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STABILITY AND SENSITIVITY ANALYSIS OF THE iSIR MODEL
FOR INDIRECTLY TRANSMITTED INFECTIOUS DISEASES WITH

IMMUNOLOGICAL THRESHOLD∗
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Abstract. Most pathogenic diseases remain epidemic and endemic in the world, causing thou-
sands of deaths annually in less developed countries. Yet, their dynamics are still not fully under-
stood. In this paper, we carry out a thorough stability and sensitivity analysis of an iSIR which
incorporates an infection term that explicitly includes a minimum infection dose (MID), and de-
termine an invariant domain. We discover that if the MID (denoted c) is less than the bacterial
carrying capacity K, we may have two steady states: the endemic or epidemic steady state, and the
disease-free and bacteria-free steady state. The latter is unstable and the former is globally stable
under a certain condition. On the other hand, if c ≥ K, then up to four steady states may exist: an
unstable endemic steady state, a locally stable endemic steady state, a conditionally globally stable
disease-free steady state, and an unstable disease-free and bacteria-free steady state. We find that
to control the period and intensity of the outbreaks, it might be better to focus on the bacterial
carrying capacity rather than on the shedding rates.
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1. Introduction. Infectious diseases are diseases caused by pathogenic microor-
ganisms such as bacteria, viruses, parasites, and fungi. They can be spread either
directly or indirectly. Direct transmission occurs when there is physical contact be-
tween an infected and a susceptible person. Examples of infectious diseases trans-
mitted directly include common cold, scabies, and sexually transmitted diseases. In-
direct transmission on the other hand, occurs when a susceptible individual comes
into contact with a contaminated reservoir. Such diseases can be viral in nature,
like rotavirus disease or hantavirus pulmonary syndrome [14, 29]; bacterial, such as
cholera or legionellosis [1]; or parasitic, such as schistosomiasis, cryptosporidiosis or
giardiasis [6, 12, 16]. The study of diseases spreading through human populations
has received attention from mathematicians since the seminal papers of Kermack
and McKendrick in the 1920s [31]. However, such attention has mostly been con-
fined to diseases which spread directly. Among the few existing models for indirectly
transmitted pathogenic diseases, the main ones that make use of ordinary differential
equations are those built upon the Cappasso and Paveri-Fontana model [30] and the
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ANALYSIS OF THE iSIR MODEL 1419

Codeço model [2]. While the Capasso and Paveri-Fontana model [30] consisted of
two equations, with one for the infected compartment and the other for the aquatic
pathogen community, Codeço included the susceptible population and the recovered
population in the model as well. Denote S, I, and R as the susceptible, infected, and
recovered compartments from standard SIR models. The recovered compartment is
not stated explicitly, as the population is assumed to be of constant size and so the
dynamics of the recovered compartment follow directly from the rest of the system
noting that H = S + I +R, where H is the total population. The model is written

Ṡ = n(H − S)− aλ(B)S,

İ = aλ(B)S − rI,

Ḃ = B(nb −mb) + eI.

The birth and death rate are the same and denoted n. The parameter r represents
recovery rate, and includes natural recovery and death. The pathogens have a net
growth rate of proliferation nb minus mortality mb, and human contamination in-
creases pathogen levels at a rate e proportional to the size of the infected class. The
infective term consists of the maximum rate of exposure to contaminated water, a,
multiplied by λ(B) = B

K+B which is a Holling-II response curve. The use of such a
term would overestimate the infectivity of low levels of pathogens, contrary to the
idea of a minimum infectious dose, which we think is important.

Key features of the model are that the aquatic reservoir is represented very simply
with a linear growth term and linear shedding contribution. This was because the
ecological dynamics of the pathogen were not well understood at the time (they are
still not completely understood), so Codeço started with the simplest way to model
the pathogen population. Unless net growth is naturally zero (nb = mb), the bacterial
population will die out exponentially in the absence of human shedding if nb < mB,
or tend to infinity if nb > mb.

Hartley, Morris, and Smith [3] incorporated a hyperinfectious route of transmis-
sion to the Codeço model and Joh et al. [25], Tian and Wang [9], Jensen et al. [13],
and Mukandavire et al. [32] have further built on and branched off from these models.

Joh et al.’s [25] model differs from the other models in that it takes into account
the fact that pathogens have to enter the human body in higher concentrations to
overwhelm the natural immune response [10] by incorporating a minimum infection
dose (MID) into the incidence term. This MID is the rescaled value of the number of
pathogens required to override the body’s immune response. The infection term is a
piecewise continuous function which is zero below the minimum infectious dose and
a Holling-II response curve above this threshold. Joh et al. analyzed the stability of
this model, but could not carry out all the essential stability and sensitivity analyses.
In this paper we carry out a thorough stability and sensitivity analysis on the Joh
et al. model. We show that if the bacterial population (B) is less than or equal to
the ratio of the MID (denoted c) to the bacterial carrying capacity K, then we can
only have an unstable disease-free and bacteria-free steady state; whereas if B > c/K
and c < K we could have an unstable disease-free and bacteria-free equilibrium and a
conditionally globally stable endemic or epidemic steady state. Else if B > c/K and
c ≥ K then we may have up to four steady states: an unstable endemic steady state, a
locally stable endemic steady state, a conditionally globally stable disease-free steady
state, and an unstable disease-free and bacteria-free steady state. Furthermore, we
will show using sensitivity analysis that to control the frequency of the outbreaks and
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1420 JUDE D. KONG, WILLIAM DAVIS, XIONG LI, HAO WANG

the number of person that might be infected, it will be nice to focus on bacterial
carrying capacity rather than on the shedding rate.

2. iSIR model formulation. One of the key differences of the iSIR model,
proposed in Joh et al. [25], compared to standard SIR models is the incidence term.
The rough idea is that humans consume bacteria constantly but do not always get
sick. Unlike with viruses where only a small amount of exposure is required, for
certain types of bacteria a significant amount of bacterial cells need to be ingested in
order to override the body’s immune response [10]. This threshold has been measured
by the likes of Cash et al. [22] and others [7, 15, 23] to be at least 104 cells. Simply
using Holling-I (or mass action) infection terms or Holling-II terms overestimates
the infectivity of low levels of bacteria, since the standard Holling-I and Holling-II
functions assume people will be infected with infinitesimally small densities of aquatic
pathogens.

The incidence term used in this paper is α(B)S, where α(B) is the pathogen
density dependent component, and the S term is present for the same reasons as with
standard SIR models. The indirect part of the incidence term is defined as

α(B) =

{
0, B < c,
a(B−c)

(B−c)+H , B ≥ c.

When the pathogen density is below a rescaled level corresponding to the MID,
there will be no infections even with a nonzero amount of susceptibles, and after
the bacterial density is above that threshold, infections will occur via a Holling-II
response, as shown in Figure 1.

0
B value

α

Bacteria Density component of Infection term α (B) S

C

Fig. 1. If bacterial levels are beneath the threshold c, α(B) is zero (no infections). If bacterial
levels are above c, then α(B) is a Holling-II curve.

As pathogens exist naturally in the aquatic environment, the iSIR model uses
logistic bacterial growth in the absence of any infected people, in contrast to most
other models which have linear terms for the pathogen growth and death [2, 3, 8]. The
latter leads to exponential decay in the absence of infectives, which is consistent as
many of those models assume that the aquatic reservoir of pathogens is not relevant
to the cause of outbreaks, and so only the short term dynamics of freshly shedded
pathogens are considered. In nonendemic areas, where the pathogen does not natu-
rally exist in the environment, the linear form of the pathogen growth makes more
sense than logistic growth, as used by Mukandavire et al. [32] in a study on recent
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outbreaks of cholera in Zimbabwe. However, most models are intended for endemic
areas.

The iSIR model has a positive contribution to the bacterial level when there are
sick people shedding pathogens back into the reservoir. This occurs biologically with
infected individuals contaminating the water supply through their pathogen laden
feces. The dynamics are summarized in Figure 2.

Fig. 2. A flow diagram demonstrating the relationship between susceptibles (S), infectives (I),
recovered (R), and pathogen (B). Humans have death rate μ, contribute to the pathogen reservoir at
rate ξ, recover at rate δ, and are infected at rate α(B).

The variables S, I, and R in Figure 2, are defined in the usual way as susceptible,
infected, and recovered categories of the human population. The variable B represents
the density of the pathogens in the aquatic reservoir. The first three equations sum
to zero, thus the human population is of constant size. The equations for the model
are as follows:

dS

dt
= −α(B)S − μS + μN,(1a)

dI

dt
= α(B)S − μI − δI,(1b)

dR

dt
= δI − μR,(1c)

dB

dt
= rB

(
1− B

K

)
+ ξI,(1d)

N = S + I +R.(1e)

This model was first proposed in Joh et al. [25], though the analysis was preliminary
and here we will present a thorough examination of its dynamics. For numerical
simulations, the values of the parameters described in Table 1 are taken from the
literature. The large variations of the key parameter values for certain waterborne
diseases are given in Table 2. Note that the ranges given in the second column of
Table 2 are different from the pathogen shed rate ξ in Table 1. The pathogen shed
rate is the number of pathogens shed by an infected per day divided by the total
water volume of the reservoir (in liters).
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Table 1

Model parameters.

Parameter Description Dimension
r Maximum per capita pathogen growth efficiency day-1

K Pathogen carrying capacity cell liter-1

H Half-saturation pathogen density cell liter-1

a Maximum rate of infection day-1

δ Recovery rate day-1

ξ Pathogen shed rate cell liter-1 day-1

μ Per capita human birth/death rate day-1

N Total population persons
c MID cell liter-1

Table 2

Key parameter values for certain waterborne diseases.

Disease Number of
pathogens shed by
an infected/day
(pathogen/day)

MID Typical concentration
(pathogen/liter)

Cholera 1011 − 1012 [7] 103 − 106 [15, 27] 10− 103 [21]

Cryptosporidiosis 108 [25] 100− 300 [4] 1− 5 [17]

Giardiasis 108 − 109 [24] 10− 100 [24] 1− 5 [17]

Rotavirus disease 1012 − 1013 [20] 100 [25] 10− 1000 [26]

3. Mathematical results. We can nondimensionalize the system as follows:

S =
S

N
, I =

I

N
,B =

B

K
,

τ = μt,A =
a

μ
,C =

c

K
,p =

μ+ δ

μ
,q =

ξN

μK
,R =

r

μ
,λ =

H

K
.

We redefine the per capita infection rate α accordingly as

α(B) =

{
0, B < C,
A(B−C)
(B−C)+λ , B ≥ C.

The boldface is now dropped and we arrive at the following nondimensionalized iSIR
system:

dS

dτ
= −α(B)S − S + 1,(2a)

dI

dτ
= α(B)S − pI,(2b)

dB

dτ
= RB(1−B) + qI.(2c)

3.1. Forward invariance. First note that in dimensional terms, if S = 0, then
Ṡ = N > 0 and so S(t) > 0 for t > 0. If I = 0, then İ = α(B)S and because α(B) ≥ 0
by definition, then I ≥ 0 as well. The third equation of (2.1) gives us that Ṙ = δI
when R = 0, thus R(t) ≥ 0. As S + I +R = N , we get that S, I, R ≤ N in the usual
way. This transfers over to the nondimensional quantities of S, I, and R, the last of
which we typically exclude. We have that 0 ≤ S + I ≤ 1 in particular.
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Fig. 3. The derivative of the bacteria vs. bacterial population. When above Bmax, the deriva-
tive becomes negative. When B is zero, the derivative is positive.

Once again we drop the boldface for convenience. Looking at the third equation of
the nondimensional system we can make note that RB(1−B)+qI ≤ RB(1−B)+q as

I ≤ 1. Define F (B) := RB(1−B) + q which has roots B1,2 =
R±

√
R2+4Rq

2R and note

the smaller root B1 =
R−

√
R2+4Rq

2R < 0 because of the positivity of the parameters.

The other root B2 is clearly positive and is denoted as Bmax =
R+

√
R2+4Rq

2R > 1.

The graph of F (B) is pictured in Figure 3. When B = 0, we see that Ḃ = qI and
thus B(τ) ≥ 0 for τ > 0. If B(0) ∈ [0, Bmax) then B(τ) ∈ [0, Bmax) for any τ > 0.
The invariant region is pictured in Figure 4 and we summarize with a proposition.

Proposition 3.1 (feasible region). The set

Ω = {(S, I, B) : 0 < S + I ≤ 1, 0 ≤ B ≤ Bmax, S > 0 and I ≥ 0}

defines a forward invariant region of system (3.1).

Fig. 4. The forward invariant region of system (3.1).D
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1424 JUDE D. KONG, WILLIAM DAVIS, XIONG LI, HAO WANG

3.2. Equilibria of the system. Clearly E0 = (1, 0, 0) is a steady state of (3.1)
and biologically it corresponds to a disease-free and bacteria-free population. When
C ≥ 1, i.e, when the in-reservior pathogen density is less than or equal to the rescaled
MID, this means ᾱ(1) = 0 and E1 = (1, 0, 1) is an equilibrium corresponding to a
disease-free state with bacteria at carrying capacity. When C < 1, i.e, when the
in-reservior pathogen density is greater than the rescaled MID, we get that α(1) �= 0
and so E1 = (1, 0, 1) is not an equilibrium and (3.1) has no equilibrium (S∗, I∗, B∗)
with B∗ ≤ C except E0. The more complicated steady state E∗ = (S∗, I∗, B∗) arises
when B∗ > C which causes α(B∗) �= 0. Thus, system (3.1) implies that

S∗ =
B∗ − C + λ

(A+ 1)(B∗ − C) + λ
,

I∗ =
1

p

(
A(B∗ − C)

(A+ 1)(B∗ − C) + λ

)
=

R
q
B∗(B∗ − 1).

The expressions for I∗ can be combined to form the equation

B∗(B∗ − 1)

(
B∗ −

(
C − λ

A+ 1

))
=

q

pR
A

A+ 1
(B∗ − C).(3)

Define F1(B) = f(B) − g(B), where f(B) = B(B − 1)
(
B − C + λ

A+1

)
and g(B) =

q
pR

A
A+1 (B − C). Denote B3 = C − λ

A+1 so that if C < 1 we see that

F1(B3) =
q

pR
A

A+ 1

λ

A+ 1
> 0,

F1(C) = C(C − 1)

(
λ

A+ 1

)
− 0 < 0.

Therefore there exists a root B1 ∈ (B3, C). However, as B1 < C then ᾱ(B1) = 0
and (3) does not apply. We have that f(0) = 0 and g(0) < 0 =⇒ f(0) > g(0) =⇒
F1(0) = f(0) − g(0) > 0. For B = b � 0 we have that f(b) < 0, g(b) < 0, and
f(b) < g(b) =⇒ F1(b) = f(b) − g(b) < 0. Since F1(0) > 0 and F1(b) < 0 for b � 0
and F1 is continuous on (0, b), using the Intermediate Value Theorem (IVT) we can
find a B̄2 ∈ (0, b) such that F1(B̄2) = 0. Since B̄2 < 0, it is not in the feasible region
for Ω. Lastly,

F1(1) = − q

pR
A

A+ 1
(1 − C) < 0,

F1(Bmax) = (Bmax − C)

[
q

R − q

R
1

p

A

A+ 1

]
+

q

R
λ

A+ 1
> 0.

The latter is true as p > 1, Bmax > 1, and thus we conclude that there exists
B∗ ∈ (1, Bmax) when C < 1 and it is the unique positive solution to (3), giving us a
unique interior equilibrium E∗ = (S∗, I∗, B∗).

Note that limC→1− B∗(C) = 1, as the x-intercept of g(B) is 1 when C → 1−

and f(1) = 0. As C increases over the value 1, E∗ becomes E1 or vice versa if C is
decreased.

We conclude that when C ≥ 1, f(B) and g(B) are as in Figure 5 and there are
0, 1, or 2 roots of (3) with bacterial values greater than the MID (C). For these values
of B+

1,2, we find S+
i and I+i in the same way as with E∗, leading us to two distinct

equilibria E+
1,2.
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0 1 C 2 3
−2

0

2

4

B (bacteria)

 

 

f(B)
g(B)

Fig. 5. The left- and right-hand sides of (3) when C ≥ 1. There can be 0, 1, or 2 intersections
with bacterial values above the MID.

As C is greater than 1, it is larger than all of the roots of f(B). Thus, f(B) is
concave up on [C,∞) and f ′(B) ≥ f ′(C) > 0 for B ∈ [C,∞). If the slope of g(B)
is less than f ′(C), there will be no endemic equilibria, as g(B) will always be below
f(B) and there will be no intersections. Defining ζ = q

pR and working backwards, we
see that

ζ < f ′(C)

=⇒ ζ
A

A+ 1
< f ′(C)

=⇒ g′(B) < f ′(C),

meaning that

ζ < f ′(C)(4)

is a sufficient condition for there being no internal equilibria when C ≥ 1. In dimen-
sional parameters, ζ =

(
ξN
μ+δ

)(
μ
rK

)
, and so ζ is proportional to the shedding rate ξ.

This motivates the definition of the condition for no internal steady states, as we shall
see later. We summarize with a proposition.

Remark 3.2 (biological interpretation of ζ). ζ =
(

ξN
μ+δ

)
/
(
1
μ (rK)

)
is the ratio of the

average number of pathogens shed over the time course of infection if all individuals
were infected to the average number of pathogens reproduced in the reservoir over the
time course of an uninfected individual.

Proposition 3.3 (existence of equilibria). The equilibrium E0 = (1, 0, 0) always
exists in Ω.

• When C < 1 (equivalently, c < K), i.e, when the in-reservior pathogen density
is greater than the rescaled MID, there exist two equilibria, E0 on ∂Ω and a
unique endemic equilibrium E∗ in Ω̊.

• When C ≥ 1 (equivalently, c ≥ K), i.e, when the in-reservior pathogen den-
sity is less than or equal to the rescaled MID, then E1 = (1, 0, 1) is also an
equilibrium and there can be up to two internal equilibria E+

1,2.
– If ζ < f ′(C), there are no internal equilibria, and only E1 and E0 exist.
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3.3. Local stability of E0, E1, and E∗. We calculate the Jacobian to analyze
the local stability of each of the equilibria. For the simpler case of B ≤ C,

J1(S, I, B) =

⎛
⎝ −1 0 0

0 −p 0
0 q R− 2RB

⎞
⎠ ,

and for B > C,

J2(S, I, B) =

⎛
⎜⎝

−A(B−C)
(B−C)+λ − 1 0 −Aλ

[(B−C)+λ]2S
A(B−C)
(B−C)+λ −p Aλ

[(B−C)+λ]2S

0 q R− 2RB

⎞
⎟⎠ .

When C ≥ 1, the equilibria are E0 = (1, 0, 0), E1 = (1, 0, 1), and up to two E+
i =

(S+
i , I+i , B+

i ). For C ≥ 1, we use J1 and find that E0 has eigenvalues −1,−p, and
R, which indicates that E0 is a saddle-point equilibrium, as all parameter values are
assumed positive. E1 in this case has eigenvalues −1,−p, and −R and thus we can
conclude that when C ≥ 1, the equilibrium (1, 0, 1) is locally asymptotically stable,
that is, the disease-free equilibrium is locally asymptotically stable. Also, for C < 1,
E0 is a saddle-point equilibrium for the same reasons.

Now considering E∗ and using the nondimensionalized system (3.1), we obtain

S∗ =
B∗ − C + λ

(A+ 1)
(
B∗ − C + λ

A+1

) =
B∗ − C + λ

(A+ 1)
(

q
pR

A
A+1 (B

∗ − C) 1
B∗(B∗−1)

) ,
S∗ =

pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ).

We will use γ for eigenvalues as the traditional λ is already used elsewhere. We can
compute

det(γI − JE∗) = det

⎛
⎜⎝γ +

A(B∗−C)
(B∗−C)+λ + 1 0 Aλ

[(B∗−C)+λ]2S
∗

−A(B∗−C)
(B∗−C)+λ

γ + p −Aλ
[(B∗−C)+λ]2

S∗

0 −q γ +R(2B∗ − 1)

⎞
⎟⎠

=

(
γ +

A(B∗ −C)

B∗ −C + λ
+ 1

)[
(γ + p)(γ +R(2B∗ − 1))− Aλq

(B∗ − C + λ)2
S∗

]

+
A2λq

(B∗ − C + λ)3
(B∗ −C)S∗.

Define F2(γ) := det(γI−JE∗), h := A B∗−C
B∗−C+λ+1, and m := Aλq

(B∗−C+λ)2S
∗. Later

we will make use of the following alternate forms of these definitions:

h = A

(
B∗ − C

B∗ − C + λ
+

1

A

)
=

(A+ 1)(B∗ − C) + λ

B ∗ −C + λ
> 1

and

m =
Aλq

(B∗ − C + λ)2
pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ) = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗.
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We can rewrite the characteristic equation with these new expressions taken into
account as follows:

F2(γ) = (γ + h)[(γ + p)(γ +R(2B∗ − 1))−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

= (γ + h)[γ2 + (R(2B∗ − 1) + p)γ + pR(2B∗ − 1)−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

= {γ3 +R(2B∗ − 1 + p)γ2 + [pR(2B∗ − 1) −m]γ + hγ2 + h(R(2B∗ − 1) + p)γ

+ [pR(2B∗ − 1) −m]h}+ A2λq

(B∗ −C + λ)3
(B∗ − C)S∗.

The Routh–Hurwitz coefficients of the above expression are

b3 = 1,

b2 = R(2B∗ − 1) + p+ h,

b1 = pR(2B∗ − 1)− b+ h(R(2B∗ − 1) + p),

b0 = [pR(2B∗ − 1)− b]h+
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗,

and note that the Routh–Hurwitz stability criterion requires

b1, b2, b3 > 0 and b2b1 > b3b0

as a sufficient condition for stability of the equilibrium. Clearly b2 and b3 are positive,
and if pR(2B∗ − 1) −m > 0 then b1, b0 > 0. As C < 1 for the internal equilibrium
E∗ to exist, B∗ − 1 < B∗ − C so that B∗−1

B∗−C < 1.
Thus

m = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗ < pRB∗

and so

pR(2B∗ − 1)−m > pR(2B∗ − 1)− pRB∗ = pR(B∗ − 1) > 0,

which means b1, b0 > 0.

As for the second condition b2b1 > b3b0, we have the following expression

b1b2 = [(h+ p)R(2B∗ − 1) + hp−m][R(2B∗ − 1) + (p+ h)]

= (h+ p)R2(2B∗ − 1)2 + (h+ p)2R(2B∗ − 1) + (hp−m)R(2B∗ − 1)

+ (h+ p)(hp−m).

We can define

B1 = 2hpR(2B∗ − 1)− hm,

B2 = pR2(2B∗ − 1)2 −mR(2B∗ − 1),

B3 = p2R(2B∗ − 1)− pm,

B4 = hR2(2B∗ − 1)2 + h2R(2B∗ − 1) + h2p+ hp2 + hpR(2B∗ − 1).
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1428 JUDE D. KONG, WILLIAM DAVIS, XIONG LI, HAO WANG

Using the definition of S∗, we can express

b3b0 = b0

= [pR(2B∗ − 1) −m]h+
A2λq

(B∗ − C + λ)3
(B∗ − C)

pR
Aq

B∗

B∗ −C
(B∗ − 1)(B∗ − C + λ)

= [pR(2B∗ − 1) −m]h+AλpR B∗

(B∗ −C + λ)2
(B∗ − 1).

Now we check to see if the inequality b1b2 > b0 is satisfied by noting that

(B∗ − C)(2B∗ − 1) > (B∗ − 1)B∗

⇒ B∗ − C

B∗ − C + λ
(2B∗ − 1) +

1

A
(2B∗ − 1) > (B∗ − 1)

B∗

B∗ − C + λ

⇒ ApR
(

B∗ − C

B∗ − C + λ
+

1

A

)
(2B∗ − 1) > ApR(B∗ − 1)

B∗

B∗ − C + λ

⇒ hpR(2B∗ − 1) > ApRλ(B∗ − 1)
B∗

(B∗ − C + λ)2

⇒ 2hpR(2B∗ − 1)− hm > hpR(2B∗ − 1) +ApRλ
B∗

(B∗ − C + λ)2
(B∗ − 1)− hm.

The left-hand side of the above inequality is precisely B1 and the right-hand side is
b0. Recall that m < pRB∗, and so

pR2(2B∗ − 1)2 −mR(2B∗ − C) > pR2(2B∗ − 1)2 − pR2B∗(2B∗ − 1) > 0

and

p2R(2B∗ − 1)− pm > p2R(2B∗ − 1)− p2RB∗ = p2R(B∗ − 1) > 0.

Thus B2, B3 > 0 and clearly B4 > 0. Lastly,

b1b2 =

4∑
1

Bi > B1 > b0.

Thus the Routh–Hurwitz conditions are satisfied and E∗ is locally asymptotically
stable.

3.4. Local stability of E+
1,2. When E+

i exists, things are more complicated
as we lack exact expressions for the equilibrium quantities, and so the local stability
is difficult to find analytically. Numerically, it can be demonstrated that E+

1 (with
B+

1 < B+
2 ) is a saddle, and E+

2 is attracting. For example, this can be seen with
parameters A = 1e3, C = 2, p = 10, q = 1e3,R = 30, and λ = 1,. With these
parameters E+

1 and E+
2 both exist and are given as E+

1 = (0.3986, 0.0601, 2.0015) and
E+

2 = (0.0036, 0.0996, 2.3898). The eigenvalues corresponding to these steady states
are γ1 = (−0.9969, 580.8379,−682.4401), γ2 = (−292.1109,−10.6368,−102.1349).

The equilibria E1 and E+
2 are both locally stable and a situation of bistability

occurs, as observed in Figure 6(a). Almost every solution approaches either the en-
demic equilibrium or the disease-free equilibrium, depending on initial conditions.
Numerically we observe that the basin of attraction is much larger for the endemic
equilibrium E+

2 , meaning that a greater range of initial conditions will lead to an
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Fig. 6. Trajectories in the phase space for C > 1 and B∗ ≥ C. Stable equilibria are marked
as • while unstable equilibria are marked as ◦. (a) ζ < f ′(C) (ζ = 0.5, f ′(C) = 2.0297). Only
two equilibrium points exist: a saddle E0 and an attracting equilibrium E1, the number of infected
persons goes to zero as t → ∞. The values used for the parameters are as follows: A = 100, C = 2,
p = 10, q = 100, R = 20, λ = 1 (original parameter values are δ = 9 × 10−4, K = 1 × 106,
a = 0.01, H = 1 × 106, c = 2 × 106, N = 1 × 106, r = 0.002, μ = 1 × 10−4, ξ = 0.01). (b) ζ
is sufficiently larger than f ′(C) (ζ = 3.3333, f ′(C) = 2.0030). Four equilibrium points exist: two
saddle equilibrium points E+

1 and E0 and two attracting equilibrium points E1 and E+
2 . The values

used for the parameters are as follows: A = 103, C = 2, p = 10, q = 103, R = 30, λ = 1 (original
parameter values are δ = 9× 10−4, K = 1× 106, a = 0.1, H = 1× 106, c = 2 × 106, N = 1× 106,
r = 0.003, μ = 1× 10−4, ξ = 0.1).

endemic steady state rather than a disease-free one. So, E0 is locally unstable, E1

and E∗ are locally stable when they exist, and numerically we see that E+
1 is unsta-

ble and E+
2 is attracting. We summarize the preceding local stability results with a

theorem.
Theorem 3.4 (local stability). System (3.1) has between two and four equilibria.
• When C < 1 (equivalently, c < K), E0 = (1, 0, 0) is unstable and a unique
endemic equilibrium E∗ exists and is locally asymptotically stable.

• When C ≥ 1 (equivalently, c ≥ K), then E0 = (1, 0, 0) is unstable and
E1 = (1, 0, 1) is an equilibrium and is locally asymptotically stable. Up to two
internal equilibria, E+

1,2, can also exist.

3.5. Global stability of E1 and E∗. We wish to invoke a theorem of H.
Smith in regards to monotone dynamical systems and global stability. Because of the
threshold parameter, the Jacobian of (3.1) will have two different forms with α(B) = 0
or not. Either way, the Jacobian is of the form

J(S, I, B) =

⎛
⎝∗ + −
+ ∗ +
− + ∗

⎞
⎠,

which is sign stable and sign symmetric in the off-diagonal entries. As demonstrated
in Figure 7, every closed loop has an even number of edges with + signs and so the
system is monotone, as defined on page 49 in [5], in Ω with respect to the partial
ordering

Km = {(S, I, B) : S ≥ 0, I ≤ 0, B ≥ 0}.(5)D
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Fig. 7. The relationship between the three main compartments in the model.

Our argument is as follows: an application of monotone dynamical system theory
states that if system (3.1) has a positive periodic orbit in domain Ω, then there exists
an unstable equilibrium in Ω (Proposition 4.3, p. 44, in [5]). When C ≥ 1 and
condition (4) is satisfied (ζ < f ′(C)), then there are only E0 and E1, neither of which
is an interior equilibrium. Hence system (3.1) will not have any periodic orbits in Ω.
As (3.1) is competitive, it reduces to a two-dimensional system [5]. Because of the
absence of limit cycles and by the Poincaré–Bendixson theory, the local stability of
E1 implies that E1 is globally asymptotically stable.

Define

H1 = {(S, I, B) : B ≤ C, 0 < S + I ≤ 1},
H2 = {(S, I, B) : C < B < Bmax, 0 < S + I ≤ 1},

and note that H1 ⊂ Ω, H2 ⊂ Ω with Ω = H1

⋃
H2. We will show that when C ≥ 1

and ζ < f ′(C), after some τ0 all solutions will stay entirely in H1 and we can apply
our argument about the global asymptotic stability of E1.

First we require a result from Smith [5] about competitive systems noting first
that �m and ≤m are order relations with respect to Km defined in (5).

Lemma 3.5 (Proposition 4.3, p. 44, in [5]). Let γ be a nontrivial periodic orbit of
a competitive system in D ⊂ R

3 and suppose there exist p, q ∈ D such that p �m q and
[p, q] = {y ∈ D : p ≤m y ≤m q} ⊂ D. Then W is an open subset of R3 consisting of
two connected components, one bounded and one unbounded. The bounded component,
W (γ), is homeomorphic to the open ball in R

3. W (γ) ⊂ [p, q], is positively invariant,
and its closure contains an equilibrium.

Now we require some results about the behavior of solutions of (3.1) with respect
to H1 and H2.

Lemma 3.6. If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) =
(S(τ), I(τ), B(τ)) of (3.1), if there exists some τ0 such that x(τ0) ∈ H2, then there
exists some τ1 > τ0 such that x(τ1) ∈ H1.

Proof. Assume x(τ) ∈ H2 for some τ = τ1. Assume for contradiction that
x(τ) ∈ H2 for all τ > τ1. Then by the monotone dynamical systems (MDS) theory
we can reduce this three-dimensional system to a two-dimensional system, as it is
competitive, and by the Poincaré–Bendixson theorem we can conclude all omega limit
sets are limit cycles or equilibria.

As there is not an interior equilibria in H2, we can conclude by Lemma 3.5 that
there are not any limit cycles in H2. As there are also no equilibria of any type in
H2, we conclude that x(τ) exits H2 at some τ2 > τ1. This contradicts our assumption
that x(τ) ∈ H2 for all τ > τ1 and our Lemma is proven.
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Lemma 3.7. If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) of (3.1), if there
exists s0, s1 such that s1 > s0, where x(s0) ∈ H2 and x(s1) ∈ H1, then x(τ) ∈ H1 for
τ > s1.

Proof. Suppose there exists s0 and s1, 0 < s0 < s1 such that x(s0) ∈ H2 and
x(s1) ∈ H1. There exists τ0 ∈ (s0, s1) such that B(τ0) = C and Ḃ(τ0) < 0. Suppose
there exists τ1 > τ0, where B(τ1) = C, Ḃ(τ1) > 0, meaning that x(t) is reentering H2.
Choose the first such time τ1 and note

Ḃ(τ1) = RC(1 − C) + qI(τ1) > 0,

Ḃ(τ0) = RC(1 − C) + qI(τ0) < 0.

This means that I(τ1) > I(τ0) but B(τ) ≤ C on τ0 < τ < τ1 and so İ = −pI < 0.
This is a contradiction, so there can be no such τ1 as supposed and the lemma is
proven.

Thus no solutions can stay in H2 as τ → ∞ and once H1 is entered from H2, H1

is forward invariant. This captures the behavior of all solutions x(τ).
We can now conclude that E1 is globally asymptotically stable.
Proposition 3.8 (global stability of E1). When C ≥ 1 and ζ < f ′(C), E1 =

(1, 0, 1) is an equilibrium of (3.1) and it is globally asymptotically stable.
Proof. When C ≥ 1 and ζ < f ′(C), by Lemmas 3.6 and 3.7, all solutions eventu-

ally exist entirely in H1 and as there are no interior equilibria (because ζ < f ′(C)), by
Lemma 3.5 there are no limit cycles in H1. MDS theory says that (3.1) reduces to a
two-dimensional system, and so by the Poincaré–Bendixson theorem all omega-limit
sets are limit cycles or equilibria. As there are no limit cycles in H1 and no interior
equilibria, by the local stability of E1, we conclude that it is globally asymptotically
stable.

Now we consider the global stability of E∗. As (3.1) is monotone, it verifies the
Poincaré–Bendixson property: every compact omega-limit set without equilibria is a
closed orbit. For systems with this property, a criterion on global stability has been
developed by Li, and Muldowney [18] and Li and Wang [19]. Note that the second
additive compound of a 3× 3 matrix, A = [aij ], is denoted A[2] and defined

A[2] =

⎡
⎣a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

⎤
⎦ .

Lemma 3.9 (Theorem 2.5 in [19]). Let ẋ = F (x)(F ∈ C1) be a system defined on
an open convex subset G ⊂ R

3 having a compact global attractor in G. Assume that
1) the Poincaré–Bendixson property holds;
2) there is a unique equilibrium in G which is locally asymptotically stable;
3) for each periodic orbit p(t) in G, the linear system

Ẏ =
∂F [2]

∂x
(p(t))Y

is asymptotically stable.
Then the equilibrium is globally asymptotically stable in G.

In order to apply this result, we have to study the asymptotic stability of the
linear equation

Ẏ = J [2](p(t))Y,(6)
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where p(t) is any periodic solution of (3.1) in Ω. Given our definition of JE∗ , the
second additive compound of JE∗ is

J [2] =

⎛
⎝ −f0(B)− 1− p f ′

0(B)S f ′
0(B)S

q −f0(B)− f ′
1(B)− 1 0

0 f0(B) −p− f ′
1(B)

⎞
⎠ ,

where f0(B) = A(B−C)
B−C+λ and f ′

1(B) = 2RB −R.
Typically verifying the stability of such a system is nontrivial, but for (6) we have

a linear, periodic, cooperative, irreducible system with respect to the cone

K1 = {(S, I, B) : S ≥ 0, I ≥ 0, B ≥ 0}
which suggests we use a comparison result.

Lemma 3.10 (Proposition 3 in [11]). Let Ẏ = Ai(t)Y for i = 1, 2 be two lin-
ear, periodic, cooperative, and irreducible systems (with the same period) such that
A2(t)−A1(t) has nonnegative coefficients. If Ẏ = A2(t)Y is asymptotically stable, then
Ẏ = A1(t)Y is too.

For our case, obviouslyA1 = J [2](p(t)) and for A2 we choose a constant matrix
whose entries bound those of A1 independently of the periodic orbit and denote the
matrix J̄ where

J̄ =

⎛
⎝ −1− p− f0(1) f ′

0(1) f ′
0(1)

q −f0(1)− f ′
1(1)− 1 0

0 f0(Bmax) −p− f ′
1(1)

⎞
⎠ .

The characteristic equation, P (γ), of J̄ is

P (γ) = [γ+1+p+f0(1)][γ+1+f0(1)+f ′1(1)][γ+p+f ′1(1)]−qf ′0(1)[γ+p+f ′1(1)+f0(Bmax)].

Expanding this out we can write

P (γ) = a3γ
2 + a2γ

2 + a1γ + a0

with coefficients

a3 = 1,

a2 = 2(1 + p+ f0(1) + f ′
1(1)),

a1 = [2 + 2f0(1) + p+ f ′
1(1)](p+ f ′

1(1)) + [1 + p+ f0(1)](1 + f0(1) + f ′
1(1))− qf ′

0(1),

a0 = [1 + p+ f0(1)](1 + f0(1) + f ′
1(1))[p+ f ′

1(1)]− qf ′
0(1)[p+ f ′

1 + f0(Bmax)].

To use the Routh–Hurwitz conditions, we require that ai > 0 and that a1a2 >
a3a0. First, we consider the positivity of the coefficients. Only the positivity of a1
and a0 require checking:

a0 > p+ pf ′
1(1) + p2f ′

1(1) + pf ′
1(1) + pf ′

1(1)f
′
1(1) + f ′

1(1)f
′
1(1)

− qAλ−1(p+ f ′
1(1) +A))

= (p+ 1)2f ′
1(1) + p2 + p+ pR2 +R2 − qAλ−1(p+ f ′

1(1) +A)).

Noting that f ′
1(1) = R = r

μ it is reasonable to assume that R > 1 as μ is the human

birth/date rate and will be very small. Also r, the maximum bacterial growth rate,
is often greater than 1. Finally, by definition p > 1, thus

a0 > (p+ 1)2R+ p2 + p+ pR2 +R2 − qAλ−1(p+R+A))

> (p+ 1)2R+ (p+ 1)2 − qAλ−1(p+A)− qAλ−1R.
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Suppose the parameters p, q, A, and λ are such that

(p+ 1)2 > qAλ−1(p+A).(7)

Then a0 > 0. The positivity of a1 follows similarly,

a1 > (2 + p)p+ (1 + p)− qAλ−1 > (1 + p)2 − qAλ−1,

and if the parameters satisfy (7), then a1 > 0 too. Now we can consider  =
a1a2 − a3a0,

� = 2(1 + p+ f0(1) + f ′1(1)){(1 + f0(1) + p)(p+ f ′1(1))

+ [1 + p+ f0(1)][1 + f0(1) + f ′1(1)]}+ [1 + p+ f0(1)](1 + f0(1) + f ′1(1))[p+ f ′1(1)]

+ 2f ′1(1)[1 + f0(1) + f ′1(1)](p+ f ′1(1)) + qf ′0(1)[−2− p− 2f0(1)− f ′1(1) + f0(Bmax)],

> 2(1 + p+ f0(1) + f ′1(1))(1 + p)p+ (1 + p)− qf ′0(1)[2 + 2p+ f0(1) + 2f ′1(1)]

= 2(1 + p+ f0(1) + f ′1(1))
[
(1 + p)2 − qf ′0(1)

]
.

Note that (1 + p)2 − qf ′
0(1) > (1 + p)2 − qAλ−1 and if the parameters satisfy

(7), we have that a2a1 > a3a0. Lastly, considering H1 and H2 as before, note that
if C < 1 then Ḃ(B = C) = RC(1 − C) + qI > 0, so eventually all trajectories exist
entirely in H2. In particular, any attracting limit cycles are contained in H2. We
restate the previous results in a proposition.

Proposition 3.11 (behavior of limit cycles and global stability of E∗
). When

C < 1, E∗ is an equilibrium of (3.1). Any limit cycle, if it exists, should be entirely
in H2, and if (p + 1)2 > qAλ−1(p + A), then E∗ is globally asymptotically stable.
Recalling that C = c/K, we can summarize our results about the equilibria in this
section with the following theorem.

Theorem 3.12 (global stability). System (3.1) always has at least two equilibria.
• If C < 1 (equivalently, c < K), the equilibria are E0 = (1, 0, 0) which is unsta-
ble and E∗ = (S∗, I∗, B∗) which is locally asymptotically stable. Furthermore,
if (p+ 1)2 > qAλ−1(p+A), then E∗ is globally asymptotically stable.

• If C ≥ 1 (equivalently, c ≥ K), the equilibria are E0 = (1, 0, 0) which is
unstable, E1 = (1, 0, 1) which is locally asymptotically stable, and up to two
internal equilibria E+

1,2.
Further, if ζ < f ′(C), only E0 and E1 exist, and E1 is globally asymptotically
stable.

Note that if the MID is greater than K and ζ is low enough to satisfy condition (4),
the disease-free equilibrium E1 is globally asymptotically stable. As nondimensional
ζ and the shedding parameter ξ are proportional, this means that with a nonzero
but sufficiently small shedding rate, the disease-free equilibrium is inevitable. This is
in contrast to the case where the MID is less than the carrying capacity of bacteria,
and the bacteria exist at levels which naturally cause new infections. In this case,
if other parameters agree, the endemic steady state E∗ is globally asymptotically
stable for any nonzero shedding rate ξ. Thus if efforts are taken to decrease K and
ξ in conjunction, a disease-free globally stable steady state can be attained with a
shedding rate that could otherwise lead to an endemic steady state.

Remark 3.13 (biological interpretation of the sufficient condition for globally
asymptotic stability of E∗). In terms of the original parameters, (p + 1)2 >

qAλ−1(p + A) could be written as N < μH(δ+2μ)2

ξa(μ+δ+a) := Nc. Nc is a critical popu-

lation level below which the endemic equilibrium E∗ is globally attracting. If we
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consider towns with similar population densities and sanitation infrastructures, and
with their pathogen carrying capacity in the reservoir over their rescaled MID, a small
population size is associated with a small town, which results in a strong connection
between individuals and pathogens. Hence, a small population size leads to the robust
and persistent disease prevalence in the case that the pathogen carrying capacity is
greater than the MID. Note that the given inequality is a sufficient but not neces-
sary condition, thus a large city (N ≥ Nc) with some restrictions may also lead to
the globally attracting E∗. With the limitation of existing mathematical techniques,
the sufficient condition is the best condition we can obtain for the global stability of
the internal equilibrium. Using the reasonable parameter values, Nc can reach up to
2.5439× 106.

4. Numerical simulations. Stability was discussed nondimensionally previ-
ously but numerical examples are presented in the following diagrams in dimensional
parameters. In Figure 8, we see that if c ≥ K (C > 1) with a small ξ value, meaning
the MID is larger than the carrying capacity, then there is no endemic equilibrium.
Thus the system moves towards the disease-free steady state. Intuitively, this means
that it takes more than the “natural level” of bacterial density in the water supply to
make anyone sick and shedding is low, so no one becomes sick.
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Fig. 8. Phase portrait for c > K, showing trajectories with different initial conditions converg-
ing to the disease-free steady state E1. Parameter values used are δ = 0.1, K = 1 × 106, a = 0.1,
H = 1× 108, c = 2× 106, N = 1× 106, r = 0.3704, μ = 5× 10−5, ξ = 10.

Figure 9 demonstrates that when the MID is less than the carrying capacity,
c < K, then the internal endemic steady state is attracting. In it, a wide range of
initial conditions all follow a similar path towards the endemic steady state after each
trajectory first experiences an outbreak. This means that if the MID is small enough
that a normal bacterial density can make any individual sick, then the disease will
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Fig. 9. Phase portrait for c < K, showing many different trajectories approaching the endemic
steady state, marked with a solid circle. Parameter values used are δ = 9 × 10−4, K = 1 × 106,
a = 0.1, H = 1× 108, c = 8× 105, N = 1× 106, r = 0.003, μ = 5× 10−4, ξ = 0.1.

persist in the community if only at a low level. As mentioned, a strong epidemic
always occurs with a high outbreak peak.

5. Local sensitivity analysis. In this section, we compute and analyze the
normalized forward sensitivity indices (S.I.) of different quantities to the parameters
of the system by computing

S.I. =
∂x∗

∂p

p

x∗ ,(8)

where x∗ is the quantity being considered and p is some parameter which x∗ depends
upon. Sensitivity indices can be positive or negative which indicates the nature of
the relationship, and it is the magnitude that ranks the strength of the relationship
as compared to the other parameters. Since we don’t have an explicit formula for the
quantities we are interested in (outbreak peak, outbreak peak time, and the endemic
steady state), we estimate ∂x∗

∂p using the central difference approximation:

∂x∗

∂p
=

x∗(p+Δp)− x∗(p−Δp)

2Δp
+O(Δp2).

We choose Δp = 1% of p. Plugging all these in (8) we get

S.I =
x∗(1.01p)− x∗(0.99p)

0.02x∗ .
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5.1. Sensitivity of the outbreak peak. The sensitivity indices of the ampli-
tude of the outbreak peak show how the first epidemic depends on the parameters as
seen in Table 3. This table has three columns because there is a noticeable difference
in the sensitivity indices when the bacteria started out above or below the carrying
capacity.

Table 3

The sensitivity of the magnitude of the peak outbreak to the parameters. Two columns for the
initial density of the bacteria below or above their carrying capacity K.

Parameter Sensitivity B(0) < K Sensitivity B(0) > K
δ −1.2024 −0.5296 Recovery rate
K 1.8773 1.1334 Bacterial carrying capacity
a 1.1980 0.9822 Contact rate
H −1.1905 −0.9623 Half-saturation constant
c −0.9324 −0.4196 MID
r −0.2305 −0.5267 Logistic bacterial growth
μ −5.5e-004 −2.5830 e-004 Human birth/death
ξ 0.2352 0.0636 Shedding rate

The carrying capacity K has the strongest relationship to the magnitude of the
outbreak peak. The positive value tells us that a higher carrying capacity would lead
to a more severe epidemic. In contrast to the shedding rate ξ which has among the
lowest of sensitivity indices, K would thus be an important parameter to control in
order to reduce the harm of an outbreak.

A negative relationship between r and the peak magnitude might seem counterin-
tuitive, but the per capita growth rate of bacteria at any given time is r

(
1− B

K

)
and

during the peak the bacteria exist over their natural carrying capacity, so the growth
rate would be negative and thus there is a negative relationship between r and the
peak amplitude.

The sensitivity index with respect to the human birth/death rate μ is very low in
comparison to all the others. This makes sense, because the initial peak of an epidemic
occurs relatively quickly after the introduction of sick people or introduction of high
levels of bacteria and the birth and death of new susceptibles would not be on the
same time scale.

A negative relationship between the MID c and peak amplitude is consistent with
our understanding of the disease dynamics, because a larger MID means it would take
a higher bacterial density to cause any infections at all. Thus a higher MID would
mean less infections and a smaller outbreak peak.

The recovery rate δ has a strong negative relationship to the peak outbreak level
as a higher δ leads to few infectives by definition.

5.2. Sensitivity of the outbreak peak time. Once again we see from Table 4
that the carrying capacity K has a large influence on the dynamics of the system.
It has one of the largest sensitivity indices, being many times greater than that of
the shedding rate ξ. This suggests that K is a more important quantity to control
to prevent outbreaks. The positive relationship means a smaller carrying capacity
would lead to a quicker outbreak as well as a smaller one as we saw in the last section.
Noticeable is the lack of effect of μ, as with the amplitude of the peak. It has such a
negligible effect for the same reasons as outlined previously.

The relationship between contact rate a and the time of the maximum outbreak
is a negative relationship, because a higher contact rate causes more new infections
and so the timing of the maximum would be attained earlier than otherwise.
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Table 4

The sensitivity of the time of the outbreak maximum to the parameters.

Parameter Sensitivity B(0) < K Sensitivity B(0) > K
δ 0.0772 −6.7542 Recovery rate
K 0.4392 4.8433 Bacterial carrying capacity
a −0.2177 −0.3361 Contact rate
H 0.2159 0.3264 Half-saturation constant
c 0.9319 0.0928 MID
r −0.6327 3.9216 Logistic bacterial growth
μ 3.5491e-005 4.3194e-005 Human birth/death
ξ −0.2269 −0.1425 Shedding rate

The recovery rate δ is interesting because its effect changes sign as well as magni-
tude considerably with different values of B(0) in relation to carrying capacity. When
B(0) > K the effect of δ is greatest and negative. A higher value of δ would mean in-
dividuals would be infected, and thus infectious, for less time, so the outbreak should
not be as severe and would occur earlier than otherwise. As the magnitude of δ is
so small when it is positive, the positive relationship does not yield insight into the
relationship of outbreak time and recovery rate.

The per capita growth rate is r
(
1− B

K

)
and so when B > K this growth rate is

negative. If B(0) < K then the growth rate will be positive in the beginning of the
outbreak, so a larger r would mean a higher growth rate, and thus the epidemic would
peak earlier. This is supported by the negative relationship with r and peak time when
B(0) < K. If however B(0) > K, the per capita growth rate will be negative from
the start, and as B will remain above K for all time, the growth rate will always be
negative. So a larger r value would mean slower growth, and the epidemic wave would
take longer to reach a maximum. This is supported by the strong positive relationship
of r and peak time when B(0) > K as can be seen in Table 4.

Table 5

The sensitivity of the components of the endemic equilibrium.

Parameter Sensitivity of S∗ Sensitivity of I∗ Sensitivity of B∗
δ 0.0321 −0.9453 −0.0780 Recovery rate
K −1.9877 −0.1036 1.0666 Bacterial carrying

capacity
a −1.0314 −0.0611 0.0402 Contact rate
H 1.0260 0.0606 −0.0399 Half-saturation

constant
c 0.9932 0.0225 0.0014 MID
r 0.0323 −0.0329 0.0474 Logistic bacterial

growth
μ 0.8472 0.8177 0.0811 Human

birth/death
ξ −0.0323 0.0123 −0.0179 Shedding rate

5.3. Sensitivity of the endemic steady state. We can look at the sensitivity
of one of the interior equilibria E∗ with respect to the parameters when E∗ exists.
In Table 5 we only look at B(0) < K as the other case has similar sensitivity results,
and we assume the other endemic steady states would yield similar results.

The final size of the susceptible population is most sensitive to the carrying capac-
ity K and contact rate a, with a negative relationship in both cases. This is because a
higher contact rate causes more infections and a higher carrying capacity causes more
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bacteria which indirectly leads to more infections. A higher shedding rate would cause
more infections which is confirmed with the negative relationship between S∗ and ξ.
But S∗ is many times less sensitive to ξ than to K which again points to K as the
more important parameter to focus on in disease control. The MID c is nearly as
sensitive as the contact rate, but has a positive relationship as a higher MID would
lead to fewer infections and a higher S∗. There is a weak relationship with δ but as
our model does not allow for reinfection, this accounts for the small magnitude of the
sensitivity.

The endemic level of infective individuals is most sensitive to the recovery rate
δ and the birth/death rate μ. The strong negative relationship with δ is because
recovery is the main way that infectives leave the infected component of our model.
The relationship with μ is complicated in that the birth rate and death rate are the
same in our model. So a larger μ means more deaths and thus more infectives leaving
the infected component, but also more newly born susceptibles to possibly enter the
infected class. The positive relationship means that the positive effect of births is
more important to I∗ than the negative effect of deaths. The shedding rate ξ has a
weak relationship with I∗ but the positive relationship is as expected because a larger
ξ leads to more infectives and a higher I∗ value.

The endemic level of the bacterial population is most sensitive to the bacterial
carrying capacity K and has a positive relationship to it as expected. A higher K
means more bacteria and as B∗ > K (equivalent to B∗ > 1 in nondimensional form)
the relationship is positive. The shedding rate has a small sensitivity which suggests
that the logistic part of dB

dt is more important to the endemic level of B∗. As such the
relationship with the MID is also minimal. The strong relationship with K and weak
one with ξ also again suggests the importance of K instead of ξ as a control measure.
This could mean, for example, that monitoring the bacterial levels in water reservoirs
is more important than simply controlling or restricting access to the water supply to
avoid contamination.

6. Discussion. Cholera has the potential to quickly spread over large areas and
can cause many deaths. Thus a full understanding of the dynamics is essential to effec-
tively respond to outbreaks. With the continuing outbreaks there is the opportunity
for mathematical modeling to help decipher these dynamics and provide suggestions
for governments and health care bodies in effective intervention. An estimate for
the basic reproductive number in regions affected by cholera would give important
information for controlling future outbreaks and for creating surveillance programs.
The potential for amplification in environmental reservoirs and the indirect trans-
mission of the disease make this a nontrivial task. Here we have shown that with
C = c/K ≥ 1, the disease-free equilibrium can be globally asymptotically stable.
However as bacteria are existing at a nonzero level, if environmental factors change
and alter the carrying capacity enough to makeC < 1, then there can be outbreaks. If
other parameters are in agreement, an endemic equilibrium is globally asymptotically
stable. This change to carrying capacity could be seasonally caused as with different
amounts of rain in areas like Bangladesh, or it could be a more permanent change
due to natural disasters as in Haiti.

An important thing to note about the relationship between c and K is that if
c < K, i.e., the MID is less than the carrying capacity, then the unique endemic
equilibrium can be globally stable. It is globally stable for any nonzero value of
the shedding parameter ξ. If however, the MID is greater than the natural carrying
capacity, if ξ is low enough, causing the nondimensional ζ to be sufficiently small, then
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the disease-free equilibrium becomes globally stable. This highlights the importance
of being aware of the value of the natural carrying capacity, because decreasing the
shedding rate can eliminate the possibility of an endemic steady state, if the MID
is larger than the carrying capacity. If the MID was less than the carrying capacity,
the unique endemic steady state could be globally asymptotically stable for the same
shedding rate. So ideally, efforts need to be taken to reduce both shedding, and in
conjunction with this, the bacterial levels in the reservoir.

Our sensitivity analysis suggests that control measures influencing the carrying
capacityK will be more effective in minimizing the epidemic than those concentrating
on influencing the shedding rate. While improving the sanitation infrastructure of an
area is the obvious step to take to control outbreaks, monitoring and controlling the
bacterial levels in the water itself is more important. Improving the infrastructure
would surely help control the bacterial levels in the water by decreasing the amount
of human contamination, but V.cholerae exist independently of humans and so other
factors that influence the natural levels of bacteria in the water need to be considered
as well in intervention strategies. As mentioned above, controlling both parameters
is important and likely to be the most effective, but the carrying capacity K is the
more influential of the two on its own.

Our analysis accounts for all the situations experienced all over the world. Should
the average health and immune system capabilities of the population be sufficient to
tolerate bacterially contaminated water, and the shedding rate be sufficiently small,
the human and bacteria populations will exist independently of each other. This case
reflects both interepidemic periods where cholera outbreaks are common, and also the
situation in regions where cholera outbreaks are not experienced. Should, however,
the carrying capacity be sufficiently high (enough to overwhelm the average immune
response of the human population), an endemic steady state will exist that can be
globally stable. If this situation is only temporary, the iSIR model can thus account
for isolated outbreaks of cholera, and if it persists, the model is suitable for regions
where cholera cases are constant occurrences.

The original paper of the iSIR model [25] provided some preliminary mathematical
results. This analysis adds on to that work, and demonstrates the local stability for
most equilibria analytically. In addition, we present the results of dissipativity and
determine conditions for global stability.

Further steps to take with this model would be to refine the condition on the global
stability of the endemic equilibrium. The condition imposed might not be required,
and a biological explanation is in order. Also, a seasonal carrying capacity could be
included to simulate the cycles of cholera which occur in regions like Bangladesh.
Further altering the model to include bacteriophage is another possibility, with the
idea being that the cycles observed in the human population are caused by cycles
in the microscale of bacteria and bacteriophage as has been suggested by Faruque
et al. [28] and others.
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