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Chapter 8

Matlab Course

8.1 First Steps in Matlab

In this part of the book we show how to use a computer software package (such as
Matlab) to simulate the various model types that were introduced in the Theory
Part. Moreover, we show how to use the models for data fitting and parameter
estimation. The computer course is designed so that it can be used by students
who have no computational experience at all, as well as by students who are already
familiar with a computer software package (such as Maple, Mathematica, Matlab,
C++, or similar).

On Unix machines, Matlab is started with the command:

Matlab

In Windows, Matlab is started by clicking the following menu items:

Start
Programs
Matlab

A large Matlab window will appear (called a workspace window). Inside this win-
dow is another, smaller window, called a Matlab command window. All Matlab
commands are entered here. Note: the commands typed in this workspace cannot
be saved.

8.1.1 Constants and Functions

Constants

Try the first example:

>> a=5

>> b=7

>> a*b

You should see:

>> a=5

a =

5

>> b=7
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b =

7

>> a*b

ans =

35

where ans stands for the answer. This means that there is a location in the computer
which has been tagged by Matlab with the label ans and which now contains a value
of 35.

The meaning of these lines should be apparent. The first command gives the
value 5 to the constant named a and the second line gives the value 7 to the constant
named b. The third line multiplies the two constants. Note that you can place a
semicolon (‘;’) after a line of code so that you do not see the output. This is useful
when defining constants as above. Type

>> c=3.2;

(Note: Matlab is not sensitive about spacing. If you would like to make spaces
between operations and variables, it is ok to do so).

Functions: inline function

There are two ways that we can define a function using Matlab. In many instances, it
may be useful to either have a particular expression stored temporarily as a function
suitable for use in your Matlab session, or stored permanently for use in any Matlab
session. It is important to note here, that anything typed in the command window
is considered as only temporary code, and will not be able to be retrieved once the
session has been closed.

The first way to define a function is to use an inline function definition; the
second is to write a function m-file. We discuss both along with illustrative exam-
ples. We first define an inline function, and consider the function f(x) = aebx. In
the Matlab command window we can write

>> f=inline(‘5*exp(7*x)’,‘x’)

We have defined a function f(x), where f is described as an array. The first part
of the array is the expression defining our function, and the second part of the
array describes all independent variables. Note that it is important to include the
multiplication signs in the Matlab commands. What happens when you omit them?

Now we evaluate f at x = 3:

>> f(3)

Functions of more than one variable are defined similarly. For example,
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g(x, a, b) = ae(bx) is entered into Matlab as

>> g=inline(‘a*exp(b*x)’,‘x’,‘a’,‘b’)

Evaluate g at x = 3, a = 5, and b = 7.

>> g(3,5,7)

In general, any inline function can be written in the following form:

>> g=inline(‘string defining expression’,‘Var1’,‘Var2’,...)

You may include as many dependent variables as necessary.

Functions: m-files

Now we consider the case in which we may need to use our function at some later
time. Here, we write our function in a m-file. There are two types of m-files: script
files, and function files. For now, we will only focus on function files.

To make an m-file, click on File. Next select New and click on M-File from
the pull down menu. You will be presented with the Matlab Editor/Debugger
screen. Here, you will type your code, make changes, etc. When you are done
with typing, click on File in the Matlab Editor/Debugger screen and click Save
As. Choose a name for your file (i.e., myfirstfunction.m) and click Save. Close the
m-file.

Now let’s reopen it! To reopen your m-file (you may need to do this at some
point to make changes), type the following code in the command window:

>> edit myfirstfunction.m

Press Enter (or Return) on your keyboard. The function file you will create
should have the following form:

function [output variable list]=funcname(input variable list)

If there is only one output variable, the brackets are omitted. As before, let’s
consider defining the function f(x) = ae(bx). Type the following into the m-file
window

function y = myfirstfunction(x)

a = 5

b = 7

y = a*exp(b*x)

Notice that we have omitted the square brackets. If you wish to make comments in
your file, you may use the % key at the beginning of a line. For example, edit your
m-file so that it looks like the following

% This is my first m-file!

function y = myfirstfunction(x)
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a = 5

b = 7

y = a*exp(b*x)

Save and close the m-file.

Plotting Functions

We would like to plot the function f defined above. First let’s plot it using the
inline code.

>> x=0:0.01:0.5

>> plot(x,f(x))

>> grid on
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Figure 8.1.

The first argument of the plot command specifies the domain. It shows that we
want to define our function from a value of x = 0 to a value of x = 0.5 by steps of
0.01.

Now let’s plot the same function, but this time using the code from our m-file.
>> x=0:0.01:0.5

>> plot(x,myfirstfunction(x))

>> grid on

Exercise 8.1.1

(a) Define a function h(t) = 5 sin(ct). Don’t forget about the
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implied multiplications!

(b) Choose c = 1.3 and evaluate h at t = 0.0, t = 1.0 and t = 3.2.

(c) Plot the function h for t ∈ [0, 5].

A Helpful Tip It may be useful to place your code into an m-file, so that you can
save and print you work at a convenient time. Your code should be written just
as if you were using the command window. Specifically, you must start on a new
line for each new operation you wish to complete. To run your m-file, type the file
name (not the extension .m) into the command window.

Getting Help

The help command is the most basic way to determine the syntax and behavior of
a particular function. From the Matlab command window type

>> help magic

Information is displayed directly in the command window. The command help

by itself lists all the directories, with a description of the function category each
represents.

The lookfor command allows you to search for functions based on a keyword.
As an example, type

>> lookfor plot

Matlab searches through the first line of help text, which is known as the H1 line,
for each Matlab function, and returns the H1 lines containing a specified keyword.
Adding -all to the lookfor command searches the entire help entry, not just the
H1 line. Try adding -all to the lookfor command.

Clearing Matlab Memory

It will be helpful to know that there are several commands that can be used to clear
Matlab’s internal memory, either partially or completely. The clear command will
remove all variables form your workspace. The clear all command will remove
all variables and functions from memory, leaving the workspace empty. The clear

name command removes that particular m-file or variable name from the workspace
(here, name is replaced by the variable or m-file name). To clear several variables
at once, type clear name1, name2,.... Try the following:

>> d=1;

>> d

d =

1
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Mass (in grams) Size (in mm)

31 140
45 160
52 180
79 200
122 220
154 240
184 260
210 280
263 300
360 320

Table 8.1. Brown trout data

>> clear d

>> d

??? undefined function or variable ‘d’

8.1.2 Working with Data Sets

In most applications, it is necessary to work with experimental data. Moreover,
data can be analyzed using mathematical models. To illustrate this procedure we
use the following example, listing the mass and size of 10 brown trout (Salmo trutta

forma fario) in Table 8.1.

Lists (Vector arrays)

Each experimental measurement consists of two numbers, mass and size. We will
define two lists to save these measurements, one for the mass and one for size. A
list in Matlab is described using a vector array. We begin by defining the list of
masses:

>> mass=[31 45 52 79 122 154 184 210 263 360]

mass =

31 45 52 79 122 154 184 210 263 360

We can extract specific elements from the vector array by specifying their
position. For example:

>> mass(5)

ans =
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122

We continue by defining the list of sizes. Of course, we could use a command
similar to the one above. But it should be obvious that the size of the fish increases
by 20 from fish to fish with the size of the i-th fish given by 120 + i ∗ 20.

We can take advantage of this observation, and increment each value of the
vector in the following way:

>> size=[140:20:320]

size =

140 160 180 200 220 240 260 280 300 320

Here we have defined the start number, the value of the increment, and the last
number. Note that both mass and size have the same number of entries. This will
be important when it comes time to plot this data.

Plotting With Vectors (Lists)

We now use the vector arrays that we have just defined to show the brown trout
data graphically.

To show the data graphically, we again use the plot command, but now with
a different set of arguments than before:

>> plot(mass,size,‘*’)
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Figure 8.2.

What happens when you remove the * ?

Exercise 8.1.2 Research the plot command, and remake the plot, this time label-
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ing the axes and adding a title. Try first by using the pull down options from the
figure display window and then by using the command window. It is always good
practice to enclose your labels in single quotes, that is, use ‘mass’ and ‘size’.

Data Transformations

The above plot supports the idea of a power law of the form

size = a massb

to describe the brown trout data. We would like to find a and b (the fitting param-
eters). If we take the logarithm of the above formula,

ln(size) = ln(a) + b ∗ ln(mass),

then ln(size) is a linear function of ln(mass), and a and b can be found easily from
the y-intercept and the slope of the function. We first transform the brown trout
data to a logarithmic scale

If you pass a vector to a predefined math function, it will return a vector of
the same size, and each entry is found by performing the specified operation on the
cooresponding entry of the original vector.

>>log m=log(mass)

log m =

3.433987204 3.806662490 3.951243719 ...5.886104031

The new vector log m has the same number of entries as the vector mass. Similarly,

>>log s=log(size);

Here, we use the semicolon (‘;’) to finish the last command. The semicolon
means that the result of this command will not be printed on the screen. If at
anytime we are interested in seeing the value of the vector array log s we can
simply type

>>log s

log s =

4.941642423 5.075173815 5.192956851 ...5.768320996

In the next section, we use the vector arrays containing the transformed data
to determine the values of the fitting parameters a and b by linear regression.

8.1.3 Linear Regression

We expect the transformed data to have a linear relationship. Let’s have a look:
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>> plot(log m,log s)
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Figure 8.3.

From the graph, it appears that indeed there is a linear relationship between
the mass and the size of the fish. We now try to find the regression line, which is
the straight line that best fits the data. To learn more about regression, see Section
7.2 and reference [44] of the text.

Fitting with the least squares: polyfit and polyval

Statistical functions are available in Matlab. Unlike Maple, they are activated right
away, so we do not have to worry about including the appropriate library packages.

We use the polyfit command to find the regression line. We first assume
that the fit is linear. That is, fit the function y = ax + b to our data.

>> coefficients1=polyfit(log m,log s,1)

ans =

0.3351 3.8130

The “polyfit(x,y,n)” command finds the coefficients of a polynomial p(x)
of degree n (note that above we choose n=1 as we expect a linear relationship) that
fits the data in the least squares sense. This means that the sum of the squares of
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the pointwise distance between the polynomial and the data should be minimized.
Here, the parameter a = 0.3351, and b = 3.8130

We could also try a quadratic fit (we fit function y = ax2 + bx + c). If we
assume that there is a quadratic relation, then we write:

>> coefficients2=polyfit(log m,log s,2)

As you can see, the coefficient of x2 is very small (a = -0.0099) compared to the
other coefficients. This indicates that a linear fit is sufficient. We return to the
comparison of model fits to data in Section 7.3 of the text.

Checking the fit

Now we would like to plot the regression line. We need to convert the results of the
fit to a function. We do this using the polyval command.

>> newy=polyval(coefficients1,log m)

Here we have generated a new value of y (an estimate) based on the coefficients
found with polyfit. Now let’s plot the fitted function together with the brown trout
data:

>> plot(log m,log s,‘*’,log m,newy,‘-’)
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Figure 8.4.
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That’s looking very good! Finally, we will check the fit with the original
data set on the non-logarithmic scale. To do so, we need to transform newy to the
non-logarithmic scale, which we accomplish with the following steps:

g=exp(newy)

Now let’s see how the function g(x) fits the original brown trout data on the
non-logarithmic scale:

>> plot(mass,size,‘*’,mass,g,‘-’)
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Figure 8.5.

This also is looking very good!

Exercise 8.1.3: World population 1850-1997 The world population from 1850
to 1997 is given in Table 8.2.
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Year Size of population (in Millions)

1850 1200
1940 2249
1950 2509
1960 3010
1970 3700
1985 4800
1997 5848.7

Table 8.2. World population data

(a) Define lists containing the data.

(b) Plot the data (world population versus year).

(c) Transform the data set for the world population to a logarithmic scale, and
show your results in a graph.

(d) Fit the data of the world population. Show the fit on both the logarithmic
and on the non-logarithmic scale. What type of function did you use to fit
the data?

(e) Try fitting the data directly with a quadratic and a cubic function. Which fit
do you think is best?

8.2 Discrete Dynamical Systems: The Ricker Model

We briefly discussed the Ricker model in Section 2.2.4, and saw that use of the
model is appropriate for describing populations with non-overlapping generations.
We determined the fixed points of the model, as well as their stability, and alluded
to the fact that the Ricker model can exhibit complex dynamics, such as cycles
and chaos, for certain choices of the model parameters. We will now use Matlab to
conduct a thorough investigation of the dynamics of this model.

We begin with simplifying equation (2.24) by letting a = er, b = r/k, and
xn = bxn. After dropping the overbars, we obtain the simplified Ricker model,

xn+1 = axne−xn . (8.1)

Of interest for the remainder of this section is the behaviour of (8.1) and its depen-
dence on the value of the model parameter a. Although the restriction r > 0 for
the original Ricker model implies a > 1, we will study (8.1) in more generality, and
allow a > 0.

Let x∗ be a fixed point of (8.1), that is, x∗ satisfies

x∗ = f(x∗) = ax∗e−x∗ .
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Although it is easy to solve this equation for x∗ by hand, we will use Matlab
so that we can learn the “solve” command. (Note: use of this command requires the
Matlab ‘Symbolic Math Package.’ If this package is not installed on your version of
Matlab, then skip to the next paragraph.)

>> f = ‘a*x*exp(-x)-x’

>> roots=solve(f,‘x’)

roots=

0

-log(1/a)

The arguments of the solve command are, first, the equation and, second,
the quantity we want to find. In this case, we obtain two fixed points: x∗

1 = 0
and x∗

2 = ln(a). The trivial fixed point x∗

1 = 0 describes a population which is
extinct. Note that this fixed point exists for all values of the model parameter a.
The nontrivial fixed point, x∗

2 = ln(a), exists only for a > 1 (this is consistent with
our earlier observation that r > 0 implied a > 1).

To determine the stability of the fixed points, we need

f ′(x) = ae−x[1 − x],

so that

f ′(x∗

1) = f ′(0) = a,

f ′(x∗

2) = f ′(ln(a)) = 1 − ln(a).

Exercise 8.2.1

(a) At what value of a does the stability of the trivial fixed point, x∗

1 = 0, change?

(b) Plot the function g(a) = 1 − ln(a). For which values of a is |g(a)| < 1
(|g(a)| > 1)? That is, when is the nontrivial fixed point stable (unstable)?

(c) Sketch (by hand) a partial bifurcation diagram for the simplified Ricker model,
(8.1), as we did in Section 2.2.3 for the rescaled logistic map (see Figure 2.7).

In terms of the simplified Ricker model, we say that there are bifurcations at
a = 1 and a = e2. The bifurcation is a = 1 is called a transcritical bifurcation. We
defer discussion of the bifurcation at a = e2 to later.

We are interested in plotting solution trajectories for various values of the
model parameter a. For a given value of a, suppose that we wish to iterate the map
20 times, and plot the iterates as a function of the iteration number. This means
that we need to create a list with 21 coordinates of the form [i, xi] (the 20 iterates
plus the initial condition). Since we need to keep track of the current iterate to
create the next, writing an appropriate recursive command can be a bit tricky. The
easiest way to create the list of coordinates might be to use a for statement to
build up the list recursively. We take a small detour now to learn about these this
command.
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The for statement

The for statement is a type of repetition statement. It provides the ability to
execute a command or a sequence of commands repeatedly. The sequence of the
commands to be executed repeatedly is listed between a for command and an end.
The remainder of the statement specifies the number of times that the sequence of
commands needs to be executed. Before executing the command below, note that
we have stretched the statement over 3 lines. Press shift and enter to get to the
next line without executing the command! Try the following now:

>> for i=0:2:20,
i

end

The variable i counts the number of times the sequence of commands is executed.
Here, Matlab is instructed to start with i=0, increase i by 2 at the end of each
repetition, and terminate the repetition as soon as i>20. Did the command give
the result you expected?

Adding and replacing elements within vector arrays

Define the following list of elements:

>> L1 = [ 1 [1 2] [1 2 3] 2 ]

L1 =

1 1 2 1 2 3 2

Note that it is not necessary to include the square brackets inside your array,
as Matlab gets rid of them. Also, if an array is ever too long to fit on one line, type
3 dots (...) and continue the vector on the next line (using the shift + enter trick).
Now let’s try to insert elements in this list. For example, to insert [33,12,-3] into
L1 (at the end) type

>> L1(8) = 33;

>> L1(9) = 12;

>> L1(10) = -3;

Notice that the L1 vector had 7 entries. Since Matlab allocates memory for all
variables on the fly, this allows you to increase the size of a vector by assigning a
value to an element that has not been previously used (i.e., elements 8, 9, and 10).

You can just as easily change an element in the list. For example, to change
the first element to a 2, rather than a 1, type

>> L1(1) = 2;
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Recursive definitions for vectors. Using the for command

To create a a pair of lists recursively, we use a for command to insert elements into
each list one at a time. For example, we write our first list as:

>> for i=1:5,
L1(i) = i

end

L1 =

1

L1 =

1 2

L1 =

1 2 3

L1 =

1 2 3 4

L1 =

1 2 3 4 5

Now let’s define a second list.

>> for i=1:5,
L2(i) = i*i

end

L1 =

1

L1 =

1 2

L1 =

1 2 4

L1 =

1 2 4 16

L1 =

1 2 4 16 25

Note that our for-loop repeatedly redefines the same variables, L1 and L2, recur-
sively.

Plotting a trajectory

We now return to the Ricker model, and use the new Matlab commands to create
a list of coordinates of a trajectory, let’s say for a = 0.8 (from the linear stability
analysis, we know that the trivial fixed point x∗

1 = 0 is stable in this case, and the
nontrivial fixed point x∗

2 = ln(a) does not exist yet).
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We begin by specifying the value of the model parameter a, and setting the
initial condition x0 (the zeroth iterate):

>> a = 0.8;

>> iter(1) = 1.0;

Note that here we have placed our initial condition in the first place in a vector ar-
ray (iter(1)). There is no such thing as a zeroth position in a an array when using
Matlab (i.e., iter(0) cannot be defined). Next, we create a pair of lists correspond-
ing to the coordinate points x and y respectively. We use the iteration number i-1
as the x-coordinate and the corresponding iterate iter as the y-coordinate. The list
corresponding to the x coordinates is quite simple to generate using the recursive
properties from the previous section.

>> for i=1:21,
X(i) = i-1

end

Note that we have assigned a value of i-1 to each element in our X array. We do this
because we want to start at the x-coordinate 0. Now, to create the corresponding
y list, we make use of the Ricker Model. Again, let’s define our function using the
inline method.

>> RM = inline(‘0.8*x.*exp(-x)’,‘x’)

Note that we have placed a ‘.*’ between the first x and the exponential function.
This implies that we are performing pointwise vector multiplication. A single ‘*’
implies scalar multiplication. Before defining the second list, let’s initialize the first
y-coordinate in our vector array Y as the first iterate. Type

>> Y(1)=iter(1)

Now, to recursively define the second list type

>> for i=1:20,
Y(i+1) = RM(iter(i))

iter(i+1) = Y(i+1)

end

Finally, we plot the list of coordinates:

>> X = 0:20

>> plot(X,Y,‘*’)

As you can see, with a = 0.8, the population dies out, at least with the initial
condition x0 = 1.0. The numerical result is consistent with the results of our linear
stability analysis. You can check that the population dies out with other initial
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Figure 8.6.

conditions as well, by making an appropriate change on the line specifying the
initial condition, and pressing the return key a few times to re-execute that line and
the following lines.

8.2.1 Procedures (Functions) in Matlab: m-files

We’re interested in seeing the behaviour of the model for different values of the
parameter a. We can continue making appropriate changes in the lines we already
have on the screen. Instead of changing the value of a over and over, it is more
elegant to define a function which plots the trajectory for a given value of a. Here’s
how we define such a function. Open an m-file and type the following (note that
Matlab ignores lines that begin with “%”, so we can use these to include comments
in our Matlab program):

% defining a recursive function in an m-file

function y=plot traj(a)

RM=inline(’a*x.*exp(-x)’,’a’,’x’)

% Note that we are using an inline function. Sometimes it’s easier

to do this.

% Collecting list of x-coordinates

for i = 1:31,

X(i)=i-1

end

% Collecting list of y-coordinates
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for i = 1:30,

Y(i+1)=RM(a,iter(i))

iter(i+1)=Y(i+1)

end

y = plot(X,Y,’*’)

Now, save your m-file (as plot traj.m) and close it. Type the following into the
command window:

>> plot traj(0.8)

>> plot traj(1.0)

>> plot traj(5.0)

>> plot traj(8.0)

>> plot traj(13.0)

>> plot traj(14.5)

>> plot traj(20.0)

You should observe that the qualitative behaviour of the Ricker model changes
drastically when the value of the parameter a is changed, as should be expected
from the results of the linear stability analysis. Before we investigate interesting
types of behaviour, we will dissect the above Matlab code.

1. The keyword “function” indicates that we are going to define a function.

2. The name of the function, follows the “=”. In parentheses, we give a list of
input parameters, which are separated by commas.

3. Next, we define local variables. The values for these variables are only known
to this particular procedure and they cannot be used outside of this procedure.

4. Then the Matlab commands follow, which define the action of the function.

5. The “end” command ends the definition of a function.

Exercise 8.2.2 As our function stands right now, the initial condition of the iter-
ation is set by the programmer (you) within the function. Modify the procedure
so that the initial condition for the iteration also can be specified by the user. You
should test your function with a variety of initial conditions.

Exercise 8.2.3 The “signum”, which is thought of the “sign” of a number, can be
defined as:

sgn(x) :=







−1, if x < 0,
0, if x = 0,
1, if x > 0.

Write a Matlab function to define the signum function in this way. Note that
Matlabs own name for the signum function is “sign”, so you must give it a different
name.
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8.2.2 Feigenbaum Diagram and Bifurcation Analysis

We would like to understand the changes in the qualitative behaviour of the Ricker
model. We will focus on the steady-state behaviour of the model. We ask the
following question. For a given value of the model parameter a, what is the steady-
state behaviour of the model? We use the numerical capabilities of Matlab to help
us answer this question, and create a Feigenbaum diagram. (also known as an
orbital bifurcation diagram), as we did for the rescaled logistic equation in Section
2.2.3 (see Figure 2.13).

To accomplish this, we do the following. For each value of a of interest, we ask
Matlab to iterate the model a large number of times so that we can be sure that we
have reached steady state. Then we throw out most of the iterations, and only save
the last few. Finally, we plot the iterations that we kept (a is on the x-axis, and
the value of the population at steady state is on the y-axis). If the model converges
to a fixed point for a particular value of a, then the points for that value of a will
all be plotted on top of each other. If the model converges to an orbit of period 2,
then there will be two distinct points for that value of a, and so on. You will create
the Feigenbaum diagram for the Ricker model in two steps via the following two
exercises.

Exercise 8.2.4 Define a function which iterates the Ricker model a total of 600
times for a particular value of a. The arguments of the function should be the
parameter a and the initial condition x0. Your procedure should return a list (for
example, mylist) that contains the coordinates for the points that will appear in
the Feigenbaum diagram. Note that you do not need to create coordinates for the
first 500 iterates, only for the last 100 iterates. Hint: Each coordinate in the list
should be of the form [a,iter], not [i,iter]. Make sure your program returns
the values in the list.

Exercise 8.2.5

(a) Define a function which collects and plots all coordinates for the Feigenbaum
diagram for values of a from 0 to 10 in steps of 1. (The easiest way to do this
is to expand on the function you used in the previous exercise).

Hint: you may want to store values for a in a matrix A, where each row in the
matrix corresponds to a list of constant a values, and the number of columns
corresponds to the iteration number. Matrix arrays are defined in a similar
fashion as vector arrays. As an example, typing A = [1 2; 3 4] creates a 2 x 2
matrix A with elements 1 2 in the first row and elements 3 4 in the second row.
Also, A(i,j) corresponds to the element in the ith row and the jth column of
matrix A. From the example given, typing A(1,2) should give back an answer
of 2. It may also be helpful to note that, if you would like to appeal to the
entire first row of elements in the matrix, type A(1, :).

(b) If you’re confident in your results from the previous exercise, repeat the exer-
cise with smaller steps of a to obtain more details in the diagram (be careful
not to make the steps too small though, or you will have to wait a long time
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to view the result).

(c) Recall that the linear stability analysis of Exercise 8.2.1 predicted a trans-

critical bifurcation at a = 1 and another bifurcation at a = e2. How are the
bifurcations manifested in the Feigenbaum diagram(s) you produced? What
kind of bifurcation occurs at a = e2?

The diagram you produced in the previous exercise shows a typical route to
chaos, namely the period-doubling route. For small values of a, we find one stable
fixed point. As a increases, the fixed point loses its stability at a period-doubling

bifurcation, and we obtain a stable orbit of period 2 instead. As a increases further,
the period is doubled again to 4 and further to 8 and so on. We will analyze this
process in more detail below.

Recall that a 2-cycle is defined by the values u and v with

u = f(v), v = f(u).

If we apply f twice, we get

u = f(f(u)), v = f(f(v)).

This suggests that we should consider the second-iterate function f(f(.)) in-
stead of f(.), since fixed points of this function correspond to a 2-cycle.

We will find the iterates visited during the 2-cycle for a = 8, and verify that
they correspond to the fixed points of the second-iterate function. Before defining
the second-iterate function, let’s define the original function.

>> RM = inline(‘8*x.*exp(-x)’,‘x’)

Now, define the second-iterate function as follows:

>> RM2 = @(x) RM(RM(x))

Note that we have defined our new function in a new way (not using the inline com-
mand). This new method is used to create what are called ‘handles’ on functions,
so that Matlab does not ‘forget’ what the original function was when defining a new
function in terms of the original. This tool is very useful when defining any sort of
composite function. It is also a useful tool when you want Matlab to remember a
parameter. For example, consider the function f(x) = a sin(x). To create a function
handle to this function, where a = 0.9, type

>> a = 0.9;

>> f =@ (x) sin(a*x)

>> f(0)

>> f(pi/2)
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Try defining the same function using the inline method. Notice that you will receive
an error when you try to evaluate the function.

Exercise 8.2.6

(a) Estimate the values of the iterates visited during the 2-cycle observed for
a = 8 from the bifurcation diagram.

(b) Obtain accurate values of these iterates by using your plot traj procedure.

(c) Plot f(f(x)) for a = 8, together with the diagonal line y = x, and verify that
two of the fixed points of the second-iterate function correspond to this same
2-cycle.

In the above exercise, you should have found that the higher iterate of the 2-cycle
lies between 2.6 and 3. We can solve for this iterate, which is one of the fixed points
of the second-iterate map, as follows:

>> fsolve(@(x)RM2(x)-x,3)

solution =

2.7726

Note that fsolve finds only one solution at a time.

Exercise 8.2.7 Find the other nonzero solution we expected, and verify that these
two nonzero solutions together correspond to the 2-cycle at a = 8. (verify that
f(u) = v and f(v) = u, where u and v are the functions found).

8.4 Ordinary Differential Equations: Applications to
an Epidemic Model and a Predator-Prey Model

In a previous section, we studied a model that describes population growth in terms
of discrete time intervals. However, in some cases it is important to know the state
of the system at any time. This can be achieved using differential equations. In
this section, we focus on ordinary differential equations. Recall that an autonomous
ordinary differential equation can be written as

d

dt
x(t) = f(x(t)),

where tR, xRn, and f : Rn → Rn. The left-hand side, dx(t)/dt, is the rate of
change of the state variable x(t) and the right-hand side, f(x(t)), summarizes all
factors which cause a change in x(t) (for example, birth, death, creation, removal,
etc). We will investigate two specific models, one describing the time course of an
infection in a population, and the second describing a simple predator-prey system.
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8.4.1 The SIR Model of Kermack and McKendrick

To obtain the basic epidemic model of Kermack and McKendrick, we split the
population into a class S of susceptible individuals, a class I of infective individuals,
and a class R of recovered or deceased individuals. First, we consider the transition
from class S to class I. Not every encounter between a susceptible and an infective
individual leads to infection of the susceptible. We consider a small time step ∆t,
and we introduce the parameter β, which measures the average number of effective
contacts per unit time per infective individual (an effective contact is one in which
the infection is transmitted from an infective to a susceptible individual). When
an infection is successful, the newly infected individual is removed from the class of
susceptibles, and added to the class of infectives. Thus, in the small time step ∆t,
the change in the number of susceptible individuals, ∆S, is

∆S = −β∆tSI,

and the change in the number of infective individuals, ∆I, is

∆I = β∆tSI.

Dividing both sides of the equations by ∆t and taking the limit as ∆t → 0 gives

Ṡ = −βSI,

İ = βSI.

Next, we consider the transition from class I to class R. Depending on the disease,
infectives either recover (here, we assume that individuals recover with permanent
immunity to the disease), or they die. Both cases lead to the same model. We
assume that the rate of recovery is α. That is, in a time step of ∆t, the number of
individuals that undergo the transition from class I to class R is α∆tI. After the
limiting process, the full model then reads

Ṡ = −βSI,

İ = βSI − αI,

Ṙ = αI.

Note that R is decoupled from the rest of the system (once a solution for I is known,
R is known as well, and R does not feed back onto the equations for S and I). So
it is sufficient to study the first two equations of the model. We won’t be able to
find an explicit solution, giving S, I, and R as functions of time t. A little later,
we will learn how to find solutions numerically. Before we do that, we will look for
solutions in the form I(S), that is, I as a function of S. We have

dI
dS

= dI
dt

dt
dS

= dI
dt

(

dS
dt

)−1
= βSI−αI

−βSI
= −1 + α

βS
.
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We can solve this equation by hand via separation of variables, but we choose
here to use Matlab. First, we tell Matlab about the differential equation.

We begin by defining a function called odefun (in an m-file) as the right-hand
side of the differential equation as follows:

function Iprime = odefun(S,I)

Iprime= -1 + a/(b*S)

Note that we have changed our variables α and β, to a and b respectively (for ease
in programming). Now, save your m-file as odefun.m and close it. Next we will
solve our ODE by setting up the differential equation using one of Matlabs ODE
solvers. Before doing this, type help ode45. You will find the syntax for ode45 is:

[T,Y] = ODE45(’ODEFUN’,TSPAN,Y0);

where T is the independent variable(s) and Y is the dependent variable(s). Tspan
= [T0 T1] is the range of the T you would like to solve over, where T0 is the initial
T, and T1 is the final T. Y0 is the initial condition, and ODEFUN is the name of
the ode function you saved in your m-file (odefun.m).

Before solving the ODE, go back to your m-file and specify values for a and
b. Specifically, edit your file to look like the following:

function Iprime = odefun(S,I)

a = 0.04

b = 0.0002

Iprime= -1 + a/(b*S)

Now, in the command window type

>>[S,I] = ODE45(’odefun’,[1,1000],1);

you should notice a list of values in the command window. These values correspond
to the derivative of the function for the prescribed range of S. To view the plot of
the derivative, type,

>> plot(S,I)

Congratulations. You have plotted a trajectory in the S − I phase plane that
goes through the point (S, I) = (1, 1). What direction should the arrow be on the
trajectory (HINT: does s increase or decrease with time?).

Next, we discuss a second method for solving derivatives using the symbolic
math toolbox. Note that is the previous method we described a way of solving
for the ODES by specifying values for our parameters a and b, as well as an initial
condition. Here, we make use of the dsolve command. This will allow us to solve
for the ODE in terms of unspecified parameters.
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>>I = dsolve(’DI = -1 + a/(b*S)’,’S’)

If you would like, you can also include the condition that the trajectory go through
(S, I) = (1, 1) by typing:

>> I = dsolve(’DI = -1 + a/(b*S)’, ’I(1)=1’ ,’S’)

Exercise 8.4.1
Let I0 denote a number of newly infected individuals in an otherwise suscep-

tible population S0.

(a) Determine the constant C1 such that I(S0) = I0.

(b) Create a Matlab function for I(S) with the appropriate constant of integra-
tion.

(c) Choose some values for the parameters a, b, I0, and S0, and plot the function
I(S) (e.g., choose a = 0.04, b = 0.0002, I0 = 10, S0 = 990). What is an
appropriate domain for your graph (think about the maximum and minimum
number of susceptible individuals during the infection)? Does the infection
progress as you expected?

We would really like to find solutions of the model as a function of time. As
mentioned before, we will not be able to do so explicitly. Solving a system of ODES
explicitly in Matlab is much more simple then solving the system numerically. For
example, consider the system

dx

dt
= 0.3x − y

dy

dt
= 0.4y.

To solve for this system with initial conditions y(0) = 0 and x(0) = 1, using the
dsolve command, type:

>> [x,y] = dsolve(’Dy=0.4*y,Dx=0.3*x-y’,’y(0)=0’,’x(0)=1’,’t’)

You should get back the answer

x =

exp((3*t/10))

y =

0

To solve for a solution numerically, we must go back to our original method for
solving odes and use one of Matlabs ODE solvers. Let’s open a new m-file and
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create a function to numerically solve and plot the system of ODES that we are
interested in. Your m-file should look like the following.

function dy = odefun2(t,y)

a = 0.04

b = 0.0002

dy = [-y(1).*y(2)*b; y(1).*y(2)*b-y(2)*a];

Here, we use the variable dy to denote a 2-dimensional vector, whose first compo-
nent, y(1), corresponds to the differential equation for for S, and whose second
component, y(2), corresponds to the differential equation for I.

Save your m-file as odefun2 and close it. Now we will find and plot an implicit
solution for the system. In the command window, type

>> [t,y]=ode45(’odefun2’,[0,100],[990,10]);

>> plot(t,y(:,1))

Here, we have solved for the system with initial conditions S(0) = 990, and I(0) =
10 (recall that variable S corresponds to y(1), and variable I corresponds to y(2)).
Note that this is only the plot for S vs t. To get the plot for I vs t type

>> plot(t,y(:,2))

To view both plots together type

>> plot(t,y(:,1),t,y(:,2))

Similarly, to plot the phase portrait, S vs I, type

>> plot(y(:,1),y(:,2))

Exercise 8.4.2
Experiment with different values of the model parameters and initial con-

ditions. Try several cases, and verify that there is an epidemic outbreak when
R0 = S0b/a > 1 and no outbreak when R0 < 1.

8.4.2 A Predator-Prey Model

We denote the size of the prey population at time t by x(t) and the size of the
predator population by y(t). We assume that in the absence of a predator the
prey population approaches its carrying capacity as modelled by the logistic law
(Verhulst’s growth model),

ẋ = ax(1 − x/K),

where a > 0 is the per capita growth rate and K > 0 is the carrying capacity. We
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also assume that the predator population cannot survive without prey, and model
this with an exponential decay equation,

ẏ = −dy.

For each encounter of a predator with a prey there is a certain probability that the
prey will be eaten. We apply the law of mass action model and represent removal
of prey by predators as −bxy, where b > 0 is a rate constant. Several successful
hunts by the predator will result in the production of offspring. This is modelled
with a term cxy, where c > 0 is a reproduction rate. In general, b 6= c (why?). We
obtain the following predator-prey model:

ẋ = ax
(

1 −
x

K

)

− bxy

ẏ = cxy − dy.

We nondimensionalize this model by letting τ = at, κ = (cK)/d, g = d/a, u =
(cx)/d, and v = (by)/a, to get

u̇ = u
(

1 −
u

κ

)

− uv,

v̇ = g(u − 1)v.

The steady states of the system satisfy the following algebraic system:

u
(

1 −
u

κ

)

− uv = 0,

g(u − 1)v = 0.

We solve for the steady states with the solve command, for the specific case
κ = 2 and g = 1:

>> eqn=solve(′u*(1-u/2)-u*v=0′, ′1*(u-1)*v=0′, ′u′,′v′)

eqn=

u: [3x1 sym]

v: [3x1 sym]

To view the solution type,

>> [eqn.u,eqn.v]

You should get three steady states, [0,0],[2,0], and [1,1/2]. We wish to determine
the stability of each of the steady states. For this, we need the Jacobian matrix of
the right-hand side of the system of equations, and it is
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Df(u, v) :=

(

1 − 2
u

κ
− v −u

gv g(u − 1)

)

.

We need to evaluate the Jacobian matrix at each of the three steady states
and then determine its eigenvalues to deduce their stability.

The jacobian command gives us exactly what we are looking for (again, we
include the actual values of κ and g.):

>> syms u v

>> desys = [u*(1-u/2)-u*v, 1*(u-1)*v];

>> w = [u,v];

>> jack=jacobian(desys, w);

>> pretty(jack)





1 − u − v −u

v u − 1





The first command, syms, defines the variables you are going to be using. The last
command, pretty, puts the matrix in a nice form.

We define the three matrices m1, m2, and m3 to be the Jacobian matrix evalu-
ated at the three steady states, respectively. The first steady state corresponds to
the point (0,0). Here, we type:

>> m1 = subs(jack,[u,v],[0,0])

Let’s do the same for the next two matrices.

>> m2 = subs(jack,[u,v],[2,0])

>> m3 = subs(jack,[u,v],[1,0.5])

Next, we proceed to find the eigenvalues with the eig command:

>> ev1 = eig(m1)

>> ev2 = eig(m2)

>> ev3 = eig(m3)

Exercise 8.4.3 Verify that the steady states (0, 0) and (2, 0) are saddles, and that
(1, 0.5) is a stable spiral.

Note that if you also are interested in eigenvectors for each eigenvalue, then
you can type, for example
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>> [V,e]=eig(m3)

This will give you two matrices. The columns of the first matrix correspond to the
eigenvectors, and the entries of the second matrix correspond to the eigenvalues.

We can go further and visualize the phase portrait. For this, we first need
to solve the system of differential equations. Since an explicit solution cannot be
found, we will again need to rely on one of Matlab’s ode solvers. In an m-file type:

function dw = odefun3(t,w)

g=1

k=2

dw=[w(1)*(1-w(1)/k)-w(1)*w(2);g*(w(1)-1)*w(2)];

Save your m-file. Now, in the command window type:

>> [t,w1]=ode45(′odefun3′,[0,100],[2,0.8])

>> [t,w2]=ode45(′odefun3′,[0,100],[0.5,0.8])

We now graph the phase portrait defined by the above differential equations
corresponding to the two different initial conditions described above.

>> plot(w1(:,1),w1(:,2),w2(:,1),w2(:,2))

Try including many more initial conditions! The initial condition for the first tra-
jectory, corresponding to the variable w1, is [2,0.8], and the initial condition corre-
sponding to the second variable w2, is [0.5,0.8] (Note: the labels for variables w1
and w2 are arbitrary. You can call them whatever you want!).

8.5 Partial Differential Equations: An
Age-Structured Model

In this section, we consider the age-structured model developed in Section 4.2. We
let u(t, a) denote the density of females with age a at time t.

To derive an evolution equation for u(t, a), we consider the population after
a small time increment ∆t. The change in the number of individuals between the
ages of a and a + ∆a is given by

u(t + ∆t, a) − u(t, a) = u(t, a − ∆a) − u(t, a) − µ(a)u(t, a)∆t.

The first term on the right-hand side of the equation represents the number
of females progressing from the previous age class, the second term represents the
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number of females progressing to the next age class, and the third term represents
the number of females that die, with µ(a) being the age-dependent death rate.
Dividing the equation by ∆t, and applying the usual limiting process, we obtain

∂u(t, a)

∂t
= −

∂u(t, a)

∂a
− µ(a)u(t, a),

or

du(t, a)

dt
=

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µ(a)u(t, a).

Note that since age and time progress at the same rate, we have ∆a = ∆t and
da/dt = 1.

You may recognize the above equation as a transport equation or convection
equation. The partial derivative with respect to a is the transport term, and repre-
sents the contribution to the change in u(t, a) from females getting older (and the
velocity with which females age is 1).

We have a first-order partial differential equation, and we need two conditions
to complete the model. In particular, we need boundary conditions at a = 0 and
t = 0.

The distribution u(0, a) represents the initial age distribution and can be any
nonnegative function. The distribution u(t, 0) represents the newborns, and it is
determined by the biology as follows:

u(t, 0) =

∫

∞

0

b(a)u(t, a) da,

where b(a) is the age-dependent reproduction rate. Thus, the integral repre-
sents the total number of newborns at time t.

Exercise 8.5.1 For most populations, newborn individuals are not immedi-
ately capable of reproduction. So it is natural to expect the lower limit of integration
to be a number bigger than 0. Similarly, for some species, the female population
stops reproduction after a certain age. Discuss the limits of integration in this
context. Why can we integrate from 0 to ∞?

Matlab is capable of handling partial differential equations, as it has built in
PDE solvers. However, to solve this partial differential equation, we are going to
discretize our model, and use Matlab to give us a numerical approximation to the
solution. This method will allow us to get a better understanding of how these
types of solvers work.

For ease of discussion, assume discrete time steps of one year, and let

uj
i := number of individuals with age i at the beginning of year j.
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i

j

(i − 1,  j − 1)

(i, j)

Figure 8.7. Schematic for the discrete approximations of the time and age

partial derivatives.

We choose the discrete versions of the two derivatives in our model according to the
schematic shown in the Figure (8.7):

∂u(t, a)

∂t
= uj

i − uj−1
i ,

∂u(t, a)

∂a
= uj−1

i − uj−1
i−1 ,

so that the discrete version of our model becomes

uj
i = uj−1

i−1 − µiu
j−1
i−1 for i ≥ 1

uj
0 =

n
∑

i=0

biu
j−1
i .

Note that we have accounted for a maximum age of n (for human populations, we
can safely take n = 100).

Defining arrays: a refresher

We are going to develop a numerical simulation of the discrete model. For program-
ming purposes, it will be convenient to use arrays. Recall that, to create the array
V = [0, 1, 4, 9, 16, 25], we type

>> for i = 1:6,

V(i) = (i-1)*(i-1)
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end

For the discrete age-structured model, the age classes run from 0 to n, and so arrays
with indices that run from 1 to n + 1 will be most convenient (note that all arrays
in Matlab start with the index 1, not 0). Just as before, you can use the shift +
enter command to get to a new line when using the command window, so as not
to evaluate before you finish writing the code for the loop.

Creating the simulation for the age-structured model

For our numerical simulation, we begin with a population that is equally distributed
over all age classes. We set up an array for uj

i , and assign a population of 1 to each
age class (obviously, we cannot have a fractional number of individuals, so you
should scale these numbers, that is, uj

i = 1 means 1 million individuals in the
corresponding age class, for example). First, open an m-file and type the following

function y = evolve(N)

Here, we have called our function“evolve”. The variable N will be used as input later
(when we run our simulation) and corresponds to the total number of evolutions we
wish to run our simulation. Each evolution corresponds to 1 year. We now define
the initial population in each age class i by typing (in the same m-file)

for i=1:101

pop(i)=1;

end

To initialize a loop that evaluates the population distribution over a given number
of evolutions j type

for j=1:N

(Note that this loop will not be closed until the very end of the m-file). Next, we
set up an array containing the birth rate for each of the age classes. For the time
being, we assume a birth rate of 7% between the ages of 20 and 35. Again, in the
same m-file write

for i=1:101

birth(i)=0;

end

birthrate = 0.07

for i=21:36

birth(i)=birthrate;

end

Similarly, we set up an array containing the survival rate for each of the age classes.
We assume a death rate of 1% for each age class, equivalent to a survival rate of
99%:
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survivalrate = 0.99

for i=1:101

survival(i)=survivalrate;

end

To let our population evolve over time, we define a loop that calculates the popu-
lation in year j + 1 (newpop) from a population in year j (pop) (note that we start
with the population distribution denoted by the array variable pop, and use it to
calculate a new population 1 year later). First type

for i=2:101

newpop(i)=survival(i)*pop(i-1);

end

Next, to determine the number of newborn (age class 1), type

for i=1:101

A(i)=birth(i)*pop(i);

end

newpop(1)=sum(A);

Here, we have made use of the sum command. This command is used to sum
together all elements in an array. Now, we return the new population by typing

for i=1:101

pop(i)=newpop(i);

end

Now we close the loop corresponding to the year j.

end

Finally, we write our final line of code that will be used to plot the number of
individuals in each age class i of a population and year N:

i=1:101

plot(i,pop,′*′)

xlabel(′Age Class′)

ylabel(′Density′)

Save your m-file as evolve.m and close it.

Running the simulation

Now we have defined all that we need: an array to contain the number of individuals
in each age class in a population, arrays for the birth and survival rates, loops that
update the number of individuals in each age class, and a final line of code to plot
the result. Let’s start the simulation.

First, we plot the initial population. Since N=1, in the command window type
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>> evolve(1)

Now we plot the population after one year:

>> evolve(2)

We can let the population progress several years by typing the following

>> evolve(10)

Try letting the population evolve 50 years. Try 200 years!

Exercise 8.5.2 What do you observe? Describe what happens to the population
as time progresses.

Exercise 8.5.3 Modify the birth and death rates, and study the behaviour of the
population over time. Describe this behaviour in words.


