Everything you've ever wanted to know about Receiver Operating Characteristic Curves but were afraid to ask

Jim Muirhead

Sept. 29, 2008

Outline

- Historical context and uses of Receiver Operating Characteristic curves (ROC)
- Empirical case study: step-by-step evaluation of ROC characteristics
- Analytical and numerical evaluation of ROC for uniform and normal distribution of forecast probabilities

Historical use of Receiver Operating Characteristic Curves

- Originally developed for radar-signal detection methodology (signal-to-noise), hence "Radar Receiver Operator Characteristic")
- Used extensively in medical and psychological test evaluation
- More recently in atmospheric science
- Draws on the "power" of statistical tests

Primary uses

- Used to compare probabilistic forecasts
 to events or non-events
- Assess the probability of being able to distinguish a *hit* from a *miss*
- Classify forecast probabilities into binary categories (0,1) based on probabilistic thresholds
- Compare detection ability of different
 experimental methods

Definitions of hit rate, false alarm rate

ObservedNon Event (0)Event (1)Non Event (0)a) Correct
negativeb) MissPredicted
Event (1)c) False
Alarmd) Hit

Hit rate (*H*): d/(b+d) False alarm rate (*F*): c/(a+c)

Empirical case study

- Example from Mason and Graham (2002) Q.
 J. Meterol. Soc 128: 2145-2166
- Data describes March-May precipitation over North-East Brazil for 1981-1995
- Arranged in decreasing probability
- n = total number of cases
- e = number of events (1)
- e' = n-e = number of nonevents (0)
- FP = Forecast Probabilities

n=15, e=7,e'=8

Year	Observed event (1) or non-event (0)	Forecast Probability (FP)
1994	1	0.984
1995	1	0.952
1984	1	0.944
1981	0	0.928
1985	1	0.832
1986	1	0.816
1988	1	0.584
1982	0	0.576
1991	0	0.28
1987	0	0.136
1989	1	0.032
1992	0	0.024
1990	0	0.016
1983	0	0.008
1993	0	0

Classified predictions at different thresholds

Vary	Year	Observed	Forecast Probability	Prediction t=0.1	t=0.5	t=0.8
	1994	1	0.984	1	1	1
$Trom \ U - T$	1995	1	0.952	1	1	1
Hit	1984	1	0.944	1	1	1
False alarm	1981	0	0.928	1	1	1
	1985	1	0.832	1	1	1
	1986	1	0.816	1	1	1
	1988	1	0.584	1	1	0
	1982	0	0.576	1	1	0
	1991	0	0.28	1	0	0
	1987	0	0.136	1	0	0
Miss	1989	1	0.032	0	0	0
	1992	0	0.024	0	0	0
Correct	1990	0	0.016	0	0	0
negative	1983	0	0.008	0	0	0
0	1993	0	0	0	0	0

ROC curve developed over range of thresholds

• Hit rates and false alarm rates vary with changing thresholds

• Curve will be stepped there are no ties in forecast probabilities and each forecast is considered in turn

Relationship between thresholds, hit and false alarm rates

Threshold is low (*t*=0.2)

Threshold is high (*t*=0.8)

		Obse	erved			Obs	served	
		0	1			0		1
Predicted	0	3	1	Predicted	0	7		2
	1	5	6		1	1		5
Total		8	7	Total		8		7
		Hit rate (H)	0.857			Hit rate (H)		0.714
		False alarm rate (F)	0.625			False alarm rate (F)		0.125
		Overall	0.6			Overall		0.8

Optimum choice of threshold

Perfect model:
100% Hit Rate, 0%
False Alarm Rate

 Optimal threshold on curve chosen by Euclidean distance away from perfect model

Optimal threshold and hit/false alarm rates

Optimal threshold (t) = 0.576, corresponds to hit rate = 0.857 and false alarm rate of 0.25

Calculation of Area under the Curve (AUC)

- Empirical curve
 - Area under the curve is gained when a hit has higher associated forecast probability than any false alarms
- No area is gained when a false alarm occurs

Calculation of Area under the curve

For each hit, *f_i* is the number of misses with FP greater than the current hit

e = number of events (1) e' = n-e = number of non-events (0) FP = Forecast Probabilities

area gained =
$$\frac{(e' - f)}{e'e}$$

Total ROC area

$$A = \frac{1}{e'e} \sum_{i=1}^{e} \left(e' - f_i \right)^{e}$$

A=0.875

Year	Observed	Probability	f	Area gained
1994	1	0.984	0	0.142857143
1995	1	0.952	0	0.142857143
1984	1	0.944	0	0.142857143
1981	0	0.928		
1985	1	0.832	1	0.125
1986	1	0.816	1	0.125
1988	1	0.584	1	0.125
1982	0	0.576		
1991	0	0.28		
1987	0	0.136		
1989	1	0.032	4	0.071428571
1992	0	0.024		
1990	0	0.016		
1983	0	0.008		
1993	0	0		

Total 0.875

Hypothesis testing of AUC

•The AUC is the probability of being able to distinguish a *hit (e)* from a *miss (e') (AUC=*0.875*)*

• Dashed line indicates forecasting skill is no better than random (0.5)

• Is AUC significantly greater than 0.5?

Significance testing for AUC

Mann-Whitney U test

$$U = \sum_{i=1}^{e} r_{ei} - \frac{e(e+1)}{2}$$

U = (15+14+13+11+10+9+5)-(7*8)/2 = 49

p = 0.007 in our example

Year	Observed	Probability	Rank
1994	1	0.984	15
1995	1	0.952	14
1984	1	0.944	13
1985	1	0.832	11
1986	1	0.816	10
1988	1	0.584	9
1989	1	0.032	5
1981	0	0.928	12
1982	0	0.576	8
1991	0	0.28	8
1987	0	0.136	6
1992	0	0.024	4
1990	0	0.016	3
1983	0	0.008	2
1993	0	0	1

The relationship between *U* and *AUC*

U = e'e(1 - A)

Normal transformation of Hit and False Alarm rates

- Hit and False alarm rates transformed to bi-normal distribution useful for comparing differences in AUC for competing models.
- AUC under bi-normal ROC is not as sensitive to the number of points as the empirical ROC
- Important to distinguish transforming axes (*H* and *F*) from transforming forecasting probabilities.

Confidence Intervals for AUC, Hit and False Alarm rates

• Significance can also be tested with permuting or bootstrapping data

95% CI for AUC=0.643 - 1.00 Note: Does not include 0.5

95% CI for Hit and False alarm rates

Effects of assuming parametric distributions of forecast probabilities

- Previous example was empirically derived ROC
- What are the effects of assuming a uniform and normal distribution of forecast probabilities?

Forecast probabilities for rain events from Mason and Graham 2002

Uniform distribution

- 4 parameters needed, means c₀ and c₁ and half-widths w₀ and w₁ for distribution of negative and positive forecasts, respectively
- For uniform distribution, *w*₁ is simply the half range of probabilities associated with positive forecasts

Data parameterized from Mason and Graham 2002

Uniform distribution

From Marzban (2004)

• Hit and False Alarm rates calculated as:

$$H = \frac{c_1 + w_1 - t}{2w_1}, \quad F = \frac{c_0 + w_0 - t}{2w_0}$$
, where *t* is the threshold

The Area under the curve is calculated as:

$$AUC = 1 - \frac{1}{8} \left(\frac{\left(c_1 - c_0\right) - \left(w_1 + w_0\right)}{\sqrt{w_0 w_1}} \right)^2$$

ROC of uniformly distributed forecast probabilities

Numerical simulation of uniformly distributed forecast probabilities

Generated uniform deviates with min.
and max. from
Mason and Graham
2002 data.

• n = 200 iterations

Normal distribution of forecast probabilities

• For the normal distribution, c_0 and c_1 are means for nonevents and events, and w_0 and w_1 are standard

Non-events: $c_0 = \overline{x_0} = 0.246$, $w_0 = \sigma_0 = 0.339$ Events: $c_1 = \overline{x_1} = 0.735$, $w_1 = \sigma_1 = 0.338$

Normal distribution of forecast probabilities

• False alarm rates (F) and hit rates (H) calculated as:

$$F = \Phi \frac{\left(c_0 - t\right)}{W_0} \qquad H = \Phi \frac{\left(c_1 - t\right)}{W_1} \qquad \text{(Marzban 2004)}$$

where $\Phi(x)$ is the standard normal cumulative distribution

Area is calculated as:

$$AUC = \Phi\left(\frac{c_{1} - c_{0}}{\sqrt{w_{0}^{2} + w_{1}^{2}}}\right)$$

ROC of normally distributed forecast probabilities

Numerical simulation of normally distributed forecast probabilities

- Generated gaussian deviates with mean and sd from Mason and Graham 2002 data.
- n = 200 iterations

Summary

- Empirical ROC may result in overestimated AUC relative to bi-normal distribution of hit and false alarm rates
- Similar results in AUC for normalizing either hit/false alarm rates (0.843), analytical solution of normally distributed forecast probabilities (0.846) or numerical simulations (avg.=0.846)
- AUC from numerical simulations for uniform forecast probabilities not significant (avg.=0.547) unlike analytical approach (0.88).

Summary

- Recommendation:
- 1) Examine distribution of forecast probabilities from data
- 2) Do not assume uniform distribution if using the analytical approach, especially for low sample sizes