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STABILITY ANALYSIS OF DELAY

DIFFERENTIAL EQUATIONS WITH TWO

DISCRETE DELAYS

XIHUI LIN AND HAO WANG

ABSTRACT. We use an algebraic method to derive a closed
form for stability switching curves of delayed systems with two
delays and delay independent coefficients for the first time. Fur-
thermore, we provide some properties of these curves and sta-
bility switching directions. Our work is an extension of Gu et

al.’s work [7] to a more general case using a different approach.

1 Introduction In the real world, delays appear in almost every
procedure, and models with only one delay are often used under the
assumption that other delays are small and insignificant to dynamical
behaviors. However, this assumption may not be applicable in the case
that a stability switch occurs even when an ignored delay is small. There-
fore models with multiple delays are of great interest scientifically and
mathematically. Realistic examples can be found in population inter-
actions, neural networks, and SEIR epidemic models [4, 6, 12, 14]. A
general theory on a special case of models with two delays was developed
by Gu et al. [7], in which the characteristic function is of the following
form:

(1) D(λ) = P0(λ) + P1(λ)e
−τ1λ + P2(λ)e

−τ2λ,

where τ1 and τ2 are the two delays, and

Pl(λ) =

nl
∑

k=0

plkλ
k, l = 0, 1, 2

are polynomials with real coefficients.
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This method is useful to analyze functional differential equations
(both neutral and retarded types) with only one population and delay
independent parameters. However, in a more general circumstance, (1)
is not applicable to delayed systems with multiple populations, which
are more common as any species normally has connections with other
species. In such a case, characteristic functions of the following form
are frequently obtained for systems with delay independent coefficients
[11, 14].

(2) D(λ; τ1, τ2) = P0(λ) +P1(λ)e
−λτ1 + P2(λ)e

−λτ2 + P3(λ)e
−λ(τ1+τ2),

where τ1 and τ2 are the two delays in R+, and

Pl(λ) =

nl
∑

k=0

plkλ
k, l = 0, 1, 2, 3

are polynomials with real coefficients.
The characteristic functions in [5, 6, 11, 14] are of the form (2) with

special forms of Pi, i = 0, 1, 2, 3. For example, the characteristic function
in [6] has quadratic P0(λ), linear P1(λ), P2(λ), and constant P3(λ). The
food-chain model in [5] is a special case of (2) where τ1 = τ2 and P0(λ)
is cubic. However, an analysis on (2) has not yet been fully explored,
and this is the main focus of this paper.

Models with three or more delays have rarely been seen in mathe-
matical biology. There exist some analytic efforts on systems with three
discrete delays [1], but their applications seem quite limited. Usually
they can only be applied to a scalar model with delay independent coef-
ficients. In addition, as the number of delays increases, the dimension of
stability switching surfaces increase, which makes stability much harder
to determine. Instead of introducing multiple discrete delays, models
with continuously distributed delays are also frequently encountered in
mathematical biology.

In this paper, we first state some necessary assumptions on the char-
acteristic function (2) to ensure it is a true characteristic function for
a delay system. Next, we derive an explicit expression for the stability
switching curves in the (τ1, τ2) plane in Section 3, and then we give a
criterion to determine switching directions in Section 4. Finally, we ap-
ply our analytical results to the delayed Lotka-Volterra predator-prey
model with two discrete delays.
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2 Preliminary The characteristic function we discuss throughout
this paper is (2). One can see that the only difference from (1) is the
appearance of the fourth term where the delays are mixed, and obviously
if P3(λ) = 0, (2) reduces to (1). Therefore, our analysis below is also
applicable to (1).

To guarantee that (2) is a characteristic equation of some delayed
system, we need some basic assumptions:

(i) Finite number of characteristic roots on C+ := {λ ∈ C : Reλ > 0}
under the condition

(3) deg(P0(λ)) ≥ max{deg(P1(λ)), deg(P2(λ)), deg(P3(λ)}.

(ii) Zero frequency: λ = 0 is not a characteristic root for any τ1 and
τ2, i.e.,

P0(0) + P1(0) + P2(0) + P3(0) 6= 0.

(iii) The polynomials P0, P1, P2 and P3 have no common zeros, i.e.,
P0, P1, P2 and P3 are coprime polynomials.

(iv) Pk’s satisfy

lim
λ→∞
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∣

∣

P1(λ)

P0(λ)
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∣

∣
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∣

∣

∣

∣

P2(λ)

P0(λ)
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∣

∣

+

∣

∣

∣

∣

P3(λ)

P0(λ)

∣

∣

∣

∣

)

< 1.

If (i) is violated, then the characteristic equation can never be stable
since there are infinitely many roots with positive real parts [2].

If (ii) is violated, then D(0, τ1, τ2) ≡ 0 for all (τ1, τ2) ∈ R2
+, and

therefore the characteristic function is always unstable.
Assumption (iii) is to ensure the considered characteristic equation

has the lowest degree and is irreducible.
Assumption (iv) is to exclude large oscillations, i.e., feasible ω’s for

(4) are bounded (see Section 3). In reality, if feasible ω can be arbitrarily
large, D(λ) will be highly sensitive to the delays τ1 and τ2. For retarded
type delay equations, this assumption is automatically satisfied.

3 Stability switching curves

Lemma 3.1. As (τ1, τ2) varies continuously in R2
+, the number of

characteristic roots (with multiplicity counted) of D(λ; τ1, τ2) on C+ can
change only if a characteristic root appears on or cross the imaginary
axis.
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Proof of this lemma can be found in any book on functional differential
equations, for example, [8, 13].

From this lemma, to study stability switching, we seek purely imagi-
nary characteristic roots. Since λ 6= 0 by assumption (ii), and roots of a
real function always come in conjugate pairs, we assume λ = iω (ω > 0).
Substituting this into (2), we get

(4) D(iω; τ1, τ2) =
(

P0(iω) + P1(iω)e−iωτ1

)

+
(

P2(iω) + P3(iω)e−iωτ1

)

e−iωτ2 .

Since |e−iωτ2 | = 1, we have

(5) |P0 + P1e
−iωτ1 | = |P2 + P3e

−iωτ1 |,

which is equivalent to

(P0 + P1e
−iωτ1)(P 0 + P 1e

iωτ1) = (P2 + P3e
−iωτ1)(P 2 + P 3e

iωτ1).

After simplification, we have

|P0|
2 + |P1|

2 + 2Re (P0P 1) cos(ωτ1) − 2Im (P0P 1) sin(ωτ1)

= |P2|
2 + |P3|

2 + 2Re (P2P 3) cos(ωτ1) − 2Im (P2P 3) sin(ωτ1).

Thus,

(6) |P0|
2 + |P1|

2 − |P2|
2 − |P3|

2 = 2A1(ω) cos(ωτ1) − 2B1(ω) sin(ωτ1),

where

A1(ω) = Re (P2P 3) − Re (P0P 1),

B1(ω) = Im (P2P 3) − Im (P0P 1).

If there is some ω such that A1(ω)2 +B1(ω)2 = 0, then

(7) A1(ω) = B1(ω) = 0 ⇐⇒ P0P 1 = P2P 3.

The right hand side of (6) is 0 with any τ1, and

(8) |P0|
2 + |P1|

2 = |P2|
2 + |P3|

2.
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Therefore, if there is an ω such that both (7) and (8) are satisfied,
then all τ1 ∈ R+ are solutions of (5).

If A1(ω)2 + B1(ω)2 > 0, then there exists some continuous function
φ1(ω) such that

A1(ω) =
√

A1(ω)2 +B1(ω)2 cos(φ1(ω)),

B1(ω) =
√

A1(ω)2 +B1(ω)2 sin(φ1(ω)).

Indeed,
φ1(ω) = arg{P2P̄3 − P0P̄1}.

Therefore, (6) becomes

(9) |P0|
2+|P1|

2−|P2|
2−|P3|

2 = 2
√

A1(ω)2 +B1(ω)2 cos(φ1(ω)+ωτ1).

Obviously, a sufficient and necessary condition for the existence of τ1 ∈
R+ satisfying the above equation is

(10)
∣

∣|P0|
2 + |P1|

2 − |P2|
2 − |P3|

2
∣

∣ ≤ 2
√

A2
1 +B2

1 .

Denote Ω1 to be ω ∈ R+ satisfying (10). One should notice that (10)
also includes the case A2

1 +B2
1 = 0 which leads to (7) and (8).

Let

cos(ψ1(ω)) =
|P0|

2 + |P1|
2 − |P2|

2 − |P3|
2

2
√

A2
1 +B2

1

, ψ1 ∈ [0, π].

We have

(11) τ±1,n1
(ω) =

±ψ1(ω) − φ1(ω) + 2n1π

ω
, n1 ∈ Z.

All the formulas in these steps can be obtained explicitly. Once we
get τ1(ω) given by (11), substitute it into (4) and we get an explicit
formula for τ2(ω) unconditionally with each ω ∈ Ω1, i.e.,

(12) τ±2,n2
(ω) =

1

ω
arg

{

−
P2 + P3e

−iωτ
±
1

P0 + P1e−iωτ
±
1

}

+ 2n2π, n2 ∈ Z.
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Thus the stability crossing curves are

(13) T := {(τ±1,n1
(ω), τ±2,n2

(ω)) ∈ R
2
+ : ω ∈ Ω1, n1, n2 ∈ Z}.

Another way to find τ2 is to analyze τ2 similarly to the analysis of τ1,
which gives

(14) τ±2,n2
=

±ψ2(ω) − φ2(ω) + 2n2π

ω
, n2 ∈ Z,

where

cos(ψ2(ω)) =
|P0|

2 − |P1|
2 + |P2|

2 − |P3|
2

2
√

A2
2 +B2

2

, ψ2 ∈ [0, π],

A2(ω) =
√

A2(ω)2 +B2(ω)2 cos(φ2(ω)),

B2(ω) =
√

A2(ω)2 +B2(ω)2 sin(φ2(ω)),

A2(ω) = Re (P1P 3) − Re (P0P 2),

B2(ω) = Im (P1P 3) − Im (P0P 2),

with the condition on ω:

(15)
∣

∣|P0|
2 − |P1|

2 + |P2|
2 − |P3|

2
∣

∣ ≤ 2
√

A2
2 +B2

2 ,

which defines a region Ω2.

By squaring both sides of the two conditions (10) and (15), one can
show that (10) and (15) are equivalent. Thus,

Ω := Ω1 = Ω2.

We call Ω the crossing set.

Lemma 3.2. Ω consists of a finite number of intervals of finite length.

Proof. Let

F (ω) :=
(

|P0|
2 + |P1|

2 − |P2|
2 − |P3|

2
)2

− 4(A2
1 +B2

1), ω ≥ 0.

By assumption (ii), we have F (0) 6= 0. In addition, by assumptions (i)
and (iv), F (+∞) = +∞. Thus F (ω) has a finite number of roots on
R+.
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If F (0) > 0, then F has roots 0 < a1 < b1 ≤ a2 < b2 < · · · ≤ aN <
bN < +∞, and

Ω =

N
⋃

k=1

Ωk, Ωk = [ak, bk].

If F (0) < 0, then F has roots 0 < b1 ≤ a2 < b2 ≤ a3 < b3 < · · · ≤
aN < bN < +∞, and

Ω =

N
⋃

k=1

Ωk, Ω1 = (0, b1], Ωk = [ak, bk] (k ≥ 2).

We allow bk−1 = ak with the concern that ak may be a root with even
multiplicity.

For any Ωk, we have a restriction on the range of φi(ω), i = 1, 2. We
require φi(ω) to be the smallest continuous branch with the property
that there exists an ωi ∈ Ωk, such that

φi(ωi) > 0.

Therefore, ni has a lower bound, denoted by Li,k.
However, by (12) one should obtain either τ+

2,n2
or τ−2,n2

(but not both)

for a given τ+
1,n1

, and similarly for τ+
1,n1

. By tedious computation (or by

MATHEMATICA/MAPLE), one can verify that when τ1 = τ+
1,n1

(ω),

we have τ2 = τ−2,n2
(ω), and when τ1 = τ−1,n1

(ω), we have τ2 = τ+
2,n2

(ω).
Therefore,

T =
⋃

k=1,2,...,N
n1≥L1,k,L1,k+1,···
n2≥L2,k,L2,k+1,···

T ±k
n1,n2

⋂

R
2
+,(16)

T ±k
n1,n2

=

{(

±ψ1(ω) − φ1(ω) + 2n1π

ω
,(17)

∓ψ2(ω) − φ2(ω) + 2n2π

ω

)

: ω ∈ Ωk

}

.

Obviously, T ±k
n1,n2

is continuous in R2.
Since f(ak) = f(bk) = 0, we have

cos(ψi(ak)) = δa
i π, cos(ψi(bk)) = δb

iπ,



526 X. LIN AND H. WANG

where δa
i , δ

b
i = 0, 1, i = 1, 2. One can easily verify that

(18)

(

τ+k
1,n1

(ak), τ−k
2,n1

(ak)
)

=
(

τ−k
1,n1+δa

1

(ak), τ+k
2,n2−δa

2

(ak)
)

,

(

τ+k
1,n1

(bk), τ−k
2,n1

(bk)
)

=
(

τ−k

1,n1+δb
1

(bk), τ+k

2,n2−δb
2

(bk)
)

.

Therefore, T +k
n1,n2

connects T −k
n1+δa

1
,n2−δa

2

and T −k

n1+δa
1

,n2−δb
2

at its two ends,

and we have the following theorem.

Theorem 3.1. T defined in (16) is the set of all stability switching
curves on the (τ1, τ2)-plane for (2) . Furthermore, if (δa

1 , δ
a
2 ) = (δb

1, δ
b
2),

then T +k
n1,n2

and T −k
n1+δa

1
,n2−δa

2

form a loop on R2, and T is a set of

closed continuous curves (Class I); while if (δa
1 , δ

a
2 ) 6= (δb

1, δ
b
2), T is a set

of continuous curves with their two end points either on the axises or
extending to infinity on the R2

+ region (Class II).

4 Stability: crossing directions Let λ = σ + iω. Then by the
implicit function theorem, τ1, τ2 can be expressed as functions of σ and
ω under some non-singular condition. For symbolic convenience, denote
τ3 := τ1 + τ2.

R0 :=
∂ReD(λ; τ1, τ2)

∂σ

∣

∣

∣

∣

λ=iω

(19)

= Re {P ′
0(iω) +

3
∑

k=1

(P ′
k(iω) − τkPk(iω)) e−iωτk},

I0 :=
∂ImD(λ; τ1, τ2)

∂σ

∣

∣

∣

∣

λ=iω

(20)

= Im {P ′
0(iω) +

3
∑

k=1

(P ′
k(iω) − τkPk(iω)) e−iωτk}.

Similarly, one can verify that

∂ReD(λ; τ1, τ2)

∂ω

∣

∣

∣

∣

λ=iω

= −I0,(21)

∂ImD(λ; τ1, τ2)

∂ω

∣

∣

∣

∣

λ=iω

= R0.(22)
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We also have

Rl :=
∂ReD(λ; τ1, τ2)

∂τl

∣

∣

∣

∣

λ=iω

(23)

= Re {−iω
(

Pl(iω)e−iωτl + P3(iω)e−iω(τ1+τ2)
)

},

Il :=
∂ImD(λ; τ1, τ2)

∂τl

∣

∣

∣

∣

λ=iω

(24)

= Im {−iω
(

Pl(iω)e−iωτl + P3(iω)e−iω(τ1+τ2)
)

},

where l = 1, 2.
From the derivation, T ±k

n1,n2
are piecewise differentiable. By the im-

plicit function theory, we have

(25) ∆(ω) :=







∂τ1
∂σ

∂τ1
∂ω

∂τ2
∂σ

∂τ2
∂ω







∣

∣

∣

∣

∣

∣

∣

σ=0,ω∈Ω

=

(

R1 R2

I1 I2

)−1 (

R0 −I0
I0 R0

)

.

The implicit function theorem applies as long as

det

(

R1 R2

I1 I2

)

= R1I2 −R2I1 6= 0.

For any crossing curve T ±k
n1,n2

, we call the direction of the curve corre-
sponding to increasing ω ∈ Ωk the positive direction, and the region on
the left-hand (right-hand) side when we move in the positive direction
of the curve the region on the left (right). Since the tangent vector of
T ±k

n1,n2
along the positive direction is (∂τ1/∂ω, ∂τ2/∂ω), the normal vec-

tor of T ±k
n1,n2

pointing to the right region is (∂τ2/∂ω,−∂τ1/∂ω). As we
know, a pair of complex characteristic roots across the imaginary axis to
the right on the complex plane as σ increases from negative to positive
through 0, thus (τ1, τ2) moves along the direction (∂τ1/∂σ, ∂τ2/∂σ). As
a consequence, we can conclude that if

δ(ω) :=

(

∂τ1
∂σ

,
∂τ2
∂σ

)

·

(

∂τ2
∂ω

,−
∂τ1
∂ω

)

=
∂τ1
∂σ

∂τ2
∂ω

−
∂τ2
∂σ

∂τ1
∂ω

= det ∆(ω) > 0,

(26)
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the region on the right of T ±k
n1,n2

has two more characteristic roots with
positive real parts. On the other hand, if inequality (26) is reversed, then
the region on the left has two more characteristic roots with positive real
parts.

Since

det

(

R0 −I0
I0 R0

)

= R2
0 + I2

0 ≥ 0,

we have

(27) sign δ(ω) = sign{R1I2 −R2I1},

if either R0 6= 0 or I0 6= 0. For any (τ±1 (ω), τ∓2 (ω)) ∈ T ±k
n1,n2

, we have

P2(iω)eiω(τ±
1
−τ

∓
2

) = −P0(iω)eiωτ
±
1 − P1(iω) − P3(iω)e−iωτ

∓
2 .

One can verify that

R1I2 −R2I1(28)

= Im
{

−iω
(

P1e−iωτ
±
1 + P3e−iω(τ±

1
+τ

∓
2

)
)

(−iω)

×
(

P2e
−iωτ

∓
2 + P3e

−iω(τ±
1

+τ
∓
2

)
)}

= ω2Im
{

P 1P2e
iω(τ±

1
−τ

∓
2

) + P 1P3e
−iωτ

∓
2 + P2P 3e

iωτ
±
1

}

= ω2Im
{

P 1(−P0e
iωτ

±
1 − P1 − P3e

−iωτ
∓
2 )

+ P 1P3e
−iωτ

∓
2 + P2P 3e

iωτ
±
1

}

= ω2Im {(P2P 3 − P0P 1)e
iωτ

±
1 }

= ω2Im {|P2P 3 − P0P 1|e
φ1eiωτ

±
1 }

= ±ω2|P2P 3 − P0P 1| sinψ1.

Hence,

(29) δ(ω ∈ Ω̊k) = ±sign(ω2|P2P 3 − P0P 1| sinψ1) = ±1,

since ψ1(Ω̊k) ⊂ (0, π). Here, Ω̊k denotes the interior of Ωk.
As we know from (18), two connected curves, T +k

n1,n2
and T −k

n1+δ1,n2−δ2
,

are orientated in opposite directions. On the other hand, (29) shows
that they have different stability switching directions. As a result, as
we move along these continuous curves, stability switching directions
are consistent, i.e., there always exist two more characteristic roots with
positive real parts on the right or on the left.
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Theorem 4.1. For any k = 1, 2, · · · , N , we have

δ(ω ∈ Ω̊k) ≡ ±1, ∀ (τ1(ω), τ2(ω)) ∈ T ±k
n1,n2

.

Therefore, the region on the left of T +k
n1,n2

(T −k
n1,n2

) has two more (less)
characteristic roots with positive real parts.

If we know the number of characteristic roots with positive real parts
when τ1 = τ2 = 0, we can use criterion (26) to find the number of
characteristic roots with positive real parts for any (τ1, τ2) in R2

+. In
this way, stability based on the characteristic equation is completely
known.

5 Example: Lotka-Volterra predator-prey model with two

delays Consider the following Lotka-Volterra model:

(30)
x′(t) = rx(t)

(

1 −
x(t− τ1)

K

)

− f(x(t))y(t),

y′(t) = γe−djτ2f(x(t− τ2))y(t− τ2) − dy(t).

In order to apply our method, dj = 0 is required. Indeed, in some
cases, the death rate of the juvenile (dj) could be extremely small, for
instance, human beings in developed countries. To make the analysis
easy, we choose the simple Holling type I response function f(x) = bx
to illustrate our method. Indeed, a similar analysis can be done with
Holling type II/III response function, or any other type. For simplicity,
we nondimensionalize the system to obtain

(31)
x′(t) = x(t) (1 − x(t− τ1)) − x(t)y(t),

y′(t) = cx(t− τ2)y(t− τ2) − dy(t),
d < c < 1.

Our interest here is on the stability of the interior equilibrium P =
(d/c, (c− d)/c). Linearization around P gives

(32)
x′(t) = −

d

c
x(t− τ1) −

d

c
y(t),

y′(t) =(c− d)x(t− τ2) − dy(t) + dy(t− τ2).

By substituting a solution of the type (x(t), y(t)) = (c1, c2)e
λt, we obtain
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FIGURE 1: Graph of F (ω).

the characteristic function

(33) D(λ; τ1, τ2) = λ2 + dλ+

(

d

c
λ+

d2

c

)

e−λτ1

−

(

dλ+
d2

c
− d

)

e−λτ2 −
d2

c
e−λ(τ1+τ2).

For simulations, we choose c = 0.6, d = 0.1. F (ω) has only two roots
a1 = 0.2052, b1 = 0.3858 (see Figure 1), and

δa
1 = −1, δa

2 = 1, δb
2 = 1, δb

2 = 1.

By Theorem 3.1, the switching curves are of class I, which is shown
in Figure 2. With the aid of Figure 2, to find the crossing directions
of the characteristic roots as τ1 and τ2 vary, one only needs to analyze
on the first intercept on the τ2 axes. Crossing directions for the other
curves can be easily deduced by Theorem 4.1. A simple calculation can
verify that when τ1 = τ2 = 0, the interior equilibrium is stable, i.e.,
no characteristic roots have positive real parts. Hence from Figure (2),
the interior equilibrium is stable if and only if (τ1, τ2) is on the small
bottom-left region of the (τ1, τ2)-plane. As τ1 and τ2 increase, we see
a trend that there are more and more charactersitic roots with positive
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Crossing Curves and Crossing Directions

FIGURE 2: Plot of Switching curves. Arrows are used to illustrate the
crossing directions, that is, the region on the end of an arrow has two
more characteristic roots with positive real parts. Curves on bottom-
right quadrant are shown so as to reveal how a continuous curve behaves.
However in a delayed system, only curves in the first quadrant are of
interest.

real parts. Furthermore, on the τ1-axis, i.e., when τ2 = 0, characteristic
roots cross the imaginary axis to the right and left alternatively in the
complex plane, with appearance and disappearance of periodic solutions,
which results in Hopf bifurcations and may lead to multiple stable limit
cycles [9, 10].

6 Concluding remarks If P3 ≡ 0, we expect to reduce our results
to those obtained in Gu et al. [7]. Indeed, A1 + iB1 = P0P 1, and this
together with (10) gives the range of feasible ω:

(|P0| − |P1|)
2 ≤ |P2|

2, |P2|
2 ≤ (|P0|

2 + |P1|)
2,

which basically says that P0, P1, P2 form a closed triangle region or a
degenerated triangle region. This is exactly the same as the condition
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given by Gu et al.. In addition, one can verify that the formula of cross-
ing curves given in (16) is the same as formula (3.5) and (3.6) in [7],
though the methods used there are different. Note that the results in
this paper cannot be obtained from the geometric method introduced in
[7].

It is hard to extend our method to the case when Pi’s are delay
dependent. Research on one delay with delay dependent coefficients has
been done in Beretta and Kuang [3], which gives an efficient algorithm
to determine the stability. However, in the two-delay case, even for the
following simple characteristic equation

P0(λ; τ1) + P1(λ; τ1)e
−λτ1 + P2(λ; τ1)e

−λτ2 = 0,

there is no efficient method so far. The difficulty here is the ω, τ1 mix
in a transcendental manner after removing τ2, i.e.

|P0(iω; τ1) + P1(iω; τ1)e
−iωτ1 | = |P2(iω; τ1)|,

which makes it complicated to compute one given the other, as multiple
or even infinity many choices can occur. Furthermore, the range of ω
cannot be simply determined, and it may depend on τ1. A novel method
is required for this case.
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