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Abstract

We propose a candidate, which we call the fractional Galois ideal after
Snaith’s fractional ideal, for replacing the classical Stickelberger ideal as-
sociated to an abelian extension of number fields. The Stickelberger ideal
can be seen as gathering information about those L-functions of the ex-
tension which are non-zero at the special point s = 0, and was conjectured
by Brumer to give annihilators of class-groups viewed as Galois modules.
An earlier version of the fractional Galois ideal extended the Stickelberger
ideal to include L-functions with a simple zero at s = 0, and was shown
by the present author to provide class-group annihilators not existing in
the Stickelberger ideal. The version presented in this article deals with
L-functions of arbitrary order of vanishing at s = 0, and we give evidence
using results of Popescu and Rubin that it is closely related to the Fitting
ideal of the class-group, a canonical ideal of annihilators.

Finally, we prove an equality involving Stark elements and class-groups
originally due to Biiyiikboduk, but under a slightly different assumption,
the advantage being that we need none of the Kolyvagin system machinery
used in the original proof.
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1 Introduction

In [16], Snaith defined a fractional ideal Ji(L/K) in Z|G] associated to an
abelian extension L/K of number fields for each negative integer k, where G =
Gal(L/K). The motivation for doing so was to address the following problem:
The Coates—Sinnott Conjecture [9] predicts that, for a chosen negative integer k,
the classical kth Stickelberger ideal in Z[G] provides annihilators for the K-group
K_5,(0y), where O, is the ring of integers in L. However, the Stickelberger
ideal is often zero, and even in the case K = QQ provides non-trivial annihilators
for only one of the two eigenspaces for complex conjugation on the K-group.
Snaith’s solution was to use the leading coefficients of L-functions at the special
point s = k in the definition of Ji(L/K), rather than values as in the case of
the Stickelberger ideal. Thus J;(L/K) is always non-trivial, and further, he
showed that in the case K = Q, it does indeed give non-trivial annihilators in
both the plus and minus eigenspaces.

The present author considered in [3] the case of L-function derivatives at
s = 0 rather than at strictly negative integers, relating to the problem of ideal



class-groups — zeroth K-groups — instead of higher K-groups. The Coates—
Sinnott Conjecture discussed above was inspired by a conjecture of Brumer
predicting that the zeroth Stickelberger ideal gives annihilators for the class-
group, although the Stickelberger ideal is often zero in this case as well. The
aim of [3] was to provide evidence that a fractional ideal similar to Snaith’s would
provide more annihilators of the class-group than the Stickelberger ideal. The
emphasis was on the situation where the base field K was Q, and particularly
extensions of prime-power conductor, though the behaviour of the fractional
ideal J(L/K) was similar when K was imaginary quadratic. The importance
of taking leading coefficients rather than values in the cyclotomic case was made
even more apparent in [2]. There, we took an inverse limit of the J(L,/Q) in
a cyclotomic tower L; C Ly C L3 C ---, and showed that the plus part,
corresponding to L-functions with order of vanishing 1 at s = 0, annihilated a
limit of class-groups via the theory of cyclotomic units, while the minus part,
corresponding to L-functions which are non-zero at s = 0, annihilated that limit
of class-groups via the Main Conjecture of Iwasawa Theory. See [2, Section 6.2.1]
for details.

The three papers [16, 3, 2] mentioned above suggest that the fractional ideal
may be a suitable extension of the Stickelberger ideal in those cases, and thus
indicate possible refinements of the Brumer and Coates—Sinnott conjectures.
However, none of those papers satisfactorily addresses what should happen when
the order of vanishing of the L-functions exceeds 1. The aim of the current
article is to tackle exactly that issue. This will require redefining the fractional
ideal — see Definition 5.1 — to decompose it in terms of orders of vanishing of
L-functions. The new version coincides with the old for the parts corresponding
to L-functions having order of vanishing 0 or 1 at s = 0. In Section 6, we
support this choice of definition by using results of Popescu and Rubin to relate
the fractional ideal to annihilators of class-groups, even when the L-functions
involved vanish to order higher than 1.

In the final section, we use the same result of Rubin mentioned above to
prove an equality, originally due to Biiyiikboduk, involving class-groups and
the index of Stark units, but this time under a different assumption from that
of Biiyiikboduk. This new assumption has the advantage that the equality can
be proven using a much more straightforward argument.

2 Preliminary algebra

2.1 Determinants of F[G]-modules

Let R be any commutative ring with non-zero identity, and M a finitely gen-
erated projective module over R. (We have in mind the situation R = F[G]
where G is a finite abelian group and F' is a field whose characteristic does not
divide |G|, in which case all modules are projective by Maschke’s Theorem.) If
h € Endg(M), we arbitrarily choose a finitely generated R-module N such that
M ® N is free, and extend hto h®1: M & N — M & N. Then we define



detr(h) to be detr(h @ 1). This is independent of the choice of N. We note
that, as usual, detg(h; o hy) = detg(hi)detr(ha).

Now, let G be a finite abelian group and F' a subfield of C. The character
group Hom(G,C*) will be denoted G.

Given a finitely generated F[G]-module M and a non-negative integer r, let
en[r] denote the sum in C[G] of the idempotents corresponding to characters
X € G for which (X, xm) = r, where xjs is the character of the representation
M ®pC and (-, ) is the usual Hermitian product on the space of class functions
on G. In fact, ep[r] € F[G].

Definition 2.1 Let M be a finitely generated F|[G]-module. We define the de-
terminant of M, denoted D(M), to be the F[G]-module

P

€M [T]/\;‘[G] M.
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Note that, since G is finite, eps[r] = 0 for r large enough.

Proposition 2.2 For any finitely generated F[G]|-module M, D(M) is a free
F[G]-module on one generator.

Proof. This follows from the readily proven fact that for every r > 0,
em[r] A M = en[r]F[G] (non-canonically). [ |

Suppose M7 and My are finitely generated F[G]-modules which are isomor-
phic to each other. Then given a € Hompg) (M1, M2), we can form the ho-
momorphism D(a) € Hompg (D(M1),D(Ms)) by taking exterior powers and
applying the idempotents ey, [r] = epr,[r]. In this way, D(—) can be thought
of as a functor from the category whose objects are finitely generated F[G]-
modules with morphisms

_ Homp[g] (Mh MQ) if M1 = M2 over F[G]
Mor(My, M) = { 1] otherwise,

to the category of rank 1 free F[G]-modules.

In terms of taking determinants of endomorphisms of finitely generated F[G]-
modules, D(—) can be viewed as an appropriate analogue of the maximal exte-
rior power of a finite dimensional vector space. Indeed,

Proposition 2.3 If M is a finitely generated F'|G]-module and oo € End (M),
then det piq)(D(a)) = det pig) ().

Proof. A simple argument allows one to reduce to the case where M is free,
and then the result is standard. |



3 T-modified L-functions

The following notions will be useful later in the paper.

Definition 3.1 A basic triple is a triple (L/K,S,T) where L/K is an abelian
extension of global fields, S is a finite non-empty set of places of K, containing
the infinite ones if char(K) = 0, and T is a finite non-empty set of places of K
disjoint from S.

Take a basic triple (L/K,S,T) and let G = Gal(L/K). For a character x of
G, define the T-modified L-function Ly /x s7(s,x) by

LL/K,S,T(Sa X) = LL/K7S(37X) H Charx,v(Nvlfs)-
veT

(Here, chary ,(xz) € C[z]| denotes the characteristic polynomial of the action
of the Frobenius at v on the inertia fixed-points of a realization of x.) We
then let 07 /x g7 = eré L*L/K’S}T(O,X)e,z € R[G]*, where for each x € G,
L*L/K,S,T(O’ X) denotes the leading coefficient of the Talyor series of L1,k s,7(s, X)
at s =0, and e, denotes the corresponding idempotent in C[G].

4 Rubin’s Conjecture

In a series of papers culminating in [17], Stark predicted an intriguing connection
between derivatives of L-functions at s = 0 and regulators, a connection which
can be viewed as an equivariant refinement of the analytic class number formula.
A more modern formulation due to Tate can be found in [18]. In fact, we will
be concerned with a stronger form of this conjecture, due to Rubin and outlined
in Section 4.1, which predicts that the derivatives of L-functions can in fact be
viewed as the regulators of specific elements lying in the units of the extension
field, or rather, in an exterior power of the units.

Before stating Rubin’s Conjecture, we need to introduce some notation. As
explained in [15, Section 1.2], if M is a Z[G]-module (G an arbitrary finite
abelian group), then for each r > 0 there is a well-defined homomorphism

N'Homgz g (M, Z[G]) —  Homgg (A" M, Z[G])
¢1A"'A¢r — (ml/\---/\mrb—>det(¢i(mj))).

By abuse of notation, we will denote the image of ¢1 A --- A ¢, under this
map by the same symbol, so that given mq,...,m, € M we write simply

(@1 A= Agp)(ma A Amy) = det(¢i(m;)).
We will also extend the map (¢1 A- - - Ady)(—) linearly to (A"M) @z Q — Q[G].
Definition 4.1 For any Z[G]-module M and any r > 0, define ALM to be
{me (N'M)®zQ | (g1 A+ AN dyp)(m) € Z[G] for all ¢; € Homy ) (M, Z[G])}-



If (L/K,S,T) is a basic triple, we let (x) = (x, Of ¢ ®z C), which is also
the order of vanishing of the L-function L,k s(s,x) at s = 0 by [18, Ch.I,
Prop.3.4]. (r(x) depends only on S, not T.) Then set

Usr ={u € Of ¢ | u=1mod w for all places w of L above T'}

and
Qs ={ue NgUs,r | exu=0 for all x € G with r(x) #r}.

Since Ug 1 has maximal rank in (’)L g» we can identify Us 7 ®7Q with OZ,S®Z Q,
so Qg 7, can be naturally viewed as a Z[G]-submodule of e[r]/\&[G] (0f s®2Q)
and hence of D(Of 5 ®z Q), where

el = Y e, €QGl.
xea
r(x)=r

(Note that e[r] is the idempotent eps[r] defined in Section 2.1 with F' = Q and
M =05 s ®zQ.)

4.1 Statement of Rubin’s Conjecture

Consider the regulator map A : (’)Z’S ®7z R — X ®z R, where X is the kernel
of the augmentation map on the free abelian group on the set Sy of places of
L above those in S. We remind the reader that for v € Of s Mu®l) =

> ypes, log|[ully P, where the absolute values || - ||y are normalized so that the
product formula holds.

Let (L/K,S,T) be a basic triple and » > 0 an integer. The following hy-
potheses are required:

(Stl) S contains the ramified places, and the infinite ones if char(K) = 0.
(St2) S contains at least r places which split completely in L/K.

(St3) S contains at least r + 1 places.

(St4) Us,r is Z-torsion free.

Denote by A(™) : F (g ]O s) ®2 R = (A7 X) ®z R the map induced by
the regulator A. Also, 1f A is a subring of C and M is an A[G]-module, write
NaeyuM for the image of Ay M in (Al M) ®a C. The following is [15,
Conjecture BJ:

Conjecture 4.2 Granted the hypotheses (Stl) to (St4),
elrr/x.5.0 Nogay X S AT (Qsrr)-

Assuming Conjecture 4.2 holds, there is a unique Z|G)-submodule Eg 1, of
Qs 7. such that G[T]GL/K,S,T/\E[G],& = A"(Esr,), and we call Es 1, the
group of rank r Stark elements. The quotient Qs r,/Esr, is a finite Z[G]-
module which will be of significant interest to us.



Remark. &g, is generated by one element over Z[G], and if € is a generator,
then given x € Z[G] we have xe = 0 if and only if e[r]Jx = 0. This can be
deduced from [15, Lemma 2.6], which gives a generator for e[r]Azg X

5 The fractional Galois ideal

We now come to the definition of the object which we hope will generalize the
Stickelberger ideal in its relationship to class-groups.

Definition 5.1 Let (L/K,S,T) be any basic triple (recall Definition 3.1) and
G = Gal(L/K). Then we define the fractional Galois ideal J(L/K,S,T) to be
the set

_1y | @ € Homgq(D(OF s ®2 Q), D(X ®z Q))
GL/K’S’T{detR[G] (a0 D)) and a(Qs,rr) C e[r]/\g[G],th forallr >0("

Because D(Of ¢®7zQ) and D(X®7Q) are free of rank 1 over Q[G], T (L/K, S,T)
is a Z[G]-submodule of R[G]. Further, J(L/K,S,T) is finitely generated over
Z|G). We remark that J(L/K,S,T) C Q[G] if and only if L/K satisfies Stark’s
Conjecture, as formulated in [18]. Since in Section 5.1 we will be assuming Ru-
bin’s Conjecture, which is stronger than that of Stark, J(L/K,S,T) will lie in

Q[G]-
Proposition 5.2 For any r >0, e[r]J(L/K,S,T) C J(L/K,S,T).

Proof. Take a Q[G]-module homomorphism o : D(OF ¢®zQ) — D(X @72 Q)
such that a(Qg 1) C e[t]/\tZ[GMfX for all ¢ > 0. Then defining & : D(OF ¢ ®z
Q) —» D(X ®z Q) by

a| - a|e[t] ift=r
=7 0 otherwise,

one finds that & again satisfies the integrality condition in the definition of
J(L/K,S,T), and

elr]0r /K, s rdetrig)(a o D(N) 1) = 01k s rdetrigy (@ o D(A) 7).

As a consequence of Proposition 5.2, J(L/K,S,T) decomposes as
J(L/K,5,T) = PelrlT(L/K,S,T).

Except for replacing O ¢ by Us,r, ¢[0]J(L/K,S,T) and e[1]J (L/K, S,T) co-
incide with e[0]J(L/K, S) and e[1]J(L/K, S) respectively, where J(L/K, S) is
the earlier version of the fractional ideal defined in [3]. Further, as explained
in [3, Prop. 2.8], e[0]J(L/K,S) is essentially the Stickelberger ideal, being
generated over Z[G|] by the Stickelberger element.



5.1 Relationship to Stark elements

We now describe the relationship of J(L/K,S,T) to the (conjectural) Stark
elements. Known cases of Rubin’s Conjecture, and therefore cases in which the
following theorem becomes conditionless, will be discussed in Section 5.2. We
emphasize that the following would not be true for the earlier version of the
fractional ideal in [3].

Theorem 5.3 Let (L/K,S,T) be a basic triple and v > 0 an integer, and
suppose that the hypotheses (Stl) to (Std) are satisfied. If Rubin’s Conjecture
holds for this data, then

elr]J(L/K,S,T) = e[rlanngq)(Qs,1,r/Es,1.r), (5.1)
where G = Gal(L/K).

Proof. We begin with the observation that if ¢ : M — N and ¢ : N - M

are R[G]-module homomorphisms, of which at least one is an isomorphism, then
detR[G] (’(/)OQS) = detR[G] (¢O¢) SO7 take a € HOIHQ[G] (D(OE,S ®Z@)7 D(X@ZQ))
such that a(Qsr:) C e[t]/\tZ[GLth for all non-negative integers ¢t. For the

purposes of this proof, we shorten 6;,/x g7 to 6, and also e[r]f to 6,.. Then
given u € Qg 1y, Ordetgg) (a0 D(A)1)u = O,detrig)(D(A) ™! 0 @)u, and this is
just 6, D(A) " oa(u) because D(OF s @zR) is free of rank 1 over R[G]. However,
by the choice of «, this lies in

0, DN elrlAyey, 0 X) = DN O-Agigy6X)
gS,T,r~

Thus
O, detgigi (o D(N) 1) € {e[r]z | # € R[G], 2Qs1,r C Es1r} (5.2)

Now, let € be a Z[G]-generator for Es . If © € R[G] satisfies Qs 1, C Es.1r,
then in particular xe = ye for some y € Z[G], and hence e[r|]z = e[r]y by
the remark following Conjecture 4.2. Therefore the set in (5.2) is equal to
{elrly | vy € Z[G], yQs,rr € Esrry = elrlanngq)(Qs,1,r/Es,r,r). This shows
the inclusion “C”.

For the converse, note that Rubin’s Conjecture holding for r implies (in par-
ticular) that the map [0~ o A(") : e[ N\gie)(Or.s ©2 Q) — e[r] Ay (X ®z
R) of Q[G]-modules, where [—] denotes multiplication by the given element,
in fact defines an isomorphism onto e[r] /\&[G] (X ®z Q). Then given y €
anngq|(Qs,7,r/Es,1,r), consider the map [yf~1]o A" : e[T]A&[G}(OZ,S ®z Q) —
e[r]Age)(X @z Q), and extend it arbitrarily to a map a : D(Of ¢ ®2 Q) —
D(X X7, Q) Ifue QS,T,M then

afw) = 07N (yu)
61 /\(T) (ES,T,T)
= e[r]/\%[G],th'

m



Also, noting that D()) restricted to e[r] /\I:%[G] (OF s ®2Q) defines the same map
as A1),

6,detrig (@0 D)) = Opdetaic)([y0~1] o D(A) 0 D(A) 1)
e [rldetric)([y])

= e[r]y.

This shows the inclusion “2”, completing the proof. |

5.2 Known cases of Rubin’s Conjecture

Rubin’s Conjecture holds in the following cases, and in these cases Theorem 5.3
will therefore hold unconditionally:
(i) char(K) > 0;
(ii)  All extensions L/K such that L/Q is abelian;
(ili) K contains an imaginary quadratic field &k of class number one
such that L/k is abelian and [L : K] is odd and divisible only by
primes which split in k/Q;
(iv) All abelian extensions L/K where K is imaginary quadratic (ar-
bitrary), in the case r = 1;
(v)  Arbitrary quadratic extensions L/K;
(vi) A large class of multiquadratic extensions, in the case r = 1.

In [5], Burns shows that Rubin’s Conjecture for the extension L/K follows
from Burns and Flach’s Equivariant Tamagawa Number Conjecture (ETNC) for
the pair (h°(Spec (L)), Z[Gal(L/K)]). The original formulation of the ETNC,
namely [4, Conj.4(iv)], is very technical, but in the case of the pair (h°(Spec (L)), Z[Gal(L/K)]),
a more explicit equivalent conjecture is Conjecture C(L/K) of [5]. We remark
that Conjecture C'(L/K) has the following base change property for abelian
extensions L/K and L/K' with K C K’, which is [4, Prop.4.1(a)]:

If C(L/K) holds, then C(L/K") holds. (5.3)

Case (i) in the above list was done in part by Popescu — see [14] — and com-

pleted for arbitrary global function fields by Burns in [6]. Case (ii) follows from
Burns and Greither’s proof in [7] of the ETNC for the pair (h°(Spec (L)), Z[Gal(L/Q)])
when L is cyclotomic, together with the aforementioned base-change property.
Case (iii) is due to Bley’s work in [1] on the ETNC for imaginary quadratic
fields of class-number one (see [1] for a precise description of the known cases).
(iv) can be found in [17], where the rank one version of the conjecture, which
Rubin’s Conjecture was based on, was first stated. (v) is proven in [15] itself.
For details of (vi), see [10].



6 The fractional Galois ideal and class-groups

We now explain how to describe a link between J(L/K, S, T) and class-groups.
Here, CI(L)s,r will denote the Sp-ray class-group modulo 77, namely

CUL)sr = {fractional ideals of Oy, g prime to 17}
ST {fOLs | f=1mod w,Vw e Ty}

Proposition 6.1 Let (L/K,S,T) be a basic triple and r > 0 an integer, and
suppose that hypotheses (Stl) to (Std) are met. If Conjecture 4.2 holds for the
triple (L/K,S",T) and the integer r for all sets S’ satisfying (Stl) to (St3),
then

Z[1/glelr]T(L/K,S,T) = Z[1/gle[r]Fittzc)(CI(L)s,T)
where g = [L : K].

In Proposition 6.1, Fittzq(Cl(L)s,r) is the Fitting ideal of CI(L)s,r. More
generally, if R is a commutative ring and M a finitely presentable R-module,
Fitt (M) is a canonical ideal of annihilators of M. Further, if M can be gener-
ated by a set consisting of n elements, then

annp(M)"™ C Fittg(M) C anng(M).

The reader wishing to know more about Fitting ideals may consult [12].
Before proving Proposition 6.1, we give a lemma.

Lemma 6.2 Suppose R is a commutative ring and eq, ..., e, are mutually or-
thogonal idempotents in R whose sum is 1 and such that Re; is a Dedekind
domain for all i. Let M be an R-module such that e;M is Re;-torsion free for
all i, and let N be a cyclic R-submodule of M. Finally, let e be the sum of
the idempotents e; such that e;M # 0. Then if I is an ideal in R such that
IM = N, we have

el =e-anng(M/N).

Proof. It is straightforward to reduce to the case n = 1 and M # 0. So,
suppose IM = N. If N = 0, then the statement is clear since then I = 0 also and
so anng(M/N) = anng(M) = 0 = I. Now suppose that N is non-zero. That
I C anng(M/N) is immediate. For the reverse inclusion, first note that since M
is R-torsion free, it embeds naturally into M ® g F' where F' is the fraction field of
R. The same consequently holds for N. Therefore M = [71N = {rb | r € 7'},
choosing a generator b of N. Given s € anng(M/N) and r € I~1, srb € N and
so is equal to tb for some t € R. But then, since N is generated freely by
b#0, sr =t € R. Thus any s € anng(M/N) satisfies sI~! C R, showing that
anng(M/N) C (I"YH)~' =1 ]

Proof.[Proposition 6.1] If K is a function field, then by [13, Cor. 3.2.2],

Z[1/gl€s.rr = Z[1/g]Fittz;q)(CUL) s )25, (6.1)



If instead K is a number field, then by our assumption concerning Conjecture
4.2 in this case, [15, Cor. 5.4] provides (6.1).
Using Lemma 6.2, we deduce from (6.1) that

Z[l/g]e[T]FittZ[G] (CI(L)S,T) = e[r]annz[l/g} te) (Z[1/9]QS’T’T/Z[l/g]gsﬁT’r(). )
6.2
To see that the ring Z[1/¢][G] satisfies the hypotheses of Lemma 6.2, we refer
the reader to [13, Section 1.3], for example. The torsion-freeness hypothesis is
met because, writing Z[1/¢][G] as the direct sum of Dedekind domains R;, all
modules involved are contained in one of the modules R,D(Of 4 ®z Q), which
is isomorphic (as an R;-module) to the fraction field of R;. The cyclicity is a
consequence of the remark following Conjecture 4.2.
Since Qg 7, is finitely generated over Z[G],

annz1 /g1 (Z[1/9)2s, 1./ Z[1/ 9)Es 1,r) = Z[1/glannzg) (s, ,r/Es 1)

Combining this with (6.2), we therefore have

Z[1/glelr|Fittzc)(CUL)s,r) = Z[1/gle[rlanngc)(Qs,1.r /Es7r),  (6.3)

and the right-hand side of (6.3) is Z[1/gle[r]T(L/K,S,T) by Theorem 5.3. R

7 Stark elements and class-groups

We now take a setup inspired by [8]: K is a totally real field of degree r over Q,
L/K a non-trivial totally real cyclic extension with Galois group G, p a prime
not dividing [L : K] and such that no prime of K above p ramifies in L/K, and
x:G— Q;j a faithful character. We also view Q, as a subfield of C by fixing
an isomorphism C, — C. The setup of [8] further demands that the sets S and
T be chosen as follows: S is any finite set of places of K containing the r infinite
ones and the ones which ramify in L/K, and assume that S contains at least
r + 1 places but no places above p and no finite places that split completely in
L/K. Such an S can always be chosen. T is any finite set of places of K disjoint
from S and such that (St4) is satisfied (which in our case happens whenever T’
contains a finite prime not above 2 since L is real), and such that p does not
divide N*B — 1 for any place 3 of L above T. For example, the set T' consisting
of the places of K above p will satisfy all the conditions we require.

From here on, CI(L) will denote the ordinary class-group of L, i.e. the
class-group of the Dedekind domain Oy..

In the main theorem of [8], Bliylikboduk proves the equality (7.7) appearing
in Corollary 7.2 below under the assumption not that Rubin’s Conjecture hold
for a fixed L/K and varying S’, but that it hold for a fixed set of places and
varying extensions K'/K. The machinery used in [8] involves the theory of
Kolyvagin systems. We include Theorem 7.1 and its corollary because of the
comparative ease with which they can be proven under our assumption (varying
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S’) as opposed to that of [8] (varying K'/K). We emphasize that aside from
this, all other assumptions we make are also made in [8].

Let R, = Zy[x], the valuation ring of Q,(x). We also let A, = e[x]Z,[G],
where e[x] is the sum of the idempotents e, with 1 in the orbit of x under the
action of Gal(Q,/Q,). Note that e[x] € Z,[G] and A, is isomorphic to R,.
Part (i) of Theorem 7.1 allows us, once we extend scalars to R,, to deal with
the character x individually. The benefit of part (ii), on the other hand, is that
by considering all characters in the orbit of x, we need only extend scalars to
Z,.

Theorem 7.1 Suppose that for all sets S’ satisfying (St1) to (St3), Rubin’s

Conjecture is true for the basic triple (L/K,S’,T) and the integer r. This

happens, for example, if L/Q is abelian. Let € be a Z][G]-generator for Eg 1.
(i) The element X = e, (e ® 1) € ex(/\%[c],th&T) ®z Ry can be viewed as

an element of ex Ny (c1.44(Of ®z Ry), and
Fittr (ey(Cl(L) ®z Ry)) = Fittg, (eX/\%X[GMf(OZ ®z Ry)/RyeX).  (7.1)
(ii) The element eXl = e[x](e ® 1) € e[X](/\g[G],thS,T) ®z Ly can be viewed
as an element of e[x]/\%p[c]’tf((’)f ®z Zyp), and
Fitta, (e[x]CUL) ®z Zy) = Fitta, (e[X]\z, (6),:(OF ®z Z,)/AyelXD).

Proof. Let us deal with part (i). The claim about eX will be proven along
the way. Now, by the choice of T, CI(L)sr ®z Z, = Cl(L)s ®z Z,, where
Cl(L)g is the Sp-class-group of L. Further, using [11, Prop. 11.6] gives that
exCl(L)s ®@z R, = e, Cl(L) ®z R,, so that the left-hand side of (7.1) becomes

FittRX (BX(CI(L)S,T &Kz RX)) = X(exFittRx[G](Cl(L)S,T ®z RX))' (7.2)

We now appeal to (6.3), obtaining that the right-hand side of (7.2) is equal
to

x(exanng, (¢ ((Ls.1./Es1r) @z Ry))
= anng, (ex(QS,T,r X7, Rx/ES,T,r X7, RX))) (73)

Since [L : K] € Z) and
ex/\g[g]ﬁthS,T Cc eXQS,T,T - exﬁ/\g[g],thS,T7
(7.3) is therefore equal to
anng, (ex((Azjg)Us) ®z Ry /Es,1.r @2 Ry))- (7.4)

Now, ey (Azjg.:Us.T) @z Ry =~ Nk, c).6x(Us,r @z Ry), and by the choice
of T, Usr ®z R, = Of)s ®z Ry. Also, e s, ®z Ry = R\ €X since o € G acts
as x(o) € R} on e,Es 1, ®z Ry. We therefore obtain that (7.4) is equal to

anng, (/\;%X [G],6£6x (OE,S ®z Ry)/RyeX). (7.5)
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Since the S-rank of y and the So.-rank of x are both the same by [18, Ch.I,
Prop.3.4], where Sy, is the set of infinite places of K, rkaex(Of,s ®z Ry) =
tkr ey (O] ®z R, ). Using again the exact sequence in [11, Prop.11.6] we find
that Oy ¢/Of is torsion-free, therefore so is e, (Of ¢ ®z Ry)/ex(Of @z Ry).
But this quotient has R,-rank zero by the above, and hence is trivial, i.e.

eX(OZ,S ®z Ry) = ex(OF @z Ry).

Thus (7.5) is
anng, (ex A, (),(OF @z Ry)/RyeX). (7.6)

Since BX/\%x [GLtf(OZ ®z Ry ) is torsion-free and the quotient by R,e€X is finite,
this quotient must be cyclic as an R,-module, so that its annihilator ideal equals
its Fitting ideal. Hence we obtain that (7.6) is equal to Fitt g, (eX/\;X G] «(Orez
R,)/Ry€X), as required.

Addressing part (ii), we remark that almost all of its proof is identical to that
of part (i). In fact, it is even simpler because we only need to extend scalars to
Z,, and, aside from the details already given in the proof of part (i), it uses only
the behaviour of Fitting ideals and annihilators when applying idempotents. H

Corollary 7.2 If, in addition to the assumptions of Theorem 7.1, we suppose
that p=1mod [L : K] (as assumed in [8]), then x takes its values in Z, and

|exCUL) ©2 Zy| = lex N (1.6 (O ©2 Zp) : ZyeX|. (7.7)

Proof. The assertion about x holds because Z, contains the (p — 1)th roots
of unity. Since e, Cl(L) ®z Z, and eX/\gp[G]wtf(Of ®z Zy)/ZyeX are finite p-
groups, in order to demonstrate (7.7) it is equivalent to show that the ideals in
Z,, generated by their orders are equal, but these ideals are their Fitting ideals
over Z,. Now apply part (i) of Theorem 7.1. [ |
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