]). To define the former, we observe that
there is a rank function rkZ[G] : K0(Z[G]) → Z, which takes the class of a

finitely generated, Z[G]-projective module M to 1
|G| rkZ(M), an integer. One

defines Cl(Z[G]) to be the kernel of rkZ[G]; it is a finite group. The D-subgroup
is defined to be the kernel of K0(Z[G]) → K0(M), and in fact lies in Cl(Z[G]).
This definition is independent of the choice of M. See [32, Ch. 4] for more
details.

5 The conjecture Z(L/K) for abelian extensions

We emphasize that Z(L/K) can be formulated for arbitrary Galois extensions
of number fields. However, we choose to deal only with abelian extensions, since
the statement of the conjecture can be reached more quickly in this case.

Let G = Gal(L/K), where L/K is abelian. We assume that S is a finite
set of places of K containing the infinite and ramified ones, and such that the
S-class-group ClS(L) is zero. We choose a Tate sequence [28]

0 → US → A → B → XS → 0 (5.1)
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for (L/K, S), i.e., a representative of the Tate canonical class in Ext2Z[G](XS , US)
with A finitely generated and cohomologically trivial, and B finitely generated
and projective. Break the Tate sequence into short exact sequences

0 → US → A → C → 0 (5.2)

and
0 → C → B → XS → 0, (5.3)

and choose injective maps α, β : C → C that are homotopic to zero. (A Z[G]-
module homomorphism is said to be homotopic to zero if it factors through a
projective module.) With α and β thus chosen, the pull-back and push-out of
(5.2) and (5.3) along α and β respectively are split. Indeed, if α and β factor
through the projectives P and Q respectively, then the push-out map factors
through Ext1Z[G](P,US) and the pull-back map factors through Ext1Z[G](XS , Q).
Both of these Ext-groups vanish, and so the resulting sequences split. (See [31,
Section 3.4] for more on push-outs and pull-backs.) Thus we have maps α̃ and
β̃ making the following diagrams commute:

0 // US
//

1

��

C ⊕ US
//

α̃

��

C //

α

��

0

0 // US
// A // C // 0

0 // C //

β

��

B //

β̃

��

XS
//

1

��

0

0 // C // C ⊕XS
// XS

// 0

Choose a Z[G]-embedding φ : XS → US . (Such a φ always exists: Q ⊗Z XS
∼=

Q⊗ZUS by [24, Section 12.1], and this can be made into an embeddingXS → US

by multiplying by a suitable positive integer.) We then let Φ : B → A be the
embedding α̃ ◦ (1⊕ φ) ◦ β̃. Since Coker(Φ) is finite (A and B have the same Z-
rank) and cohomologically trivial, it therefore defines an element ofK0(Z[G],Q),
which we shall denote ∆(φ, α, β) to reflect its dependence on φ, α and β.

One can compensate for the choice of α and β above by letting Ξ(α, β) be
the image, under K1(Q[G]) → K0(Z[G],Q), of the Q[G]-determinant of the
automorphism α◦β : Q⊗ZC → Q⊗ZC. The element ∆(φ, α, β)−Ξ(α, β) does
not depend on α, β, α̃ or β̃ [14, Lemma 1].

If χ is a character of G and Vχ̄ is a C[G]-module with character χ̄, then we let
Rφ(χ) be the determinant over C of the C-automorphism of HomC[G](Vχ̄,C⊗Z
XS) given by h 7→ λ◦φ◦h, where λ is the regulator map defined in (3.3). Then
let Aφ(χ) = Rφ(χ)/L

∗
L/K,S(0, χ) ∈ C×, and consider the map

R(G) → C×

χ 7→ Aφ(χ),
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where R(G) is the representation ring of G. Stark’s Conjecture [29, Ch. I, Conj.
5.1] is the assertion that this map in fact lies in the subgroup HomΓ(R(G), (Qc)×)
of Hom(R(G),C×) whereQc is the algebraic closure ofQ in C and Γ = Gal(Qc/Q).
Let us now assume Stark’s Conjecture. Then the element

Aφ =
∑
χ∈Ĝ

Aφ(χ̄)eχ

in fact lies in Q[G]×. We now define Υ(φ) to be the image under K1(Q[G]) →
K0(Z[G],Q) of the class of Aφ in Q[G]×/Z[G]×.

Finally, define ω(L/K) = Υ(φ) − ∆(φ, α, β) + Ξ(α, β) ∈ K0(Z[G],Q). By
[14, Thm. 2’], ω(L/K) depends only on the extension L/K. In particular, it
does not depend on the choice of the set S, nor on φ, C, α, β, α̃, or β̃.

Conjecture Z(L/K), in its formulation as the Lifted Root Number Conjec-
ture [14, Section 7], is

Conjecture 5.1. L/K satisfies Stark’s Conjecture and ω(L/K) = 0.

Z(L/K) is known in the cases (i), (ii), and (iv) of Section 3.1, and the
positive-characteristic analogue is known in case (vi) of that section. The articles
in which the proofs of these cases appeared were discussed in Section 3.1, with
the exception of case (iv). In that case, a proof can be found in the Ph.D. thesis
of S. Y. Kim [16], but no proof has been published before now. We will provide
a short proof in Section 7.

We also point out a recent article of Johnston and Nickel [15], which provides
(among other things) some new non-abelian cases of the conjecture.

Some explicit examples will be given at the end of this article in the case
whereK is an imaginary quadratic field. These examples are not already covered
by Bley’s work [1], since the extensions are assumed to be of odd degree there,
and that is not the case for us.

5.1 Related conjectures

There are two related conjectures that deserve to be mentioned. First, there is
the Strong Stark Conjecture, which is the assertion that

(a) Stark’s conjecture holds for the extension L/K
and (b) the image of ω(L/K) in K0(M,Q) is zero.

This is a reformulation (see [2, Thm. 2.2.4]) of Chinburg’s original conjecture
[8]. The Strong Stark Conjecture was proven for rational characters in [29, Ch.
II, Théorème 6.8]. We will use this fact in the proofs of Propositions 7.2 and
10.5. Note that property (b) is equivalent to ω(L/K) having finite order in
K0(Z[G],Q).

Second, there is Chinburg’s third Ω-conjecture. Under our assumptions
(namely, that L/K is abelian), this is the assertion that [A] − [B] = 0 in
K0(Z[G]), in the notation of Section 5. Put another way, it asserts that the
image of ω(L/K) in K0(Z[G]) is trivial. It is this interpretation that inspired
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the modifier “lifted” in Lifted Root Number Conjecture, since in some sense
Z(L/K) “lifts” Chinburg’s third Ω-conjecture—also known as the root number
conjecture due to its relationship to Artin root numbers in the general case—to
K0(Z[G],Q).

6 K-theory: lemmas

Although our definitions in Section 4 of the low-dimensional K-groups were
made only in the case where G is abelian, Lemmas 6.1 and 6.2 below both hold
in more generality, and we have chosen to state them in that greater generality.

Let G be a finite group, and choose a maximal order M in Q[G] containing
Z[G]. Recall that D(Z[G]) is the kernel of K0(Z[G]) → K0(M).

Consider the diagram

K1(Z[G]) //

f

��

K1(Q[G])
β //

1

��

K0(Z[G],Q)
γ //

g

��

K0(Z[G])

��
K1(M)

κ // K1(Q[G]) // K0(M,Q) // K0(M)

Lemma 6.1. Assume that κ : K1(M) → K1(Q[G]) is injective, which is the
case if G is abelian. Then β ◦ κ defines an injective map Coker(f) → Ker(g).
If D(Z[G]) = 0, then this map is an isomorphism.

Proof. Apply the Snake Lemma to the diagram

K1(Z[G]) //

f

��

K1(Q[G])
β //

1

��

Ker(γ) //

g′

��

0

0 // K1(M)
κ // K1(Q[G]) // K0(M,Q)

to obtain an isomorphism Coker(f) → Ker(g′), where g′ is the restriction of g
to Ker(γ). One sees from the proof of the Snake Lemma that this isomorphism
is given by β ◦ κ. Since Ker(g′) ⊆ Ker(g), this gives the desired embedding
Coker(f) → Ker(g).

Finally, if D(Z[G]) = 0 then Ker(g′) = Ker(g), completing the proof.

Lemma 6.2. Assume that Q[G] has no simple component that is a totally def-
inite quaternion algebra (for example, if G is abelian). If X and Y are finitely
generated, projective Z[G]-modules, then [X] = [Y ] in K0(Z[G]) if and only if
X ∼= Y .

Proof. Suppose that [X] = [Y ] in K0(Z[G]). Then since X and Y are Z-torsion-
free, [32, Lemma 9 on p. 34] implies that X and Y are stably isomorphic, i.e.,
there is a finitely generated, projective Z[G]-module P such that X⊕P ∼= Y ⊕P .
However, the paragraph following the proof of [27, Thm. 9.9] shows that this
implies that X ∼= Y , under our assumption on G.
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Lemma 6.3. Suppose G has order 4 and exponent 2. Then the following hold.
(i) Cl(Z[G]) = 0.
(ii) A finitely generated Z[G]-module is free if and only if it is projec-

tive.
(iii) Z[G]× = {±σ | σ ∈ G}.
(iv) The maximal order M of Q[G] containing Z[G] is canonically

isomorphic to
⊕

χ∈Ĝ Z.
(v) If aχ ∈ Z× for all χ ∈ Ĝ, then

∑
χ aχeχ ∈ Z[G]× if and only if

{χ ∈ Ĝ | aχ = 1} has even cardinality.

Proof. (i) See [9, (50.17)(iii)].
(ii) Let X be a finitely generated, projective Z[G]-module, and let r be its

rank over Z[G]. Then [X] − [Z[G]r] ∈ Cl(Z[G]), so [X] = [Z[G]r] in K0(Z[G])
by part (i). Therefore X ∼= Z[G]r by Lemma 6.2.

(iii) Straightforward.

(iv) Each of the characters χ ∈ Ĝ takes its values in Z, so M =
⊕

χ∈Ĝ Zeχ ≃⊕
χ∈Ĝ Z.
(v) Take σ ∈ G and write σ =

∑
χ∈Ĝ aχeχ. Then aχ = χ(σ), so {χ ∈

Ĝ | aχ = 1} has even cardinality since it is the kernel of the map Ĝ → {±1},
χ 7→ χ(σ). The analogous statement for σ replaced by −σ follows. The converse
uses the same ideas.

7 Z(L/K) for quadratic extensions

In [16, Section 2.4, Rem. i)], S. Y. Kim proved Z(L/K) for quadratic extensions.
The present author does not know what techniques were used in Kim’s proof.
However, we feel that it is instructive to provide a proof here, especially because
Kim’s proof is unpublished and no argument has yet been published to the
author’s best knowledge. In any case, our proof is short.

Lemma 7.1. If G has order 2, then K0(Z[G],Q) → K0(M,Q) is injective.

Proof. By [9, (50.16)(iii)], we have D(Z[G]) = 0 for groups of order 2. Hence,
given Lemma 6.1, it is enough to show that K1(Z[G]) → K1(M) is surjective in
this case. However, K1(Z[G]) → K1(M) is injective, and K1(Z[G]) and K1(M)
both have order 4, so we are done. (Note that K1(Z[G]) = {±σ | σ ∈ G} and

that K1(M) consists of the four elements a1e1 + aχeχ where Ĝ = {1, χ} and
a1, aχ ∈ {−1, 1}.)

Proposition 7.2. If L/K is quadratic, then Z(L/K) holds.

Proof. Recall from Section 5.1 that L/K satisfies the Strong Stark Conjec-
ture (since the characters of G are rational), i.e., ω(L/K) is in the kernel of
K0(Z[G],Q) → K0(M,Q). Now apply Lemma 7.1.

10



8 A condition on the set S

In this section, we formulate our main theorem. Let us assume that L/K is a
biquadratic extension of number fields.

Let S be a non-empty, finite set of places ofK, and let r be a positive integer.
We say that the set S satisfies hypothesis Pr if it contains exactly one place with
full decomposition group, r places that split completely, and no other places.

Lemma 8.1. The following are equivalent:
(i) S satisfies hypothesis Pr.
(ii) XS is free over Z[G] and rkZ[G](XS) = r.
(iii) XS is projective over Z[G] and rkZ[G](XS) = r.

(iv) LL/K,S(s, χ) has order of vanishing r at s = 0 for every χ ∈ Ĝ.

Proof. (ii) and (iii) are equivalent by Lemma 6.3. Assuming (i), and letting p
be the place that has full decomposition group and P the place above it, we
have

XS =
⊕

q∈Sr{p}

⊕
Q|q

Z(Q−P).

Since q splits completely for q ∈ Sr{p},
⊕

Q|q Z(Q − P) is free over Z[G] of

Z[G]-rank 1, so (ii) follows.
Now assume that (ii) holds. Recalling YS from Section 2.1, we see from the

exact sequence
0 → XS → YS → Z → 0

that rkZ(YS) = 4r + 1. On the other hand,

YS =
⊕
q∈S

Z[G]⊗Z[Gq] Z.

Hence

4r + 1 = rkZ(YS)

=
∑
q∈S

|G : Gq|. (8.1)

If Gq were strictly smaller than G for all q ∈ S, then |G : Gq| would be even
for all q, contradicting (8.1). Therefore there is p ∈ S with full decomposition
group. Let P be the place of L above p. Then

XS =
⊕

q∈Sr{p}

⊕
Q|q

Z(Q−P),

so since XS is free over Z[G],
⊕

Q|q Z(Q−P) is Z[G]-projective for q ∈ Sr{p}.
Since |G| divides the Z-rank of a projective module, we see that |G| divides the
number of places of L above q for each q ∈ Sr{p}. In other words, every place
of S other than p splits completely. Counting Z-ranks, we see that the number

11



of such places is r, giving (i). We thank the referee for pointing out that (ii)
implies (i).

Finally, we show that (iv) is equivalent to the other statements. That (i)
implies (iv) is a consequence of [29, Ch. I, Prop. 3.4]. For the converse, we use
an ad hoc argument. For H ≤ G, let SH = {v ∈ S | Gv = H}. Since we are

assuming that r(χ) = r for all χ ∈ Ĝ, [29, Ch. I, Prop. 3.4] implies that

r = #S − 1 (8.2)

(take χ to be the trivial character) and that

r = #S{1} +#SH (8.3)

for each subgroup H of G of order 2, where {1} is the trivial subgroup (take χ
to be the unique character with kernel H). We therefore have

r = #S − 1 by (8.2)

= #SG +#S{1} +
∑

H ̸={1},G

#SH − 1

= #SG − 2#S{1} + 3r − 1 by (8.3),

where the second equality follows because S is the union of the sets SH as H
runs through the subgroups of G. Thus #S{1} = r + 1

2 (#SG − 1). Therefore
#SG ≥ 1, giving #S{1} ≥ r. Since S contains only r + 1 places, we must have
#SG = 1 and #S{1} = r. In other words, S contains exactly one place with
full decomposition group, and the remaining r places split completely. This is
statement (i).

Remark 8.2. One sees that L/K admits a set S satisfying the equivalent condi-
tions of Lemma 8.1 for some r if and only if the following all hold: the infinite
places split completely, only one place ramifies, and the ramified place has full
decomposition group.

We may now state the main theorem of the article.

Theorem 8.3. Let L/K be a biquadratic extension in which the infinite places
split completely, exactly one place ramifies, and the ramified place has full de-
composition group. (See Remark 8.2.) Then there is a Rubin datum (S, T, r)
for L/K such that Z(L/K) is equivalent to B(L/K,S, T, r).

We will see in Section 10 how to construct Rubin data (S, T, r) as in the
theorem.

9 Simplifying steps

Before proving the theorem, we give some preliminary results. The extension
L/K will be assumed to be an arbitrary abelian extension of number fields in
this section, until specified further, and its Galois group will be G. Let S be a
finite set of places of K containing the infinite and ramified ones, and let T be
a finite set of places of K disjoint from S.

12



9.1 The module F×
T

Define
F×
T =

⊕
p∈T

⊕
P|p

F×
P,

where FP is the residue field of P.

Lemma 9.1. The Z[G]-module F×
T is cohomologically trivial.

Proof. There is an exact sequence

0 →
⊕
p∈T

Z[G] →
⊕
p∈T

Z[G] → F×
T → 0. (9.1)

The first map is multiplication by 1−NpFr−1
p in the p-component. (Recall that

Frp is the arithmetic Frobenius in G associated to p.) See [5, (24)] for a fuller
treatment of (9.1). The lemma follows since Z[G] is cohomologically trivial.

Since F×
T is (finite and) cohomologically trivial, it represents a class [F×

T ] in
K0(Z[G],Q). In the description of K0(Z[G],Q) as being generated by triples
(P, f,Q), [F×

T ] corresponds to the triple (P, f,Q), where P = Q =
⊕

p∈T Z[G]
and f is the automorphism of

⊕
p∈T Q[G] described in the proof of Lemma 9.1

(extend scalars).
Since the modules in the projective resolution in (9.1) are the same, [F×

T ]
is in the image of K1(Q[G]) → K0(Z[G],Q). Thus, we may view [F×

T ] as an
element of Q[G]×/Z[G]×.

For χ ∈ Ĝ, let

δχ = L∗
L/K,S,T (0, χ)/L

∗
L/K,S(0, χ) =

∏
p∈T

(1− χ(Frp)Np).

Lemma 9.2. Recall that L/K is an arbitrary abelian extension. The class [F×
T ],

viewed as an element of Q[G]×/Z[G]×, is represented by
∑

χ∈Ĝ δχ̄eχ.

Proof. From the description of the first map in (9.1), [F×
T ] is represented by∏

p∈T

(1−NpFr−1
p ) =

∑
χ∈Ĝ

∏
p∈T

(1−NpFr−1
p )eχ

=
∑
χ∈Ĝ

∏
p∈T

(1− χ̄(Frp)Np)eχ

=
∑
χ∈Ĝ

δχ̄eχ.

Now let φ : XS → US be an embedding of Z[G]-modules, as in Section
5. For a character χ of G, let Aφ,T (χ) = Rφ(χ)/L

∗
L/K,S,T (0, χ). Then let

Aφ,T =
∑

χ∈Ĝ Aφ,T (χ̄)eχ ∈ R[G]×, and let ΥT (φ) be the image of Aφ,T in

K0(Z[G],R).

13



Lemma 9.3. Suppose L/K is abelian. In K0(Z[G],R), Υ(φ)−ΥT (φ) = [F×
T ].

Proof. By definition of the δχ, Υ(φ) − ΥT (φ) is the image of
∑

χ∈Ĝ δχ̄eχ in

K0(Z[G],R). Now apply Lemma 9.2.

9.2 A simplification when XS is projective

Lemma 9.4. Let L/K be a Galois extension of number fields and S a finite set
of places of K containing the infinite and ramified ones. Assume ClS(L) = 0.
Then the following are equivalent:

(i) The Tate canonical class associated to (L/K, S) is trivial.
(ii) XS is projective.
(iii) US is cohomologically trivial.
(iv) the Tate canonical class is represented by the sequence

0 → US
1→ US

0→ XS
1→ XS → 0.

Proof. Recall from (5.1) the definition of a Tate sequence. Since the modules A
and B appearing there are cohomologically trivial, (ii) and (iii) are equivalent.
(ii) implies (iv) because when XS is projective, Ext2Z[G](XS , US) = 0 and so
one may take any split sequence in which the middle modules A and B are
cohomologically trivial and projective respectively. However, the sequence in
part (iv) is such a sequence because we are assuming (ii) and (iii). (iv) implies
(i) because the sequence in (iv) is split.

It remains to show (i) implies (iii). Assume the Tate canonical class is trivial
and choose a Tate sequence 0 → US → A → B → XS → 0. Break it into two
short exact sequences

0 → US → A → C → 0

and
0 → C → B → XS → 0.

Since B is projective, cupping with the second of these short exact sequences
induces an isomorphism Ext1Z[G](C,US) → Ext2Z[G](XS , US). The first short
exact sequence is mapped by this isomorphism to the Tate canonical class, and
is therefore split because of our assumption on the Tate canonical class. Hence
A is isomorphic to the direct sum of the Z[G]-modules US and C. Since A is
cohomologically trivial, so are US and C. This establishes (iii).

In addition to the assumptions made at the beginning of Section 9, suppose
that XS is projective and that the embedding φ : XS → US factors through
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US,T . Consider the commutative diagram

0

��

0

��
0 // US,T

1 //

��

US,T
0 //

��

XS
1 //

1

��

XS
//

1

��

0

0 // US
1 //

��

US
0 //

��

XS
1 // XS

// 0

F×
T

1 //

��

F×
T

��
0 0

(9.2)

in which the rows and columns are exact. (One need not assumeXS is projective
to form a diagram of a similar kind—see [5, 7.1.1]. However, we make this
assumption in order to deduce Lemma 9.5 below.) Since XS is projective,
Lemma 9.4 tells us that the middle row of (9.2) is a Tate sequence for (L/K, S).

Let ∆T (φ, 0, 0) be obtained by applying the construction of Section 5 to the
top row of (9.2) rather than to the middle row.

Lemma 9.5. With the foregoing assumptions (in particular, XS is projective),
we have the following.

(i) If α, β are the maps appearing in Section 5, then Ξ(α, β) = Ξ(0, 0) = 0.
(ii) ∆(φ, 0, 0) = ∆T (φ, 0, 0) + [F×

T ].
(iii) ω(L/K) = ΥT (φ)−∆T (φ, 0, 0).

Proof. (i) In Section 5, we may take A = US , B = XS and C = 0. This means
that the maps α and β appearing there are the zero maps, and so Ξ(α, β) =
Ξ(0, 0) = 0.

(ii) This follows from the existence of (9.2) and the naturality of the con-
struction in Section 5. See [14, p. 56 (last paragraph)].

(iii) By definition, ω(L/K) = Υ(φ)−∆(φ, 0, 0)+Ξ(0, 0). However, we have
just seen that ∆(φ, 0, 0) = ∆T (φ, 0, 0) + [F×

T ] and Ξ(0, 0) = 0, and Lemma 9.3
shows that Υ(φ) = ΥT (φ) + [F×

T ].

10 Proof of Theorem 8.3

We recall the hypotheses of Theorem 8.3: L/K is biquadratic, the infinite places
split completely, only one place ramifies, and the ramified place has full decom-
position group. Let S0 consist of the infinite places together with the ramified
place. Choose a finite set T of places of K, disjoint from S0, such that US0,T is
Z-torsion-free.
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Lemma 10.1. There is a finite set S of places of K, containing S0, disjoint
from T , and satisfying hypothesis Pr for some r, such that ClS(L) and ClS,T (L)
are trivial.

Proof. By [5, Lemma 5.1.1], there is a finite set S̃ of places of K, disjoint
from S0 ∪ T and consisting only of places that split completely in L/K, such
that ClS0∪S̃(L) and ClS0∪S̃,T (L) are both trivial. Since the places in S̃ split

completely, the set S = S0∪S̃ satisfies hypothesis Pr with r = #S̃+#S0−1.

Let S and r be as in Lemma 10.1. Note that (S, T, r) is a Rubin datum for
L/K: (St1) is satisfied trivially, (St2) and (St3) are immediate consequences
of hypothesis Pr, and (St4) holds because it holds for S0 in place of S (by
assumption).

10.1 Choosing the map φ : XS → US appropriately

While the formulation of Z(L/K) demands no special choice of Z[G]-embedding
XS → US , we will choose an embedding of a particular type since it will help
us in our proof of Theorem 8.3.

Lemma 10.2. US,T
∼= XS as Z[G]-modules, and US is cohomologically trivial.

(These statements are both true in a little more generality than our current
assumptions suggest; see Remark 10.3.)

Proof. We first show that US,T is projective. Because of the existence of a Tate
sequence for (L/K,S), i.e., a sequence

0 → US → A → B → XS → 0

with A and B (finitely generated and) cohomologically trivial, the fact that XS

is cohomologically trivial (by Lemma 8.1) implies that US is also cohomologically
trivial. Since ClS,T (L) vanishes, the five-term exact sequence in [22, (1)] yields
the short exact sequence

0 → US,T → US → F×
T → 0.

Since F×
T is cohomologically trivial by Lemma 9.1, US,T is cohomologically trivial

as well. A Z-torsion-free, cohomologically trivial Z[G]-module is projective [18,
Prop. 1.8.4], so since US,T is Z-torsion-free by assumption, it is in fact projective.

Now,

Q⊗Z US,T ≃ Q⊗Z US

∼= Q⊗Z XS .

Therefore the projective modules US,T and XS have the same Z[G]-rank, and
so their difference in K0(Z[G]) in fact lies in Cl(Z[G]). However, we saw in
Lemma 6.3 that Cl(Z[G]) is trivial, so [US,T ] = [XS ] in K0(Z[G]). By Lemma
6.2, US,T

∼= XS over Z[G].
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Remark 10.3. The statements in Lemma 10.2 hold for abelian extensions with
the following assumptions: XS is projective, ClS,T (L) = 0, Cl(Z[G]) = 0, and
US,T is Z-torsion-free. Indeed, these are the only facts we have used in the
proof.

Having established Lemma 10.2, we choose a Z[G]-module isomorphism φ :
XS → US,T and apply the construction of Section 5 to φ.

Proposition 10.4. With φ chosen as above, ω(L/K) = ΥT (φ). (This holds
under the assumptions discussed in Remark 10.3.)

Proof. Since φ : XS → US,T is an isomorphism, ∆T (φ, 0, 0) = 0. Now use part
(iii) of Lemma 9.5.

Proposition 10.5. Assume the setup from the beginning of Section 10. In
particular, L/K is biquadratic, and S and r are as in Lemma 10.1. Let φ be
as just chosen. Then Z(L/K) holds if and only if Aφ,T (χreg) > 0, where χreg is
the character of the regular representation of G.

Proof. Because G has only rational characters, the Strong Stark Conjecture
holds for L/K (recall the discussion in Section 5.1). In other words, ω(L/K) is in
the kernel of K0(Z[G],Q) → K0(M,Q), where M is the maximal order in Q[G]
containing Z[G]. Let ω′(L/K) be the element of Coker(K1(Z[G]) → K1(M))
corresponding to ω(L/K), as in Lemma 6.1. By Proposition 10.4, ω′(L/K)

is represented by
∑

χ∈Ĝ Aφ,T (χ̄)eχ, and so Aφ,T (χ) ∈ Z× for all χ ∈ Ĝ. Now,

ω(L/K) = 0 if and only if ω′(L/K) = 0, if and only if
∑

χ∈Ĝ Aφ,T (χ̄)eχ is a unit

in Z[G], if and only if {χ ∈ Ĝ | Aφ,T (χ) = 1} has even cardinality (by part (v) of
Lemma 6.3), if and only if

∏
χ∈Ĝ Aφ,T (χ) > 0, if and only if Aφ,T (χreg) > 0.

10.2 Connection to Rubin’s Conjecture

It remains to show that Z(L/K) is equivalent to B(L/K, S, T, r). That Z(L/K)
implies B(L/K,S, T, r) is given in [3, Cor. 9.2], so suppose conversely that
B(L/K, S, T, r) holds. We claim that under our assumptions, in particular that
the set S satisfies hypothesis Pr, the lattice ΩS,T,r is equal to

∧r
Z[G]US,T . Indeed,∧r

0US,T ≃
∧r

Z[G]US,T by [22, Example (1) on p. 38]. Further, all χ ∈ Ĝ have

r(χ) = r by Lemma 8.1, so the condition appearing in the set defining ΩS,T,r is
met trivially. (Recall the definition of ΩS,T,r in (3.2).)

We now complete the proof of Theorem 8.3.

Proof. By Proposition 10.5, we are reduced to showing that Aφ,T (χreg) > 0,
i.e., that the determinant of the map

CXS
φ→ CUS,T

λ→ CXS

has the same sign as ζ∗L,S,T (0), where CM = C⊗Z M for a Z-module M . This
is equivalent to showing that the determinant of∧r

C[G]CXS
φ(r)

→
∧r

C[G]CUS,T
λ(r)

→
∧r

C[G]CXS
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has the same sign as ζ∗L,S,T (0), where φ(r) is the map that φ induces on rth

exterior powers. (Recall that the analogous definition was made for λ(r) in
Section 3.)

Let {x1, . . . , xr} be a free Z[G]-basis for XS , and let x = x1 ∧ · · · ∧ xr ∈∧r
Z[G]XS . Then by assuming B(L/K, S, T, r), we know that there is an element

ϵ of
∧r

Z[G]US,T such that λ(r)(ϵ) = θx, where θ = θ
(r)
L/K,S,T . Consequently, the

determinant over C[G] of∧r
C[G]CXS

φϵ→
∧r

C[G]CUS,T
λ(r)

→
∧r

C[G]CXS

is equal to θ, where φϵ sends x to ϵ. Therefore

detC(λ
(r) ◦ φϵ) =

∏
χ∈Ĝ

χ(θ)

=
∏
χ∈Ĝ

L∗
L/K,S,T (0, χ)

= ζ∗L,S,T (0) (10.1)

= (−1)#TL−1RL,S,T . (10.2)

Here, RL,S,T is the absolute value of the determinant of the regulator map λ
with respect to Z-bases for US,T and XS . The equality in (10.2) is the analytic
class number formula.

Now, λ(r) ◦ φ(r) has determinant ±RL,S,T by definition of the regulator,
so the fact that detC(λ

(r) ◦ φϵ) = (−1)#TL−1RL,S,T implies that ϵ generates∧r
Z[G]US,T over Z[G]. Letting u = φ(r)(x), we may therefore write ϵ = αu with

α ∈ Z[G]× = {±σ | σ ∈ G}, since u is a free Z[G]-generator for
∧r

Z[G]US,T .
Then

detC(λ
(r) ◦ φϵ)/detC(λ

(r) ◦ φ(r)) = detC((φ
(r))−1 ◦ φϵ)

=
∏
χ∈Ĝ

χ(α)

= 1.

The last equality follows from part (v) of Lemma 6.3. As a result, detC(λ
(r) ◦

φ(r)) = detC(λ
(r) ◦φϵ), which is equal to ζ∗L,S,T (0) by (10.1). Therefore Z(L/K)

holds, completing the proof of Theorem 8.3.

11 Examples

11.1 Meeting the hypotheses of Theorem 8.3

We aim to find biquadratic extensions L/K in which the infinite places split
completely, only one place ramifies, and the ramified place has full decomposi-
tion group. Let us spend a moment justifying the existence of such extensions.
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There are undoubtedly many ways to find such extensions, but here is one. Let
K be a number field, and suppose there are a finite place p and a positive in-
teger n such that the ray class-group of K mod pn has 2-rank at least 2 and
the S0-class-group of K has odd order, where S0 consists of the infinite places
and p. Such fields can be found with a computer search. (For example, take
K = Q(α) where α4 +6 = 0 and let p be the unique place above 2; in this case,
the ray class-group mod p2 is isomorphic to Z/2Z×Z/2Z and the S0-class-group
is trivial.) With the above assumptions, there is a biquadratic extension L/K,
unramified outside S0, in which the infinite places split completely. It follows
that p is non-split (i.e., has full decomposition group) in L/K, for otherwise
there would be an intermediate quadratic extension F/K in which p were split,
contradicting that ClS0(K) has odd order.

It is also worth pointing out that examples of the above type may be chosen
with L/Q not abelian (such as the α4 = −6 example). This is important, for if
L/Q were abelian, then Z(L/K) would follow from the main results of [7] and
[12].

11.2 Biquadratic extensions of imaginary quadratic fields

Now let K be an imaginary quadratic field and L/K a biquadratic exten-
sion. Assume that only one place p ramifies in L/K and that p is non-split.
(By the above argument, such extensions exist for K = Q(

√
−d) where d =

1, 2, 3, 5, 6, 10, 11, 13, 19, 22, 26, 29, 37, 38, 43, . . ., but other values of d yield ex-
amples as well. See below.) Let S0 = {∞, p}, and suppose T is a finite set of
places of K, disjoint from S0, such that US0,T is Z-torsion-free. Let P be the
unique place of L above p, and fix a place w of L above ∞. Finally, let ϵ be the

unique (S0, T )-unit in L whose regulator is θ
(1)
L/K,S0,T

(w −P). As discussed in

Section 3.1, Stark showed in [25] that the element ϵ exists in this situation; see
also Tate’s treatment [29, Ch. IV, Prop. 3.9].

Proposition 11.1. If ϵ ∈ FittZ[G](ClS0,T (L))US0,T , then Z(L/K) holds.

Proof. Choose a finite set S of places of K, containing S0 and disjoint from T ,
such that all places in SrS0 split completely and the groups ClS(L) and ClS,T (L)
are both trivial. (This is possible: see Lemma 10.1.) Let r = #S− 1. Recalling
from Section 3.1 that B(L/K, S0, T, 1) holds when K is imaginary quadratic
[25], the result [22, Thm. 5.3 (iii)] of Rubin shows that B(L/K, S, T, r) holds
also, because of our assumption on ϵ. Indeed, that result of Rubin is a general
assertion that, under the right conditions, knowing Rubin’s Conjecture for a
particular Rubin datum (S, T , ρ) allows one to conclude that it still holds after
totally split places are added to S (and ρ is increased accordingly). Now apply
Theorem 8.3, observing that the present Rubin datum (S, T, r) serves as the
Rubin datum called (S, T, r) in the statement of Theorem 8.3.

We consider some specific examples. Suppose d = 17 or d = 34, let K =
Q(

√
−d), let p be the place ofK above 2, and let S0 = {∞, p}. The ray class field

mod p5 contains two biquadratic extensions of K that are D8-extensions of Q.
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Take L to be either of these extensions. The conjecture Z(L/K) is not known
in this situation, but by Proposition 11.1, it is implied by the condition ϵ ∈
FittZ[G](ClS0,T (L))US0,T . (The list of integers d appearing before the statement
of Proposition 11.1 is also a source of examples, but we choose d = 17, 34 to
provide examples in which L/Q is non-abelian and ClS0(L) is non-trivial.)

11.3 Concrete cases of Z(L/K) not covered by work of Bley

We finish with some concrete examples for which it is easy to deduce the truth
of Z(L/K) from Theorem 8.3 with a small amount of computer calculation. It
is important to note that in these examples, the field L is not abelian over Q.
Further, while the base field K is an imaginary quadratic field in each example,
the truth of Z(L/K) does not follow from the work of Bley [1] mentioned in
Section 3.1, since [L : K] is assumed to be odd in [1].

Suppose K = Q(α) where α is a root of x2 + 1, let p be the unique place of
K above 2, and let L be the unique quartic abelian extension of K of conductor
p5. Then L/K is biquadratic, p is non-split in L/K, and L/K is unramified
outside S0 = {∞, p}. The class-group ClS0(L) is trivial, and if T = {q1, q2}
where q1 and q2 are places of K above 3 and 5 respectively, then ClS0,T (L) is
also trivial. The hypothesis on ϵ in Proposition 11.1 is met trivially, so Z(L/K)
holds.

Consider instead the following example. Let K = Q(α) and L = K(β) where
α is a root of x2+2 and β is a root of x4−8. Then L/K is biquadratic, being the
compositum of the distinct quadratic extensions K(

√
α)/K and K(

√
−α)/K.

We again let p be the place of K above 2 and S0 = {∞, p}. We choose the
places q1 and q2 of K (in the notation of the previous example) to lie above 3
and 17 respectively. Then ClS0(L) and ClS0,T (L) are again both trivial, and we
deduce in the same way that Z(L/K) holds.
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