
Local and global fundamental classes for

multiquadratic extensions
Paul Buckingham

Abstract

Using a reformulation of an approach of Serre, we provide a description
of the fundamental class of an arbitrary multiquadratic extension of local
fields. For a multiquadratic extension of number fields L/K such that 2
splits completely in L, we exhibit the global fundamental class. We obtain
descriptions of the local and global reciprocity maps as consequences.
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1 Introduction

The fundamental class of a finite Galois extension of local or global fields is a
central object in the cohomological approach to class field theory, as in Artin–
Tate [1], Tate [10] and Serre [7]. In both the local and global theories, knowledge
of the fundamental class is stronger than that of the reciprocity map (local or
global) of the given extension. Indeed, one can determine the reciprocity map
from the fundamental class, though not necessarily vice versa. In the local case,
the fundamental class corresponds to a canonical class of central simple algebras
in the Brauer group. The global setting is more intricate. The existence of the
global fundamental class involves a subtle argument – see [10] – incorporating
the local fundamental classes of all completions, and not just completions of the
given global extension, but of possibly larger extensions: in general the global
fundamental class of a given extension may not be determined from the local
fundamental classes associated to the same extension.

The importance of fundamental classes to some of the current goals of alge-
braic number theory can be seen in, for example, the conjectures of Gruenberg–
Ritter–Weiss and Burns–Flach extending Stark’s Conjecture on special values of
Artin L-functions. Indeed, the Equivariant Tamagawa Number Conjecture [2]
for Tate motives, in its formulation as the Lifted Root Number Conjecture [4],
has at its arithmetic core a certain four term sequence called a Tate sequence,
which is defined purely in terms of local and global fundamental classes.

1.1 General multiquadratic extensions

Let L/K be an extension of local or global fields of characteristic zero. In this
article, we will be interested in the situation where L/K is a multiquadratic
extension, that is, L/K is finite abelian with Galois group G of exponent 2, so
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that G is isomorphic to a product Z/2Z × · · · × Z/2Z. Equivalently, L takes
the form K(

√
a1, . . . ,

√
an) for some a1, . . . , an ∈ K×. Our aim is to make the

fundamental class (local or global as appropriate) of L/K as explicit as possible,
at least under some hypotheses.

1.2 Overview

The outline of the article is as follows: Section 2 recalls some group cohomo-
logical results that will be used later on, and may be ignored until required.
Section 3 deals with the local theory. In particular, in Section 3.1 we describe
the relevant result of Serre on local fundamental classes and then provide in
Section 3.2 a general reformulation in language that is more amenable for our
purposes. The main result on the local fundamental class for multiquadratic
extensions is stated in Theorem 3.4, with a brief discussion on the reciprocity
map and the odd residue characteristic case in Sections 3.3.5 and 3.3.6 respec-
tively. After some remarks on obtaining global fundamental classes from local
ones in Section 4.1, the main result on the global fundamental class – Theorem
4.4 – is stated and proven in Section 4.2. As a consequence of this theorem, we
give a description of the global reciprocity map in Corollary 4.12.

The author would like to thank Al Weiss for a number of helpful observations.

2 Group cohomological prerequisites

If G is a finite group and A a Z[G]-module, Hi(G,A) will denote Tate cohomol-
ogy, as in [6, p.23]. A normalized 2-cocycle f : G2 → A will mean a 2-cocycle
such that f(1, σ) = f(σ, 1) = 0 for all σ ∈ G.

2.1 Dimension shifting

Lemma 2.1 (i) For any Z[G]-module A and any integer i, there is a canonical
isomorphism

Hi(G,HomZ(∆G,A)) → Hi+1(G,A),

where ∆G is the kernel of the augmentation map Z[G] → Z that sends every
group element to 1.

(ii) In the case i = 1, the class of a 1-cocycle c : G → HomZ(∆G,A)
corresponds to the class of the normalized 2-cocycle

G2 → A

(σ, τ) 7→ c(σ)(σ − 1)− c(στ)(σ − 1),

and the class of a normalized 2-cocycle f : G2 → A corresponds to the class of
the 1-cocycle

G → HomZ(∆G,A)

σ 7→ (τ − 1 7→ f(τ, τ−1)− f(τ, τ−1σ)).
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Proof. Part (i) follows from the exactness of the sequence

0 → A → HomZ(Z[G], A) → HomZ(∆G,A) → 0

together with the cohomological triviality of HomZ(Z[G], A). Part (ii) is the
result of a direct calculation, which is omitted.

2.2 Cup-product

Let f : G2 → A be a 2-cocycle.

Lemma 2.2 Identifying H−2(G,Z) with Gab, the map H−2(G,Z) → H0(G,A)
obtained by cupping (on either side) with the class of f sends the class of an
element τ ∈ G to the class of the element

∑
σ∈G f(σ, τ) of AG.

Proof. Standard.

2.3 Inflation-restriction in dimension 2

For simplicity, assume now that G is a finite abelian group that is the internal
direct product of subgroups H and K. Let A be a Z[G]-module, and assume
that H1(H,A) = 0. Suppose we are given a 2-cocycle f : G2 → A whose
restriction to H is equal to the 2-coboundary associated to a map g : H → A.
For σ ∈ G and τ ∈ H, set

aσ,τ = f(τ, σ)− f(σ, τ) + (σ − 1)g(τ) ∈ A.

It is straightforward to check that for fixed σ ∈ G, the map

H → A

τ 7→ aσ,τ

is a 1-cocycle, and therefore by the assumption on H1(H,A), there is aσ ∈ A
such that, for all τ ∈ H, aσ,τ = τaσ − aσ.

Lemma 2.3 Let notation be as above.
(i) Given σ, ρ ∈ K the element f(σ, ρ)− (σaρ − aσρ + aσ) is fixed by H.
(ii) The map

K2 → AH

(σ, ρ) 7→ f(σ, ρ)− (σaρ − aσρ + aσ)

is a 2-cocycle whose inflation to G (identifying K with G/H) represents the
class of f .

Proof. (i) is a direct computation using only the definitions and the fact that
f is a 2-cocycle. (ii) follows immediately from (i).
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3 The local fundamental class

In this section we fix a prime p, and a completion Cp of an algebraic closure

Q̄p of Qp. All fields will be contained in Cp. If M is finite over Qp, then M̂ur

denotes the completion of the maximal unramified extension Mur of M . We will
denote by φM the extension to M̂ur of the Frobenius of M . In what follows, we
will fix a base field K; for convenience, we will abbreviate φK to just φ.

3.1 Serre’s construction of local fundamental classes

Our strategy for computing local fundamental classes is to follow Serre’s general
construction in [8, p.202]. This construction is also described in more detail by
Snaith in [9, pp.9–14], and is used in [5] in the proof of Chinburg’s Second
Conjecture for quaternion fields. Let us briefly recall the picture. L/K can

be any finite Galois extension of local fields with Galois group G. Let K̂ur,
respectively L̂ur, be the completion of the maximal unramified extension of K,
respectively L. Then there are short exact sequences

0 → L× → (K̂ur ⊗K L)× → V → 0 (3.1)

and
0 → V → (K̂ur ⊗K L)×

ω→ Z → 0, (3.2)

where the map ω is the sum of the valuations on all components (see [9, p.10])
and V = Ker(ω). To be more precise, there is a ring isomorphism

K̂ur ⊗K L →
d∏

j=1

L̂ur

a⊗ b 7→ (φd−j(a)b)j (3.3)

where d is the residue degree of L/K, whose restriction to (K̂ur ⊗K L)× is
denoted Ψ. Then ω is equal to Ψ followed by the sum of the valuations on the
copies of L̂ur. The right-hand map in (3.1) is φ−1, where φ acts on (K̂ur⊗KL)×

via K̂ur. Also, G acts on K̂ur ⊗K L via its action on L, and this action restricts
to an action on (K̂ur ⊗K L)×. Thus the above sequences become sequences of
Z[G]-modules, and in fact V is cohomologically trivial. The upshot of [8, p.202]
is that the local fundamental class for L/K is the image of the class of −1 under
the composition of connecting homomorphisms

H0(G,Z) ≃→ H1(G,V )
≃→ H2(G,L×) (3.4)

associated to (3.1) and (3.2). These connecting homomorphisms will be exam-
ined in Section 3.3.2, where the proof of our main theorem in the local case is
carried out.
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3.2 Alternative description of the short exact sequences

It is convenient to replace (K̂ur ⊗K L)× by Z[G]⊗Z[H] L̂
×
ur in Section 3.1, where

H = Gal(L/E) with E the maximal unramified subextension of L/K. Let
us explain why this is possible. We begin by observing that there is indeed a
(canonical) Z[G]-module isomorphism Θ : (K̂ur ⊗K L)× → Z[G]⊗Z[H] L̂

×
ur. We

introduce some notation first. Choose α ∈ L such that L = K(α), and fix a set

L of representatives for (G/H)left. For each τ ∈ L, let ατ = ατ−1

. Also, let
f(x) ∈ K[x] be the minimal polynomial for α over K.

Given g(x) =
∑

k akx
k ∈ K̂ur[x], define [g(x)] =

∑
k ak ⊗αk ∈ K̂ur ⊗K L. If

g(x) is coprime to f(x), then [g(x)] ∈ (K̂ur ⊗K L)× and

Θ[g(x)] =
∑
τ∈L

τ ⊗ g(ατ ).

This isomorphism is independent of the choice of α and L.
We may also describe Θ as follows: If

∑
i ai ⊗ bi ∈ (K̂ur ⊗K L)×, then

Θ

(∑
i

ai ⊗ bi

)
=
∑
τ∈L

τ ⊗
∑
i

aib
τ−1

i .

To describe the inverse, we let fτ (x) ∈ K̂ur[x] be the minimal polynomial

for ατ over K̂ur for each τ ∈ L. Note that in fact fτ (x) ∈ E[x]. We then choose
polynomials 1τ (x) ∈ E[x] such that

1τ (x) ≡ 1 mod fτ (x)

1τ (x) ≡ 0 mod fτ ′(x) for τ ′ ∈ Lr{τ}.

Then if gτ (x) ∈ K̂ur[x] is coprime to fτ (x) for each τ ∈ L, we have

Θ−1

(∑
τ∈L

τ ⊗ gτ (ατ )

)
=

[∑
τ∈L

gτ (x)1τ (x)

]
.

Remark. Even though L̂×
ur is written multiplicatively, we choose to write

Z[G]⊗Z[H] L̂
×
ur additively.

3.2.1 Frobenius

We observe that since φ acts on (K̂ur ⊗K L)×, by acting on K̂ur, φ therefore

also acts on Z[G]⊗Z[H] L̂
×
ur via Θ. We will determine the precise effect of φ on

Z[G]⊗Z[H] L̂
×
ur in our setting in Section 3.3.2.
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3.2.2 Valuation

There is a natural valuation map ω′ : Z[G]⊗Z[H] L̂
×
ur → Z, namely ω′ = aug⊗ ν

where aug : Z[G] → Z is the augmentation map and ν : L̂×
ur → Z is the

normalized valuation on L extended to L̂ur.

Lemma 3.1 The map ω′ ◦Θ agrees with the map ω of Section 3.1.

Proof. For each j ∈ {1, . . . , d}, let τj be the unique element of L such that

(τj)|E = φ|jE . Let σj be an automorphism of L̂ur whose restrictions to K̂ur and

L are φj and τj respectively. Take
∑

i ai ⊗ bi ∈ (K̂ur ⊗K L)×. Then

ω′ ◦Θ

(∑
i

ai ⊗ bi

)
=

d∑
j=1

ν

(∑
i

aib
τ−1
j

i

)

=

d∑
j=1

ν

(∑
i

a
σj

i bi

)σ−1
j


=

d∑
j=1

ν

(∑
i

a
σj

i bi

)

=
d∑

j=1

ν

(∑
i

aφ
j

i bi

)

= ω

(∑
i

ai ⊗ bi

)
,

the last equality holding because the order of the terms in the sum over j is
unimportant.

As a consequence of the above discussions, we may replace sequences (3.1)
and (3.2) by

0 → L× → Z[G]⊗Z[H] L̂
×
ur

φ−1→ V ′ → 0

and

0 → V ′ → Z[G]⊗Z[H] L̂
×
ur

ω′

→ Z → 0

where V ′ = Ker(ω′), and the map L× → Z[G]⊗Z[H] L̂
×
ur is given by

b 7→
∑
τ∈L

τ ⊗ bτ
−1

.

Let τ0 be the unique element of L ∩ H. The following lemma gives us a
convenient way of recognizing elements of Z[G] ⊗Z[H] L̂

×
ur annihilated by φ − 1

as images of elements of L×.
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Lemma 3.2 Let λ =
∑

τ∈L τ ⊗ aτ ∈ Z[G] ⊗Z[H] L̂
×
ur. If (φ − 1)λ = 0, then

aτ0 ∈ L× and Θ−1(λ) is the image of aτ0 under L× → (K̂ur ⊗K L)×.

Proof. If (φ− 1)λ = 0, then in
∏d

j=1 L̂
×
ur we have (Ψ ◦Θ−1(λ))φ−1 = 1. By

the proof of [9, Lemma 1.2.7], all components of Ψ ◦Θ−1(λ) are therefore equal

and lie in L×, and further Θ−1(λ) is the image under L× → (K̂ur ⊗K L)× of
any component. It thus remains to determine any component of Ψ◦Θ−1(λ); we
choose the d-component.

For each τ ∈ L, write aτ = gτ (ατ ) for some gτ (x) ∈ K̂ur[x]. Then Θ−1(λ) =[∑
τ∈L gτ (x)1τ (x)

]
, and one may verify that the image of this under Ψ has

d-component ∑
τ∈L

gτ (α)1τ (α).

Now, since τ0 acts trivially on K̂ur,

fτ0(α) = fτ0
τ0 (α)

= fτ0
τ0 (α

τ0
τ0)

= fτ0(ατ0)
τ0

= 0.

Thus, by the choice of the 1τ (x),∑
τ∈L

gτ (α)1τ (α) = gτ0(ατ0) = aτ0 .

3.3 Local multiquadratic extensions

We assume in this section that L/K is a multiquadratic extension of local fields
with Galois group G. Let r be a minimal set of generators for G, so that G is
the internal direct product of distinct order 2 subgroups ⟨ρ⟩ with ρ ∈ r.

3.3.1 Statement of the local theorem

For ease of notation, we break up the statement into two cases: (TR) is the case
that L/K is totally ramified, while (NTR) is the other case, namely that L/K
is not totally ramified.

In case (NTR), we can, and will, assume that there is τ ∈ r such that the
subgroup of G generated by r′ = rr{τ} has fixed field equal to the quadratic
unramified extension E of K. Letting H = Gal(L/E), we thus have H = ⟨r′⟩.
Note that H acts on L̂ur by extending to an automorphism fixing K̂ur. We also
let F be the fixed field of ⟨τ⟩ in this case.

In general, if s is a (possibly empty) subset of r, we write σs =
∏

ρ∈s ρ. If
s and t are two such subsets, then define s + t = (s ∪ t)r(s ∩ t). In this way,
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σs+t = σsσt. Observe that every element of G is equal to σs for a unique s. In
case (NTR), we choose rather to write elements as σsτ

i with s ⊆ r′ and i = 0, 1.
The following is Proposition 15 in Section 5 of Chapter XIII of [8].

Lemma 3.3 If L is a local field and a is a unit in L̂ur, then there is a unit b
in L̂ur such that bφL−1 = a.

Choose a uniformizer ϖ of L. In case (NTR), we can, and will, assume that

ϖ lies in F . By Lemma 3.3, for each s ⊆ r we may choose ηs ∈ L̂×
ur such that

ηφL−1
s = ϖσs−1. In Section 3.3.3, we will explain how a choice of ηs for each
singleton s leads to a choice of ηs for all subsets s, but for now this does not
matter.

Theorem 3.4 Let ξL/K be the fundamental class of the extension L/K. There
is a 2-cocycle g : G2 → L× representing −ξL/K given as follows:

(i) In case (TR),
g(σs, σt) = ησs

t ηsη
−1
s+t

for all subsets s, t ⊆ r.
(ii) In case (NTR),

g(σs, σt) = ησs
t ηsη

−1
s+t

g(σs, σtτ) = ησs
t ηsη

−1
s+tϖ

σs−1

g(σsτ, σt) = ησsφF

t ηsη
−1
s+t

g(σsτ, σtτ) = ησsφF

t ηsη
−1
s+tϖ

σs−σs+t+1

for all subsets s, t ⊆ r′.

Remark. A 2-cocycle for ξL/K itself is obtained simply by taking the reciprocals
of the elements in the theorem.

In Section 3.3.6, we will restrict to the case of odd residue characteristic.
In that situation, there is essentially only one ηs to choose (at most), and this
itself can be made explicit as a certain root of unity. See Corollary 3.8.

3.3.2 Proof of Theorem 3.4

We now prove Theorem 3.4. We choose to do so only in the case (NTR). Indeed,
the case (TR) is easier and contains nothing that is not dealt with in the other
case. Further, we can avoid notational difficulties by restricting to just one case.

In the notation of Section 3.2, ω′(1⊗ϖ) = 1, and so the image of the class
of 1 under the connecting homomorphism H0(G,Z) → H1(G,V ′) is represented
by the 1-cocycle described by

σs 7→ (σs − 1)(1⊗ϖ) = 1⊗ϖσs−1 (3.5)

σsτ 7→ (σsτ − 1)(1⊗ϖ) = 1⊗ϖ−1 + τ ⊗ϖσs (3.6)
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for s ⊆ r′.
Our next step is to lift the elements in the right-hand side of (3.5) and (3.6)

under φ− 1.

Lemma 3.5 If a1, aτ ∈ L̂×
ur, then

φ(1⊗ a1 + τ ⊗ aτ ) = 1⊗ aφF
τ + τ ⊗ aφF

1 .

Proof. In the notation of Section 3.2, we take L to be {1, τ}, and we choose
any α ∈ L such that L = K(α). Let f1(x), fτ (x) be as defined in the same

section. We write a1 = g1(α1) and aτ = gτ (ατ ) for some g1(x), gτ (x) ∈ K̂ur[x].
Then

φ(Θ−1(1⊗ a1 + τ ⊗ aτ )) = φ[g1(x)11(x) + gτ (x)1τ (x)]

= [gφ1 (x)1
φ
1 (x) + gφτ (x)1

φ
τ (x)], (3.7)

where for a polynomial h(x) ∈ K̂ur[x], hφ(x) is the polynomial obtained by
letting φ act on the coefficients. Now, φ permutes f1(x) and fτ (x) but fixes
neither (since neither lies in K[x]), and so fφ

1 (x) = fτ (x) and fφ
τ (x) = f1(x).

Consequently, 1φ
1 (ατ ) and 1φ

τ (α1) are both equal to 1 and 1φ
1 (α1), and 1φ

τ (ατ )
are both equal to 0. Therefore the element in (3.7) maps under Θ to

1⊗ gφτ (α1) + τ ⊗ gφ1 (ατ ) = 1⊗ gτ (ατ )
φF + τ ⊗ g1(α1)

φF

= 1⊗ aφF
τ + τ ⊗ aφF

1 .

As a consequence of Lemma 3.5, and using the fact that φ2
F = φL, we find

that if s ⊆ r′, then

(φ− 1)(1⊗ ηs + τ ⊗ ηφF
s ) = 1⊗ ηφL

s + τ ⊗ ηφF
s − 1⊗ ηs − τ ⊗ ηφF

s

= 1⊗ ηφL−1
s

= 1⊗ϖσs−1.

Similarly,
(φ− 1)(1⊗ ηs + τ ⊗ ηφF

s ϖ1−σs) = τ ⊗ϖσs−1.

This also uses the fact that φF fixes ϖ. (Recall that ϖ was chosen to lie in F .)
It is immediate that

(φ− 1)(1⊗ϖ) = 1⊗ϖ−1 + τ ⊗ϖ

(again using that φF fixes ϖ).
As a result of the preceding calculations, we see that we can lift the map

G → V ′ described by (3.5) and (3.6) to the following map:

m : G → Z[G]⊗Z[H] L̂
×
ur

σs 7→ 1⊗ ηs + τ ⊗ ηφF
s

σsτ 7→ 1⊗ ηsϖ + τ ⊗ ηφF
s ϖ1−σs
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for s ⊆ r′.
It remains to find sm(t) − m(st) + m(s) for all s, t ∈ G, and recognize

these elements as elements coming from L×. We may make the calculations
easier as follows: Let U1 = {1 ⊗ b | b ∈ L̂×

ur} and Uτ = {τ ⊗ b | b ∈ L̂×
ur}, so

that Z[G] ⊗Z[H] L̂
×
ur = U1 ⊕ Uτ as Z-modules. Since, by construction, (φ −

1)(sm(t) − m(st) +m(s)) = 0 for all s, t, by Lemma 3.2 we need only look at
the projection of sm(t) − m(st) + m(s) onto U1, and therefore we may work
mod Uτ (remembering also that τ maps U1 to Uτ and vice versa). Let ∼ denote

the equivalence relation on Z[G]⊗Z[H] L̂
×
ur given by equivalence mod Uτ .

There are four cases:

(i) s = σs, t = σt

(ii) s = σs, t = σtτ
(iii) s = σsτ , t = σt

(iv) s = σsτ , t = σtτ

with s, t ⊆ r′. In the first case,

sm(t)−m(st) +m(s) ∼ 1⊗ ησs
t − 1⊗ ηs+t + 1⊗ ηs

= 1⊗ ησs
t ηsη

−1
s+t.

In the second case,

sm(t)−m(st) +m(s) ∼ 1⊗ ησs
t ϖσs − 1⊗ ηs+tϖ + 1⊗ ηs

= 1⊗ ησs
t ηsη

−1
s+tϖ

σs−1.

In the third case,

sm(t)−m(st) +m(s) ∼ 1⊗ ησsφF

t − 1⊗ ηs+tϖ + 1⊗ ηsϖ

= 1⊗ ησsφF

t ηsη
−1
s+t.

Finally, in the fourth case,

sm(t)−m(st) +m(s) ∼ 1⊗ ησsφF

t ϖσs−σsσt − 1⊗ ηs+t + 1⊗ ηsϖ

= 1⊗ ησsφF

t ηsη
−1
s+tϖ

σs−σs+t+1.

This completes the proof of Theorem 3.4.

3.3.3 Choosing the ηs

In this section, we show how a choice of ηs for each singleton s = {ρ} ⊆ r leads
to a choice of ηs for all s ⊆ r. Choose an ordering of r, and let < denote strict
inequality in that ordering. Then given s ⊆ r and ρ ∈ s, define

ρs =
∏
δ∈s
δ<ρ

δ.
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Now, if ρ ∈ r, choose ηρ ∈ L̂×
ur such that ηφL−1

ρ = ϖρ−1. Then given any s ⊆ r,
define

ηs =
∏
ρ∈s

ηρs
ρ .

Lemma 3.6 For any s ⊆ r, ηφL−1
s = ϖσs−1.

Proof. We remark that the statement is vacuously true if s = ∅, both sides
being equal to 1. We prove the lemma by induction on #s ≥ 1. If #s = 1, then
s = {ρ} for some ρ ∈ r, and so ηs = ηρ and σs = ρ. Then the statement is clear
by the choice of ηρ.

Now suppose that the statement is true for all s ⊆ r of a given cardinality
k with 1 ≤ k < #r, and let t ⊆ r have cardinality k + 1. Let ρ be the greatest
element of t and let s = tr{ρ}. Then

ϖσt−1 = ϖσsρ−1

= ϖσsρ−σs+σs−1

= (ϖρ−1)σsϖσs−1

= (ησs
ρ ηs)

φL−1

=

(
ηρt
ρ

∏
δ∈s

ηδtδ

)φL−1

=

(∏
δ∈t

ηδtδ

)φL−1

= ηφL−1
t .

3.3.4 A simplification in the case s < t

For subsets s, t of r, let us write s < t if the greatest element of s is less than
the least element of t. We may use the choices of the ηs made in Section 3.3.3
to simplify the expressions for the 2-cocycle in Theorem 3.4: If s < t, then
ησs
t ηsη

−1
s+t = 1. Indeed, in that case if ρ ∈ s+ t then

ρs+t =

{
ρs if ρ ∈ s
ρtσs if ρ ∈ t,

and so

ηs+t =
∏

ρ∈s+t

ηρs+t
ρ

=

(∏
ρ∈t

ηρtσs
ρ

)(∏
ρ∈s

ηρs
ρ

)
= ησs

t ηs.
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Despite what the above may suggest, it is not possible to choose the ηs ∈ L̂×
ur

such that σs 7→ ηs is a 1-cocycle. Indeed, if rL/K : H0(G,L×) → H−2(G,Z) is
the reciprocity map, then for σ ∈ G we have

r−1
L/K(σ) = (−g) ∪ σ,

identifying H−2(G,Z) with G since G is abelian, and remembering that g
represents the negative of the fundamental class. But then a simple applica-
tion of Lemma 2.2 shows that if s is a non-empty subset of r′ (working in
the case (NTR) – the case (TR) is similar), then r−1

L/K(σs) is represented by

NL/M (g(σs, σs)
−1) where M is any quadratic subextension of L/K on which σs

acts non-trivially. Since rL/K is an isomorphism, this means thatNL/M (g(σs, σs)
−1) ̸=

1, and so in particular g(σs, σs) ̸= 1. Thus ησs
s ηsη

−1
s+s ̸= 1, justifying the claim.

3.3.5 The reciprocity map

Let rL/K : H0(G,L×) → H−2(G,Z) denote the (local) reciprocity map. Since

G is abelian, we may identify H−2(G,Z) with G. For each ρ ∈ r choose ηρ ∈ L̂×
ur

such that ηφL−1
ρ = ϖρ−1. We have the following corollary of Theorem 3.4:

Corollary 3.7 (i) In case (TR), H0(G,L×) is generated by the classes of the
elements in the set {NL/K(ηρ) | ρ ∈ r}, and rL/K maps the class of NL/K(ηρ)
to ρ.

(ii) In case (NTR), H0(G,L×) is generated by the classes of the elements
in the set {NL/K(ηρ) | ρ ∈ r′} ∪ {NF/K(ϖ)}. Further, rL/K maps the class of
NL/K(ηρ) to ρ for ρ ∈ r′, and the class of NF/K(ϖ) to τ .

Proof. Let us restrict once again to the case (NTR), the case (TR) being
similar. For each ρ ∈ s, let Hρ be the subgroup of G generated by rr{ρ} and
let Nρ be the sum in Z[Hρ] of the elements in Hρ.

As discussed in Section 3.3.4, r−1
L/K(ρ) is represented by NL/LHρ (g(ρ, ρ)−1) =

g(ρ, ρ)−Nρ for each ρ ∈ r′. In fact, since H0(G,L×) has exponent 2, r−1
L/K(ρ) is

equally well represented by g(ρ, ρ)Nρ . However, by Theorem 3.4,

g(ρ, ρ)Nρ = η(ρ+1)Nρ
ρ

= NL/K(ηρ).

Similarly, from Theorem 3.4 we see that rL/K(τ) is represented by

g(τ, τ)Nτ = ϖNτ

= NF/K(ϖ)

since restriction gives an isomorphism Hτ → Gal(F/K).
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3.3.6 Odd residue characteristic

We suppose in this section that the residue characteristic of K is odd. In this
case, the maximal abelian extension L of K of exponent 2 is biquadratic, and
we may choose the ηs of Section 3.3.1 explicitly. The only other multiquadratic
extensions of K are the three quadratic extensions; we omit these cases since
their treatment is straightforward.

Let q be the size of the residue field of K. Choose a uniformizer π of K, a
square root ϖ of −π, and a square root ϖ′ of −ζπ, where ζ is a generator for the
q−1th roots of unity in K. Then ϖ−1ϖ′ is a root of unity of order 2(q−1), and
so there is a primitive (q2 − 1)th root of unity u such that u(q+1)/2 = ϖ−1ϖ′.
With this notation, the field E = K(u) is the unramified quadratic extension
of K, and the fields F = K(ϖ) and F ′ = K(ϖ′) are the ramified quadratic
extensions. We let σ, τ and ρ be the non-trivial elements of Gal(L/E), Gal(L/F )
and Gal(L/F ′) respectively, so that G = {1, σ, τ, ρ}, and στ = ρ.

In the notation of Section 3.3.1, we let r = {1, τ} and r′ = {1}. Then the
notation of the previous paragraph (i.e. E, F , ϖ, τ) agrees with that of the
general setup earlier in the case (NTR).

Corollary 3.8 −ξL/K is represented by the normalized 2-cocycle g : G2 → L×

given by
σ τ ρ

σ u −1 −u
τ u−1ϖ−1ϖ′ ϖ −u−1ϖ′

ρ ϖ−1ϖ′ ϖ −ϖ′

More precisely, the (s, t)-entry is g(s, t) for s, t ∈ {σ, τ, ρ}.

Proof. According to Section 3.3.3, we only need to choose η1 ∈ L̂×
ur such

that ηφL−1
1 = ϖσ−1 = −1. We may do this as follows: Let ζq4−1 be a primitive

(q4 − 1)th root of unity in Kur such that ζq
2+1

q4−1 = u (such a ζq4−1 exists) and

let η = ζ
(q2+1)/2
q4−1 . Then ηφL−1 = ηq

2−1 = −1 and ησ+1 = η2 = u. We then
take η1 = η. The rest is just repeated application of Theorem 3.4, noting that
in that theorem, the only subsets s ⊆ r′ that appear are ∅ and {1}.

Remark. The fact that the η of the preceding proof is fixed by σ is a result of
the rather special fact that it lies not only in L̂ur, but also in K̂ur, on which σ
acts trivially. More precisely, η lies in the quartic unramified extension of K.

4 The global fundamental class

In this section, L/K will denote a Galois extension of number fields. All number
fields will lie in a fixed algebraic closure Q̄ of Q. For each prime p of K, we fix
once and for all a place of Q̄ above p. Given a number field F containing K,
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p(F ) will denote the place of F below the chosen place of Q̄ above p. Then Fp

will denote the completion of F at p(F ). For a number field L, CL will denote
the idele class-group.

We forget all notation from Section 3.

4.1 Global fundamental classes from local ones

Let L/K be a Galois 2-extension of number fields (not necessarily multiquadratic
yet) with Galois group G. Our aim is to exhibit a Galois 2-extension L′/K
containing L and an element ξ′ of H2(L′/K, JL′) such that the image of ξ′ in
H2(L′/K,CL′) has global invariant 1/[L : K] mod Z. This being the case, the
image of ξ′ in H2(L′/K,CL′) will be equal to the image of the fundamental
class of L/K under the injective map H2(L/K,CL) → H2(L′/K,CL′).

Lemma 4.1 For each n ≥ 0, let γn = ωn+ω−1
n , where ωn is a dyadic primitive

2n+2th root of unity. Then Q2(γn)/Q2 is cyclic of degree 2n.

Proof. Standard.

For n ≥ 0, let αn = ζ2n+2 + ζ−1
2n+2 , where ζ2n+2 is a primitive 2n+2th root of

unity in Q̄.

Lemma 4.2 Let p be a dyadic prime of K. There is a non-negative integer
n such that L(αn)/K is a Galois 2-extension, and such that L(αn)p/Kp has
degree [L : K].

Proof. Let [L : K] = 2r, r ≥ 1. Then [Lp : Kp] = 2s for some non-negative
integer s ≤ r.

Let Q2,∞ =
∪

n Q2(γn). Then [Lp ∩Q2,∞ : Q2] = 2t for some non-negative
integer t. If n ≥ 0, then

[Lp(γn) : Lp] = [Q2(γn) : Q2(γn) ∩ Lp] =

{
2n−t if n ≥ t
1 otherwise.

If we take n = t+ r − s, then since r − s ≥ 0, [Lp(γn) : Lp] = 2n−t = 2r−s and
therefore

[Lp(γn) : Kp] = [Lp(γn) : Lp][Lp : Kp] = 2r−s · 2s = 2r = [L : K].

Finally, Lp(γn) = L(αn)p, and L(αn)/K is a Galois 2-extension because both
L/K and K(αn)/K are.

Proposition 4.3 Let L′ = L(αn) as in Lemma 4.2. There is ξ′ ∈ H2(L′/K, JL′)
whose image in H2(L′/K,CL′) has global invariant 1/[L : K] mod Z.
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Proof. We use the canonical isomorphism

H2(L′/K, JL′) ≃
⊕
q

H2(L′
q/Kq, (L

′
q)

×),

where the direct sum runs over all primes of K. Taking this to be an identifica-
tion, we let ξ′ be the element that has the local fundamental class for L′

p/Kp in
the p-component, where p is the dyadic prime chosen in Lemma 4.2, and 0 else-
where. The global invariant of the image in H2(L′/K,CL′) is then just the local
invariant at p of the local fundamental class of L′

p/Kp, i.e. 1/[L : K] mod Z.

4.2 Global multiquadratic extensions

Suppose now that L/K is multiquadratic of degree n = 2r, and assume further
that 2 splits completely in L/Q, so that Lp = Kp = Q2 where p is our chosen
dyadic prime, as in Section 4.1. In this case, if α = αr, K ′ = K(α) and
L′ = L(α), then L ∩ K ′ = K and LK ′ = L′. Letting G′ = Gal(L′/K) and
H = Gal(L′/L), G′ is the internal direct product of H, cyclic of order n, and
Gal(L′/K ′), of order n and exponent 2. We observe that H is the decomposition
group of p in L′/K. In fact, we freely identify H with G′

p.

Fix a generator a ∈ (Z/2r+2Z)×/{±1} – for example, a = 5 will do – and
let τ be the unique element of H satisfying (ζ + ζ−1)τ = ζa + ζ−a, where ζ is
a primitive 2r+2th root of unity in Q̄. Let y be the idele in JL′ with a in the
P-component for P|p and 1 elsewhere, and let y be its image in CL′ .

We may now state our theorem on the global fundamental class.

Theorem 4.4 Let y be as above.

(i) There exists µ ∈ CL′ such that µ
∑n−1

k=0 τk

= (y)−1.
(ii) For each σ ∈ Gal(L′/K ′) and each i with 0 ≤ i ≤ n − 1, there exists

νστ i ∈ CL′ such that ντ−1
στ i = µ(1−στ i)τ .

(iii) For each σ, ρ ∈ Gal(L′/K ′), the element ν−σ
ρ νσρν

−1
σ of CL′ is fixed by

H and can therefore be considered as an element of CL.
(iv) Identifying G with Gal(L′/K ′), the map

G2 → CL

(σ, ρ) 7→ ν−σ
ρ νσρν

−1
σ

is a 2-cocycle representing the global fundamental class for L/K.

Remark. The 2-cocycle in part (iv) of Theorem 4.4 appears to be a 2-coboundary.
This would be true if all the elements νσ were themselves in CL, but this is not
the case.
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The remainder of this section is devoted to proving Theorem 4.4. We begin
with the 2-cocycle f : (G′

p)
2 → (L′

p)
× defined, for 0 ≤ i, j ≤ n− 1, by

f(τ i, τ j) =

{
a if i+ j ≥ n
1 otherwise.

Lemma 4.5 f represents the local fundamental class of L′
p/Kp.

Proof. Since L′
p is a cyclic extension ofKp, the knowledge of the fundamental

class is equivalent to the knowledge of the reciprocity mapH0(G′
p, (L

′
p)

×) → G′
p.

As Kp = Q2 in our case, this map is described explicitly in, for example, [7,
Section 3.1]. The details are left to the reader.

Let x be the idele in JL′ having a in the p(L′)-component and 1 elsewhere,
so that the image of f in H2(G′

p, JL′) is represented by

f1 : (τ i, τ j) 7→
{

x if i+ j ≥ n
1 otherwise.

Lemma 4.6 The image of f1 under corestriction H2(G′
p, JL′) → H2(G′, JL′)

is represented by

g1 : (στ i, ρτ j) 7→
{

y if i+ j ≥ n
1 otherwise,

for σ, ρ ∈ Gal(L′/K ′) and 0 ≤ i, j ≤ n− 1.

Proof. Gal(L′/K ′) is a set of representatives for G′/H. If σ ∈ G′, let σ be
the unique element of Gal(L′/K ′) such that σH = σH. By [3, Theorem 7],
the image of f1 under corestriction is represented by the 2-cocycle g1 given, for
σ, ρ ∈ Gal(L′/K ′) and 0 ≤ i, j ≤ n− 1, by

g1(στ
i, ρτ j) =

∏
δ∈Gal(L′/K′)

f1(δρτ
i(δστ i)−1, δστ iρτ j(δστ iρτ j)−1)δ

−1

=
∏

δ∈Gal(L′/K′)

f1(δστ
i(δσ)−1, δσρτ j(δσρ)−1)δ

−1

=
∏

δ∈Gal(L′/K′)

f1(τ
i, τ j)δ

−1

= f1(τ
i, τ j)

∑
δ∈Gal(L′/K′) δ

=

{
y if i+ j ≥ n
1 otherwise.

Let g : (G′)2 → CL′ be the 2-cocycle satisfying, for σ, ρ ∈ Gal(L′/K ′) and
0 ≤ i, j ≤ n− 1,

g(στ i, ρτ j) =

{
y if i+ j ≥ n
1 otherwise.

(4.1)
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Then by construction, and by the proof of Proposition 4.3, the class of g in
H2(G′, CL′) has invariant 2−r mod Z, and therefore must be the image of the
fundamental class for L/K under the inflation map H2(G,CL) → H2(G′, CL′).
Let c : G′ → HomZ(∆G′, CL′) be the 1-cocycle corresponding to g, as in Lemma
2.1. One finds that for σ, ρ ∈ Gal(L′/K ′) and 0 ≤ i, j ≤ n− 1,

c(στ i)(ρτ j − 1) =

{
y if 1 ≤ j ≤ i
1 otherwise.

Indeed,

c(στ i)(ρτ j − 1) = g(ρτ j , ρ−1τ−j)g(ρτ j , ρ−1τ−jστ i)−1

= g(τ j , τ−j)g(τ j , τ i−j)−1,

and we observe that

g(τ j , τ−j) =

{
1 if j = 0
y otherwise

while

g(τ j , τ i−j) =

{
1 if j ≤ i
y otherwise.

Definition 4.7 Given λ ∈ HomZ(∆H,CL′), write λi = λ(τ i−1) for each i ∈ Z.

Proposition 4.8 There is λ ∈ HomZ(∆H,CL′) such that for 0 ≤ i, j ≤ n− 1,

λτ i

j−iλ
−τ i

−i λ−1
j =

{
y if 1 ≤ j ≤ i
1 otherwise.

(4.2)

Proof. Since c is in the image of the inflation map H1(G,HomZ(∆G,CL)) →
H1(G′,HomZ(∆G′, CL′)), it is therefore in the kernel of the restriction map
H1(G′,HomZ(∆G′, CL′)) → H1(H,HomZ(∆H,CL′)). This says that there is
λ ∈ HomZ(∆H,CL′) such that for i, j ∈ Z,

(τ iλ− λ)(τ j − 1) = c(τ i)(τ j − 1). (4.3)

The left-hand side of (4.3) is λτ i

j−iλ
−τ i

−i λ−1
j , while the right-hand side is y if

1 ≤ j ≤ i and 1 otherwise.

Corollary 4.9 There is µ ∈ CL′ such that (y)−1 = µ
∑n−1

k=0 τk

in CL′ . In par-
ticular, part (i) of Theorem 4.4 holds.

Proof. Choose λ as in Proposition 4.8. Then y = λ−τ
−1λ

−1
1 , i.e.

(y)−1 = λ1λ
τ
−1. (4.4)
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Further, for j = 2, . . . , n− 1, 1 = λτ
j−1λ

−τ
−1λ

−1
j , i.e.

λj−1 = λτ−1

j λ−1. (4.5)

Using (4.5) we observe that, for k = 0, . . . , n − 3, we have λ−1 = λk+1λ
−τ−1

k+2 ,
and therefore also

λτ−k

−1 = λτ−k

k+1λ
−τ−(k+1)

k+2 .

Hence

λ
∑n−1

k=0 τk

−1 = λ
∑n−1

k=0 τ−k

−1

=

(
n−3∏
k=0

λτ−k

k+1λ
−τ−(k+1)

k+2

)
λτ2+τ
−1

= λ1λ
−τ2

−1 λτ2+τ
−1

= λ1λ
τ
−1

= (y)−1,

the last equation by (4.4).

Lemma 4.10 Suppose µ ∈ CL′ is an idele class satisfying µ
∑n−1

k=0 τk

= (y)−1.
(Such a µ exists by Corollary 4.9.) If λ is the element of HomZ(∆H,CL′) defined
by

λ(τ j − 1) = (y)−1µ−
∑j

k=1 τk

for j = 1, . . . , n− 1, then c(τ i) = τ iλ− λ for all i ∈ Z.

Proof. This is equivalent to showing that the equation in (4.2) holds for
0 ≤ i, j ≤ n−1. Further, we may assume that i, j ≥ 1. We split the verification
up into three cases: (i) i = j, (ii) j < i, and (iii) i < j.

Case (i):

λ−τ i

−i λ−1
i = λ−τ i

n−iλ
−1
i

= y2µ
∑n

k=i+1 τk

· µ
∑i

k=1 τk

= y2(y)−1

= y.

Case (ii):

λτ i

j−iλ
−τ i

−i λ−1
j = λτ i

n+j−iλ
−τ i

n−iλ
−1
j

= yµ−
∑n+j

k=i+1 τk

· µ
∑n

k=i+1 τk

· µ
∑j

k=1 τk

= yµ−
∑n+j

k=n+1 τk

· µ
∑j

k=1 τk

= y.
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Case (iii):

λτ i

j−iλ
−τ i

−i λ−1
j = λτ i

n+j−iλ
−τ i

n−iλ
−1
j

= yµ−
∑j

k=i+1 τk

· µ
∑n

k=i+1 τk

· µ
∑j

k=1 τk

= yµ
∑n

k=1 τk

= 1.

Lemma 4.10 exhibits the 1-cocycle c as an explicit 1-coboundary. Translating
into 2-cocycles as in Lemma 2.1, we find that the restriction of the 2-cocycle g
to H is equal to the 2-coboundary associated to the map

h : H → CL′

τ i 7→ λ(τ−i − 1)−τ i

.

Lemma 4.11 Let µ and λ be chosen as in Lemma 4.10. If j ∈ Z, then

λ(τ−j − 1)−τj

= µ−
∑j

k=1 τk

= y · λ(τ j − 1).

Proof. The second equality follows immediately from the definition of λ. As
for the first, if 1 ≤ j ≤ n− 1,

λ(τ−j − 1)−τj

=
(
(y)−1µ−

∑n−j
k=1 τk

)−τj

= yµ
∑n−j

k=1 τj+k

= yµ
∑n

k=j+1 τk

= µ−
∑n

k=1 τk+
∑n

k=j+1 τk

= µ−
∑j

k=1 τk

.

Following Section 2.3, given σ ∈ Gal(L′/K ′) and 0 ≤ i, j ≤ n− 1, we let

aστ i,τj = g(τ j , στ i)g(στ i, τ j)−1h(τ j)στ
i−1.

Observe that, as a consequence of the definition of g and of Lemma 4.11,

aστ i,τj = h(τ j)στ
i−1 = µ−(στ i−1)

∑j
k=1 τk

.

By the discussion in Section 2.3, the map

H → CL′

τ j 7→ aστ i,τj (4.6)
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is a 1-cocycle for each στ i ∈ G′. Since H−1(H,CL′) = 0, there is consequently
νστ i ∈ CL′ such that

ντ−1
στ i = µ(1−στ i)τ ,

remembering that aστ i,τ = µ(1−στ i)τ . Thus part (ii) of Theorem 4.4 holds.
Furthemore, for all στ i ∈ G′, the 1-cocycle in (4.6) is equal to the 1-coboundary
associated to the element νστ i . Using part (i) of Lemma 2.3 together with the
fact that g(σ, ρ) = 1 for σ, ρ ∈ Gal(L′/K ′), we thus obtain part (iii) of Theorem
4.4. Finally, part (ii) of Lemma 2.3 gives part (iv) of Theorem 4.4.

4.3 The global reciprocity map

We keep the notation and assumptions of Section 4.2. Let rL/K : H0(G,CL) →
H−2(G,Z) be the global reciprocity map, which we view as a map into G since
G is abelian.

Corollary 4.12 Let N ∈ Z[Gal(L′/K ′)] be the sum of the elements of Gal(L′/K ′).
Then for ρ ∈ G, νNρ lies in CK and represents the class of r−1

L/K(ρ).

Remark. At first sight, Corollary 4.12 seems to say that r−1
L/K is the trivial

map, all elements in the image being represented by the norm of an idele. Just
as in the remark following Theorem 4.4, this would be true if each νρ was in
CL. We emphasize again, however, that this is not the case.

Proof. We let G act on CL′ via the canonical isomorphism G ≃ Gal(L′/K ′).
That νNρ lies in CK for each ρ ∈ G will be a consequence of the proof of the rest

of the corollary. However, we may justify it directly: It is immediate that νNρ is
fixed by Gal(L′/K ′). That it is fixed by H follows from the way the elements
were chosen in part (ii) of Theorem 4.4.

Now, let w : G2 → CL be the 2-cocycle from part (iv) of Theorem 4.4. The
map r−1

L/K is induced by cup-product with the global fundamental class of L/K,

i.e. with the class of the normalized 2-cocycle w. Therefore by Lemma 2.2,
r−1
L/K(ρ) is represented by∏

σ∈G

w(σ, ρ) =
∏
σ∈G

ν−σ
ρ νσρν

−1
σ

=
∏
σ∈G

ν−σ
ρ

= ν−N
ρ .

Since H0(G,CL) has exponent 2, ν
−N
ρ and νNρ represent the same class.
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