Traveling waves for a diffusive mosquito-borne epidemic model with general incidence

Kai Wang, Hongyong Zhao and Hao Wang

Abstract

In this paper, we obtain the complete information about the existence and nonexistence of traveling wave solution (TWS) for a reaction-diffusion model of mosquito-borne disease with general incidence and constant recruitment. We find that the basic reproduction ratio \mathfrak{R}_{0} of the corresponding kinetic system and the minimal wave speed c_{*} are thresholds to determine the existence of TWS. With the aid of limiting arguments and Lyapunov approach, it is demonstrated that the system possesses a nontrivial TWS with wave speed $c \geq c_{*}$ connecting the disease-free equilibrium and endemic equilibrium when $\mathfrak{R}_{0}>1$. When $\Re_{0} \leq 1$ and $c>0$, the nonexistence of nontrivial TWS is obtained by contradiction. By means of a rather ingenious method that is easier to understand than Laplace transform, we show that there is no nontrivial TWS when $\mathfrak{R}_{0}>1$ and $0<c<c_{*}$. Numerically, we perform simulations to verify the analytical results and explore the sensitivity of the speed c_{*} on parameters. The sensitivity results show that the parameters related to mosquitoes have a greater impact on c_{*}.

Mathematics Subject Classification. 35B40, 35C07, 35K57, 92D30.
Keywords. Reaction-diffusion model, Mosquito-borne disease, Traveling wave solution, Basic reproduction ratio, Minimal wave speed.

1. Introduction

Mosquito-borne disease, a disease that the pathogens are transmitted to humans through mosquitoes, has become one of the most serious challenges threatening human health [1]. Some common such diseases include malaria, dengue fever, Zika and chikungunya. Due to the severity of diseases, it is necessary to study the spread of mosquito-borne diseases with various mathematical models (such as ordinary differential equations (ODE) [7,38], delay differential equations (DDE) [18,30, 40], reaction-diffusion (RD) equations $[24,25,29,32,37]$ and so on). In epidemiology, spatial effects have been extensively introduced into models to delve into the geographical spread of infectious diseases. Generally, an epidemic model with spatial effects will generate an epidemic wave, which connects the equilibria of the model, and such epidemic wave is described by TWS propagating at a certain speed [4,39]. It seems thus meaningful to analyze TWS so as to better understand the spatial spread of mosquito-borne diseases [11, 21].

The importance of TWS in infectious diseases prompted many researchers devote themselves to the research of it, and so plenty of excellent works have been done in the past decades, see for $[5,13,14,16,33$, $35,36,39,41,42]$ and references therein. However, as far as we know, few studies seem to focus on the TWS of mosquito-borne disease models (e.g. [4, $8,15,17,26]$). In fact, due to the complexity of model caused by the transmission mechanism of diseases (the virus is not transmitted directly from human to human, but through the bite of infected mosquitoes), the study of TWS for mosquito-borne disease models has been quite limited till now. In 2006, Lewis et al. [15] proposed a R-D West Nile virus (WNv) (a mosquitoborne disease) model with standard incidence and studied the existence of TWS of the simplified version for the model. In 2017, Lin and Zhu [17] established a R-D model with free boundary and standard incidence for WNv, and discussed the existence of TWS of the corresponding simplified spatial model.

More recently, Wang et al. [26] investigated the TWS of a R-D vector-borne disease model with nonlocal effects and distributed delay. Denu et al. [4] proposed a deterministic vector-host epidemic model with bilinear incidence and constant recruitment. They established the existence and nonexistence of TWS for the model. In [4], the authors assumed that susceptible vectors (hosts) have the same diffusion rates as infected vectors (hosts). It should be pointed out that the capacity of activity for susceptible individuals is usually stronger than that of infected individuals according to [39].

Note that a fair amount of mosquito-borne disease models mainly adopted bilinear incidence [4,32], standard incidence [7] or saturation incidence [20]. However, inspired by the ideas in [3, 6,42], the nonlinear (general) incidence is better to give a reasonable qualitative description for the disease dynamics. On the other hand, to investigate the dynamics more comprehensively, it seems necessary to incorporate the external supplies (recruitment) of individuals and mosquitoes into the modeling of mosquito-borne diseases [29,32].

Motivated by above analysis, in this paper, we study the following mosquito-borne epidemic model with general incidence rates and constant recruitment

$$
\left\{\begin{array}{l}
\partial_{t} S_{h}(t, x)=D_{S} \Delta S_{h}(t, x)+\Lambda-f_{1}\left(S_{h}, I_{v}\right)(t, x)-\mu_{1} S_{h}(t, x), \tag{1.1}\\
\partial_{t} I_{h}(t, x)=D_{I} \Delta I_{h}(t, x)+f_{1}\left(S_{h}, I_{v}\right)(t, x)-\left(\mu_{1}+d_{1}+\alpha_{1}\right) I_{h}(t, x), \\
\partial_{t} R_{h}(t, x)=D_{R} \Delta R_{h}(t, x)+\alpha_{1} I_{h}(t, x) \\
\partial_{t} S_{v}(t, x)=d_{S} \Delta S_{v}(t, x)+M-f_{2}\left(S_{v}, I_{h}\right)(t, x)-\mu_{2} S_{v}(t, x), \\
\partial_{t} I_{v}(t, x)=d_{I} \Delta I_{v}(t, x)+f_{2}\left(S_{v}, I_{h}\right)(t, x)-\left(\mu_{2}+d_{2}\right) I_{v}(t, x),
\end{array}\right.
$$

wherein $S_{h}:=S_{h}(t, x), I_{h}:=I_{h}(t, x)$ and $R_{h}:=R_{h}(t, x)$ are the spatial densities of susceptible, infectious and recovered individuals, and $S_{v}:=S_{v}(t, x)$ and $I_{v}:=I_{v}(t, x)$ are the spatial densities of susceptible and infectious mosquitoes at time t and location x, respectively. The diffusion rates of S_{h}, I_{h}, R_{h} and S_{v}, I_{v} are denoted by D_{S}, D_{I}, D_{R} and d_{S}, d_{I}, respectively. The recruitment and natural death rate of individuals and mosquitoes are represented by Λ, μ_{1} and M, μ_{2} respectively. The d_{1} and d_{2} represent the disease-induced death rates of individuals and mosquitoes, respectively. The recovery rate of infectious individuals is denoted by α_{1}. The $f_{1}\left(S_{h}, I_{v}\right)$ and $f_{2}\left(S_{v}, I_{h}\right)$ mean the disease transmission functions. For the sake of simplicity, let $\gamma_{1}:=\mu_{1}+d_{1}+\alpha_{1}$ and $\gamma_{2}:=\mu_{2}+d_{2}$. By the decoupling, it is sufficient to discuss the following system

$$
\left\{\begin{array}{l}
\partial_{t} S_{h}=D_{S} \Delta S_{h}+\Lambda-f_{1}\left(S_{h}, I_{v}\right)-\mu_{1} S_{h} \tag{1.2}\\
\partial_{t} I_{h}=D_{I} \Delta I_{h}+f_{1}\left(S_{h}, I_{v}\right)-\gamma_{1} I_{h} \\
\partial_{t} S_{v}=d_{S} \Delta S_{v}+M-f_{2}\left(S_{v}, I_{h}\right)-\mu_{2} S_{v} \\
\partial_{t} I_{v}=d_{I} \Delta I_{v}+f_{2}\left(S_{v}, I_{h}\right)-\gamma_{2} I_{v}
\end{array}\right.
$$

Throughout this paper, unless otherwise indicated, we make the following assumptions:
(P1) $f_{1}\left(S_{h}, I_{v}\right), f_{2}\left(S_{v}, I_{h}\right) \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and the partial derivatives $\partial_{S_{h}} f_{1}\left(S_{h}, I_{v}\right), \partial_{I_{v}} f_{1}\left(S_{h}, I_{v}\right)$, $\partial_{S_{v}} f_{2}\left(S_{v}, I_{h}\right)$ and $\partial_{I_{h}} f_{2}\left(S_{v}, I_{h}\right)$ are positive for all $S_{h}, I_{h}, S_{v}, I_{v}>0$.
(P2) $f_{1}\left(S_{h}, I_{v}\right)=0$ if and only if (iff) $S_{h} I_{v}=0$, and $f_{2}\left(S_{v}, I_{h}\right)=0$ iff $S_{v} I_{h}=0 ; \partial_{I_{v}}^{2} f_{1}\left(S_{h}, I_{v}\right) \leq 0$ and $\partial_{I_{h}}^{2} f_{2}\left(S_{v}, I_{h}\right) \leq 0$.
(P3) All coefficients of model (1.1) are positive, and $D_{S} \geq D_{I}, d_{S} \geq d_{I}$.

Remark 1.1.

(I) Some frequently used incidence rates satisfy assumption (P1)-(P2), such as
(1) The bilinear incidence rates $f_{1}\left(S_{h}, I_{v}\right)=\beta_{1} S_{h} I_{v}$ and $f_{2}\left(S_{v}, I_{h}\right)=\beta_{2} S_{v} I_{h}, \beta_{i}>0, i=1,2$ [4,32];
(2) The saturated incidence rates $f_{1}\left(S_{h}, I_{v}\right)=\frac{\beta_{1} S_{h} I_{v}}{1+\varrho_{1} I_{v}}$ and $f_{2}\left(S_{v}, I_{h}\right)=\frac{\beta_{2} S_{v} I_{h}}{1+\varrho_{2} I_{h}}, \beta_{i}, \varrho_{i}>0, i=1,2$ [20];
(3) The saturated incidence rates $f_{1}\left(S_{h}, I_{v}\right)=\frac{\beta_{1} S_{h} I_{v}}{1+\varrho_{1} S_{h}}$ and $f_{2}\left(S_{v}, I_{h}\right)=\frac{\beta_{2} S_{v} I_{h}}{1+\varrho_{2} S_{v}}, \beta_{i}, \varrho_{i}>0, i=1,2$; [27]
(4) The mixture of bilinear and saturated incidence rates $f_{1}\left(S_{h}, I_{v}\right)=\beta_{1} S_{h} I_{v}$ and $f_{2}\left(S_{v}, I_{h}\right)$ $=\frac{\beta_{2} S_{v} I_{h}}{1+\varrho_{2} S_{v}}$ or $f_{1}\left(S_{h}, I_{v}\right)=\frac{\beta_{1} S_{h} I_{v}}{1+\varrho_{1} I_{v}}$ and $f_{2}\left(S_{v}, I_{h}\right)=\beta_{2} S_{v} I_{h}, \beta_{i}, \varrho_{i}>0, i=1,2$;
(II) From [39], the capacity of activity for susceptible individuals is usually stronger than that of infected individuals. Thus, the assumption (P3) is reasonable.

The main purpose of this paper is to confirm the existence and nonexistence of nontrivial TWS for system (1.2). More specifically, we intend to state the main strategies of this work. By using the smallest positive root of the characteristic equation for the linearized system of (1.2), the suitable sub- and supersolutions are constructed, and so the existence of solutions for the auxiliary truncated system is obtained in view of Schauder's fixed-point theorem. Then, by means of limiting arguments and comparison principle, we obtain that system (1.2) admits a nontrivial bounded TWS connecting the disease-free equilibrium when $\mathfrak{R}_{0}>1$ and $c \geq c_{*}$. By establishing an appropriate Lyapunov functional and using LaSalle's invariance principle, it is proved that the TWS converges to the endemic equilibrium at positive infinity. Thanks to the detailed analysis, we obtain the nonexistence of nontrivial TWS when $\mathfrak{R}_{0} \leq 1$ and $c>0$ by contradiction. For the case of $\Re_{0}>1$ and $0<c<c_{*}$, by proving that the I_{h} or I_{v} will change sign, we show that there is no nontrivial TWS connecting disease-free equilibrium and endemic equilibrium due to a contradiction. Our conclusions indicate that c_{*} is the minimal wave speed of system (1.2).

Some key improvements are necessary due to the introduce of general incidence and constant recruitment in this paper. To investigate the existence and boundedness of TWS, the author [36] assumed that the functions $g_{2}(\cdot)$ and $g_{3}(\cdot)$ are bounded [see (A5)]. However, this assumption does not apply to bilinear incidence. More precisely, if the f_{1} and f_{2} in model (1.2) are bilinear, then the methods of [36] cannot be employed to obtain the existence and boundedness of TWS for system (1.2). Hence, we need to utilize the ideas in [39] to overcome these technical difficulties to make our model cover more special cases. Actually, due to the introduce of general incidence, the mathematical analysis of the problem is more complicated and the results are more profound. It should be pointed out that, although it is an effective approach to deal with the nonexistence of TWS in the case of $\mathfrak{R}_{0}>1$ and $0<c<c_{*}$ applying Laplace transform (e.g. $[16,41])$, this method is no longer applicable because it is difficult to verify the exponential decay of the solutions. Fortunately, we establish the nonexistence of this case with the help of an ingenious technique, which is easier to understand than the approach of Laplace transform.

The remainder of the paper is organized as follows. Section 2 presents some preliminaries which will be used in subsequent sections. Section 3 addresses the existence of TWS for system (1.2). Section 4 proves the nonexistence of TWS. Section 5 performs numerical simulations to verify the analytical results, and explores the sensitivity of minimal wave speed on parameters. Section 6 gives a brief discussion to conclude the article.

2. Preliminaries

To study the traveling wave solutions of (1.2), the constant equilibria are needed. It follows from (P2) that system (1.2) admits a disease-free equilibrium $E_{0}=\left(S_{h}^{0}, 0, S_{v}^{0}, 0\right)^{T}$, where $S_{h}^{0}:=\Lambda / \mu_{1}$ and $S_{v}^{0}:=M / \mu_{2}$. To find a positive constant endemic equilibrium, we consider the following ODE (kinetic) system

$$
\left\{\begin{array}{l}
\mathrm{d} S_{h}(t) / \mathrm{d} t=\Lambda-f_{1}\left(S_{h}, I_{v}\right)(t)-\mu_{1} S_{h}(t) \tag{2.1}\\
\mathrm{d} I_{h}(t) / \mathrm{d} t=f_{1}\left(S_{h}, I_{v}\right)(t)-\gamma_{1} I_{h}(t) \\
\mathrm{d} S_{v}(t) / \mathrm{d} t=M-f_{2}\left(S_{v}, I_{h}\right)(t)-\mu_{2} S_{v}(t) \\
\mathrm{d} I_{v}(t) / \mathrm{d} t=f_{2}\left(S_{v}, I_{h}\right)(t)-\gamma_{2} I_{v}(t)
\end{array}\right.
$$

Epidemiology, the basic reproduction ratio \mathfrak{R}_{0} is one of the most important concepts in infectious diseases, and it is a crucial threshold of disease outbreak or not [23]. According to [23], the \mathfrak{R}_{0} of system (2.1) equals the spectral radius of the following matrix

$$
\mathcal{M}:=\left(\begin{array}{cc}
0 & k_{1} / \gamma_{1} \\
k_{2} / \gamma_{2} & 0
\end{array}\right),
$$

and thus $\Re_{0}=\sqrt{\bar{k} / \bar{\gamma}}$, where $\bar{k}:=k_{1} k_{2}, k_{1}:=\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right), k_{2}:=\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)$ and $\bar{\gamma}:=\gamma_{1} \gamma_{2}$. Consider the following equations

$$
\left\{\begin{array}{l}
\Lambda-f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)-\mu_{1} S_{h}^{*}=0 \\
f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)-\gamma_{1} I_{h}^{*}=0 \\
M-f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)-\mu_{2} S_{v}^{*}=0 \\
f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)-\gamma_{2} I_{v}^{*}=0
\end{array}\right.
$$

Adding the first two equations and last two equations of above system, respectively, we obtain $S_{h}^{*}=$ $\left(\Lambda-\gamma_{1} I_{h}^{*}\right) / \mu_{1}$ and $S_{v}^{*}=\left(M-\gamma_{2} I_{v}^{*}\right) / \mu_{2}$. Obviously, $S_{h}^{*}>0$ when $I_{h}^{*} \in\left(0, \Lambda / \gamma_{1}\right)$ and $S_{v}^{*}>0$ when $I_{v}^{*} \in\left(0, M / \gamma_{2}\right)$. Substituting S_{h}^{*} and S_{v}^{*} into the second and fourth equations of above system, it follows that

$$
\left\{\begin{array}{l}
Q_{1}\left(I_{h}^{*}, I_{v}^{*}\right)=0, \\
Q_{2}\left(I_{h}^{*}, I_{v}^{*}\right)=0,
\end{array}\right.
$$

where $Q_{1}\left(I_{h}^{*}, I_{v}^{*}\right):=f_{1}\left(\left(\Lambda-\gamma_{1} I_{h}^{*}\right) / \mu_{1}, I_{v}^{*}\right)-\gamma_{1} I_{h}^{*}$ and $Q_{2}\left(I_{h}^{*}, I_{v}^{*}\right):=f_{2}\left(\left(M-\gamma_{2} I_{v}^{*}\right) / \mu_{2}, I_{h}^{*}\right)-\gamma_{2} I_{v}^{*}$. Since $Q_{i}(0,0)=0, i=1,2$, utilizing the implicit function existence theorem and [37], the above system has a unique $\left(I_{h}^{*}, I_{v}^{*}\right)^{T}$ satisfies $I_{h}^{*} \in\left(0, \Lambda / \gamma_{1}\right)$ and $I_{v}^{*} \in\left(0, M / \gamma_{2}\right)$ when $\Re_{0}>1$. Thus, system (2.1) has a unique endemic equilibrium $E_{1}^{*}:=\left(S_{h}^{*}, I_{h}^{*}, S_{v}^{*}, I_{v}^{*}\right)^{T}$ provided that $\mathfrak{R}_{0}>1$.

From the definition of TWS, a solution $\left(S_{h}(t, x), I_{h}(t, x), S_{v}(t, x), I_{v}(t, x)\right)^{T}$ of (1.2) is called a traveling wave solution if it has the form $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}, z=x+c t, t \geq 0, x \in \mathbb{R}$ and $c>0$ represents the wave speed. Then we have the wave profile equations

$$
\left\{\begin{array}{l}
c S_{h}^{\prime}(z)=D_{S} S_{h}^{\prime \prime}(z)+\Lambda-f_{1}\left(S_{h}, I_{v}\right)(z)-\mu_{1} S_{h}(z) \tag{2.2}\\
c I_{h}^{\prime}(z)=D_{I} I_{h}^{\prime \prime}(z)+f_{1}\left(S_{h}, I_{v}\right)(z)-\gamma_{1} I_{h}(z) \\
c S_{v}^{\prime}(z)=d_{S} S_{v}^{\prime \prime}(z)+M-f_{2}\left(S_{v}, I_{h}\right)(z)-\mu_{2} S_{v}(z) \\
c I_{v}^{\prime}(z)=d_{I} I_{v}^{\prime \prime}(z)+f_{2}\left(S_{v}, I_{h}\right)(z)-\gamma_{2} I_{v}(z)
\end{array}\right.
$$

wherein ' $=\mathrm{d} / \mathrm{d} z$ and ${ }^{\prime \prime}=\mathrm{d}^{2} / \mathrm{d} z^{2}$. Our main objective is to find a nontrivial solution $\left(S_{h}(\cdot)\right.$, $\left.I_{h}(\cdot), S_{v}(\cdot), I_{v}(\cdot)\right)^{T}$ of system (2.2) satisfying boundary conditions

$$
\begin{equation*}
\left(S_{h}(-\infty), I_{h}(-\infty), S_{v}(-\infty), I_{v}(-\infty)\right)^{T}=\left(S_{h}^{0}, 0, S_{v}^{0}, 0\right)^{T} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(S_{h}(+\infty), I_{h}(+\infty), S_{v}(+\infty), I_{v}(+\infty)\right)^{T}=\left(S_{h}^{*}, I_{h}^{*}, S_{v}^{*}, I_{v}^{*}\right)^{T} \tag{2.4}
\end{equation*}
$$

Linearizing (2.2) at E_{0}, one obtains

$$
\left\{\begin{array}{l}
c I_{h}^{\prime}(z)=D_{I} I_{h}^{\prime \prime}(z)+k_{1} I_{v}(z)-\gamma_{1} I_{h}(z), \\
c I_{v}^{\prime}(z)=d_{I} I_{v}^{\prime \prime}(z)+k_{2} I_{h}(z)-\gamma_{2} I_{v}(z)
\end{array}\right.
$$

Plugging $\left(I_{h}(z), I_{v}(z)\right)^{T}=\left(\chi_{2}, \chi_{4}\right)^{T} \mathrm{e}^{\zeta z}$ into above system, we get

$$
\left\{\begin{array}{l}
c \zeta \chi_{2}=D_{I} \chi_{2} \zeta^{2}+k_{1} \chi_{4}-\gamma_{1} \chi_{2} \tag{2.5}\\
c \zeta \chi_{4}=d_{I} \chi_{4} \zeta^{2}+k_{2} \chi_{2}-\gamma_{2} \chi_{4}
\end{array}\right.
$$

Hence, the characteristic equation for the linearized system of (2.2) is

$$
\Sigma^{c}(\zeta):=U_{2}^{c}(\zeta) U_{4}^{c}(\zeta)-\bar{k}=0
$$

where $U_{2}^{c}(\zeta):=D_{I} \zeta^{2}-c \zeta-\gamma_{1}$ and $U_{4}^{c}(\zeta):=d_{I} \zeta^{2}-c \zeta-\gamma_{2}$. Denoting $\zeta_{m}^{*}:=\min \left\{\zeta_{1}^{+}, \zeta_{2}^{+}\right\}$, where ζ_{1}^{+}and ζ_{2}^{+}are the positive roots of $U_{2}^{c}(\zeta)=0$ and $U_{4}^{c}(\zeta)=0$. Similar to the arguments of [26, Lemma 2.1], one can prove the following lemma.

Lemma 2.1. Suppose $\mathfrak{R}_{0}>1$. Then there exist constants $c_{*}>0$ and $\zeta^{*}>0$ such that

$$
\left.\frac{\partial \Sigma^{c}(\zeta)}{\partial \zeta}\right|_{\left(c_{*}, \zeta^{*}\right)}=0 \quad \text { and } \quad \Sigma^{c_{*}}\left(\zeta^{*}\right)=0
$$

Furthermore,
(1) If $0<c<c_{*}$, then $\Sigma^{c}(\zeta)<0$, for all $\zeta \in\left[0, \zeta_{m}^{*}\right)$;
(2) If $c>c_{*}$, then there are two positive roots $\zeta_{1}:=\zeta_{m 1}(c)$ and $\zeta_{2}:=\zeta_{m 2}(c)$ of $\Sigma^{c}(\zeta)=0$, satisfying $\zeta_{1}<\zeta^{*}<\zeta_{2}<\zeta_{m}^{*}, \zeta_{1}^{\prime}(c)<0, \zeta_{2}^{\prime}(c)>0$, such that $U_{j}^{c}\left(\zeta_{i}\right)<0(i=1,2, j=2,4)$ and

$$
\Sigma^{c}(\zeta)=\left\{\begin{array}{l}
<0, \lambda \in\left[0, \zeta_{1}\right) \cup\left(\zeta_{2}, \zeta_{2}+\sigma\right) \\
>0, \lambda \in\left(\zeta_{1}, \zeta_{2}\right)
\end{array}\right.
$$

here $^{\prime}=\mathrm{d} / \mathrm{d} c$ and $\sigma>0$ is a sufficiently small constant. Moreover, there exist constants $\chi_{2}=k_{1}$ and $\chi_{4}=-U_{2}^{c}\left(\zeta_{1}\right)$ such that (2.5) holds for $\zeta=\zeta_{1}$.

2.1. Sub- and super-solutions

In the following, we always assume $\mathfrak{R}_{0}>1$ and fix $c>c_{*}$. To prove the existence of TWS, it is necessary to construct a pair of sub- and super-solutions. For $z \in \mathbb{R}$, define

$$
\begin{array}{ll}
S_{h}^{+}(z):=S_{h}^{0}, & S_{h}^{-}(z):=\max \left\{S_{h}^{0}\left(1-M_{1} \mathrm{e}^{\epsilon_{1} z}\right), 0\right\}, \\
I_{h}^{+}(z):=\chi_{2} \mathrm{e}^{\zeta_{1} z}, & I_{h}^{-}(z):=\max \left\{\chi_{2} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{2} \mathrm{e}^{\epsilon_{2} z}\right), 0\right\}, \\
S_{v}^{+}(z):=S_{v}^{0}, & S_{v}^{-}(z):=\max \left\{S_{v}^{0}\left(1-M_{3} \mathrm{e}^{\epsilon_{3} z}\right), 0\right\}, \\
I_{v}^{+}(z):=\chi_{4} \mathrm{e}^{\zeta_{1} z}, & I_{v}^{-}(z):=\max \left\{\chi_{4} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{4} \mathrm{e}^{\epsilon_{2} z}\right), 0\right\},
\end{array}
$$

where χ_{2}, χ_{4} and ζ_{1} have been determined by Lemma 2.1, the $\mathcal{H}, M_{i}(i=1,2,3,4)$ and $\epsilon_{j}(j=1,2,3)$ will be chosen later.

Lemma 2.2. The functions $S_{h}^{+}(z)=S_{h}^{0}$ and $S_{v}^{+}(z)=S_{v}^{0}$ satisfy

$$
\Lambda-f_{1}\left(S_{h}^{+}, I_{v}^{-}\right)(z)-\mu_{1} S_{h}^{+}(z) \leq 0, M-f_{2}\left(S_{v}^{+}, I_{h}^{-}\right)(z)-\mu_{2} S_{v}^{+}(z) \leq 0, \quad z \in \mathbb{R}
$$

Proof. The proof is obvious and so omitted.
Lemma 2.3. The functions $I_{h}^{+}(z)=\chi_{2} \mathrm{e}^{\zeta_{1} z}$ and $I_{v}^{+}(z)=\chi_{4} \mathrm{e}^{\zeta_{1} z}$ satisfy

$$
D_{I} I_{h}^{+^{\prime \prime}}(z)-c I_{h}^{+^{\prime}}(z)-\gamma_{1} I_{h}^{+}(z)+f_{1}\left(S_{h}^{0}, I_{v}^{+}\right)(z) \leq 0
$$

and

$$
d_{I} I_{v}^{+^{\prime \prime}}(z)-c I_{v}^{+^{\prime}}(z)-\gamma_{2} I_{v}^{+}(z)+f_{2}\left(S_{v}^{0}, I_{h}^{+}\right)(z) \leq 0, \quad z \in \mathbb{R} .
$$

Proof. By (P1) and (P2), mean value theorem yields that

$$
\begin{equation*}
f_{1}\left(S_{h}^{0}, I_{v}\right)(z) \leq \partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right) I_{v}(z)=k_{1} I_{v}(z) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}\left(S_{v}^{0}, I_{h}\right)(z) \leq \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}(z)=k_{2} I_{h}(z), \tag{2.7}
\end{equation*}
$$

for all $z \in \mathbb{R}$. Then one has

$$
D_{I} I_{h}^{+^{\prime \prime}}(z)-c I_{h}^{+^{\prime}}(z)-\gamma_{1} I_{h}^{+}(z)+f_{1}\left(S_{h}^{0}, I_{v}^{+}\right)(z)
$$

$$
\begin{aligned}
& \leq D_{I}{I_{h}^{+^{\prime \prime}}(z)-c I_{h}^{+^{\prime}}(z)-\gamma_{1} I_{h}^{+}(z)+k_{1} I_{v}^{+}(z)}^{=\mathrm{e}^{\zeta_{1} z}\left[\chi_{2}\left(D_{I} \zeta_{1}^{2}-c \zeta_{1}-\gamma_{1}\right)+k_{1} \chi_{4}\right]} \\
& =\mathrm{e}^{\zeta_{1} z}\left[\chi_{2} U_{2}^{c}\left(\zeta_{1}\right)+k_{1} \chi_{4}\right] \\
& =0,
\end{aligned}
$$

and

$$
d_{I} I_{v}^{+^{\prime \prime}}(z)-c I_{v}^{+^{\prime}}(z)-\gamma_{2} I_{v}^{+}(z)+f_{2}\left(S_{v}^{0}, I_{h}^{+}\right)(z) \leq \mathrm{e}^{\zeta_{1} z}\left[\chi_{4} U_{4}^{c}\left(\zeta_{1}\right)+k_{2} \chi_{2}\right]=0 .
$$

This ends the proof.
Lemma 2.4. Suppose

$$
0<\epsilon_{1}<\min \left\{\zeta_{1}, \frac{c}{D_{S}}\right\}, \quad M_{1}>\max \left\{1, \frac{k_{1} \chi_{4}}{S_{h}^{0}\left(-D_{S} \epsilon_{1}^{2}+c \epsilon_{1}+\mu_{1}\right)}\right\}
$$

and

$$
0<\epsilon_{3}<\min \left\{\zeta_{1}, \frac{c}{d_{S}}\right\}, \quad M_{3}>\max \left\{1, \frac{k_{2} \chi_{2}}{S_{v}^{0}\left(-d_{S} \epsilon_{1}^{2}+c \epsilon_{1}+\mu_{2}\right)}\right\} .
$$

Then $S_{h}^{-}(z)=\max \left\{S_{h}^{0}\left(1-M_{1} \mathrm{e}^{\epsilon_{1} z}\right), 0\right\}$ and $S_{v}^{-}(z)=\max \left\{S_{v}^{0}\left(1-M_{3} \mathrm{e}^{\epsilon_{3} z}\right), 0\right\}$ satisfy

$$
\begin{equation*}
D_{S} S_{h}^{-^{\prime \prime}}(z)-c S_{h}^{-^{\prime \prime}}(z)+\Lambda-f_{1}\left(S_{h}^{-}, I_{v}^{+}\right)(z)-\mu_{1} S_{h}^{-}(z) \geq 0, \quad z \neq z_{1}:=-\frac{\ln M_{1}}{\epsilon_{1}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{S} S_{v}^{-^{\prime \prime}}(z)-c S_{v}^{-^{\prime \prime}}(z)+M-f_{2}\left(S_{v}^{-}, I_{h}^{+}\right)(z)-\mu_{2} S_{v}^{-}(z) \geq 0, \quad z \neq z_{3}:=-\frac{\ln M_{3}}{\epsilon_{3}} . \tag{2.9}
\end{equation*}
$$

Proof. As $z>z_{1}$, it is clear that (2.8) holds due to $S_{h}^{-}(z)=0$. As $z<z_{1}$, we get $S_{h}^{-}(z)=S_{h}^{0}\left(1-M_{1} \mathrm{e}^{\epsilon_{1} z}\right)$. Following from (2.6) that

$$
\begin{aligned}
& D_{S} S_{h}^{-^{\prime \prime}}(z)-c S_{h}^{-^{\prime}}(z)+\Lambda-f_{1}\left(S_{h}^{-}, I_{v}^{+}\right)(z)-\mu_{1} S_{h}^{-}(z) \\
& \quad \geq D_{S} S_{h}^{-^{\prime \prime}}(z)-c S_{h}^{-^{\prime}}(z)+\Lambda-\mu_{1} S_{h}^{-}(z)-k_{1} I_{v}^{+}(z) \\
& \quad=-D_{S} M_{1} S_{h}^{0} \epsilon_{1}^{2} \mathrm{e}^{\epsilon_{1} z}+c M_{1} S_{h}^{0} \epsilon_{1} \mathrm{e}^{\epsilon_{1} z}+\Lambda-\mu_{1} S_{h}^{0}+\mu_{1} M_{1} S_{h}^{0} \mathrm{e}^{\epsilon_{1} z}-k_{1} \chi_{4} \mathrm{e}^{\zeta_{1} z} \\
& \quad \geq \mathrm{e}^{\epsilon_{1} z}\left[M_{1} S_{h}^{0}\left(-D_{S} \epsilon_{1}^{2}+c \epsilon_{1}+\mu_{1}\right)-k_{1} \chi_{4}\right] .
\end{aligned}
$$

Then (2.8) holds by the condition for M_{1}. In the similar fashion, one can show that (2.9) is true for S_{v}^{-} by using (2.7). This completes the proof.

Lemma 2.5. Assume $0<2 \epsilon_{2}<\min \left\{\zeta_{1}, \epsilon_{1}, \epsilon_{3}\right\}$. Then there exists sufficiently large $\mathcal{H}>0$ such that $I_{h}^{-}(z)=\max \left\{\chi_{2} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{2} \mathrm{e}^{\epsilon_{2} z}\right), 0\right\}$ and $I_{v}^{-}(z)=\max \left\{\chi_{4} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{4} \mathrm{e}^{\epsilon_{2} z}\right), 0\right\}$ satisfy

$$
\begin{equation*}
D_{I} I_{h}^{-^{\prime \prime}}(z)-c I_{h}^{-^{\prime}}(z)-\gamma_{1} I_{h}^{-}(z)+f_{1}\left(S_{h}^{-}, I_{v}^{-}\right)(z) \geq 0, \quad z \neq z_{2}:=-\frac{\ln \left(\mathcal{H} M_{2}\right)}{\epsilon_{2}} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{I} I_{v}^{-^{\prime \prime}}(z)-c I_{v}^{-^{\prime}}(z)-\gamma_{2} I_{v}^{-}(z)+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z) \geq 0, \quad z \neq z_{4}:=-\frac{\ln \left(\mathcal{H} M_{4}\right)}{\epsilon_{2}} \tag{2.11}
\end{equation*}
$$

where \mathcal{H} meets $\max \left\{z_{2}, z_{4}\right\}<\min \left\{z_{1}, z_{3}\right\}$.
Proof. Without loss of generality, assuming $z_{2}<z_{4}$. It is not difficult to see that (2.10) holds for $z>z_{2}$ and (2.11) holds for $z>z_{4}$. Since $z_{4}<\min \left\{z_{1}, z_{3}\right\}$, we have

$$
I_{h}^{-}(z) \geq \chi_{2} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{2} \mathrm{e}^{\epsilon_{2} z}\right), \quad I_{v}^{-}(z)=\chi_{4} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{4} \mathrm{e}^{\epsilon_{2} z}\right), \quad S_{v}^{-}(z)=S_{v}^{0}\left(1-M_{3} \mathrm{e}^{\epsilon_{3} z}\right), \quad z<z_{4}
$$

When $z<z_{4}$, one has

$$
d_{I} I_{v}^{-{ }^{\prime \prime}}(z)-c I_{v}^{-^{\prime}}(z)-\gamma_{2} I_{v}^{-}(z)+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)
$$

$$
\begin{aligned}
= & d_{I}\left[\chi_{4} \zeta_{1}^{2} \mathrm{e}^{\zeta_{1} z}-\chi_{4} M_{4} \mathcal{H}\left(\zeta_{1}+\epsilon_{2}\right)^{2} \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z}\right]-c\left[\chi_{4} \zeta_{1} \mathrm{e}^{\zeta_{1} z}-\chi_{4} M_{4} \mathcal{H}\left(\zeta_{1}+\epsilon_{2}\right) \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z}\right] \\
& -\gamma_{2}\left[\chi_{4} \mathrm{e}^{\zeta_{1} z}-\chi_{4} M_{4} \mathcal{H} \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z}\right]+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z) \\
= & \mathrm{e}^{\zeta_{1} z} \chi_{4}\left(d_{I} \zeta_{1}^{2}-c \zeta_{1}-\gamma_{2}\right)+\chi_{4} M_{4} \mathcal{H} \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z}\left[-d_{I}\left(\zeta_{1}+\epsilon_{2}\right)^{2}+c\left(\zeta_{1}+\epsilon_{2}\right)+\gamma_{2}\right] \\
& +f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z) \\
= & \mathrm{e}^{\zeta_{1} z} \chi_{4} U_{4}^{c}\left(\zeta_{1}\right)-\mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z} \chi_{4} M_{4} \mathcal{H} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z) .
\end{aligned}
$$

Since $\chi_{2} k_{2}+\chi_{4} U_{4}^{c}\left(\zeta_{1}\right)=0$, to prove (2.11) for $z<z_{4}$, it is sufficient to show

$$
\begin{equation*}
-\mathrm{e}^{\zeta_{1} z} \chi_{2} k_{2}-\mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z} \chi_{4} M_{4} \mathcal{H} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z) \geq 0 \tag{2.12}
\end{equation*}
$$

Because $I_{h}^{-}(z) \geq \chi_{2} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{2} \mathrm{e}^{\epsilon_{2} z}\right), z \in \mathbb{R}$ and $k_{2}=\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)$, one gets

$$
\begin{aligned}
& f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\mathrm{e}^{\zeta_{1} z} \chi_{2} k_{2} \\
& \quad=f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\mathrm{e}^{\zeta_{1} z} \chi_{2} \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) \\
& = \\
& f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-}(z)+\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-}(z)-\mathrm{e}^{\zeta_{1} z} \chi_{2} \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) \\
& \geq \\
& \quad f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-}(z)+\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)\left[\chi_{2} \mathrm{e}^{\zeta_{1} z}-\chi_{2} \mathcal{H} M_{2} \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z}\right] \\
& \quad-\mathrm{e}^{\zeta_{1} z} \chi_{2} \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) \\
& = \\
& f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-}(z)-\chi_{2} M_{2} \mathcal{H} \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) \mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z} .
\end{aligned}
$$

Thus, to verify (2.12), we only to show

$$
\begin{equation*}
-\mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z} \chi_{4} M_{4} \mathcal{H} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)-\mathrm{e}^{\left(\zeta_{1}+\epsilon_{2}\right) z} \chi_{2} M_{2} \mathcal{H} \partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)+f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)(z)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-}(z) \geq 0 \tag{2.13}
\end{equation*}
$$

By appealing to Taylor's theorem (see [2, Sect. 5.5]) and assumptions (P1)-(P2), we have

$$
\begin{aligned}
f_{2}\left(S_{v}^{-}, I_{h}^{-}\right) & =\partial_{I_{h}} f_{2}\left(S_{v}^{-}, \xi_{I_{h}^{-}}\right) I_{h}^{-} \\
& =\left[\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)+\partial_{S_{v}} \partial_{I_{h}} f_{2}\left(\xi_{S_{v}^{-}}, \xi_{I_{h}^{-}}\right)\left(S_{v}^{-}-S_{v}^{0}\right)+\partial_{I_{h}}^{2} f_{2}\left(S_{v}^{-}, \tilde{\xi}_{I_{h}^{-}}\right) \xi_{I_{h}^{-}}\right] I_{h}^{-} \\
& \geq\left[\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)+\partial_{S_{v}} \partial_{I_{h}} f_{2}\left(\xi_{S_{v}^{-}}, \xi_{I_{h}^{-}}\right)\left(S_{v}^{-}-S_{v}^{0}\right)+\partial_{I_{h}}^{2} f_{2}\left(S_{v}^{-}, \tilde{\xi}_{I_{h}^{-}}\right) I_{h}^{-}\right] I_{h}^{-}
\end{aligned}
$$

where $0 \leq \xi_{S_{v}^{-}} \leq S_{v}^{-} \leq S_{v}^{+}=S_{v}^{0}, 0 \leq \tilde{\xi}_{I_{h}^{-}} \leq \xi_{I_{h}^{-}} \leq I_{h}^{-} \leq I_{h}^{+}=\chi_{2} \mathrm{e}^{\zeta_{1} z}, z<z_{4}<0$. Therefore,

$$
f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-} \geq-e^{\epsilon_{3} z} M_{3} \partial_{S_{v}} \partial_{I_{h}} f_{2}\left(\xi_{S_{v}^{-}}, \xi_{I_{h}^{-}}\right) I_{h}^{-}+\partial_{I_{h}}^{2} f_{2}\left(S_{v}^{-}, \tilde{\xi}_{I_{h}^{-}}\right)\left(I_{h}^{-}\right)^{2} .
$$

Since $0 \leq \xi_{S_{v}^{-}} \leq S_{v}^{0}, 0 \leq \tilde{\xi}_{I_{h}^{-}} \leq \xi_{I_{h}^{-}} \leq \chi_{2} \mathrm{e}^{\zeta_{1} z}, z<0$, there exists a constant $C_{1}>0$ such that

$$
\left|\partial_{S_{v}} \partial_{I_{h}} f_{2}\left(\xi_{S_{v}^{-}}, \xi_{I_{h}^{-}}\right)\right|+\left|\partial_{I_{h}}^{2} f_{2}\left(S_{v}^{-}, \tilde{\xi}_{I_{h}^{-}}\right)\right| \leq C_{1} .
$$

Then

$$
f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-} \geq-\mathrm{e}^{\epsilon_{3} z} C_{1} M_{3} I_{h}^{-}-C_{1}\left(I_{h}^{-}\right)^{2}
$$

Owing to $0 \leq I_{h}^{-} \leq I_{h}^{+}=\chi_{2} \mathrm{e}^{\zeta_{1} z}$, we obtain

$$
f_{2}\left(S_{v}^{-}, I_{h}^{-}\right)-\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right) I_{h}^{-} \geq-\mathrm{e}^{\left(\zeta_{1}+\epsilon_{3}\right) z} C_{1} \chi_{2} M_{3}-C_{1} \chi_{2}^{2} \mathrm{e}^{2 \zeta_{1} z}
$$

So, to prove (2.13), it is enough to show

$$
\begin{equation*}
-\mathcal{H}\left[\chi_{4} M_{4} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+\chi_{2} M_{2} k_{2}\right]-\mathrm{e}^{\left(\epsilon_{3}-\epsilon_{2}\right) z} C_{1}\left(\chi_{2} M_{3}+\chi_{2}^{2}\right) \geq 0 \tag{2.14}
\end{equation*}
$$

which is owing to $0<\epsilon_{3}<\zeta_{1}$ from Lemma 2.4. Similarly, to show (2.10) for $z<z_{2}$, since $0<\epsilon_{1}<\zeta_{1}$ by Lemma 2.4, one needs to prove

$$
\begin{equation*}
-\mathcal{H}\left[\chi_{2} M_{2} U_{2}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+\chi_{4} M_{4} k_{1}\right]-\mathrm{e}^{\left(\epsilon_{1}-\epsilon_{2}\right) z} C_{2}\left(\chi_{4} M_{1}+\chi_{4}^{2}\right) \geq 0, \tag{2.15}
\end{equation*}
$$

for some $C_{2}>0$. According to [36, Lemma 2.4], there are two positive constants M_{2}, M_{4} such that for $\zeta_{1}+\epsilon_{2}<\zeta_{2}<\zeta_{m}^{*}$, we have

$$
\left\{\begin{array}{l}
M_{2} \chi_{2} U_{2}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+M_{4} \chi_{4} k_{1}<0 \\
M_{4} \chi_{4} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+M_{2} \chi_{2} k_{2}<0
\end{array}\right.
$$

Let

$$
h_{1}\left(\epsilon_{2}\right):=M_{2} \chi_{2} U_{2}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+M_{4} \chi_{4} k_{1}, \quad h_{2}\left(\epsilon_{2}\right):=M_{4} \chi_{4} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+M_{2} \chi_{2} k_{2}
$$

Choose \mathcal{H} to be large enough satisfying

$$
\mathcal{H}>\max \left\{\frac{C_{1}\left(\chi_{2} M_{3}+\chi_{2}^{2}\right)}{-h_{2}\left(\epsilon_{2}\right)}, \frac{C_{2}\left(\chi_{4} M_{1}+\chi_{4}^{2}\right)}{-h_{1}\left(\epsilon_{2}\right)}\right\} .
$$

Then, when $z<z_{4}<0$, one has

$$
\begin{aligned}
& -\mathcal{H}\left[\chi_{4} M_{4} U_{4}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+\chi_{2} M_{2} k_{2}\right]-\mathrm{e}^{\left(\epsilon_{3}-\epsilon_{2}\right) z} C_{1}\left(\chi_{2} M_{3}+\chi_{2}^{2}\right) \\
& \quad>\frac{C_{1}\left(\chi_{2} M_{3}+\chi_{2}^{2}\right)}{-h_{2}\left(\epsilon_{2}\right)} \cdot\left[-h_{2}\left(\epsilon_{2}\right)\right]-C_{1}\left(\chi_{2} M_{3}+\chi_{2}^{2}\right) \\
& \quad=0
\end{aligned}
$$

which is due to $-h_{2}\left(\epsilon_{2}\right)>0, \epsilon_{3}-\epsilon_{2}>0$. When $z<z_{2}<0$, one obtains

$$
\begin{aligned}
& -\mathcal{H}\left[\chi_{2} M_{2} U_{2}^{c}\left(\zeta_{1}+\epsilon_{2}\right)+\chi_{4} M_{4} k_{1}\right]-\mathrm{e}^{\left(\epsilon_{1}-\epsilon_{2}\right) z} C_{2}\left(\chi_{4} M_{1}+\chi_{4}^{2}\right) \\
& \quad>\frac{C_{2}\left(\chi_{4} M_{1}+\chi_{4}^{2}\right)}{-h_{1}\left(\epsilon_{2}\right)} \cdot\left[-h_{1}\left(\epsilon_{2}\right)\right]-C_{2}\left(\chi_{4} M_{1}+\chi_{4}^{2}\right) \\
& \quad=0
\end{aligned}
$$

which is owing to $-h_{1}\left(\epsilon_{2}\right)>0, \epsilon_{1}-\epsilon_{2}>0$. Therefore, (2.10) and (2.11) hold when \mathcal{H} satisfies the above inequalities such that $\max \left\{z_{2}, z_{4}\right\}<\min \left\{z_{1}, z_{3}\right\}$. This ends the proof.

2.2. An auxiliary truncated problem

Let $X>\max \left\{-z_{2},-z_{4}\right\}$. Then define

$$
\Gamma_{X}:=\left\{\begin{array}{l|l}
\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)^{T} \in C\left([-X, X], \mathbb{R}^{4}\right) & \begin{array}{l}
\phi_{1}(\pm X)=S_{h}^{-}(\pm X), S_{h}^{-}(z) \leq \phi_{1}(z) \leq S_{h}^{0} \\
\phi_{2}(\pm X)=I_{h}^{-}(\pm X), I_{h}^{-}(z) \leq \phi_{2}(z) \leq I_{h}^{+}(z), \\
\phi_{3}(\pm X)=S_{v}^{-}(\pm X), S_{v}^{-}(z) \leq \phi_{3}(z) \leq S_{v}^{0} \\
\phi_{4}(\pm X)=I_{v}^{-}(\pm X), I_{v}^{-}(z) \leq \phi_{4}(z) \leq I_{v}^{+}(z), \\
\\
\forall z \in[-X, X] .
\end{array}
\end{array}\right\}
$$

and

$$
\tilde{\phi}_{1}(z)=\left\{\begin{array}{ll}
\phi_{1}(z), & |z| \leq X, \\
S_{h}^{-}(z), & |z|>X,
\end{array} \quad \tilde{\phi}_{2}(z)= \begin{cases}\phi_{2}(z), & |z| \leq X, \\
I_{h}^{-}(z), & |z|>X,\end{cases}\right.
$$

and

$$
\tilde{\phi}_{3}(z)=\left\{\begin{array}{ll}
\phi_{3}(z), & |z| \leq X, \\
S_{v}^{-}(z), & |z|>X,
\end{array} \quad \tilde{\phi}_{4}(z)= \begin{cases}\phi_{4}(z), & |z| \leq X, \\
I_{v}^{-}(z), & |z|>X .\end{cases}\right.
$$

Thus, it is easy to see that the set Γ_{X} is a bounded closed convex set.

For $z \in(-X, X)$, consider the following boundary-value problem

$$
\left\{\begin{array}{l}
c S_{h, X}^{\prime}(z)=D_{S} S_{h, X}^{\prime \prime}(z)+\Lambda-f_{1}\left(S_{h, X}, \phi_{4}\right)(z)-\mu_{1} S_{h, X}(z) \tag{2.16}\\
c I_{h, X}^{\prime}(z)=D_{I} I_{h, X}^{\prime \prime}(z)+f_{1}\left(\tilde{\phi}_{1}, \tilde{\phi}_{4}\right)(z)-\gamma_{1} I_{h, X}(z) \\
c S_{v, X}^{\prime}(z)=d_{S} S_{v, X}^{\prime \prime}(z)+M-f_{2}\left(S_{v, X}, \phi_{2}\right)(z)-\mu_{2} S_{v, X}(z) \\
c I_{v, X}^{\prime}(z)=d_{I} I_{v, X}^{\prime \prime}(z)+f_{2}\left(\tilde{\phi}_{3}, \tilde{\phi}_{2}\right)(z)-\gamma_{2} I_{v, X}(z)
\end{array}\right.
$$

satisfying boundary conditions

$$
\begin{equation*}
S_{h, X}(\pm X)=S_{h}^{-}(\pm X), I_{h, X}(\pm X)=I_{h}^{-}(\pm X), S_{v, X}(\pm X)=S_{v}^{-}(\pm X), I_{v, X}(\pm X)=I_{v}^{-}(\pm X) \tag{2.17}
\end{equation*}
$$

According to the standard ODE theory, problems (2.16)-(2.17) admit a unique solution ($S_{h, X}(z$), $\left.I_{h, X}(z), S_{v, X}(z), I_{v, X}(z)\right)^{T}$ satisfying $S_{h, X}, I_{h, X}, S_{v, X}$ and $I_{v, X} \in W_{p}^{2}((-X, X), \mathbb{R}) \cap C([-X, X], \mathbb{R})$, for any $p \in \mathbb{N}^{*}$ (the set of positive integers) (see [10, Corollary 9.18]). Furthermore, by using the embedding theorem [10, Theorem 7.26], we know that $S_{h, X}, I_{h, X}, S_{v, X}$ and $I_{v, X} \in W_{p}^{2}((-X, X), \mathbb{R}) \rightarrow$ $C^{1, \nu}([-X, X]), \nu \in(0,1)$. Define an operator $\mathcal{F}:=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}\right)^{T}$ on Γ_{X} as follows

$$
S_{h, X}=\mathcal{F}_{1}\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right), \quad I_{h, X}=\mathcal{F}_{2}\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)
$$

and

$$
S_{v, X}=\mathcal{F}_{3}\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right), \quad I_{v, X}=\mathcal{F}_{4}\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right),
$$

for all $\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)^{T} \in \Gamma_{X}$.
Lemma 2.6. The operator \mathcal{F} maps Γ_{X} into Γ_{X}, i.e., $\mathcal{F}\left(\Gamma_{X}\right) \subset \Gamma_{X}$.
Proof. It is obvious that 0 is the sub-solution of the first and third equations for system (2.16) on ($-X, X$), and S_{h}^{0} and S_{v}^{0} are the super-solutions of the first and third equations for system (2.16) on ($-X, X$).

Since $0=S_{h, X}(X)=S_{h}^{-}(X)<S_{h}^{0}$ and $0<S_{h, X}(-X)=S_{h}^{-}(-X)<S_{h}^{0}$, it follows from the maximum principle that $0 \leq S_{h, X}(z) \leq S_{h}^{0}, z \in[-X, X]$. Recalling that $\max \left\{z_{2}, z_{4}\right\}<\min \left\{z_{1}, z_{3}\right\}$ and $X>\max \left\{-z_{2},-z_{4}\right\}$, by (2.8) and assumption (P1), we get

$$
\begin{aligned}
0 & \leq D_{S} S_{h}^{-^{\prime \prime}}(z)-c S_{h}^{-^{\prime}}(z)+\Lambda-f_{1}\left(S_{h}^{-}, I_{v}^{+}\right)(z)-\mu_{1} S_{h}^{-}(z) \\
& \leq D_{S} S_{h}^{-{ }^{\prime \prime}}(z)-c S_{h}^{-^{\prime}}(z)+\Lambda-f_{1}\left(S_{h}^{-}, \phi_{4}\right)(z)-\mu_{1} S_{h}^{-}(z)
\end{aligned}
$$

in $\left[-X, z_{1}\right]$. By the maximum principle and the facts $S_{h, X}(-X)=S_{h}^{-}(-X)$ and $S_{h, X}\left(z_{1}\right) \geq S_{h}^{-}\left(z_{1}\right)=0$, one has $S_{h}^{-}(z) \leq S_{h, X}(z)$, for any $\left[-X, z_{1}\right]$. In addition, $0=S_{h}^{-}(z) \leq S_{h, X}(z)$ in $\left[z_{1}, X\right]$. Consequently, $S_{h}^{-}(z) \leq S_{h, X}(z) \leq S_{h}^{0}, z \in[-X, X]$. Similar discussions can be showed $S_{v}^{-}(z) \leq S_{v, X}(z) \leq S_{v}^{0}, z \in$ $[-X, X]$.

Next to consider $I_{h, X}(z)$ and $I_{v, X}(z)$. It is clear that 0 is the sub-solution of the second and fourth equations for system (2.16) on $[-X, X]$. Since $\tilde{\phi}_{1}(z) \leq S_{h}^{0}$ and $\tilde{\phi}_{4}(z) \leq I_{v}^{+}(z), z \in[-X, X]$, following from (P1) and Lemma 2.3 that

$$
D_{I} I_{h}^{+^{\prime \prime}}(z)-c I_{h}^{+^{\prime}}(z)-\gamma_{1} I_{h}^{+}(z)+f_{1}\left(\tilde{\phi}_{1}, \tilde{\phi}_{4}\right)(z) \leq D_{I} I_{h}^{+^{\prime \prime}}(z)-c I_{h}^{+^{\prime}}(z)-\gamma_{1} I_{h}^{+}(z)+f_{1}\left(S_{h}^{0}, I_{v}^{+}\right)(z) \leq 0
$$

for any $z \in[-X, X]$. Thus, $I_{h}^{+}(z)$ is the super-solution of the second equation for (2.16) in $z \in[-X, X]$. Moreover, by $\tilde{\phi}_{1}(z) \geq S_{h}^{-}(z)$ and $\tilde{\phi}_{4}(z) \geq I_{v}^{-}(z), z \in[-X, X]$, combining ($\left.\mathbf{P} 1\right)$ and Lemma 2.5 that

$$
D_{I} I_{h}^{-^{\prime \prime}}(z)-c I_{h}^{-^{\prime}}(z)-\gamma_{1} I_{h}^{-}(z)+f_{1}\left(\tilde{\phi}_{1}, \tilde{\phi}_{4}\right)(z) \geq D_{I} I_{h}^{-^{\prime \prime}}(z)-c I_{h}^{-^{\prime}}(z)-\gamma_{1} I_{h}^{-}(z)+f_{1}\left(S_{h}^{-}, I_{v}^{-}\right)(z) \geq 0
$$

for $z \in[-X, X]$. So, $I_{h}^{-}(z)$ is the sub-solution of the second equation for (2.16) in $z \in[-X, X]$. Accordingly, $I_{h}^{-}(z) \leq I_{h, X}(z) \leq I_{h}^{+}(z), z \in[-X, X]$. In the similar way, $I_{v}^{-}(z) \leq I_{v, X}(z) \leq I_{v}^{+}(z), z \in[-X, X]$. This completes the proof.

Lemma 2.7. The operator $\mathcal{F}: \Gamma_{X} \rightarrow \Gamma_{X}$ is completely continuous.
Proof. To prove the compactness of \mathcal{F}. Suppose $\left(S_{h, X}(z), I_{h, X}(z), S_{v, X}(z), I_{v, X}(z)\right)^{T}$ is the solution of problems (2.16)-(2.17). Then the first and second derivatives of $\left(S_{h, X}(z), I_{h, X}(z), S_{v, X}(z), I_{v, X}(z)\right)$ with respect to z are bounded on $[-X, X]$ according to embedding theorem. Hence, Arzelà-Ascoli theorem yields that \mathcal{F} is compact.

To show the continuity of $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}\right)^{T}$. For $\left(\phi_{1}^{1}(\cdot), \phi_{2}^{1}(\cdot), \phi_{3}^{1}(\cdot), \phi_{4}^{1}(\cdot)\right)^{T} \in \Gamma_{X}$ and $\left(\phi_{1}^{2}(\cdot), \phi_{2}^{2}(\cdot), \phi_{3}^{2}(\cdot), \phi_{4}^{2}(\cdot)\right)^{T} \in \Gamma_{X}$, setting

$$
S_{h, X}^{j}=\mathcal{F}_{1}\left(\phi_{1}^{j}, \phi_{2}^{j}, \phi_{3}^{j}, \phi_{4}^{j}\right), \quad j=1,2 .
$$

For the operator \mathcal{F}_{1}. By direct calculations, we have

$$
\begin{aligned}
& D_{S}\left[S_{h, X}^{1}-S_{h, X}^{2}\right]^{\prime \prime}(z)-c\left[S_{h, X}^{1}-S_{h, X}^{2}\right]^{\prime}(z)-\mu_{1}\left[S_{h, X}^{1}-S_{h, X}^{2}\right](z) \\
& \quad=\left[f_{1}\left(S_{h, X}^{1}, \phi_{4}^{1}\right)(z)-f_{1}\left(S_{h, X}^{2}, \phi_{4}^{2}\right)(z)\right] \\
& \quad \leq L_{1}\left|S_{h, X}^{1}(z)-S_{h, X}^{2}(z)\right|+k_{1}\left|\phi_{4}^{1}(z)-\phi_{4}^{2}(z)\right|,
\end{aligned}
$$

where

$$
L_{1}:=\max _{0 \leq S_{h}(z) \leq S_{h}^{0}, z \in[-X, X]} \partial_{S_{h}} f_{1}\left(S_{h}, I_{v}^{+}\right), \quad k_{1}=\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right) .
$$

Thus, the globally elliptic estimate and embedding theorem give that \mathcal{F}_{1} is continuous. Similarly, we can show the continuity of $\mathcal{F}_{i}(i=2,3,4)$. This ends the proof.

Combining Lemmas 2.6 and 2.7, Schauder's fixed-point theorem implies that there exists ($S_{h, X}, I_{h, X}$, $\left.S_{v, X}, I_{v, X}\right)^{T} \in \Gamma_{X}$ satisfying

$$
\left(S_{h, X}, I_{h, X}, S_{v, X}, I_{v, X}\right)^{T}=\mathcal{F}\left(S_{h, X}, I_{h, X}, S_{v, X}, I_{v, X}\right), \quad z \in[-X, X] .
$$

Then $\left(S_{h, X}, I_{h, X}, S_{v, X}, I_{v, X}\right)^{T}$ satisfies

$$
\left\{\begin{array}{l}
c S_{h, X}^{\prime}(z)=D_{S} S_{h, X}^{\prime \prime}(z)+\Lambda-f_{1}\left(S_{h, X}, I_{v, X}\right)(z)-\mu_{1} S_{h, X}(z), \tag{2.18}\\
c I_{h, X}^{\prime}(z)=D_{I} I_{h, X}^{\prime \prime}(z)+f_{1}\left(\tilde{S}_{h, X}, \tilde{I}_{v, X}\right)(z)-\gamma_{1} I_{h, X}(z) \\
c S_{v, X}^{\prime}(z)=d_{S} S_{v, X}^{\prime \prime}(z)+M-f_{2}\left(S_{v, X}, I_{h, X}\right)(z)-\mu_{2} S_{v, X}(z), \\
c I_{v, X}^{\prime}(z)=d_{I} I_{v, X}^{\prime \prime}(z)+f_{2}\left(\tilde{S}_{v, X}, \tilde{I}_{h, X}\right)(z)-\gamma_{2} I_{v, X}(z),
\end{array}\right.
$$

for $z \in(-X, X)$, wherein

$$
\tilde{S}_{h, X}(z)=\left\{\begin{array}{ll}
S_{h, X}(z), & |z| \leq X, \tag{2.19}\\
S_{h}^{-}(z), & |z|>X,
\end{array} \quad \tilde{I}_{h, X}(z)= \begin{cases}I_{h, X}(z), & |z| \leq X, \\
I_{h}^{-}(z), & |z|>X,\end{cases}\right.
$$

and

$$
\tilde{S}_{v, X}(z)=\left\{\begin{array}{ll}
S_{v, X}(z), & |z| \leq X, \tag{2.20}\\
S_{v}^{-}(z), & |z|>X,
\end{array} \quad \tilde{I}_{v, X}(z)= \begin{cases}I_{v, X}(z), & |z| \leq X, \\
I_{v}^{-}(z), & |z|>X .\end{cases}\right.
$$

Define

$$
C^{2,1}([-X, X]):=\left\{u \in C^{2}([-X, X]) \mid u, u^{\prime} \text { and } u^{\prime \prime} \text { are Lipschitz continuous }\right\}
$$

with the norm

$$
\|u\|_{C^{2,1}([-X, X])}=\max _{z \in[-X, X]}|u|+\max _{z \in[-X, X]}\left|u^{\prime}\right|+\max _{z \in[-X, X]}\left|u^{\prime \prime}\right|+\sup _{\substack{z, y \in[-X, X] \\ z \neq y}} \frac{\left|u^{\prime \prime}(z)-u^{\prime \prime}(y)\right|}{|z-y|} .
$$

Then there are the following estimates for $S_{h, X}, I_{h, X}, S_{v, X}$, and $I_{v, X}$.

Lemma 2.8. For given $Y>0$, there exists a constant $P:=P(Y)>0$ such that

$$
\left\|S_{h, X}\right\|_{C^{3}[-Y, Y]},\left\|S_{v, X}\right\|_{C^{3}[-Y, Y]},\left\|I_{h, X}\right\|_{C^{2,1}[-Y, Y]},\left\|I_{v, X}\right\|_{C^{2,1}[-Y, Y]} \leq P,
$$

for $0<Y<X$ and $X>\max \left\{-z_{2},-z_{4}\right\}$.
Proof. Since $S_{h, X}(z) \leq S_{h}^{0}$ and $I_{v, X}(z) \leq \chi_{4} \mathrm{e}^{\zeta_{1} z}, z \in[-Y, Y]$, utilizing the $L^{p}(p \geq 2)$ estimates [39] of linear elliptic differential equations to the first equation of system (2.18) yields that

$$
\left\|S_{h, X}\right\|_{W_{p}^{2}(-Y, Y)} \leq C\left[\Lambda+f_{1}\left(S_{h}^{0}, \chi_{4} \mathrm{e}^{\zeta_{1} z}\right)+\left\|\eta_{1}\right\|_{W_{p}^{2}(-Y, Y)}\right]
$$

where $C:=C(Y)>0$ and η_{1} is chosen to be a linear function connecting the points $\left(-Y, S_{h, X}(-Y)\right)$ and $\left(Y, S_{h, X}(Y)\right)$. So, there is a constant $\bar{P}:=\bar{P}(Y)>0$ such that $\left\|S_{h, X}\right\|_{W_{p}^{2}(-Y, Y)} \leq \bar{P}$ for all $X>Y$. Furthermore, it follows from the fact $W_{p}^{2}(-Y, Y) \hookrightarrow C^{1, \nu}[-Y, Y], \nu=1-1 / p$ that there exists a $\tilde{P}:=$ $\tilde{P}(Y)>0$ such that $\left\|S_{h, X}\right\|_{C^{1, \nu}[-Y, Y]} \leq \tilde{P}\left\|S_{h, X}\right\|_{W_{p}^{2}(-Y, Y)}$. Then we obtain $\left\|S_{h, X}\right\|_{C^{1, \nu}[-Y, Y]} \leq \tilde{P} \bar{P}$. By the first equation of (2.18), $\left\|S_{h, X}\right\|_{C^{2}[-Y, Y]} \leq P$ for some positive constants $P:=P(Y)$. Similar arguments prove that $\left\|S_{v, X}\right\|_{C^{2}[-Y, Y]},\left\|I_{h, X}\right\|_{C^{2}[-Y, Y]},\left\|I_{v, X}\right\|_{C^{2}[-Y, Y]} \leq P$. Differentiating the first and third equations of the system (2.18) in respect of z, we get $\left\|S_{h, X}\right\|_{C^{3}[-Y, Y]} \leq P$ and $\left\|S_{v, X}\right\|_{C^{3}[-Y, Y]} \leq P$. According to (2.19) and (2.20), we have $\left\|I_{h, X}\right\|_{C^{2,1}[-Y, Y]} \leq P$ and $\left\|I_{v, X}\right\|_{C^{2,1}[-Y, Y]} \leq P$, for some $P>0$. This finishes the proof.

3. Existence of traveling wave solutions

To prove the existence of bounded solutions connecting E_{0} and E_{1}^{*} for system (2.2), we take a sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}^{*}}$ satisfying $X_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. From Lemma 2.8, the choice of $P(Y)$ is independent of n. Then letting $n \rightarrow+\infty$, there exists $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T} \in C^{2}\left(\mathbb{R}, \mathbb{R}^{4}\right)$ satisfying (2.2) and

$$
\begin{equation*}
S_{h}^{-}(z) \leq S_{h}(z) \leq S_{h}^{0}, \quad I_{h}^{-}(z) \leq I_{h}(z) \leq I_{h}^{+}(z), \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{v}^{-}(z) \leq S_{v}(z) \leq S_{v}^{0}, \quad I_{v}^{-}(z) \leq I_{v}(z) \leq I_{v}^{+}(z) \tag{3.2}
\end{equation*}
$$

for any $z \in \mathbb{R}$. Hence, combining (3.1) and (3.2), one gets

$$
\lim _{z \rightarrow-\infty} S_{h}(z)=S_{h}^{0}, \lim _{z \rightarrow-\infty} S_{v}(z)=S_{v}^{0}, \lim _{z \rightarrow-\infty} I_{h}(z)=0, \lim _{z \rightarrow-\infty} I_{v}(z)=0
$$

Thus, (2.3) holds for $\left(S_{h}(\cdot), I_{h}(\cdot), S_{v}(\cdot), I_{v}(\cdot)\right)^{T}$. To obtain the convergence at positive infinity, we first prove the following lemma by utilizing the approaches of [39].

Lemma 3.1. Let $\mu:=\min \left\{\mu_{1}, \mu_{2}, \gamma_{1}, \gamma_{2}\right\}$. Then the solutions of system (2.2) satisfy

$$
\begin{equation*}
\frac{\Lambda}{\mu_{1}+\rho_{1}} \leq S_{h}(z) \leq S_{h}^{0}, \quad 0<I_{h}(z) \leq \frac{\sqrt{D_{S}} \Lambda}{\sqrt{D_{I}} \mu} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{M}{\mu_{2}+\rho_{2}} \leq S_{v}(z) \leq S_{v}^{0}, \quad 0<I_{v}(z) \leq \frac{\sqrt{d_{S}} M}{\sqrt{d_{I}} \mu} \tag{3.4}
\end{equation*}
$$

where $z \in \mathbb{R}$ and

$$
\rho_{1}:=\max _{0 \leq S_{h}(z) \leq S_{h}^{0}, z \in \mathbb{R}} \partial_{S_{h}} f_{1}\left(S_{h}, \frac{\sqrt{d_{S}} M}{\sqrt{d_{I}} \mu}\right), \rho_{2}:=\max _{0 \leq S_{v}(z) \leq S_{v}^{0}, z \in \mathbb{R}} \partial_{S_{v}} f_{2}\left(S_{v}, \frac{\sqrt{D_{S}} \Lambda}{\sqrt{D_{I}} \mu}\right) .
$$

Proof. Applying the strong maximum principle, we have $I_{h}(z), I_{v}(z)>0$, for any $z \in \mathbb{R}$, due to $I_{h}(z)$, $I_{v}(z) \geq 0$ and $I_{h}(z), I_{v}(z) \not \equiv 0$. According to the definition of μ, then

$$
\left\{\begin{array}{l}
-D_{S} S_{h}^{\prime \prime}(z)+c S_{h}^{\prime}(z)+\mu S_{h}(z) \leq \Lambda-f_{1}\left(S_{h}, I_{v}\right)(z) \tag{3.5}\\
-D_{I} I_{h}^{\prime \prime}(z)+c I_{h}^{\prime}(z)+\mu I_{h}(z) \leq f_{1}\left(S_{h}, I_{v}\right)(z) \\
-d_{S} S_{v}^{\prime \prime}(z)+c S_{v}^{\prime}(z)+\mu S_{v}(z) \leq M-f_{2}\left(S_{v}, I_{h}\right)(z) \\
-d_{I} I_{v}^{\prime \prime}(z)+c I_{v}^{\prime}(z)+\mu I_{v}(z) \leq f_{2}\left(S_{v}, I_{h}\right)(z)
\end{array}\right.
$$

Denote $p_{1}(\cdot):=\Lambda-f_{1}\left(S_{h}, I_{v}\right)(\cdot)$ and $q_{1}(\cdot):=f_{1}\left(S_{h}, I_{v}\right)(\cdot)$. Consider the following Cauchy problems

$$
\left\{\begin{array}{l}
\partial_{t} w_{1}(t, z)-D_{S} \partial_{z}^{2} w_{1}(t, z)+c \partial_{z} w_{1}(t, z)+\mu w_{1}(t, z)=p_{1}(z), t>0, z \in \mathbb{R} \tag{3.6}\\
w_{1}(0, z)=S_{h}(z), z \in \mathbb{R}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\partial_{t} w_{2}(t, z)-D_{I} \partial_{z}^{2} w_{2}(t, z)+c \partial_{z} w_{2}(t, z)+\mu w_{2}(t, z)=q_{1}(z), t>0, z \in \mathbb{R} \tag{3.7}\\
w_{2}(0, z)=I_{h}(z), z \in \mathbb{R}
\end{array}\right.
$$

Applying [9, Chapter 1, Theorems 12 and 16], one obtains

$$
\begin{equation*}
w_{1}(t, z)=\int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu t}}{\sqrt{4 \pi D_{S} t}} \mathrm{e}^{-\frac{(z-c t-\xi)^{2}}{4 D_{S} t}} S_{h}(\xi) \mathrm{d} \xi+\int_{0}^{t} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi D_{S} \varpi}} \mathrm{e}^{-\frac{(z-c \infty-\xi)^{2}}{4 D S \varpi}} p_{1}(\xi) \mathrm{d} \xi \mathrm{~d} \varpi \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{2}(t, z)=\int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu t}}{\sqrt{4 \pi D_{I} t}} \mathrm{e}^{-\frac{(z-c t-\xi)^{2}}{4 D_{I} t}} I_{h}(\xi) \mathrm{d} \xi+\int_{0}^{t} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi D_{I} \varpi}} \mathrm{e}^{-\frac{(z-c \varpi-\xi)^{2}}{4 D_{I} \varpi}} q_{1}(\xi) \mathrm{d} \xi \mathrm{~d} \varpi \tag{3.9}
\end{equation*}
$$

wherein $t>0, z \in \mathbb{R}$. Thus, the comparison principle yields that

$$
S_{h}(z) \leq w_{1}(t, z), \quad I_{h}(z) \leq w_{2}(t, z), \quad \forall t>0, \quad z \in \mathbb{R}
$$

Taking $t \rightarrow+\infty$ in (3.8) and (3.9), respectively, we get

$$
S_{h}(z) \leq w_{1}(+\infty, z)=\frac{\Lambda}{\mu}-\int_{0}^{+\infty} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi D_{S} \varpi}} \mathrm{e}^{-\frac{(z-c \varpi-\xi)^{2}}{4 D_{S}}} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi \mathrm{~d} \varpi:=\frac{\Lambda}{\mu}-h_{D_{S}}(z)
$$

and

$$
I_{h}(z) \leq w_{2}(+\infty, z)=\int_{0}^{+\infty} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi D_{I} \varpi}} \mathrm{e}^{-\frac{(z-c \infty-\xi)^{2}}{4 D_{I} \varpi}} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi \mathrm{~d} \varpi:=h_{D_{I}}(z)
$$

for $z \in \mathbb{R}$.
By simple calculations and the assumption (P3), one has

$$
\begin{aligned}
\sqrt{D_{S}} h_{D_{S}}(z) & =\int_{0}^{+\infty} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi \varpi}} f_{1}\left(S_{h}, I_{v}\right)(z-c \varpi-\xi) \mathrm{e}^{-\frac{z^{2}}{4 D_{S} \varpi}} \mathrm{~d} \xi \mathrm{~d} \varpi \\
& \geq \int_{0}^{+\infty} \int_{\mathbb{R}} \frac{\mathrm{e}^{-\mu \varpi}}{\sqrt{4 \pi \varpi}} f_{1}\left(S_{h}, I_{v}\right)(z-c \varpi-\xi) \mathrm{e}^{-\frac{z^{2}}{4 D_{I}}} \mathrm{~d} \xi \mathrm{~d} \varpi \\
& =\sqrt{D_{I}} h_{D_{I}}(z) .
\end{aligned}
$$

Then

$$
\sqrt{D_{I}} I_{h}(z) \leq \sqrt{D_{I}} h_{D_{I}}(z) \leq \sqrt{D_{S}} h_{D_{S}}(z) \leq \frac{\sqrt{D_{S}} \Lambda}{\mu}, \quad z \in \mathbb{R}
$$

i.e., $I_{h}(z) \leq \frac{\sqrt{D_{S}} \Lambda}{\sqrt{D_{I} \mu}}, z \in \mathbb{R}$. The proof of inequality for I_{h} is finished.

Since $S_{h}(z)$ satisfies the inequality

$$
D_{S} S_{h}^{\prime \prime}(z)-c S_{h}^{\prime}(z)+\Lambda-\left(\rho_{1}+\mu_{1}\right) S_{h}(z) \leq 0, \quad z \in \mathbb{R}
$$

it follows from maximum principle that $S_{h}(z) \geq \frac{\Lambda}{\mu_{1}+\rho_{1}}, z \in \mathbb{R}$. So, (3.3) holds for S_{h} and I_{h}. The inequalities for S_{v} and I_{v} can be similarly proved. This ends the proof.

According to [22, Lemma 2.2] (or see [4, Lemma 4.7]), there is the following result.
Lemma 3.2. Suppose $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ be the solution of (2.2) satisfying (2.3). Then

$$
\left|I_{h}^{\prime}(z)\right| \leq \frac{\left(c+\sqrt{c^{2}+4 \gamma_{1}}\right)}{2 D_{I}} I_{h}(z),\left|I_{v}^{\prime}(z)\right| \leq \frac{\left(c+\sqrt{c^{2}+4 \gamma_{2}}\right)}{2 d_{I}} I_{v}(z), \text { for any } z \in \mathbb{R}
$$

Furthermore, the Harnack's inequality is established as follows

$$
I_{h}(z) \leq I_{h}(\bar{z}) \mathrm{e}^{\frac{\left(c+\sqrt{c^{2}+4 \gamma_{1}}\right)}{2 D_{I}}}\left|\bar{z}_{1}-\bar{z}_{2}\right| \quad, \quad I_{v}(z) \leq I_{v}(\bar{z}) \mathrm{e}^{\frac{\left(c+\sqrt{c^{2}+4 \gamma_{2}}\right)}{2 d_{I}}\left|\bar{z}_{1}-\bar{z}_{2}\right|}
$$

for any $z, \bar{z} \in\left[\bar{z}_{1}, \bar{z}_{2}\right]$ with $\bar{z}_{1} \leq \bar{z}_{2}, \bar{z}_{i} \in \mathbb{R}, i=1,2$.
In order to prove that the solutions of (2.2) satisfy (2.4), we give the assumption as follows (P4)

$$
\left[\frac{I_{h}}{I_{h}^{*}}-\frac{S_{h}^{*} f_{1}\left(S_{h}, I_{v}\right)}{S_{h} f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}\right]\left[\frac{S_{h} f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}{S_{h}^{*} f_{1}\left(S_{h}, I_{v}\right)}-1\right] \leq 0 \text { and }\left[\frac{I_{v}}{I_{v}^{*}}-\frac{S_{v}^{*} f_{2}\left(S_{v}, I_{h}\right)}{S_{v} f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}\right]\left[\frac{S_{v} f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}{S_{v}^{*} f_{2}\left(S_{v}, I_{h}\right)}-1\right] \leq 0 .
$$

Theorem 3.1. Suppose $\mathfrak{R}_{0}>1$ and (P1)-(P4) hold. Then for each $c \geq c_{*}$, there exists a nontrivial traveling wave solution $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ of system (1.2) which meets (2.3) and (2.4). Moreover,

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} \chi_{2}^{-1} \mathrm{e}^{-\zeta_{1} z} I_{h}(z)=1, \quad \lim _{z \rightarrow-\infty} \chi_{4}^{-1} \mathrm{e}^{-\zeta_{1} z} I_{v}(z)=1, \tag{3.10}
\end{equation*}
$$

where $z=x+c t$ and $c_{*}, \zeta_{1}, \chi_{2}, \chi_{4}$ are defined in Lemma 2.1.
Proof. First consider the case $c>c_{*}$. According to the previous discussions and Lemma 3.1, system (2.2) admits a nonnegative solution $\left(S_{h}(\cdot), I_{h}(\cdot), S_{v}(\cdot), I_{v}(\cdot)\right)^{T}$ satisfying (2.3), (3.3) and (3.4). The strong maximum principle yields that $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ is positive for all $z \in \mathbb{R}$. In addition, appealing to the following facts

$$
\chi_{2} \mathrm{e}^{\mathrm{\zeta}_{1} z}\left(1-\mathcal{H} M_{2} \mathrm{e}^{\epsilon_{2} z}\right) \leq I_{h}^{-}(z) \leq I_{h}(z) \leq I_{h}^{+}(z) \leq \chi_{2} \mathrm{e}^{\zeta_{1} z}
$$

and

$$
\chi_{4} \mathrm{e}^{\zeta_{1} z}\left(1-\mathcal{H} M_{4} \mathrm{e}^{\epsilon_{2} z}\right) \leq I_{v}^{-}(z) \leq I_{v}(z) \leq I_{v}^{+}(z) \leq \chi_{4} \mathrm{e}^{\zeta_{1} z}
$$

for any $z \in \mathbb{R}$, one sees that (3.10) holds. It is thus enough to certify (2.4), i.e.,

$$
S_{h}(z) \rightarrow S_{h}^{*}, \quad S_{v}(z) \rightarrow S_{v}^{*}, \quad I_{h}(z) \rightarrow I_{h}^{*}, \quad I_{v}(z) \rightarrow I_{v}^{*}, \text { as } z \rightarrow+\infty
$$

For the sake of convenience, denote

$$
\left(S_{h}(\cdot), I_{h}(\cdot), S_{v}(\cdot), I_{v}(\cdot)\right)^{T}=\left(U_{1}(\cdot), U_{2}(\cdot), U_{3}(\cdot), U_{4}(\cdot)\right)^{T}:=U(\cdot) .
$$

To apply the LaSalle's invariance principle, letting $U_{i}^{\prime}(\cdot):=V_{i}(\cdot), i=1,2,3,4$. Hence, system (2.2) is transformed into

$$
\left\{\begin{array}{l}
U_{1}^{\prime}(z)=V_{1}(z) \\
D_{S} V_{1}^{\prime}(z)=c V_{1}(z)-\Lambda+f_{1}\left(U_{1}, U_{4}\right)(z)+\mu_{1} U_{1}(z) \\
U_{2}^{\prime}(z)=V_{2}(z) \\
D_{I} V_{2}^{\prime}(z)=c V_{2}(z)-f_{1}\left(U_{1}, U_{4}\right)(z)+\gamma_{1} U_{2}(z) \\
U_{3}^{\prime}(z)=V_{3}(z) \\
d_{S} V_{3}^{\prime}(z)=c V_{3}(z)-M+f_{2}\left(U_{3}, U_{2}\right)(z)+\mu_{2} U_{3}(z) \\
U_{4}^{\prime}(z)=V_{4}(z) \\
d_{I} V_{4}^{\prime}(z)=c V_{4}(z)-f_{2}\left(U_{3}, U_{2}\right)(z)+\gamma_{2} U_{4}(z)
\end{array}\right.
$$

Define a Lyapunov functional $\mathcal{L}(z)$ as follows

$$
\mathcal{L}(z):=\mathcal{L}_{1}(z)+\mathcal{L}_{2}(z)+\mathcal{L}_{3}(z)+\mathcal{L}_{4}(z), \quad z \in \mathbb{R},
$$

where

$$
\begin{aligned}
& \mathcal{L}_{1}(z):=c U_{1}(z)-D_{S} V_{1}(z)+\frac{S_{h}^{*} D_{S} V_{1}(z)}{U_{1}(z)}-c S_{h}^{*} \ln U_{1}(z), \\
& \mathcal{L}_{2}(z):=c U_{2}(z)-D_{I} V_{2}(z)+\frac{I_{h}^{*} D_{I} V_{2}(z)}{U_{2}(z)}-c I_{h}^{*} \ln U_{2}(z), \\
& \mathcal{L}_{3}(z):=c U_{3}(z)-d_{S} V_{3}(z)+\frac{S_{v}^{*} d_{S} V_{3}(z)}{U_{3}(z)}-c S_{v}^{*} \ln U_{3}(z)
\end{aligned}
$$

and

$$
\mathcal{L}_{4}(z):=c U_{4}(z)-d_{I} V_{4}(z)+\frac{I_{v}^{*} d_{I} V_{4}(z)}{U_{4}(z)}-c I_{v}^{*} \ln U_{4}(z)
$$

Note that U_{i} is bounded in $C^{2}(\mathbb{R}), i=1,2,3,4$. Since the function $x-1-\ln x$ is nonnegative for all $x>0$, one gets

$$
\begin{aligned}
\mathcal{L}_{1}(z) & \geq c U_{1}(z)-D_{S}\left\|V_{1}\right\|_{L^{\infty}}-\frac{S_{h}^{*} D_{S}\left\|V_{1}\right\|_{L^{\infty}}}{U_{1}(z)}-c S_{h}^{*} \ln U_{1}(z) \\
& =c S_{h}^{*}\left[\frac{U_{1}(z)}{S_{h}^{*}}-\ln U_{1}(z)\right]-D_{S}\left\|V_{1}\right\|_{L^{\infty}}-\frac{S_{h}^{*} D_{S}\left\|V_{1}\right\|_{L^{\infty}}}{U_{1}(z)} \\
& =c S_{h}^{*}\left[\frac{U_{1}(z)}{S_{h}^{*}}-1-\ln \frac{U_{1}(z)}{S_{h}^{*}}-\ln S_{h}^{*}+1\right]-D_{S}\left\|V_{1}\right\|_{L^{\infty}}-\frac{S_{h}^{*} D_{S}\left\|V_{1}\right\|_{L^{\infty}}}{U_{1}(z)} \\
& \geq c S_{h}^{*}\left(1-\ln S_{h}^{*}\right)-\frac{S_{h}^{*} D_{S}\left(\mu_{1}+\rho_{1}\right)\left\|V_{1}\right\|_{L^{\infty}}}{\Lambda}-D_{S}\left\|V_{1}\right\|_{L^{\infty},}, \quad z \in \mathbb{R},
\end{aligned}
$$

which is due to Lemma 3.1. In addition,

$$
\begin{aligned}
\mathcal{L}_{2}(z) & \geq c U_{2}(z)-D_{I}\left\|V_{2}\right\|_{L^{\infty}}-\frac{I_{h}^{*} D_{I}\left|V_{2}(z)\right|}{U_{2}(z)}-c I_{h}^{*} \ln U_{2}(z) \\
& =c I_{h}^{*}\left[\frac{U_{2}(z)}{I_{h}^{*}}-\ln U_{2}(z)\right]-D_{I}\left\|V_{2}\right\|_{L^{\infty}}-\frac{I_{h}^{*} D_{I}\left|V_{2}(z)\right|}{U_{2}(z)} \\
& \geq c I_{h}^{*}\left(1-\ln I_{h}^{*}\right)-\frac{\left(c+\sqrt{c^{2}+4 \gamma_{1}}\right) I_{h}^{*}}{2}-D_{I}\left\|V_{2}\right\|_{L^{\infty}}, \quad z \in \mathbb{R}
\end{aligned}
$$

which is owing to Lemma 3.2 . Similarly, we can show that $\mathcal{L}_{3}(z)$ and $\mathcal{L}_{4}(z)$ have lower bounds. Then $\mathcal{L}(z)$ has a lower bound. Because

$$
\Lambda=f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)+\mu_{1} S_{h}^{*}, \gamma_{1} I_{h}^{*}=f_{1}\left(S_{h}^{*}, I_{v}^{*}\right), M=f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)+\mu_{2} S_{v}^{*}, \gamma_{2} I_{v}^{*}=f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)
$$

after elementary but tedious computations, we obtain

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{L}(z)}{\mathrm{d} z}= & \frac{\mathrm{d} \mathcal{L}_{1}(z)}{\mathrm{d} z}+\frac{\mathrm{d} \mathcal{L}_{2}(z)}{\mathrm{d} z}+\frac{\mathrm{d} \mathcal{L}_{3}(z)}{\mathrm{d} z}+\frac{\mathrm{d} \mathcal{L}_{4}(z)}{\mathrm{d} z} \\
= & -\mu_{1} \frac{\left[S_{h}^{*}-U_{1}(z)\right]^{2}}{U_{1}(z)}-\frac{S_{h}^{*} D_{S} V_{1}^{2}(z)}{U_{1}^{2}(z)}-\frac{I_{h}^{*} D_{I} V_{2}^{2}(z)}{U_{2}^{2}(z)} \\
& +f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)\left[3-\frac{S_{h}^{*}}{U_{1}(z)}-\frac{I_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z)}{U_{2}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}-\frac{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right) U_{2}(z)}{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z) I_{h}^{*}}\right] \\
& +f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)\left[\frac{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right) U_{2}(z)}{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z) I_{h}^{*}}-\frac{U_{2}(z)}{I_{h}^{*}}-1+\frac{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z)}{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}\right] \\
& -\mu_{2} \frac{\left[S_{v}^{*}-U_{3}(z)\right]^{2}}{U_{3}(z)}-\frac{S_{v}^{*} d_{S} V_{3}^{2}(z)}{U_{3}^{2}(z)}-\frac{I_{v}^{*} d_{I} V_{4}^{2}(z)}{U_{4}^{2}(z)} \\
& +f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)\left[3-\frac{S_{v}^{*}}{U_{3}(z)}-\frac{I_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z)}{U_{4}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}-\frac{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right) U_{4}(z)}{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z) I_{v}^{*}}\right] \\
& +f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)\left[\frac{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right) U_{4}(z)}{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z) I_{v}^{*}}-\frac{U_{4}(z)}{I_{v}^{*}}-1+\frac{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z)}{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right) U_{2}(z)}{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z) I_{h}^{*}}-\frac{U_{2}(z)}{I_{h}^{*}}-1+\frac{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z)}{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)} \\
& \quad=\left[\frac{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z)}-1\right]\left[\frac{U_{2}(z)}{I_{h}^{*}}-\frac{S_{h}^{*} f_{1}\left(U_{1}, U_{4}\right)(z)}{U_{1}(z) f_{1}\left(S_{h}^{*}, I_{v}^{*}\right)}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right) U_{4}(z)}{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z) I_{v}^{*}}-\frac{U_{4}(z)}{I_{v}^{*}}-1+\frac{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z)}{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)} \\
& \quad=\left[\frac{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z)}-1\right]\left[\frac{U_{4}(z)}{I_{v}^{*}}-\frac{S_{v}^{*} f_{2}\left(U_{3}, U_{2}\right)(z)}{U_{3}(z) f_{2}\left(S_{v}^{*}, I_{h}^{*}\right)}\right] .
\end{aligned}
$$

With the help of the mean inequality and the assumption (P4), we know that $\mathrm{d} \mathcal{L}(z) / \mathrm{d} z \leq 0$ and $\mathrm{d} \mathcal{L}(z) / \mathrm{d} z \equiv 0$ iff $U_{1}(z) \equiv S_{h}^{*}, U_{2}(z) \equiv I_{h}^{*}, U_{3}(z) \equiv S_{v}^{*}$ and $U_{4}(z) \equiv I_{v}^{*}$. Therefore, the largest compact invariant set

$$
\Theta_{E}=\left\{U(z) \left\lvert\, \frac{\mathrm{d} \mathcal{L}(z)}{\mathrm{d} z}=0\right., z \in \mathbb{R}\right\} \equiv\left\{E_{1}^{*}\right\} \equiv\left\{\left(S_{h}^{*}, I_{h}^{*}, S_{v}^{*}, I_{v}^{*}\right)^{T}\right\}
$$

Then the LaSalle's invariance principle implies that

$$
\left(U_{1}(+\infty), U_{2}(+\infty), U_{3}(+\infty), U_{4}(+\infty)\right)^{T}=\left(S_{h}^{*}, I_{h}^{*}, S_{v}^{*}, I_{v}^{*}\right)^{T}
$$

For the case $c=c_{*}$. Similar to the arguments of [39, Theorem 2.14], we can obtain the existence of TWS in this case. This completes the proof.

4. Nonexistence of traveling wave solutions

4.1. Nonexistence when $\mathfrak{R}_{0} \leq 1$ and $c>0$

The main results of this subsection are as follows:
Theorem 4.1. Assume that $\Re_{0} \leq 1$. Then for any $c>0$, system (1.2) has no traveling wave solutions with speed c which meet (2.3) and (2.4).

Proof. On the contrary, we suppose that there is a $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ for (1.2) satisfying (2.3) and (2.4), $z=x+c t$. Denote

$$
\bar{I}_{h}:=\sup _{z \in \mathbb{R}} I_{h}(z), \quad \bar{I}_{v}:=\sup _{z \in \mathbb{R}} I_{v}(z) .
$$

For $\mathfrak{R}_{0}<1$. By (P1)-(P2), it follows from the second and fourth equations of (2.2) that

$$
\left\{\begin{array}{l}
c I_{h}^{\prime}(z)-D_{I} I_{h}^{\prime \prime}(z)+\gamma_{1} I_{h}(z)-k_{1} \bar{I}_{v} \leq 0 \tag{4.1}\\
c I_{v}^{\prime}(z)-d_{I} I_{v}^{\prime \prime}(z)+\gamma_{2} I_{v}(z)-k_{2} \bar{I}_{h} \leq 0
\end{array}\right.
$$

wherein $z \in \mathbb{R}, k_{1}=\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right)$ and $k_{2}=\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right)$. Utilizing the comparison principle, one obtains

$$
I_{h}(z) \leq \frac{k_{1} \bar{I}_{v}}{\gamma_{1}}, \quad I_{v}(z) \leq \frac{k_{2} \bar{I}_{h}}{\gamma_{2}}, \quad z \in \mathbb{R}
$$

That is, $\left(I_{h}(z), I_{v}(z)\right)^{T} \leq \mathcal{M}\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T}$ for any $z \in \mathbb{R}$, where \mathcal{M} is defined in Sect. 2, which leads to $\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T} \leq \mathcal{M}^{n}\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T}, n \in \mathbb{N}^{*}$. Since \mathfrak{R}_{0} is the spectral radius of \mathcal{M} and the matrix \mathcal{M} is nonnegative and irreducible, the Perron-Frobenius theorem implies that there is a positive eigenvector $\mathcal{U}=\left(u_{1}, u_{2}\right)^{T}$, corresponding to \mathfrak{R}_{0} such that $\mathcal{M} \mathcal{U}=\mathfrak{R}_{0} \mathcal{U}$. Moreover, by Lemma 3.1, there exists a constant $C_{3}>0$ such that $\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T} \leq C_{3} \mathcal{U}$. Hence, we have

$$
\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T} \leq \mathcal{M}^{n}\left(\bar{I}_{h}, \bar{I}_{v}\right)^{T} \leq C_{3} \mathcal{M}^{n} \mathcal{U}=C_{3} \Re_{0}^{n} \mathcal{U} \rightarrow 0, \text { as } n \rightarrow+\infty,
$$

which is owing to $\Re_{0}<1$. So, one gets $\bar{I}_{h}=\bar{I}_{v}=0$. If not, then \bar{I}_{h} or \bar{I}_{v} is a positive constant. Without loss of generality, assume $\bar{I}_{h}>0$. From the fact $\mathfrak{R}_{0}<1$, there is a sufficiently large $n_{0} \in \mathbb{N}^{*}$ such that $\Re_{0}^{n_{0}}<\bar{I}_{h} / 2 C_{3} u_{1}$. Thus, we get $\bar{I}_{h} \leq C_{3} \Re_{0}^{n_{0}} u_{1}<C_{3} u_{1} \cdot\left(\bar{I}_{h} / 2 C_{3} u_{1}\right)=\bar{I}_{h} / 2$ which is a contradiction. Thus, we obtain $\bar{I}_{h}=0$. Similarly, $\bar{I}_{v}=0$. This contradicts to the fact $I_{h}(z), I_{v}(z)>0$ for all $z \in \mathbb{R}$.

For $\mathfrak{R}_{0}=1$. Likely above discussions, there is an eigenvector $\mathcal{V}=\left(v_{1}, v_{2}\right)^{T}$ with $v_{1}>0$ and $v_{2}>0$ such that $\mathcal{M V}=\mathcal{V}$. Direct calculations show that

$$
\begin{equation*}
\gamma_{1}=\frac{k_{1} v_{2}}{v_{1}}, \quad \gamma_{2}=\frac{k_{2} v_{1}}{v_{2}} . \tag{4.2}
\end{equation*}
$$

Choosing a sequence $\left\{z_{n}\right\} \subset \mathbb{R}, n \in \mathbb{N}^{*}$ such that

$$
\lim _{n \rightarrow+\infty} I_{h}\left(z_{n}\right)=\bar{I}_{h}=\sup _{z \in \mathbb{R}} I_{h}(z) .
$$

To derive a contradiction, one intends to prove $\bar{I}_{h}=0$. Arguing by contradiction, assuming $\bar{I}_{h}>0$. Consider the following function sequence

$$
\left(S_{h, n}(\cdot), I_{h, n}(\cdot), S_{v, n}(\cdot), I_{v, n}(\cdot)\right)^{T}:=\left(S_{h}\left(\cdot+z_{n}\right), I_{h}\left(\cdot+z_{n}\right), S_{v}\left(\cdot+z_{n}\right) \cdot I_{v}\left(\cdot+z_{n}\right)\right)^{T}
$$

By using the boundedness of $\left(S_{h}, I_{h}, S_{v}, I_{v}\right)^{T}$ (see Lemma 3.1) and elliptic estimates, there exists a subsequence $\left(S_{h, n_{j}}, I_{h, n_{j}}, S_{v, n_{j}}, I_{v, n_{j}}\right)^{T}, j \in \mathbb{N}^{*}$ of $\left(S_{h, n}, I_{h, n}, S_{v, n}, I_{v, n}\right)^{T}$ and $\left(\tilde{S}_{h}, \tilde{I}_{h}, \tilde{S}_{v}, \tilde{I}_{v}\right)^{T}$ such that

$$
\lim _{j \rightarrow+\infty}\left(S_{h, n_{j}}(z), I_{h, n_{j}}(z), S_{v, n_{j}}(z), I_{v, n_{j}}(z)\right)^{T}=\left(\tilde{S}_{h}(z), \tilde{I}_{h}(z), \tilde{S}_{v}(z), \tilde{I}_{v}(z)\right)^{T}
$$

in $C_{\mathrm{loc}}^{2}(\mathbb{R})$ and $\left(\tilde{S}_{h}, \tilde{I}_{h}, \tilde{S}_{v}, \tilde{I}_{v}\right)^{T}$ satisfies

$$
\left\{\begin{array}{l}
c \tilde{S}_{h}^{\prime}(z)=D_{S} \tilde{S}_{h}^{\prime \prime}(z)+\Lambda-f_{1}\left(\tilde{S}_{h}, \tilde{I}_{v}\right)(z)-\mu_{1} \tilde{S}_{h}(z) \tag{4.3}\\
c \tilde{I}_{h}^{\prime}(z)=D_{I} \tilde{I}_{h}^{\prime \prime}(z)+f_{1}\left(\tilde{S}_{h}, \tilde{I}_{v}\right)(z)-\gamma_{1} \tilde{I}_{h}(z) \\
c \tilde{S}_{v}^{\prime}(z)=d_{S} \tilde{S}_{v}^{\prime \prime}(z)+M-f_{2}\left(\tilde{S}_{v}, \tilde{I}_{h}\right)(z)-\mu_{2} \tilde{S}_{v}(z) \\
c \tilde{I}_{v}^{\prime}(z)=d_{I} \tilde{I}_{v}^{\prime \prime}(z)+f_{2}\left(\tilde{S}_{v}, \tilde{I}_{h}\right)(z)-\gamma_{2} \tilde{I}_{v}(z)
\end{array}\right.
$$

where $\tilde{I}_{h}(0)=\bar{I}_{h}, \tilde{I}_{h}(z) \leq \bar{I}_{h}, 0<\tilde{S}_{h}(z) \leq S_{h}^{0}$ and $0<\tilde{S}_{v}(z) \leq S_{v}^{0}$, for $z \in \mathbb{R}$. Applying the comparison principle to the second equation of (4.1) and using (4.2) yield that $k_{2} \bar{I}_{h} \geq \gamma_{2} \bar{I}_{v}=k_{2} \bar{I}_{v} v_{1} / v_{2}$, then $\bar{I}_{v} \leq \bar{I}_{h} v_{2} / v_{1}$. Since

$$
\begin{aligned}
0 & =D_{I} \tilde{I}_{h}^{\prime \prime}(z)-c \tilde{I}_{h}^{\prime}(z)+f_{1}\left(\tilde{S}_{h}, \tilde{I}_{v}\right)(z)-\gamma_{1} \tilde{I}_{h}(z) \\
& \leq D_{I} \tilde{I}_{h}^{\prime \prime}(z)-c \tilde{I}_{h}^{\prime}(z)+\partial_{I_{v}} f_{1}\left(\tilde{S}_{h}, 0\right)(z) \tilde{I}_{v}(z)-\gamma_{1} \tilde{I}_{h}(z)
\end{aligned}
$$

it follows from (4.2) that

$$
\begin{aligned}
0 & \leq D_{I} \tilde{I}_{h}^{\prime \prime}(0)-c \tilde{I}_{h}^{\prime}(0)+\partial_{I_{v}} f_{1}\left(\tilde{S}_{h}, 0\right)(0) \tilde{I}_{v}(0)-\gamma_{1} \tilde{I}_{h}(0) \\
& \leq D_{I} \tilde{I}_{h}^{\prime \prime}(0)+\frac{\partial_{I_{v}} f_{1}\left(\tilde{S}_{h}, 0\right)(0) v_{2}}{v_{1}} \bar{I}_{h}-\frac{\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right) v_{2}}{v_{1}} \bar{I}_{h} \\
& =D_{I} \tilde{I}_{h}^{\prime \prime}(0)+\left[\partial_{I_{v}} f_{1}\left(\tilde{S}_{h}, 0\right)(0)-\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right)\right] \frac{v_{2}}{v_{1}} \bar{I}_{h}
\end{aligned}
$$

Then $\tilde{S}_{h}(0) \geq S_{h}^{0}$ due to $\tilde{I}_{h}^{\prime \prime}(0) \leq 0$ and (P1). It is impossible that $\tilde{S}_{h}(0)>S_{h}^{0}$ as $\tilde{S}_{h}(z) \leq S_{h}^{0}, z \in \mathbb{R}$. Thus, we get $\tilde{S}_{h}(0)=S_{h}^{0}$. The strong maximum principle implies $\tilde{S}_{h}(z) \equiv S_{h}^{0}, z \in \mathbb{R}$. Substituting it into the first equation of (4.3) and combining (P2), we obtain $\tilde{I}_{v}(z) \equiv 0, z \in \mathbb{R}$. Then $\tilde{I}_{h}(z) \equiv 0, z \in \mathbb{R}$ from the fourth equation of (4.3) and (P2). Therefore, $\bar{I}_{h}=0$ which contradicts the assumption $\bar{I}_{h}>0$. This finishes the proof.

4.2. Nonexistence when $\mathfrak{R}_{0}>1$ and $0<c<c_{*}$

To investigate the nonexistence, we first to show the following lemma by the methods of [4].
Lemma 4.1. Suppose $\left(S_{h}(z), I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ be the solution of system (2.2). Then there exists a constant $B \gg 1$ such that

$$
\frac{1}{B} I_{h}(z) \leq I_{v}(z) \leq B I_{h}(z), \text { for any } z \in \mathbb{R}
$$

Proof. By (2.2), one has

$$
\begin{cases}D_{I} I_{h}^{\prime \prime}(z)-c I_{h}^{\prime}(z)-\gamma_{1} I_{h}(z)+f_{1}\left(S_{h}, I_{v}\right)(z)=0, & z \in \mathbb{R} \\ d_{I} I_{v}^{\prime \prime}(z)-c I_{v}^{\prime}(z)-\gamma_{2} I_{v}(z)+f_{2}\left(S_{v}, I_{h}\right)(z)=0, & z \in \mathbb{R}\end{cases}
$$

According to the Harnack's inequality in Lemma 3.2, there is a $K>0$ such that

$$
I_{i}(\xi) \geq K I_{i}(z), \quad \xi \in[z-1, z+1], z \in \mathbb{R}, i=h, v
$$

The method of constant variation yields that

$$
I_{h}(z)=\frac{1}{\Pi_{1}}\left[\int_{-\infty}^{z} \mathrm{e}^{\zeta_{1}^{-}(z-\xi)} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi+\int_{z}^{+\infty} \mathrm{e}^{\zeta_{1}^{+}(z-\xi)} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi\right]
$$

and

$$
I_{v}(z)=\frac{1}{\Pi_{2}}\left[\int_{-\infty}^{z} \mathrm{e}^{\zeta_{2}^{-}(z-\xi)} f_{2}\left(S_{v}, I_{h}\right)(\xi) \mathrm{d} \xi+\int_{z}^{+\infty} \mathrm{e}^{\zeta_{2}^{+}(z-\xi)} f_{2}\left(S_{v}, I_{h}\right)(\xi) \mathrm{d} \xi\right]
$$

wherein

$$
\Pi_{1}=D_{I}\left(\zeta_{1}^{+}-\zeta_{1}^{-}\right), \quad \Pi_{2}=d_{I}\left(\zeta_{2}^{+}-\zeta_{2}^{-}\right)
$$

and

$$
\zeta_{1}^{ \pm}=\frac{c \pm \sqrt{c^{2}+4 D_{I} \gamma_{1}}}{2 D_{I}}, \quad \zeta_{2}^{ \pm}=\frac{c \pm \sqrt{c^{2}+4 d_{I} \gamma_{2}}}{2 d_{I}} .
$$

Applying Lemma 3.1 and (P1)-(P2), we have

$$
\begin{align*}
I_{h}(z) & =\frac{1}{\Pi_{1}}\left[\int_{-\infty}^{z} \mathrm{e}^{\zeta_{1}^{-}(z-\xi)} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi+\int_{z}^{+\infty} \mathrm{e}^{\zeta_{1}^{+}(z-\xi)} f_{1}\left(S_{h}, I_{v}\right)(\xi) \mathrm{d} \xi\right] \\
& \geq \frac{1}{\Pi_{1}}\left[\int_{-\infty}^{z} \mathrm{e}^{\zeta_{1}^{-}(z-\xi)} \hat{\rho}_{1} I_{v}(\xi) \mathrm{d} \xi+\int_{z}^{+\infty} \mathrm{e}^{\zeta_{1}^{+}(z-\xi)} \hat{\rho}_{1} I_{v}(\xi) \mathrm{d} \xi\right] \\
& \geq \frac{1}{\Pi_{1}}\left[\int_{z-1}^{z} \mathrm{e}^{\zeta_{1}^{-}(z-\xi)} \hat{\rho}_{1} I_{v}(\xi) \mathrm{d} \xi+\int_{z}^{z+1} \mathrm{e}^{\zeta_{1}^{+}(z-\xi)} \hat{\rho}_{1} I_{v}(\xi) \mathrm{d} \xi\right] \\
& \geq \frac{\hat{\rho}_{1} K I_{v}(z)}{\Pi_{1}}\left[\int_{z-1}^{z} \mathrm{e}^{\zeta_{1}^{-}(z-\xi)} \mathrm{d} \xi+\int_{z}^{z+1} \mathrm{e}^{\zeta_{1}^{+}(z-\xi)} \mathrm{d} \xi\right] \\
& =\frac{\hat{\rho}_{1} K}{\Pi_{1}}\left[\int_{0}^{1} \mathrm{e}^{\zeta_{1}^{-} \xi} \mathrm{d} \xi+\int_{-1}^{0} \mathrm{e}^{\zeta_{1}^{+} \xi} \mathrm{d} \xi\right] I_{v}(z):=A_{1} I_{v}(z), \tag{4.4}
\end{align*}
$$

and similarly

$$
\begin{equation*}
I_{v}(z) \geq \frac{\hat{\rho}_{2} K}{\Pi_{2}}\left[\int_{0}^{1} \mathrm{e}^{\zeta_{2}^{-} \xi} \mathrm{d} \xi+\int_{-1}^{0} \mathrm{e}^{\zeta_{2}^{+} \xi} \mathrm{d} \xi\right] I_{h}(z):=A_{2} I_{h}(z) \tag{4.5}
\end{equation*}
$$

for all $z \in \mathbb{R}$ with

$$
\hat{\rho}_{1}=\partial_{I_{v}} f_{1}\left(\frac{\Lambda}{\mu_{1}+\rho_{1}}, \frac{\sqrt{d_{S}} M}{\sqrt{d_{I}} \mu}\right), \hat{\rho}_{2}=\partial_{I_{h}} f_{2}\left(\frac{M}{\mu_{2}+\rho_{2}}, \frac{\sqrt{D_{S}} \Lambda}{\sqrt{D_{I}} \mu}\right) .
$$

Choosing B satisfying $B \gg \max \left\{A_{1}^{-1}, A_{2}^{-1}, 1\right\}$, then combining (4.4) and (4.5) implies that the conclusion is valid. This ends the proof.

The main results of this subsection are as follows:
Theorem 4.2. Assume that $\mathfrak{R}_{0}>1$. Then system (1.2) has no nontrivial traveling wave solutions with speed $c<c_{*}$ connecting E_{0} and E_{1}^{*}.
Proof. Suppose by way of contradiction that system (1.2) has a traveling wave solution $\left(S_{h}(z)\right.$, $\left.I_{h}(z), S_{v}(z), I_{v}(z)\right)^{T}$ with speed c connecting E_{0} and $E_{1}^{*}, z=x+c t$.

Consider the following sequence

$$
\left(I_{h, m}(z), I_{v, m}(z)\right)^{T}:=\left(\frac{I_{h}(z-m)}{I_{h}(-m)}, \frac{I_{v}(z-m)}{I_{h}(-m)}\right)^{T}, z \in \mathbb{R}, m \in \mathbb{N}^{*}
$$

Since $\left(S_{h}(\cdot-m), I_{h}(\cdot-m), S_{v}(\cdot-m), I_{v}(\cdot-m)\right)^{T}$ is also a solution of (2.2) for any $m \in \mathbb{N}^{*}$, and

$$
f_{1}\left(S_{h}(z-m), I_{v}(z-m)\right)=\partial_{I_{v}} f_{1}\left(S_{h}(z-m), \xi_{I_{v}}\right) I_{v}(z-m),
$$

and

$$
f_{2}\left(S_{v}(z-m), I_{h}(z-m)\right)=\partial_{I_{h}} f_{2}\left(S_{v}(z-m), \xi_{I_{h}}\right) I_{h}(z-m),
$$

where $0 \leq \xi_{I_{v}} \leq I_{v}(z-m), 0 \leq \xi_{I_{h}} \leq I_{h}(z-m)$, one obtains that $\left(I_{h, m}(z), I_{v, m}(z)\right)^{T}$ satisfies

$$
\begin{cases}D_{I} I_{h, m}^{\prime \prime}(z)-c I_{h, m}^{\prime}(z)-\gamma_{1} I_{h, m}(z)+\partial_{I_{v}} f_{1}\left(S_{h}(z-m), \xi_{I_{v}}\right) I_{v, m}(z)=0, & z \in \mathbb{R}, \\ d_{I} I_{v, m}^{\prime \prime}(z)-c I_{v, m}^{\prime}(z)-\gamma_{2} I_{v, m}(z)+\partial_{I_{h}} f_{2}\left(S_{v}(z-m), \xi_{I_{h}}\right) I_{h, m}(z)=0, & z \in \mathbb{R}\end{cases}
$$

On the one hand, Lemma 3.2 indicates that there is a constant $C_{4}>0$ such that

$$
I_{h, m}(z)=\frac{I_{h}(z-m)}{I_{h}(-m)} \leq \frac{1}{I_{h}(-m)} C_{4} I_{h}(-m) \mathrm{e}^{C_{4}|z-m-(-m)|}=C_{4} \mathrm{e}^{C_{4}|z|}
$$

and then $\left|I_{h, m}^{\prime}(z)\right| \leq C_{4} I_{h, m}(z) \leq C_{4}^{2} \mathrm{e}^{C_{4}|z|}$. Moreover, from Lemmas 3.2 and 4.1, there exists a $C_{5}>0$ such that

$$
I_{v, m}(z)=\frac{I_{v}(z-m)}{I_{h}(-m)} \leq \frac{1}{I_{h}(-m)} C_{5} I_{v}(-m) \mathrm{e}^{C_{5}|z-m-(-m)|}=\frac{I_{v}(-m)}{I_{h}(-m)} C_{5} \mathrm{e}^{C_{5}|z|} \leq B C_{5} \mathrm{e}^{C_{5}|z|} .
$$

So, $\left|I_{v, m}^{\prime}(z)\right| \leq C_{5} I_{v, m}(z) \leq B C_{5}^{2} \mathrm{e}^{C_{4}|z|}$. Accordingly, one has

$$
\max \left\{I_{h, m}(z), I_{v, m}(z),\left|I_{h, m}^{\prime}(z)\right|,\left|I_{v, m}^{\prime}(z)\right|\right\} \leq C_{6} \mathrm{e}^{C_{6}|z|}, \text { for some } C_{6}>0
$$

Therefore, applying the standard elliptic estimates, there exists a $\left(I_{h, *}(\cdot), I_{v, *}(\cdot)\right)^{T}$ such that $\left(I_{h, m}(\cdot), I_{v, m}(\cdot)\right)^{T} \rightarrow\left(I_{h, *}(\cdot), I_{v, *}(\cdot)\right)^{T}$ as $m \rightarrow+\infty$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$. Owing to $S_{h}(\cdot-m) \rightarrow S_{h}^{0}, S_{v}(\cdot-m) \rightarrow S_{v}^{0}$ and $\xi_{I_{h}}, \xi_{I_{v}} \rightarrow 0, m \rightarrow+\infty,\left(I_{h, *}(\cdot), I_{v, *}(\cdot)\right)^{T}$ satisfies

$$
\left\{\begin{array}{l}
D_{I} I_{h, *}^{\prime \prime}(z)-c I_{h, *}^{\prime}(z)-\gamma_{1} I_{h, *}(z)+k_{1} I_{v, *}(z)=0, \quad z \in \mathbb{R} \tag{4.6}\\
d_{I} I_{v, *}^{\prime \prime}(z)-c I_{v, *}^{\prime}(z)-\gamma_{2} I_{v, *}(z)+k_{2} I_{h, *}(z)=0, \quad z \in \mathbb{R} \\
I_{h, *}(z)>0, \quad I_{v, *}(z)>0, \quad z \in \mathbb{R}, \\
I_{h, *}(0)=1, \quad \frac{1}{B} \leq \frac{I_{h, *}(z)}{I_{v, *}(z)} \leq B, \quad z \in \mathbb{R}
\end{array}\right.
$$

where $k_{1}=\partial_{I_{v}} f_{1}\left(S_{h}^{0}, 0\right)$ and $k_{2}=\partial_{I_{h}} f_{2}\left(S_{v}^{0}, 0\right), B$ is determined in Lemma 4.1. To complete the proof, we will prove that either $I_{h, *}(z)$ or $I_{v, *}(z)$ changes sign for some $z \in \mathbb{R}$.

By (4.6), it is not difficult to see that

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\left(\begin{array}{l}
I_{h, *} \\
I_{v, *} \\
I_{h, *}^{\prime} \\
I_{v, *}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{\gamma_{1}}{D_{I_{2}}} & -\frac{k_{1}}{D_{I}} & \frac{c}{D_{I}} & 0 \\
-\frac{k_{2}}{d_{I}} & \frac{\gamma_{2}}{d_{I}} & 0 & \frac{c}{d_{I}}
\end{array}\right)\left(\begin{array}{l}
I_{h, *} \\
I_{v, *} \\
I_{h, *}^{\prime} \\
I_{v, *}^{\prime}
\end{array}\right):=\mathbb{A}\left(\begin{array}{l}
I_{h, *} \\
I_{v, *} \\
I_{h, *}^{\prime} \\
I_{v, *}^{\prime}
\end{array}\right) .
$$

Thus, the characteristic equation for matrix \mathbb{A} is

$$
Q(\zeta)=\zeta^{2}\left(\zeta-\frac{c}{D_{I}}\right)\left(\zeta-\frac{c}{d_{I}}\right)-\zeta\left(\zeta-\frac{c}{D_{I}}\right) \frac{\gamma_{2}}{d_{I}}-\zeta\left(\zeta-\frac{c}{d_{I}}\right) \frac{\gamma_{1}}{D_{I}}-\frac{\bar{k}-\bar{\gamma}}{D_{I} d_{I}}
$$

where $\bar{k}=k_{1} k_{2}, \bar{\gamma}=\gamma_{1} \gamma_{2}$. Since $\mathfrak{R}_{0}=\sqrt{\bar{k} / \bar{\gamma}}>1, Q(0)=\frac{\bar{\gamma}-\bar{k}}{D_{I} d_{I}}<0$. Because $Q(\zeta) \rightarrow+\infty$ as $\zeta \rightarrow \pm \infty$, the matrix \mathbb{A} has at least two real eigenvalues with opposite signs. Moreover, if $\zeta \in \mathbb{C}$ (the set of complex number) is an eigenvalue of matrix \mathbb{A} and the corresponding eigenvector is denoted by ($\left.\hat{\chi}_{2}, \hat{\chi}_{4}, \tilde{\chi}_{2}, \tilde{\chi}_{4}\right)^{T}$, then we have $\left(\tilde{\chi}_{2}, \tilde{\chi}_{4}\right)^{T}=\left(\zeta \hat{\chi}_{2}, \zeta \hat{\chi}_{4}\right)^{T}$ and

$$
\mathcal{A}(\zeta)\binom{\hat{\chi}_{2}}{\hat{\chi}_{4}}:=\left(\begin{array}{cc}
D_{I} \zeta^{2}-\gamma_{1} & k_{1} \\
k_{2} & d_{I} \zeta^{2}-\gamma_{2}
\end{array}\right)\binom{\hat{\chi}_{2}}{\hat{\chi}_{4}}=c \zeta\binom{\hat{\chi}_{2}}{\hat{\chi}_{4}} .
$$

Thus, $c \zeta$ is the eigenvalue of matrix $\mathcal{A}(\zeta)$. Observe that, for every $\zeta \in \mathbb{R}$, the two real eigenvalues of matrix $\mathcal{A}(\zeta)$ are

$$
\alpha_{-}(\zeta)=\frac{1}{2}\left\{\left[\left(D_{I}+d_{I}\right) \zeta^{2}-\left(\gamma_{1}+\gamma_{2}\right)\right]-\sqrt{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]^{2}+4 k_{1} k_{2}}\right\}
$$

and

$$
\alpha_{+}(\zeta)=\frac{1}{2}\left\{\left[\left(D_{I}+d_{I}\right) \zeta^{2}-\left(\gamma_{1}+\gamma_{2}\right)\right]+\sqrt{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]^{2}+4 k_{1} k_{2}}\right\}
$$

In particular, if $\zeta \in \mathbb{R}$, then $c \zeta \in\left\{\alpha_{-}(\zeta), \alpha_{+}(\zeta)\right\}$. Following from the fact $\alpha_{-}(\zeta)<\alpha_{+}(\zeta), \zeta \in \mathbb{R}$ gives that the dimension of the eigenspace formed by any real eigenvalue ζ of matrix \mathbb{A} is always one, i.e., $\operatorname{Dim}\left(\mathbb{G}_{\zeta}\right)=1$.

Next to show $c \zeta=\alpha_{-}(\zeta)$. If not, then $c \zeta=\alpha_{+}(\zeta)$. We claim that $\alpha_{+}(\zeta)>0$, for all $\zeta \in \mathbb{R}$. Indeed, simple calculations yield that

$$
\begin{aligned}
\zeta \alpha_{+}^{\prime}(\zeta) & =\zeta^{2}\left\{\left(D_{I}+d_{I}\right)+\frac{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]\left(D_{I}-d_{I}\right)}{\sqrt{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]^{2}+4 k_{1} k_{2}}}\right\} \\
& >\zeta^{2} \frac{\left(D_{I}+d_{I}\right)\left|\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right|+\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]\left(D_{I}-d_{I}\right)}{\sqrt{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]^{2}+4 k_{1} k_{2}}} \\
& \geq \zeta^{2} \frac{2 d_{I}\left|\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right|}{\sqrt{\left[\left(D_{I}-d_{I}\right) \zeta^{2}-\left(\gamma_{1}-\gamma_{2}\right)\right]^{2}+4 k_{1} k_{2}}}
\end{aligned}
$$

So, $\zeta \alpha_{+}^{\prime}(\zeta)>0$ for any $\zeta \in \mathbb{R} \backslash\{0\}$. Therefore, we obtain

$$
\begin{aligned}
\alpha_{+}(\zeta) & >\alpha_{+}(0) \\
& =\frac{1}{2}\left[-\left(\gamma_{1}+\gamma_{2}\right)+\sqrt{\left(\gamma_{1}-\gamma_{2}\right)^{2}+4 k_{1} k_{2}}\right] \\
& >\frac{1}{2}\left[-\left(\gamma_{1}+\gamma_{2}\right)+\sqrt{\left(\gamma_{1}-\gamma_{2}\right)^{2}+4 \gamma_{1} \gamma_{2}}\right] \\
& =0, \quad \zeta \in(0,+\infty),
\end{aligned}
$$

which is due to $\mathfrak{R}_{0}>1$. Then $\alpha_{+}(\zeta)>0$ since $\alpha_{+}(\zeta)$ is an even function of ζ. So, $c=\alpha_{+}(\zeta) / \zeta$. Similar to the arguments of [4, Lemma 2.2], one can obtain that $c=\alpha_{+}(\zeta) / \zeta \geq c_{*}$ which contradicts with $c<c_{*}$. In conclusion, we get $c \zeta=\alpha_{-}(\zeta)$.

Since $\left(\hat{\chi}_{2}, \hat{\chi}_{4}\right)^{T}=\left(1, \beta_{\zeta}\right)^{T}$ and $\left(\tilde{\chi}_{2}, \tilde{\chi}_{4}\right)^{T}=\left(\zeta \hat{\chi}_{2}, \zeta \hat{\chi}_{4}\right)^{T}$, one has

$$
\mathbb{G}_{\zeta}=\operatorname{span}\left\{\left(1, \beta_{\zeta}, \zeta, \zeta \beta_{\zeta}\right)^{T}\right\}
$$

where $\beta_{\zeta}=\left[\alpha_{-}(\zeta)-\left(D_{I} \zeta^{2}-\gamma_{1}\right)\right] / k_{1}$. Using the following facts

$$
\left[\alpha-\left(D_{I} \zeta^{2}-\gamma_{1}\right)\right]\left[\alpha-\left(d_{I} \zeta^{2}-\gamma_{2}\right)\right]=k_{1} k_{2}>0, \text { for } \alpha \in\left\{\alpha_{-}(\zeta), \alpha_{+}(\zeta)\right\}
$$

and

$$
\alpha_{-}(\zeta)+\alpha_{+}(\zeta)=\left(D_{I} \zeta^{2}-\gamma_{1}\right)+\left(d_{I} \zeta^{2}-\gamma_{2}\right),
$$

it is not difficult to verify that

$$
\alpha_{-}(\zeta)<\min \left\{D_{I} \zeta^{2}-\gamma_{1}, d_{I} \zeta^{2}-\gamma_{2}\right\} \leq \max \left\{D_{I} \zeta^{2}-\gamma_{1}, d_{I} \zeta^{2}-\gamma_{2}\right\}<\alpha_{+}(\zeta) .
$$

Then $\beta_{\zeta}=\left[\alpha_{-}(\zeta)-\left(D_{I} \zeta^{2}-\gamma_{1}\right)\right] / k_{1}<0$. For convenience, set $G_{\zeta}:=\left(1, \beta_{\zeta}\right)^{T}$.
To show that either $I_{h, *}(z)$ or $I_{v, *}(z)$ changes sign, based on the distribution of eigenvalues of matrix \mathbb{A}, we prove it in two cases.

Case 1 Matrix \mathbb{A} has a pair of complex eigenvalues.

From the previous discussions, we know that \mathbb{A} has a pair of positive and negative eigenvalues, which can be denoted as $\zeta_{-}<0<\zeta_{+}$. Assuming that $\zeta=\omega \pm i \theta$ with $\theta>0$ are the two complex eigenvalues, then $\left(I_{h, *}(z), I_{v, *}(z)\right)^{T}$ can be expressed as

$$
\begin{aligned}
\binom{I_{h, *}(z)}{I_{v, *}(z)}= & a_{1} \mathrm{e}^{\zeta_{-} z} G_{\zeta_{-}}+a_{2} \mathrm{e}^{\zeta_{+} z} G_{\zeta_{+}} \\
& +a_{3} \mathrm{e}^{\omega z}\binom{\cos (\theta z)}{\omega \cos (\theta z)-\theta \sin (\theta z)}+a_{4} \mathrm{e}^{\omega z}\binom{\sin (\theta z)}{\theta \cos (\theta z)+\omega \sin (\theta z)},
\end{aligned}
$$

wherein $a_{i} \in \mathbb{R}$ is not all equal to zero and is uniquely determined, $i=1,2,3,4$. Hence, one has

$$
\begin{equation*}
I_{h, *}(z)=a_{1} \mathrm{e}^{\zeta_{-} z}+a_{2} \mathrm{e}^{\zeta_{+} z}+\mathrm{e}^{\omega z} l_{1}(z) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{v, *}(z)=a_{1} \beta_{\zeta_{-}} \mathrm{e}^{\zeta_{-} z}+a_{2} \beta_{\zeta_{+}} \mathrm{e}^{\zeta_{+} z}+\mathrm{e}^{\omega z} l_{2}(z), \tag{4.8}
\end{equation*}
$$

with $l_{1}(z)=a_{3} \cos (\theta z)+a_{4} \sin (\theta z)$ and $l_{2}(z)=a_{3}[\omega \cos (\theta z)-\theta \sin (\theta z)]+a_{4}[\theta \cos (\theta z)+\omega \sin (\theta z)]$, for $z \in \mathbb{R}$. Obviously, $l_{2}(z)=\omega l_{1}(z)+l_{1}^{\prime}(z)$.

To prove $l_{1}(z)$ and $l_{2}(z)$ change sign for $|z| \gg 1$. We first claim $l_{1}(z) \not \equiv 0, z \in \mathbb{R}$. Suppose not. If $l_{1}(z) \equiv 0$, then one gets $a_{1} \geq 0$ and $a_{2} \geq 0$ because $I_{h, *}(z)>0, z \in \mathbb{R}$ and $\zeta_{-}<0<\zeta_{+}$. Accordingly, $I_{v, *}(z) \leq 0, z \in \mathbb{R}$ which is due to $l_{2}(z)=\omega l_{1}(z)+l_{1}^{\prime}(z)$, and $\beta_{\zeta_{-}}<0, \beta_{\zeta_{+}}<0$. This contradicts the system (4.6) which implies that $l_{1}(z) \not \equiv 0$. That is, a_{3} and a_{4} are not equal to zero at the same time. Without loss of generality, letting $a_{3}>0$, thus we obtain $l_{1}(0)=a_{3}>0, l_{1}(\pi / \theta)=-a_{3}<0$. Therefore, $l_{1}(z)$ changes sign for $|z| \gg 1$. Next, we assert $l_{2}(z) \not \equiv 0, z \in \mathbb{R}$. If not, then $l_{2}(z) \equiv 0$. According to the facts $I_{v, *}>0, z \in \mathbb{R}, \zeta_{-}<0<\zeta_{+}, \beta_{\zeta_{-}}<0$ and $\beta_{\zeta_{+}}<0$, we get $a_{1} \leq 0$ and $a_{2} \leq 0$. So, by (4.7), $I_{h, *}(z)<0$ whenever $l_{1}(z)<0$, contradicting (4.6). This indicates $l_{2}(z) \not \equiv 0$ which implies that $a_{3} \omega+a_{4} \theta$ and $a_{4} \omega-a_{3} \theta$ are not equal to zero at the same time. Supposing $a_{3} \omega+a_{4} \theta>0$, one has $l_{2}(0)=a_{3} \omega+a_{4} \theta>0$ and $l_{2}(\pi / \theta)=-\left(a_{3} \omega+a_{4} \theta\right)<0$. Thus, $l_{2}(z)$ changes sign for $|z| \gg 1$. It follows from the above analysis and the facts $I_{h, *}(z)>0, I_{v, *}(z)>0$ that $a_{1} \neq 0$ or $a_{2} \neq 0$.

To address $\omega \notin\left\{\zeta_{-}, \zeta_{+}\right\}$. By the way of contradiction, assuming $\omega=\zeta_{-}$. From (4.7), one gets

$$
I_{h, *}(z)=\left[a_{1}+l_{1}(z)\right] \mathrm{e}^{\zeta-z}+a_{2} \mathrm{e}^{\zeta+z}, \quad z \in \mathbb{R}
$$

Owing to $I_{h, *}(z)>0$ and $\zeta_{-}<0<\zeta_{+}$, we have $a_{1}>-\min _{z \in \mathbb{R}}\left\{l_{1}(z)\right\}>0$. By (4.8), then

$$
I_{v, *}(z)=\left[a_{1} \beta_{\zeta_{-}}+l_{2}(z)\right] \mathrm{e}^{\zeta_{-} z}+a_{2} \beta_{\zeta_{+}} \mathrm{e}^{\zeta_{+} z}, \quad z \in \mathbb{R}
$$

Hence $a_{1} \beta_{\zeta_{-}}>-\min _{z \in \mathbb{R}}\left\{l_{2}(z)\right\}>0$ because $I_{v, *}(z)>0$ and $\zeta_{-}<0<\zeta_{+}$. So, $a_{1}<0<a_{1}$ due to $\beta_{\zeta_{-}}<0$, which is a contradiction. Similarly, one can show $\omega \neq \zeta_{+}$. Thus, $\omega \notin\left\{\zeta_{-}, \zeta_{+}\right\}$.

Since $l_{1}(z)$ changes sign when $|z| \gg 1$, we obtain $\zeta_{-}<\omega<\zeta_{+}, a_{1} \gg 0$ and $a_{2} \gg 0$ in order to ensure $I_{h, *}(z)>0$. By (4.8) and combining $\beta_{\zeta_{-}}<0$ and $\beta_{\zeta_{+}}<0$, one has $I_{v, *}(z)<0,|z| \gg 1$ which contradicts (4.6). In summary, in this case, either $I_{h, *}(z)$ or $I_{v, *}(z)$ changes sign.

Case 2 Matrix \mathbb{A} has no complex eigenvalues.
(i) If matrix \mathbb{A} has four real distinct eigenvalues, denote them as $\zeta_{-}, \zeta_{+}, \zeta_{3}$ and ζ_{4}. Likely above discussions, there exist eigenvectors $G_{\zeta_{-}}, G_{\zeta_{+}}, G_{\zeta_{3}}$ and $G_{\zeta_{4}}$ such that

$$
\begin{aligned}
\binom{I_{h, *}(z)}{I_{v, *}(z)} & =a_{1} \mathrm{e}^{\zeta_{-} z} G_{\zeta_{-}}+a_{2} \mathrm{e}^{\zeta_{+} z} G_{\zeta_{+}} a_{3} \mathrm{e}^{\zeta_{3} z} G_{\zeta_{3}}+a_{4} \mathrm{e}^{\zeta_{4} z} G_{\zeta_{4}} \\
& =\binom{a_{1} \mathrm{e}^{\zeta_{-} z}+a_{2} \mathrm{e}^{\zeta_{+} z}+a_{3} \mathrm{e}^{\zeta_{3} z}+a_{4} \mathrm{e}^{\zeta_{4} z}}{a_{1} \beta_{\zeta_{-}} \mathrm{e}^{\zeta_{-} z}+a_{2} \beta_{\zeta_{+}} \mathrm{e}^{\zeta_{+} z}+a_{3} \beta_{\zeta_{3}} \mathrm{e}^{\zeta_{3} z}+a_{4} \beta_{\zeta_{4}} \mathrm{e}^{\zeta_{4} z}}, \quad z \in \mathbb{R},
\end{aligned}
$$

here $a_{i} \in \mathbb{R}$ is not all equal to zero, $i=1,2,3,4$. Because the four eigenvalues are distinct, and $\beta_{\zeta_{-}}, \beta_{\zeta_{+}}$, $\beta_{\zeta_{3}}$ and $\beta_{\zeta_{4}}$ are negative, and $\min \left\{\zeta_{-}, \zeta_{+}, \zeta_{3}, \zeta_{4}\right\}<0<\max \left\{\zeta_{-}, \zeta_{+}, \zeta_{3}, \zeta_{4}\right\}$, one obtains either $I_{h, *}\left(z_{0}\right)<0$ or $I_{v, *}\left(z_{0}\right)<0$ for some $z_{0} \in \mathbb{R}$. This contradicts system (4.6).
(ii) If matrix \mathbb{A} has a pair of double eigenvalues. It is not hard to see \mathbb{A} cannot have two pairs of double eigenvalues. Otherwise, the characteristic equation of \mathbb{A} is $Q(\zeta)=\left(\zeta-\zeta_{-}\right)^{2}\left(\zeta-\zeta_{+}\right)^{2}$. Then
$Q(0)=\zeta_{-}^{2} \zeta_{+}^{2}>0$ which contradicts the fact $Q(0)<0$. Accordingly, one only needs to consider the following situations

$$
Q(\zeta)=\left(\zeta-\zeta_{3}\right)^{2}\left(\zeta-\zeta_{-}\right)\left(\zeta-\zeta_{+}\right)
$$

where $\zeta_{-}<0<\zeta_{+}$and $\zeta_{3} \notin\left\{\zeta_{-}, \zeta_{+}\right\}$. Recalling that $\operatorname{Dim}\left(\mathbb{G}_{\zeta_{3}}\right)=1$, so

$$
\binom{I_{h, *}(z)}{I_{v, *}(z)}=a_{1} \mathrm{e}^{\zeta_{-}} G_{\zeta_{-}}+a_{2} \mathrm{e}^{\zeta+z} G_{\zeta_{+}}+\mathrm{e}^{\zeta_{3} z}\left[a_{3} G_{\zeta_{3}}+a_{4}\left(z G_{\zeta_{3}}+G_{\zeta_{3}}^{1}\right)\right], \quad z \in \mathbb{R}
$$

where $G_{\zeta_{3}}$ and $G_{\zeta_{3}}^{1}$ are two linearly independent generalized eigenvectors corresponding to ζ_{3}.
If $a_{4}=0$, similar to (i), then there exist some $z_{0} \in \mathbb{R}$ such that $I_{h, *}\left(z_{0}\right)<0$ or $I_{v, *}\left(z_{0}\right)<0$ which is a contradiction.

If $a_{4} \neq 0$, then there are three cases:
(ii) ${ }_{1}$ If $\zeta_{3} \geq \zeta_{+}>0$, then $a_{4}>0$ and $a_{1}>0$ to guarantee $I_{h, *}(z)>0,|z| \gg 1$. Thereby $I_{v, *}(z)<0$ for sufficiently small $z \ll-1$ due to $a_{1} \beta_{\zeta}<0$, which contradicts system (4.6).
(ii) $)_{2}$ If $\zeta_{3} \leq \zeta_{-}<0$, then $a_{4}<0$ and $a_{2}>0$ to ensure $I_{h, *}(z)>0,|z| \gg 1$. Hence, $I_{v, *}(z)<0$ for sufficiently large $z \gg 1$ due to $a_{2} \beta_{\zeta_{+}}<0$, contradicting system (4.6).
(ii) $)_{3}$ If $\zeta_{-}<0<\zeta_{3}<\zeta_{+}$, then $a_{1}>0, a_{2}>0$ or $a_{1}>0, a_{2}=0, a_{4}>0$ to make $I_{h, *}(z)>0,|z| \gg 1$. If $\zeta_{-}<\zeta_{3}<0<\zeta_{+}$, then $a_{1}>0, a_{2}>0$ or $a_{1}=0, a_{2}>0, a_{4}<0$ to ensure $I_{h, *}(z)>0,|z| \gg 1$. Consequently, when $\zeta_{-}<\zeta_{3}<\zeta_{+}$, one gets $I_{v, *}(z)<0$ for sufficiently large $|z|$ according to $a_{1} \beta_{\zeta_{-}}<0$ or $a_{2} \beta_{\zeta_{+}}<0$. This is also a contradiction.
(iii) If matrix \mathbb{A} has a triple eigenvalue. We divide it into two cases:
(iii) $_{1}$ If the multiplicity of eigenvalue ζ_{-}is three, then the characteristic equation is $Q(\zeta)=(\zeta-$ $\left.\zeta_{-}\right)^{3}\left(\zeta-\zeta_{+}\right)$. Since $\operatorname{Dim}\left(\mathbb{G}_{\zeta_{-}}\right)=1$, we get

$$
\binom{I_{h, *}(z)}{I_{v, *}(z)}=a_{2} \mathrm{e}^{\zeta_{+} z} G_{\zeta_{+}}+\mathrm{e}^{\zeta_{-} z}\left[a_{1} G_{\zeta_{-}}+a_{3}\left(z G_{\zeta_{-}}+G_{\zeta_{-}}^{1}\right)+a_{4}\left(\frac{z^{2}}{2} G_{\zeta_{-}}+z G_{\zeta_{-}}^{1}+G_{\zeta_{-}}^{2}\right)\right], z \in \mathbb{R}
$$

where $G_{\zeta_{-}}, G_{\zeta_{-}}^{1}$ and $G_{\zeta_{-}}^{2}$ are three linearly independent generalized eigenvectors corresponding to ζ_{-}. Utilizing the facts $\zeta_{-}<0<\zeta_{+}$and $\beta_{\zeta_{ \pm}}<0$, one can similarly obtain that there are some $z_{0} \in \mathbb{R}$ such that $I_{h, *}\left(z_{0}\right)<0$ or $I_{v, *}\left(z_{0}\right)<0$ which contradicts system (4.6).
(iii) ${ }_{2}$ If the multiplicity of eigenvalue ζ_{+}is three, then $Q(\zeta)=\left(\zeta-\zeta_{+}\right)^{3}\left(\zeta-\zeta_{-}\right)$. Similar to arguments of (iii) ${ }_{1}$, we get $I_{h, *}(z)$ or $I_{v, *}(z)$ change sign for some $z_{0} \in \mathbb{R}$ which is a contradiction with system (4.6).

Consequently, combining Cases 1 and 2, we obtain that system (1.2) has no TWS connecting E_{0} and E_{1}^{*} when $\mathfrak{R}_{0}>1,0<c<c_{*}$. This completes the proof.

Remark 4.1. Although the idea of Theorem 4.2 comes from [4], we have further improved their methods. In addition, from Theorems 3.1, 4.1 and 4.2, it concludes that c_{*} is the minimal wave speed for (1.2).

5. Numerical simulations

In this section, we apply system (1.2) to the spread of dengue fever and provide some numerical simulations to verify the existence of TWS. For simplicity, we let $f_{1}\left(S_{h}, I_{v}\right)=\beta_{1} S_{h} I_{v}$ and $f_{2}\left(S_{v}, I_{h}\right)=\beta_{2} S_{v} I_{h}$, where β_{i} is positive constant and represents the transmission rate of dengue fever, $i=1,2$, and we take the spatial domain $[0,100]$ and the temporal domain $[0,400]$.

Assume (1.2) satisfies the following initial conditions

$$
S_{h}(0, x)=\left\{\begin{array}{ll}
S_{h}^{*}, & x \in[0,50), \\
S_{h}^{0}, & x \in[50,100],
\end{array} \quad I_{h}(0, x)= \begin{cases}I_{h}^{*}, & x \in[0,50) \\
0, & x \in[50,100]\end{cases}\right.
$$

FIG. 1. The relationship between c and ζ
and

$$
S_{v}(0, x)=\left\{\begin{array}{ll}
S_{v}^{*}, & x \in[0,50), \\
S_{v}^{0}, & x \in[50,100],
\end{array} \quad I_{v}(0, x)= \begin{cases}I_{v}^{*}, & x \in[0,50) \\
0, & x \in[50,100]\end{cases}\right.
$$

Moreover, we take homogeneous Neumann boundary conditions for system (2.2). In view of [1, 4, 12, 29], we assume $\Lambda=100, M=0.2, D_{S}=0.2, D_{I}=0.1, d_{S}=0.5, d_{I}=0.3, \mu_{1}=0.83, d_{1}=0.001$, $d_{2}=0.0001, \mu_{2}=0.002, \beta_{1}=0.00682, \beta_{2}=0.0015, \alpha_{1}=0.1667$. Thus, $\gamma_{1}=\mu_{1}+d_{1}+\alpha_{1}=0.9977$ and $\gamma_{2}=\mu_{2}+d_{2}=0.0021$. By simple calculations, we obtain the threshold $\mathfrak{R}_{0}=7.6699>1$, and

$$
E_{0}=(120.4819,0,100,0), \quad E_{1}^{*}=(68.4884,43.2541,2.9904,92.3901)
$$

Therefore, according to Lemma 2.1 and Theorem 3.1, there exists $c_{*}>0$ such that (2.2) admits a TWS connecting E_{0} and E_{1}^{*} with speed c for each $c \geq c_{*}$. According to Fig. 1, it can be found that the minimal wave speed c_{*} is 0.352 .

We reveal the results in Figs. 2 and 3. Figure 2 is the corresponding contour graphs which illustrates the change of humans and mosquitoes densities. The red arrows in Fig. 2 indicate that the solution of (1.2) evolves from the disease-free equilibrium E_{0} to endemic equilibrium E_{1}^{*} coinciding with Theorem 3.1. Furthermore, to present the shape of solutions more clearly, Fig. 3 depicts the cross section curves of the solution at different times. As described in Fig. 3, one can see that the TWS of (1.2) is not monotone owing to the constant recruitment and natural death in the model.

To explore the influence of parameters on the spread of the disease, we next investigate the sensitivity of c_{*} on parameters when $\mathfrak{R}_{0}>1$. According to Lemma 2.1, one has

$$
U_{2}^{c_{*}}\left(\zeta^{*}\right) U_{4}^{c_{*}}\left(\zeta^{*}\right)-\beta_{1} \beta_{2} S_{h}^{0} S_{v}^{0}=0
$$

where $S_{h}^{0}=\Lambda / \mu_{1}, S_{v}^{0}=M / \mu_{2}$ and

$$
U_{2}^{c_{*}}\left(\zeta^{*}\right)=D_{I} \zeta^{* 2}-c_{*} \zeta^{*}-\gamma_{1}, \quad U_{4}^{c_{*}}\left(\zeta^{*}\right)=d_{I} \zeta^{* 2}-c_{*} \zeta^{*}-\gamma_{2}
$$

Simple calculations show that

$$
\frac{\partial c_{*}}{\partial D_{I}}>0, \frac{\partial c_{*}}{\partial d_{I}}>0, \frac{\partial c_{*}}{\partial S_{h}^{0}}>0, \frac{\partial c_{*}}{\partial S_{v}^{0}}>0, \frac{\partial c_{*}}{\partial \beta_{i}}>0, \quad i=1,2
$$

Thus, the c_{*} increases monotonically with respect to $\Lambda, M, \beta_{i}, D_{I}$ and d_{I}, decreases with respect to μ_{i}. Figure 4 illustrates the sensitivity of c_{*} on parameters when $\mathfrak{R}_{0}>1$ and the values of other parameters are the same as in Fig. 1. Some noteworthy phenomena are found in Fig. 4. As can be seen in Fig. 4a, c_{*} is an increasing function of D_{I} and d_{I}, and furthermore the effect of d_{I} on c_{*} is greater than that of D_{I} on c_{*} which implies that the diffusion of infected mosquitoes has a more significant impact on the spread

FIg. 2. The contour graph of traveling wave solution for system (1.2). a The evolution of S_{h}. b The evolution of S_{v}. c The evolution of I_{h}. d The evolution of I_{v}
of dengue fever. In Fig. 4b, it can be found that c_{*} increases with the increase of β_{2} when β_{1} is large, but c_{*} does not vary significantly with the increase of β_{2} when β_{1} is small. Note that $\beta_{1}\left(\beta_{2}\right)$ denotes the disease transmission rate from infectious mosquitoes (humans) to humans (mosquitoes). Figure 4b shows that the infected mosquitoes have a greater impact on the spread of dengue fever than infected people. In Fig. $4 \mathrm{c}, c_{*}$ increases with the increase of Λ when M is large, but the change of c_{*} is not obvious with the increase of Λ when M is small. From Fig.4c, compared with the recruitment of individuals, the impact of the recruitment of mosquitoes is greater on the spread of dengue fever. In Fig. $4 \mathrm{~d}, c_{*}$ reduces with the increase of μ_{1} when μ_{2} is small, but the change of c_{*} is not obvious with the increase of μ_{1} when μ_{2} is large, which means that the natural death of mosquitoes has a more obvious impact on disease transmission than the natural death of people. It can be seen from Fig. 4 that the parameters related to mosquitoes have a greater impact on minimal wave speed. Consequently, to better prevent the spread of disease, we should pay more attention to mosquito control, such as spraying insecticides and using bed nets.

6. Discussion

In this work, we proposed a reaction-diffusion mosquito-borne epidemic model with general incidence and constant recruitment, and discussed the existence and nonexistence of nontrivial TWS for this model.

Fig. 3. The cross section curves of traveling wave solution for (1.2) at different times. a The curve of S_{h}. b The curve of S_{v}. c The curve of I_{h}. d The curve of I_{v}

Specifically, for the case of $\mathfrak{R}_{0}>1$ and $c \geq c_{*}$, the suitable sub- and super-solutions were constructed by means of the smallest positive eigenvalue of the characteristic equation, and the existence of solutions for the truncated system was obtained by using the fixed-point theorem. Then it was proved that there exists a nontrivial TWS of model (1.2) satisfying (2.3) with the help of limiting arguments. The convergence of TWS at positive infinity was showed by constructing a Lyapunov functional. Next, the nonexistence of nontrivial TWS when $\mathfrak{R}_{0} \leq 1$ and $c>0$ was established by utilizing contradicting approach. For the case of $\Re_{0}>1$ and $0<c<c_{*}$, by illustrating that $I_{h}(\cdot)$ or $I_{v}(\cdot)$ will change sign at some points, we proved that the system (1.2) has no nontrivial TWS connecting E_{0} and E_{1}^{*}. We should note that the mathematical analysis of the process was complicated, but easier to understand than the method of Laplace transform.

In order to better elaborate the theoretical results, we applied system (1.2) to investigate the spread of dengue fever. We provided numerical simulations to verify the theoretical results of this paper (see Figs. 2, 3). By discussing the sensitivity of c_{*} on parameters, the combined effects of parameters on c_{*} were analyzed (see Fig. 4). It can be known that (1) the c_{*} can be reduced by decreasing the diffusion of infectious humans and mosquitoes (see Fig. 4a); (2) by adopting relevant measures, such as spraying insecticides and using bed nets, the biting rate can be reduced. As a result, the c_{*} can be reduced (see Fig. 4b-d).

As we all know, the transmission of many infectious diseases, including mosquito-borne diseases, is deeply affected by environment temperature [19], and temperature can be characterized by time periodicity. Hence, it is reasonable to incorporate time periodicity into the modeling of infectious diseases.

FIg. 4. The sensitivity of c_{*} on parameters for system (1.2). a The sensitivity of c_{*} on D_{I} and d_{I}. \mathbf{b} The sensitivity of c_{*} on β_{1} and β_{2}. \mathbf{c} The sensitivity of c_{*} on Λ and M. d The sensitivity of c_{*} on μ_{1} and μ_{2}

In this case, it is interesting and important to study the periodic traveling wave solutions of epidemic models $[8,28,31,34]$. However, there are some challenges in exploring the periodic traveling wave solutions of mosquito-borne disease models. We leave these issues for future study.

Acknowledgements

The authors are grateful to two referees and the editor for helpful comments and suggestions which led to an improvement of our original manuscript. The research is supported by Natural Science Foundation of China (No. 11971013) and an NSERC Individual Discovery Grant RGPIN-2020-03911. The research is also sponsored by Postgraduate Research \& Practice Innovation Program of Jiangsu Province (No. KYCX20_0169).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Becker, N., Petric, D., Zgomba, M., et al.: Mosquitoes and Their Control, 2nd edn. Springer, New York (2010)
[2] Canuto, C., Tabacco, A.: Mathematical Analysis II, 2nd edn. Springer, New York (2015)
[3] Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43-61 (1978)
[4] Denu, D., Ngoma, S., Salako, R.B.: Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J. Math. Anal. Appl. 487, 123995 (2020)
[5] Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with external supplies. Nonlinearity 24, 2891-911 (2011)
[6] Enatsua, Y., Nakata, Y., Muroya, Y.: Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model. Nonlinear Anal. RWA 13, 2120-2133 (2012)
[7] Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150, 131-151 (1998)
[8] Fang, J., Lai, X., Wang, F.-B.: Spatial dynamics of a dengue transmission model in time-space periodic environment. J. Differ. Equ. 269, 149-175 (2020)
[9] Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)
[10] Gilbarg, G., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
[11] Hadeler, K.P.: Hyperbolic travelling fronts. Proc. Edinb. Math. Soc. 31, 89-97 (1988)
[12] Halstead, S.B.: Dengue. Lancet 370, 1644-1652 (2007)
[13] Huang, W.Z.: A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J. Differ. Equ. 260, 2190-2224 (2016)
[14] He, J., Tsai, J.: Traveling waves in the Kermack-Mckendrick epidemic model with latent period. Z. Angew. Math. Phys. 70, 27 (2019)
[15] Lewis, M., Renclawowicz, J., Van den Driessche, P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3-23 (2006)
[16] Li, W.-T., Lin, G., Ma, C., Yang, F.-Y.: Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete Contin. Dyn. Syst. Ser. B 2, 467-84 (2014)
[17] Lin, Z., Zhu, H.: Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75(6-7), 1381-1409 (2017)
[18] Lou, Y., Liu, K., He, D., Gao, D., Ruan, S.: Modelling diapause in mosquito population growth. J. Math. Biol. 78, 2259-2288 (2019)
[19] Paaijmans, K.P., Cator, L.J., Thomas, M.B.: Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS ONE 8(1), e55777 (2013)
[20] Ran, X., Hu, L., Nie, L.-F., Teng, Z.: Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate. Appl. Math. Comput. 394, 125798 (2021)
[21] Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In: Mathematics for Life Science and Medicine, pp. 97-122. Springer, Berlin (2007)
[22] Salako, R.B., Shen, W.: On traveling wave solutions in full parabolic Keller-Segel chemotaxis systems with logistic source. arXiv:1901.02727 (2019)
[23] Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29-48 (2002)
[24] Wang, C., Wang, J.: Analysis of a malaria epidemic model with age structure and spatial diffusion. Z. Angew. Math. Phys. 72, 74 (2021)
[25] Wang, J., Wang, J.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Differ. Equ. 33, 549-575 (2021)
[26] Wang, K., Zhao, H., Wang, H., Zhang, R.: Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed delay. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10062-w
[27] Wang, N., Zhang, L., Teng, Z.: Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space. J. Biol. Dyn. (2021)
[28] Wang, S.-M., Feng, Z.S., Wang, Z.-C., Zhang, L.: Periodic traveling wave of a time periodic and diffusive epidemic model with nonlocal delayed transmission. Nonlinear Anal. RWA 55, 103117 (2020)
[29] Wang, W., Zhao, X.-Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147-168 (2011)
[30] Wang, X., Zou, X.: Threshold dynamics of a temperature-dependent stage-structured mosquito population model with nested delays. Bull Math. Biol. 80(7), 1962-1987 (2018)
[31] Wang, Z.-C., Zhang, L., Zhao, X.-Q.: Time periodic traveling waves for a periodic and diffusive SIR epidemic model. J. Dyn. Differ. Equ. 30, 379-403 (2018)
[32] Wu, R., Zhao, X.-Q.: A reaction-diffusion model of vector-borne disease with periodic delays. J. Nonlinear Sci. 29, 29-64 (2019)
[33] Wu, S.-L., Hsu, C.-H.: Existence of entire solutions for delayed monostable epidemic models. Trans. Am. Math. Soc. 368, 6033-6062 (2016)
[34] Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality. J. Evol. Equ. 20, 1029-1059 (2020)
[35] Zhang, R., Wang, J.L., Liu, S.Q.: Traveling wave solutions for a class of discrete diffusive SIR epidemic model. J. Nonlinear Sci. 31(10), 1-33 (2021)
[36] Zhang, T.: Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J. Differ. Equ. 262, 4724-4770 (2017)
[37] Zhao, H., Wang, K., Wang, H.: Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment. preprint
[38] Zhao, H., Wang, L., Oliva, S.M., Zhu, H.: Modeling and dynamics analysis of Zika transmission with limited medical resources. Bull. Math. Biol. 82, 1-50 (2020)
[39] Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 1, 1-45 (2018)
[40] Zheng, B., Tang, M.X., Yu, J.S.: Modeling Wolbachia spread in mosquitoes through delay differential equations. SIAM J. Appl. Math. 74, 743-770 (2014)
[41] Zhou, J., Song, L., Wei, J.: Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay. J. Differ. Equ. 268, 4491-4524 (2020)
[42] Zhou, J., Xu, J., Wei, J., Xu, H.: Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate. Nonlinear Anal. RWA 41, 204-231 (2018)

Kai Wang and Hongyong Zhao
Department of Mathematics
Nanjing University of Aeronautics and Astronautics
Nanjing 211106
China
e-mail: kwang@nuaa.edu.cn
Kai Wang and Hongyong Zhao
Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)
MIIT
Nanjing 211106
China
e-mail: hyzho1967@126.com
Hao Wang
Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton ABT6G 2G1
Canada
e-mail: hao8@ualberta.ca
(Received: August 27, 2021; revised: December 1, 2021; accepted: December 2, 2021)

