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Abstract. In this paper, we obtain the complete information about the existence and nonexistence of traveling wave solution
(TWS) for a reaction–diffusion model of mosquito-borne disease with general incidence and constant recruitment. We find
that the basic reproduction ratio R0 of the corresponding kinetic system and the minimal wave speed c∗ are thresholds to

determine the existence of TWS. With the aid of limiting arguments and Lyapunov approach, it is demonstrated that the

system possesses a nontrivial TWS with wave speed c ≥ c∗ connecting the disease-free equilibrium and endemic equilibrium
when R0 > 1. When R0 ≤ 1 and c > 0, the nonexistence of nontrivial TWS is obtained by contradiction. By means of a
rather ingenious method that is easier to understand than Laplace transform, we show that there is no nontrivial TWS when
R0 > 1 and 0 < c < c∗. Numerically, we perform simulations to verify the analytical results and explore the sensitivity of
the speed c∗ on parameters. The sensitivity results show that the parameters related to mosquitoes have a greater impact
on c∗.

Mathematics Subject Classification. 35B40, 35C07, 35K57, 92D30.

Keywords. Reaction–diffusion model, Mosquito-borne disease, Traveling wave solution, Basic reproduction ratio, Minimal

wave speed.

1. Introduction

Mosquito-borne disease, a disease that the pathogens are transmitted to humans through mosquitoes,
has become one of the most serious challenges threatening human health [1]. Some common such diseases
include malaria, dengue fever, Zika and chikungunya. Due to the severity of diseases, it is necessary
to study the spread of mosquito-borne diseases with various mathematical models (such as ordinary
differential equations (ODE) [7,38], delay differential equations (DDE) [18,30,40], reaction–diffusion (R-
D) equations [24,25,29,32,37] and so on). In epidemiology, spatial effects have been extensively introduced
into models to delve into the geographical spread of infectious diseases. Generally, an epidemic model
with spatial effects will generate an epidemic wave, which connects the equilibria of the model, and such
epidemic wave is described by TWS propagating at a certain speed [4,39]. It seems thus meaningful to
analyze TWS so as to better understand the spatial spread of mosquito-borne diseases [11,21].

The importance of TWS in infectious diseases prompted many researchers devote themselves to the
research of it, and so plenty of excellent works have been done in the past decades, see for [5,13,14,16,33,
35,36,39,41,42] and references therein. However, as far as we know, few studies seem to focus on the TWS
of mosquito-borne disease models (e.g. [4,8,15,17,26]). In fact, due to the complexity of model caused by
the transmission mechanism of diseases (the virus is not transmitted directly from human to human, but
through the bite of infected mosquitoes), the study of TWS for mosquito-borne disease models has been
quite limited till now. In 2006, Lewis et al. [15] proposed a R-D West Nile virus (WNv) (a mosquito-
borne disease) model with standard incidence and studied the existence of TWS of the simplified version
for the model. In 2017, Lin and Zhu [17] established a R-D model with free boundary and standard
incidence for WNv, and discussed the existence of TWS of the corresponding simplified spatial model.
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More recently, Wang et al. [26] investigated the TWS of a R-D vector-borne disease model with nonlocal
effects and distributed delay. Denu et al. [4] proposed a deterministic vector-host epidemic model with
bilinear incidence and constant recruitment. They established the existence and nonexistence of TWS for
the model. In [4], the authors assumed that susceptible vectors (hosts) have the same diffusion rates as
infected vectors (hosts). It should be pointed out that the capacity of activity for susceptible individuals
is usually stronger than that of infected individuals according to [39].

Note that a fair amount of mosquito-borne disease models mainly adopted bilinear incidence [4,32],
standard incidence [7] or saturation incidence [20]. However, inspired by the ideas in [3,6,42], the nonlinear
(general) incidence is better to give a reasonable qualitative description for the disease dynamics. On
the other hand, to investigate the dynamics more comprehensively, it seems necessary to incorporate
the external supplies (recruitment) of individuals and mosquitoes into the modeling of mosquito-borne
diseases [29,32].

Motivated by above analysis, in this paper, we study the following mosquito-borne epidemic model
with general incidence rates and constant recruitment

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tSh(t, x) = DSΔSh(t, x) + Λ − f1(Sh, Iv)(t, x) − μ1Sh(t, x),

∂tIh(t, x) = DIΔIh(t, x) + f1(Sh, Iv)(t, x) − (μ1 + d1 + α1)Ih(t, x),

∂tRh(t, x) = DRΔRh(t, x) + α1Ih(t, x),

∂tSv(t, x) = dSΔSv(t, x) + M − f2(Sv, Ih)(t, x) − μ2Sv(t, x),

∂tIv(t, x) = dIΔIv(t, x) + f2(Sv, Ih)(t, x) − (μ2 + d2)Iv(t, x),

(1.1)

wherein Sh := Sh(t, x), Ih := Ih(t, x) and Rh := Rh(t, x) are the spatial densities of susceptible, infectious
and recovered individuals, and Sv := Sv(t, x) and Iv := Iv(t, x) are the spatial densities of susceptible
and infectious mosquitoes at time t and location x, respectively. The diffusion rates of Sh, Ih, Rh and
Sv, Iv are denoted by DS , DI , DR and dS , dI , respectively. The recruitment and natural death rate of
individuals and mosquitoes are represented by Λ, μ1 and M , μ2 respectively. The d1 and d2 represent the
disease-induced death rates of individuals and mosquitoes, respectively. The recovery rate of infectious
individuals is denoted by α1. The f1(Sh, Iv) and f2(Sv, Ih) mean the disease transmission functions. For
the sake of simplicity, let γ1 := μ1 + d1 + α1 and γ2 := μ2 + d2. By the decoupling, it is sufficient to
discuss the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tSh = DSΔSh + Λ − f1(Sh, Iv) − μ1Sh,

∂tIh = DIΔIh + f1(Sh, Iv) − γ1Ih,

∂tSv = dSΔSv + M − f2(Sv, Ih) − μ2Sv,

∂tIv = dIΔIv + f2(Sv, Ih) − γ2Iv.

(1.2)

Throughout this paper, unless otherwise indicated, we make the following assumptions:

(P1) f1(Sh, Iv), f2(Sv, Ih) ∈ C2(R+ × R+), and the partial derivatives ∂Sh
f1(Sh, Iv), ∂Iv

f1(Sh, Iv),
∂Sv

f2(Sv, Ih) and ∂Ih
f2(Sv, Ih) are positive for all Sh, Ih, Sv, Iv > 0.

(P2) f1(Sh, Iv) = 0 if and only if (iff) ShIv = 0, and f2(Sv, Ih) = 0 iff SvIh = 0; ∂2
Iv

f1(Sh, Iv) ≤ 0 and
∂2

Ih
f2(Sv, Ih) ≤ 0.

(P3) All coefficients of model (1.1) are positive, and DS ≥ DI , dS ≥ dI .

Remark 1.1.

(I) Some frequently used incidence rates satisfy assumption (P1)–(P2), such as
(1) The bilinear incidence rates f1(Sh, Iv) = β1ShIv and f2(Sv, Ih) = β2SvIh, βi > 0, i = 1, 2

[4,32];
(2) The saturated incidence rates f1(Sh, Iv) = β1ShIv

1+�1Iv
and f2(Sv, Ih) = β2SvIh

1+�2Ih
, βi, �i > 0, i = 1, 2

[20];
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(3) The saturated incidence rates f1(Sh, Iv) = β1ShIv

1+�1Sh
and f2(Sv, Ih) = β2SvIh

1+�2Sv
, βi, �i > 0, i = 1, 2;

[27]
(4) The mixture of bilinear and saturated incidence rates f1(Sh, Iv) = β1ShIv and f2(Sv, Ih)

= β2SvIh

1+�2Sv
or f1(Sh, Iv) = β1ShIv

1+�1Iv
and f2(Sv, Ih) = β2SvIh, βi, �i > 0, i = 1, 2;

(II) From [39], the capacity of activity for susceptible individuals is usually stronger than that of infected
individuals. Thus, the assumption (P3) is reasonable.

The main purpose of this paper is to confirm the existence and nonexistence of nontrivial TWS for
system (1.2). More specifically, we intend to state the main strategies of this work. By using the smallest
positive root of the characteristic equation for the linearized system of (1.2), the suitable sub- and super-
solutions are constructed, and so the existence of solutions for the auxiliary truncated system is obtained in
view of Schauder’s fixed-point theorem. Then, by means of limiting arguments and comparison principle,
we obtain that system (1.2) admits a nontrivial bounded TWS connecting the disease-free equilibrium
when R0 > 1 and c ≥ c∗. By establishing an appropriate Lyapunov functional and using LaSalle’s
invariance principle, it is proved that the TWS converges to the endemic equilibrium at positive infinity.
Thanks to the detailed analysis, we obtain the nonexistence of nontrivial TWS when R0 ≤ 1 and c > 0
by contradiction. For the case of R0 > 1 and 0 < c < c∗, by proving that the Ih or Iv will change sign, we
show that there is no nontrivial TWS connecting disease-free equilibrium and endemic equilibrium due
to a contradiction. Our conclusions indicate that c∗ is the minimal wave speed of system (1.2).

Some key improvements are necessary due to the introduce of general incidence and constant recruit-
ment in this paper. To investigate the existence and boundedness of TWS, the author [36] assumed that
the functions g2(·) and g3(·) are bounded [see (A5)]. However, this assumption does not apply to bilinear
incidence. More precisely, if the f1 and f2 in model (1.2) are bilinear, then the methods of [36] cannot be
employed to obtain the existence and boundedness of TWS for system (1.2). Hence, we need to utilize the
ideas in [39] to overcome these technical difficulties to make our model cover more special cases. Actually,
due to the introduce of general incidence, the mathematical analysis of the problem is more complicated
and the results are more profound. It should be pointed out that, although it is an effective approach to
deal with the nonexistence of TWS in the case of R0 > 1 and 0 < c < c∗ applying Laplace transform (e.g.
[16,41]), this method is no longer applicable because it is difficult to verify the exponential decay of the
solutions. Fortunately, we establish the nonexistence of this case with the help of an ingenious technique,
which is easier to understand than the approach of Laplace transform.

The remainder of the paper is organized as follows. Section 2 presents some preliminaries which will be
used in subsequent sections. Section 3 addresses the existence of TWS for system (1.2). Section 4 proves
the nonexistence of TWS. Section 5 performs numerical simulations to verify the analytical results, and
explores the sensitivity of minimal wave speed on parameters. Section 6 gives a brief discussion to conclude
the article.

2. Preliminaries

To study the traveling wave solutions of (1.2), the constant equilibria are needed. It follows from (P2) that
system (1.2) admits a disease-free equilibrium E0 = (S0

h, 0, S0
v , 0)T , where S0

h := Λ/μ1 and S0
v := M/μ2.

To find a positive constant endemic equilibrium, we consider the following ODE (kinetic) system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dSh(t)/dt = Λ − f1(Sh, Iv)(t) − μ1Sh(t),

dIh(t)/dt = f1(Sh, Iv)(t) − γ1Ih(t),

dSv(t)/dt = M − f2(Sv, Ih)(t) − μ2Sv(t),

dIv(t)/dt = f2(Sv, Ih)(t) − γ2Iv(t).

(2.1)
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Epidemiology, the basic reproduction ratio R0 is one of the most important concepts in infectious
diseases, and it is a crucial threshold of disease outbreak or not [23]. According to [23], the R0 of system
(2.1) equals the spectral radius of the following matrix

M :=
(

0 k1/γ1

k2/γ2 0

)

,

and thus R0 =
√

k̄/γ̄, where k̄ := k1k2, k1 := ∂Iv
f1(S0

h, 0), k2 := ∂Ih
f2(S0

v , 0) and γ̄ := γ1γ2. Consider
the following equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Λ − f1(S∗
h, I∗

v ) − μ1S
∗
h = 0,

f1(S∗
h, I∗

v ) − γ1I
∗
h = 0,

M − f2(S∗
v , I∗

h) − μ2S
∗
v = 0,

f2(S∗
v , I∗

h) − γ2I
∗
v = 0.

Adding the first two equations and last two equations of above system, respectively, we obtain S∗
h =

(Λ − γ1I
∗
h)/μ1 and S∗

v = (M − γ2I
∗
v )/μ2. Obviously, S∗

h > 0 when I∗
h ∈ (0,Λ/γ1) and S∗

v > 0 when
I∗
v ∈ (0,M/γ2). Substituting S∗

h and S∗
v into the second and fourth equations of above system, it follows

that {
Q1(I∗

h, I∗
v ) = 0,

Q2(I∗
h, I∗

v ) = 0,

where Q1(I∗
h, I∗

v ) := f1((Λ − γ1I
∗
h)/μ1, I

∗
v ) − γ1I

∗
h and Q2(I∗

h, I∗
v ) := f2((M − γ2I

∗
v )/μ2, I

∗
h) − γ2I

∗
v . Since

Qi(0, 0) = 0, i = 1, 2, utilizing the implicit function existence theorem and [37], the above system has
a unique (I∗

h, I∗
v )T satisfies I∗

h ∈ (0,Λ/γ1) and I∗
v ∈ (0,M/γ2) when R0 > 1. Thus, system (2.1) has a

unique endemic equilibrium E∗
1 := (S∗

h, I∗
h, S∗

v , I∗
v )T provided that R0 > 1.

From the definition of TWS, a solution (Sh(t, x), Ih(t, x), Sv(t, x), Iv(t, x))T of (1.2) is called a traveling
wave solution if it has the form (Sh(z), Ih(z), Sv(z), Iv(z))T , z = x+ ct, t ≥ 0, x ∈ R and c > 0 represents
the wave speed. Then we have the wave profile equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cS′
h(z) = DSS′′

h(z) + Λ − f1(Sh, Iv)(z) − μ1Sh(z),

cI ′
h(z) = DII

′′
h (z) + f1(Sh, Iv)(z) − γ1Ih(z),

cS′
v(z) = dSS′′

v (z) + M − f2(Sv, Ih)(z) − μ2Sv(z),

cI ′
v(z) = dII

′′
v (z) + f2(Sv, Ih)(z) − γ2Iv(z),

(2.2)

wherein ′ = d/dz and ′′ = d2/dz2. Our main objective is to find a nontrivial solution (Sh(·),
Ih(·), Sv(·), Iv(·))T of system (2.2) satisfying boundary conditions

(Sh(−∞), Ih(−∞), Sv(−∞), Iv(−∞))T = (S0
h, 0, S0

v , 0)T , (2.3)

and
(Sh(+∞), Ih(+∞), Sv(+∞), Iv(+∞))T = (S∗

h, I∗
h, S∗

v , I∗
v )T . (2.4)

Linearizing (2.2) at E0, one obtains
{

cI ′
h(z) = DII

′′
h (z) + k1Iv(z) − γ1Ih(z),

cI ′
v(z) = dII

′′
v (z) + k2Ih(z) − γ2Iv(z).

Plugging (Ih(z), Iv(z))T = (χ2, χ4)T eζz into above system, we get
{

cζχ2 = DIχ2ζ
2 + k1χ4 − γ1χ2,

cζχ4 = dIχ4ζ
2 + k2χ2 − γ2χ4.

(2.5)

Hence, the characteristic equation for the linearized system of (2.2) is

Σc(ζ) := U c
2 (ζ)U c

4 (ζ) − k̄ = 0,



ZAMP Traveling waves for a diffusive mosquito-borne Page 5 of 28    31 

where U c
2 (ζ) := DIζ

2 − cζ − γ1 and U c
4 (ζ) := dIζ

2 − cζ − γ2. Denoting ζ∗
m := min{ζ+

1 , ζ+
2 }, where ζ+

1 and
ζ+
2 are the positive roots of U c

2 (ζ) = 0 and U c
4 (ζ) = 0. Similar to the arguments of [26, Lemma 2.1], one

can prove the following lemma.

Lemma 2.1. Suppose R0 > 1. Then there exist constants c∗ > 0 and ζ∗ > 0 such that
∂Σc(ζ)

∂ζ

∣
∣
∣
∣
(c∗,ζ∗)

= 0 and Σc∗(ζ∗) = 0.

Furthermore,
(1) If 0 < c < c∗, then Σc(ζ) < 0, for all ζ ∈ [0, ζ∗

m);
(2) If c > c∗, then there are two positive roots ζ1 := ζm1(c) and ζ2 := ζm2(c) of Σc(ζ) = 0, satisfying

ζ1 < ζ∗ < ζ2 < ζ∗
m, ζ ′

1(c) < 0, ζ ′
2(c) > 0, such that U c

j (ζi) < 0 (i = 1, 2, j = 2, 4) and

Σc(ζ) =

{
< 0, λ ∈ [0, ζ1) ∪ (ζ2, ζ2 + σ),

> 0, λ ∈ (ζ1, ζ2),

here ′ = d/dc and σ > 0 is a sufficiently small constant. Moreover, there exist constants χ2 = k1

and χ4 = −U c
2 (ζ1) such that (2.5) holds for ζ = ζ1.

2.1. Sub- and super-solutions

In the following, we always assume R0 > 1 and fix c > c∗. To prove the existence of TWS, it is necessary
to construct a pair of sub- and super-solutions. For z ∈ R, define

S+
h (z) := S0

h, S−
h (z) := max{S0

h(1 − M1eε1z), 0},

I+
h (z) := χ2eζ1z, I−

h (z) := max{χ2eζ1z(1 − HM2eε2z), 0},

S+
v (z) := S0

v , S−
v (z) := max{S0

v(1 − M3eε3z), 0},

I+
v (z) := χ4eζ1z, I−

v (z) := max{χ4eζ1z(1 − HM4eε2z), 0},

where χ2, χ4 and ζ1 have been determined by Lemma 2.1, the H, Mi (i = 1, 2, 3, 4) and εj (j = 1, 2, 3)
will be chosen later.

Lemma 2.2. The functions S+
h (z) = S0

h and S+
v (z) = S0

v satisfy

Λ − f1(S+
h , I−

v )(z) − μ1S
+
h (z) ≤ 0, M − f2(S+

v , I−
h )(z) − μ2S

+
v (z) ≤ 0, z ∈ R.

Proof. The proof is obvious and so omitted. �

Lemma 2.3. The functions I+
h (z) = χ2eζ1z and I+

v (z) = χ4eζ1z satisfy

DII
+′′
h (z) − cI+′

h (z) − γ1I
+
h (z) + f1(S0

h, I+
v )(z) ≤ 0,

and
dII

+′′
v (z) − cI+′

v (z) − γ2I
+
v (z) + f2(S0

v , I+
h )(z) ≤ 0, z ∈ R.

Proof. By (P1) and (P2), mean value theorem yields that

f1(S0
h, Iv)(z) ≤ ∂Iv

f1(S0
h, 0)Iv(z) = k1Iv(z), (2.6)

and
f2(S0

v , Ih)(z) ≤ ∂Ih
f2(S0

v , 0)Ih(z) = k2Ih(z), (2.7)
for all z ∈ R. Then one has

DII
+′′
h (z) − cI+′

h (z) − γ1I
+
h (z) + f1(S0

h, I+
v )(z)
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≤ DII
+′′
h (z) − cI+′

h (z) − γ1I
+
h (z) + k1I

+
v (z)

= eζ1z[χ2(DIζ
2
1 − cζ1 − γ1) + k1χ4]

= eζ1z[χ2U
c
2 (ζ1) + k1χ4]

= 0,

and

dII
+′′
v (z) − cI+′

v (z) − γ2I
+
v (z) + f2(S0

v , I+
h )(z) ≤ eζ1z[χ4U

c
4 (ζ1) + k2χ2] = 0.

This ends the proof. �
Lemma 2.4. Suppose

0 < ε1 < min
{

ζ1,
c

DS

}

, M1 > max
{

1,
k1χ4

S0
h(−DSε21 + cε1 + μ1)

}

,

and

0 < ε3 < min
{

ζ1,
c

dS

}

, M3 > max
{

1,
k2χ2

S0
v(−dSε21 + cε1 + μ2)

}

.

Then S−
h (z) = max{S0

h(1 − M1eε1z), 0} and S−
v (z) = max{S0

v(1 − M3eε3z), 0} satisfy

DSS−′′
h (z) − cS−′′

h (z) + Λ − f1(S−
h , I+

v )(z) − μ1S
−
h (z) ≥ 0, z �= z1 := − ln M1

ε1
, (2.8)

and
dSS−′′

v (z) − cS−′′
v (z) + M − f2(S−

v , I+
h )(z) − μ2S

−
v (z) ≥ 0, z �= z3 := − lnM3

ε3
. (2.9)

Proof. As z > z1, it is clear that (2.8) holds due to S−
h (z) = 0. As z < z1, we get S−

h (z) = S0
h(1−M1eε1z).

Following from (2.6) that

DSS−′′
h (z) − cS−′

h (z) + Λ − f1(S−
h , I+

v )(z) − μ1S
−
h (z)

≥ DSS−′′
h (z) − cS−′

h (z) + Λ − μ1S
−
h (z) − k1I

+
v (z)

= −DSM1S
0
hε21e

ε1z + cM1S
0
hε1eε1z + Λ − μ1S

0
h + μ1M1S

0
heε1z − k1χ4eζ1z

≥ eε1z[M1S
0
h(−DSε21 + cε1 + μ1) − k1χ4].

Then (2.8) holds by the condition for M1. In the similar fashion, one can show that (2.9) is true for S−
v

by using (2.7). This completes the proof. �
Lemma 2.5. Assume 0 < 2ε2 < min{ζ1, ε1, ε3}. Then there exists sufficiently large H > 0 such that
I−
h (z) = max{χ2eζ1z(1 − HM2eε2z), 0} and I−

v (z) = max{χ4eζ1z(1 − HM4eε2z), 0} satisfy

DII
−′′
h (z) − cI−′

h (z) − γ1I
−
h (z) + f1(S−

h , I−
v )(z) ≥ 0, z �= z2 := − ln(HM2)

ε2
, (2.10)

and

dII
−′′
v (z) − cI−′

v (z) − γ2I
−
v (z) + f2(S−

v , I−
h )(z) ≥ 0, z �= z4 := − ln(HM4)

ε2
, (2.11)

where H meets max{z2, z4} < min{z1, z3}.
Proof. Without loss of generality, assuming z2 < z4. It is not difficult to see that (2.10) holds for z > z2

and (2.11) holds for z > z4. Since z4 < min{z1, z3}, we have

I−
h (z) ≥ χ2eζ1z(1 − HM2eε2z), I−

v (z) = χ4eζ1z(1 − HM4eε2z), S−
v (z) = S0

v(1 − M3eε3z), z < z4.

When z < z4, one has

dII
−′′
v (z) − cI−′

v (z) − γ2I
−
v (z) + f2(S−

v , I−
h )(z)
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= dI [χ4ζ
2
1eζ1z − χ4M4H(ζ1 + ε2)2e(ζ1+ε2)z] − c[χ4ζ1eζ1z − χ4M4H(ζ1 + ε2)e(ζ1+ε2)z]

− γ2[χ4eζ1z − χ4M4He(ζ1+ε2)z] + f2(S−
v , I−

h )(z)

= eζ1zχ4(dIζ
2
1 − cζ1 − γ2) + χ4M4He(ζ1+ε2)z[−dI(ζ1 + ε2)2 + c(ζ1 + ε2) + γ2]

+ f2(S−
v , I−

h )(z)

= eζ1zχ4U
c
4 (ζ1) − e(ζ1+ε2)zχ4M4HU c

4 (ζ1 + ε2) + f2(S−
v , I−

h )(z).

Since χ2k2 + χ4U
c
4 (ζ1) = 0, to prove (2.11) for z < z4, it is sufficient to show

− eζ1zχ2k2 − e(ζ1+ε2)zχ4M4HU c
4 (ζ1 + ε2) + f2(S−

v , I−
h )(z) ≥ 0. (2.12)

Because I−
h (z) ≥ χ2eζ1z(1 − HM2eε2z), z ∈ R and k2 = ∂Ih

f2(S0
v , 0), one gets

f2(S−
v , I−

h )(z) − eζ1zχ2k2

= f2(S−
v , I−

h )(z) − eζ1zχ2∂Ih
f2(S0

v , 0)

= f2(S−
v , I−

h )(z) − ∂Ih
f2(S0

v , 0)I−
h (z) + ∂Ih

f2(S0
v , 0)I−

h (z) − eζ1zχ2∂Ih
f2(S0

v , 0)

≥ f2(S−
v , I−

h )(z) − ∂Ih
f2(S0

v , 0)I−
h (z) + ∂Ih

f2(S0
v , 0)[χ2eζ1z − χ2HM2e(ζ1+ε2)z]

− eζ1zχ2∂Ih
f2(S0

v , 0)

= f2(S−
v , I−

h )(z) − ∂Ih
f2(S0

v , 0)I−
h (z) − χ2M2H∂Ih

f2(S0
v , 0)e(ζ1+ε2)z.

Thus, to verify (2.12), we only to show

− e(ζ1+ε2)zχ4M4HU c
4 (ζ1 + ε2) − e(ζ1+ε2)zχ2M2H∂Ih

f2(S0
v , 0) + f2(S−

v , I−
h )(z) − ∂Ih

f2(S0
v , 0)I−

h (z) ≥ 0.
(2.13)

By appealing to Taylor’s theorem (see [2, Sect. 5.5]) and assumptions (P1)–(P2), we have

f2(S−
v , I−

h ) = ∂Ih
f2(S−

v , ξI−
h

)I−
h

= [∂Ih
f2(S0

v , 0) + ∂Sv
∂Ih

f2(ξS−
v

, ξI−
h

)(S−
v − S0

v) + ∂2
Ih

f2(S−
v , ξ̃I−

h
)ξI−

h
]I−

h

≥ [∂Ih
f2(S0

v , 0) + ∂Sv
∂Ih

f2(ξS−
v

, ξI−
h

)(S−
v − S0

v) + ∂2
Ih

f2(S−
v , ξ̃I−

h
)I−

h ]I−
h ,

where 0 ≤ ξS−
v

≤ S−
v ≤ S+

v = S0
v , 0 ≤ ξ̃I−

h
≤ ξI−

h
≤ I−

h ≤ I+
h = χ2eζ1z, z < z4 < 0. Therefore,

f2(S−
v , I−

h ) − ∂Ih
f2(S0

v , 0)I−
h ≥ −eε3zM3∂Sv

∂Ih
f2(ξS−

v
, ξI−

h
)I−

h + ∂2
Ih

f2(S−
v , ξ̃I−

h
)(I−

h )2.

Since 0 ≤ ξS−
v

≤ S0
v , 0 ≤ ξ̃I−

h
≤ ξI−

h
≤ χ2eζ1z, z < 0, there exists a constant C1 > 0 such that

∣
∣
∣∂Sv

∂Ih
f2(ξS−

v
, ξI−

h
)
∣
∣
∣+

∣
∣
∣∂2

Ih
f2(S−

v , ξ̃I−
h

)
∣
∣
∣ ≤ C1.

Then

f2(S−
v , I−

h ) − ∂Ih
f2(S0

v , 0)I−
h ≥ −eε3zC1M3I

−
h − C1(I−

h )2.

Owing to 0 ≤ I−
h ≤ I+

h = χ2eζ1z, we obtain

f2(S−
v , I−

h ) − ∂Ih
f2(S0

v , 0)I−
h ≥ −e(ζ1+ε3)zC1χ2M3 − C1χ

2
2e

2ζ1z.

So, to prove (2.13), it is enough to show

− H[χ4M4U
c
4 (ζ1 + ε2) + χ2M2k2] − e(ε3−ε2)zC1(χ2M3 + χ2

2) ≥ 0 (2.14)

which is owing to 0 < ε3 < ζ1 from Lemma 2.4. Similarly, to show (2.10) for z < z2, since 0 < ε1 < ζ1 by
Lemma 2.4, one needs to prove

− H[χ2M2U
c
2 (ζ1 + ε2) + χ4M4k1] − e(ε1−ε2)zC2(χ4M1 + χ2

4) ≥ 0, (2.15)



   31 Page 8 of 28 K. Wang, H. Zhao and H. Wang ZAMP

for some C2 > 0. According to [36, Lemma 2.4], there are two positive constants M2, M4 such that for
ζ1 + ε2 < ζ2 < ζ∗

m, we have
{

M2χ2U
c
2 (ζ1 + ε2) + M4χ4k1 < 0,

M4χ4U
c
4 (ζ1 + ε2) + M2χ2k2 < 0.

Let

h1(ε2) := M2χ2U
c
2 (ζ1 + ε2) + M4χ4k1, h2(ε2) := M4χ4U

c
4 (ζ1 + ε2) + M2χ2k2

Choose H to be large enough satisfying

H > max
{

C1(χ2M3 + χ2
2)

−h2(ε2)
,

C2(χ4M1 + χ2
4)

−h1(ε2)

}

.

Then, when z < z4 < 0, one has

− H[χ4M4U
c
4 (ζ1 + ε2) + χ2M2k2] − e(ε3−ε2)zC1(χ2M3 + χ2

2)

>
C1(χ2M3 + χ2

2)
−h2(ε2)

· [−h2(ε2)] − C1(χ2M3 + χ2
2)

= 0

which is due to −h2(ε2) > 0, ε3 − ε2 > 0. When z < z2 < 0, one obtains

− H[χ2M2U
c
2 (ζ1 + ε2) + χ4M4k1] − e(ε1−ε2)zC2(χ4M1 + χ2

4)

>
C2(χ4M1 + χ2

4)
−h1(ε2)

· [−h1(ε2)] − C2(χ4M1 + χ2
4)

= 0

which is owing to −h1(ε2) > 0, ε1 − ε2 > 0. Therefore, (2.10) and (2.11) hold when H satisfies the above
inequalities such that max{z2, z4} < min{z1, z3}. This ends the proof. �

2.2. An auxiliary truncated problem

Let X > max{−z2,−z4}. Then define

ΓX :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ1, φ2, φ3, φ4)T ∈ C([−X,X],R4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(±X) = S−
h (±X), S−

h (z) ≤ φ1(z) ≤ S0
h,

φ2(±X) = I−
h (±X), I−

h (z) ≤ φ2(z) ≤ I+
h (z),

φ3(±X) = S−
v (±X), S−

v (z) ≤ φ3(z) ≤ S0
v ,

φ4(±X) = I−
v (±X), I−

v (z) ≤ φ4(z) ≤ I+
v (z),

∀z ∈ [−X,X].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

and

φ̃1(z) =

{
φ1(z), |z| ≤ X,

S−
h (z), |z| > X,

φ̃2(z) =

{
φ2(z), |z| ≤ X,

I−
h (z), |z| > X,

and

φ̃3(z) =

{
φ3(z), |z| ≤ X,

S−
v (z), |z| > X,

φ̃4(z) =

{
φ4(z), |z| ≤ X,

I−
v (z), |z| > X.

Thus, it is easy to see that the set ΓX is a bounded closed convex set.
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For z ∈ (−X,X), consider the following boundary-value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cS′
h,X(z) = DSS′′

h,X(z) + Λ − f1(Sh,X , φ4)(z) − μ1Sh,X(z),

cI ′
h,X(z) = DII

′′
h,X(z) + f1(φ̃1, φ̃4)(z) − γ1Ih,X(z),

cS′
v,X(z) = dSS′′

v,X(z) + M − f2(Sv,X , φ2)(z) − μ2Sv,X(z),

cI ′
v,X(z) = dII

′′
v,X(z) + f2(φ̃3, φ̃2)(z) − γ2Iv,X(z),

(2.16)

satisfying boundary conditions

Sh,X(±X) = S−
h (±X), Ih,X(±X) = I−

h (±X), Sv,X(±X) = S−
v (±X), Iv,X(±X) = I−

v (±X). (2.17)

According to the standard ODE theory, problems (2.16)–(2.17) admit a unique solution (Sh,X(z
), Ih,X(z), Sv,X(z), Iv,X(z))T satisfying Sh,X , Ih,X , Sv,X and Iv,X ∈ W 2

p ((−X,X),R) ∩ C([−X,X], R),
for any p ∈ N

∗ (the set of positive integers) (see [10, Corollary 9.18]). Furthermore, by using the
embedding theorem [10, Theorem 7.26], we know that Sh,X , Ih,X , Sv,X and Iv,X ∈ W 2

p ((−X,X),R) →
C1,ν([−X,X]), ν ∈ (0, 1). Define an operator F := (F1,F2,F3,F4)T on ΓX as follows

Sh,X = F1(φ1, φ2, φ3, φ4), Ih,X = F2(φ1, φ2, φ3, φ4),

and

Sv,X = F3(φ1, φ2, φ3, φ4), Iv,X = F4(φ1, φ2, φ3, φ4),

for all (φ1, φ2, φ3, φ4)T ∈ ΓX .

Lemma 2.6. The operator F maps ΓX into ΓX , i.e., F(ΓX) ⊂ ΓX .

Proof. It is obvious that 0 is the sub-solution of the first and third equations for system (2.16) on (−X,X),
and S0

h and S0
v are the super-solutions of the first and third equations for system (2.16) on (−X,X).

Since 0 = Sh,X(X) = S−
h (X) < S0

h and 0 < Sh,X(−X) = S−
h (−X) < S0

h, it follows from the
maximum principle that 0 ≤ Sh,X(z) ≤ S0

h, z ∈ [−X,X]. Recalling that max{z2, z4} < min{z1, z3} and
X > max{−z2,−z4}, by (2.8) and assumption (P1), we get

0 ≤ DSS−′′
h (z) − cS−′

h (z) + Λ − f1(S−
h , I+

v )(z) − μ1S
−
h (z)

≤ DSS−′′
h (z) − cS−′

h (z) + Λ − f1(S−
h , φ4)(z) − μ1S

−
h (z)

in [−X, z1]. By the maximum principle and the facts Sh,X(−X) = S−
h (−X) and Sh,X(z1) ≥ S−

h (z1) = 0,
one has S−

h (z) ≤ Sh,X(z), for any [−X, z1]. In addition, 0 = S−
h (z) ≤ Sh,X(z) in [z1,X]. Consequently,

S−
h (z) ≤ Sh,X(z) ≤ S0

h, z ∈ [−X,X]. Similar discussions can be showed S−
v (z) ≤ Sv,X(z) ≤ S0

v , z ∈
[−X,X].

Next to consider Ih,X(z) and Iv,X(z). It is clear that 0 is the sub-solution of the second and fourth
equations for system (2.16) on [−X,X]. Since φ̃1(z) ≤ S0

h and φ̃4(z) ≤ I+
v (z), z ∈ [−X,X], following

from (P1) and Lemma 2.3 that

DII
+′′
h (z) − cI+′

h (z) − γ1I
+
h (z) + f1(φ̃1, φ̃4)(z) ≤ DII

+′′
h (z) − cI+′

h (z) − γ1I
+
h (z) + f1(S0

h, I+
v )(z) ≤ 0,

for any z ∈ [−X,X]. Thus, I+
h (z) is the super-solution of the second equation for (2.16) in z ∈ [−X,X].

Moreover, by φ̃1(z) ≥ S−
h (z) and φ̃4(z) ≥ I−

v (z), z ∈ [−X,X], combining (P1) and Lemma 2.5 that

DII
−′′
h (z) − cI−′

h (z) − γ1I
−
h (z) + f1(φ̃1, φ̃4)(z) ≥ DII

−′′
h (z) − cI−′

h (z) − γ1I
−
h (z) + f1(S−

h , I−
v )(z) ≥ 0,

for z ∈ [−X,X]. So, I−
h (z) is the sub-solution of the second equation for (2.16) in z ∈ [−X,X]. Accord-

ingly, I−
h (z) ≤ Ih,X(z) ≤ I+

h (z), z ∈ [−X,X]. In the similar way, I−
v (z) ≤ Iv,X(z) ≤ I+

v (z), z ∈ [−X,X].
This completes the proof. �
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Lemma 2.7. The operator F : ΓX → ΓX is completely continuous.

Proof. To prove the compactness of F . Suppose (Sh,X(z), Ih,X(z), Sv,X(z), Iv,X(z))T is the solution of
problems (2.16)–(2.17). Then the first and second derivatives of (Sh,X(z), Ih,X(z), Sv,X (z), Iv,X(z)) with
respect to z are bounded on [−X,X] according to embedding theorem. Hence, Arzelà-Ascoli theorem
yields that F is compact.

To show the continuity of F = (F1,F2,F3,F4)T . For (φ1
1(·), φ1

2(·), φ1
3(·), φ1

4(·))T ∈ ΓX and
(φ2

1(·), φ2
2(·), φ2

3(·), φ2
4(·))T ∈ ΓX , setting

Sj
h,X = F1(φ

j
1, φ

j
2, φ

j
3, φ

j
4), j = 1, 2.

For the operator F1. By direct calculations, we have

DS [S1
h,X − S2

h,X ]′′(z) − c[S1
h,X − S2

h,X ]′(z) − μ1[S1
h,X − S2

h,X ](z)

= [f1(S1
h,X , φ1

4)(z) − f1(S2
h,X , φ2

4)(z)]

≤ L1|S1
h,X(z) − S2

h,X(z)| + k1|φ1
4(z) − φ2

4(z)|,
where

L1 := max
0≤Sh(z)≤S0

h, z∈[−X,X]
∂Sh

f1(Sh, I+
v ), k1 = ∂Iv

f1(S0
h, 0).

Thus, the globally elliptic estimate and embedding theorem give that F1 is continuous. Similarly, we can
show the continuity of Fi (i = 2, 3, 4). This ends the proof. �

Combining Lemmas 2.6 and 2.7, Schauder’s fixed-point theorem implies that there exists (Sh,X , Ih,X ,
Sv,X , Iv,X)T ∈ ΓX satisfying

(Sh,X , Ih,X , Sv,X , Iv,X)T = F(Sh,X , Ih,X , Sv,X , Iv,X), z ∈ [−X,X].

Then (Sh,X , Ih,X , Sv,X , Iv,X)T satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cS′
h,X(z) = DSS′′

h,X(z) + Λ − f1(Sh,X , Iv,X)(z) − μ1Sh,X(z),

cI ′
h,X(z) = DII

′′
h,X(z) + f1(S̃h,X , Ĩv,X)(z) − γ1Ih,X(z),

cS′
v,X(z) = dSS′′

v,X(z) + M − f2(Sv,X , Ih,X)(z) − μ2Sv,X(z),

cI ′
v,X(z) = dII

′′
v,X(z) + f2(S̃v,X , Ĩh,X)(z) − γ2Iv,X(z),

(2.18)

for z ∈ (−X,X), wherein

S̃h,X(z) =

{
Sh,X(z), |z| ≤ X,

S−
h (z), |z| > X,

Ĩh,X(z) =

{
Ih,X(z), |z| ≤ X,

I−
h (z), |z| > X,

(2.19)

and

S̃v,X(z) =

{
Sv,X(z), |z| ≤ X,

S−
v (z), |z| > X,

Ĩv,X(z) =

{
Iv,X(z), |z| ≤ X,

I−
v (z), |z| > X.

(2.20)

Define

C2,1([−X,X]) := {u ∈ C2([−X,X]) |u, u′ and u′′ are Lipschitz continuous}
with the norm

‖u‖C2,1([−X,X]) = max
z∈[−X,X]

|u| + max
z∈[−X,X]

|u′| + max
z∈[−X,X]

|u′′| + sup
z, y∈[−X,X]

z �=y

|u′′(z) − u′′(y)|
|z − y| .

Then there are the following estimates for Sh,X , Ih,X , Sv,X , and Iv,X .
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Lemma 2.8. For given Y > 0, there exists a constant P := P (Y ) > 0 such that

‖Sh,X‖C3[−Y,Y ], ‖Sv,X‖C3[−Y,Y ], ‖Ih,X‖C2,1[−Y,Y ], ‖Iv,X‖C2,1[−Y,Y ] ≤ P,

for 0 < Y < X and X > max{−z2,−z4}.
Proof. Since Sh,X(z) ≤ S0

h and Iv,X(z) ≤ χ4eζ1z, z ∈ [−Y, Y ], utilizing the Lp (p ≥ 2) estimates [39] of
linear elliptic differential equations to the first equation of system (2.18) yields that

‖Sh,X‖W 2
p (−Y,Y ) ≤ C[Λ + f1(S0

h, χ4eζ1z) + ‖η1‖W 2
p (−Y,Y )],

where C := C(Y ) > 0 and η1 is chosen to be a linear function connecting the points (−Y, Sh,X (−Y ))
and (Y, Sh,X(Y )). So, there is a constant P̄ := P̄ (Y ) > 0 such that ‖Sh,X‖W 2

p (−Y,Y ) ≤ P̄ for all X > Y .
Furthermore, it follows from the fact W 2

p (−Y, Y ) ↪→ C1,ν [−Y, Y ], ν = 1 − 1/p that there exists a P̃ :=
P̃ (Y ) > 0 such that ‖Sh,X‖C1,ν [−Y,Y ] ≤ P̃‖Sh,X‖W 2

p (−Y,Y ). Then we obtain ‖Sh,X‖C1,ν [−Y,Y ] ≤ P̃ P̄ .
By the first equation of (2.18), ‖Sh,X‖C2[−Y,Y ] ≤ P for some positive constants P := P (Y ). Similar
arguments prove that ‖Sv,X‖C2[−Y,Y ], ‖Ih,X‖C2[−Y,Y ], ‖Iv,X‖C2[−Y,Y ] ≤ P . Differentiating the first and
third equations of the system (2.18) in respect of z, we get ‖Sh,X‖C3[−Y,Y ] ≤ P and ‖Sv,X‖C3[−Y,Y ] ≤ P .
According to (2.19) and (2.20), we have ‖Ih,X‖C2,1[−Y,Y ] ≤ P and ‖Iv,X‖C2,1[−Y,Y ] ≤ P , for some P > 0.
This finishes the proof. �

3. Existence of traveling wave solutions

To prove the existence of bounded solutions connecting E0 and E∗
1 for system (2.2), we take a sequence

{Xn}n∈N∗ satisfying Xn → +∞ as n → +∞. From Lemma 2.8, the choice of P (Y ) is independent of n.
Then letting n → +∞, there exists (Sh(z), Ih(z), Sv(z), Iv(z))T ∈ C2(R,R4) satisfying (2.2) and

S−
h (z) ≤ Sh(z) ≤ S0

h, I−
h (z) ≤ Ih(z) ≤ I+

h (z), (3.1)

and
S−

v (z) ≤ Sv(z) ≤ S0
v , I−

v (z) ≤ Iv(z) ≤ I+
v (z), (3.2)

for any z ∈ R. Hence, combining (3.1) and (3.2), one gets

lim
z→−∞ Sh(z) = S0

h, lim
z→−∞ Sv(z) = S0

v , lim
z→−∞ Ih(z) = 0, lim

z→−∞ Iv(z) = 0.

Thus, (2.3) holds for (Sh(·), Ih(·), Sv(·), Iv(·))T . To obtain the convergence at positive infinity, we first
prove the following lemma by utilizing the approaches of [39].

Lemma 3.1. Let μ := min{μ1, μ2, γ1, γ2}. Then the solutions of system (2.2) satisfy

Λ
μ1 + ρ1

≤ Sh(z) ≤ S0
h, 0 < Ih(z) ≤

√
DSΛ√
DIμ

, (3.3)

and
M

μ2 + ρ2
≤ Sv(z) ≤ S0

v , 0 < Iv(z) ≤
√

dSM√
dIμ

, (3.4)

where z ∈ R and

ρ1 := max
0≤Sh(z)≤S0

h, z∈R

∂Sh
f1

(

Sh,

√
dSM√
dIμ

)

, ρ2 := max
0≤Sv(z)≤S0

v, z∈R

∂Sv
f2

(

Sv,

√
DSΛ√
DIμ

)

.
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Proof. Applying the strong maximum principle, we have Ih(z), Iv(z) > 0, for any z ∈ R, due to Ih(z),
Iv(z) ≥ 0 and Ih(z), Iv(z) �≡ 0. According to the definition of μ, then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− DSS′′
h(z) + cS′

h(z) + μSh(z) ≤ Λ − f1(Sh, Iv)(z),

− DII
′′
h (z) + cI ′

h(z) + μIh(z) ≤ f1(Sh, Iv)(z),

− dSS′′
v (z) + cS′

v(z) + μSv(z) ≤ M − f2(Sv, Ih)(z),

− dII
′′
v (z) + cI ′

v(z) + μIv(z) ≤ f2(Sv, Ih)(z).

(3.5)

Denote p1(·) := Λ − f1(Sh, Iv)(·) and q1(·) := f1(Sh, Iv)(·). Consider the following Cauchy problems
{

∂tw1(t, z) − DS∂2
zw1(t, z) + c∂zw1(t, z) + μw1(t, z) = p1(z), t > 0, z ∈ R,

w1(0, z) = Sh(z), z ∈ R,
(3.6)

and {
∂tw2(t, z) − DI∂

2
zw2(t, z) + c∂zw2(t, z) + μw2(t, z) = q1(z), t > 0, z ∈ R,

w2(0, z) = Ih(z), z ∈ R.
(3.7)

Applying [9, Chapter 1, Theorems 12 and 16], one obtains

w1(t, z) =
∫

R

e−μt

√
4πDSt

e− (z−ct−ξ)2

4DSt Sh(ξ)dξ +

t∫

0

∫

R

e−μ�

√
4πDS�

e− (z−c�−ξ)2

4DS� p1(ξ)dξd�, (3.8)

and

w2(t, z) =
∫

R

e−μt

√
4πDIt

e− (z−ct−ξ)2

4DI t Ih(ξ)dξ +

t∫

0

∫

R

e−μ�

√
4πDI�

e− (z−c�−ξ)2

4DI � q1(ξ)dξd�, (3.9)

wherein t > 0, z ∈ R. Thus, the comparison principle yields that

Sh(z) ≤ w1(t, z), Ih(z) ≤ w2(t, z), ∀ t > 0, z ∈ R.

Taking t → +∞ in (3.8) and (3.9), respectively, we get

Sh(z) ≤ w1(+∞, z) =
Λ
μ

−
+∞∫

0

∫

R

e−μ�

√
4πDS�

e− (z−c�−ξ)2

4DS� f1(Sh, Iv)(ξ)dξd� :=
Λ
μ

− hDS
(z),

and

Ih(z) ≤ w2(+∞, z) =

+∞∫

0

∫

R

e−μ�

√
4πDI�

e− (z−c�−ξ)2

4DI � f1(Sh, Iv)(ξ)dξd� := hDI
(z),

for z ∈ R.
By simple calculations and the assumption (P3), one has

√
DShDS

(z) =

+∞∫

0

∫

R

e−μ�

√
4π�

f1(Sh, Iv)(z − c� − ξ)e− z2
4DS� dξd�

≥
+∞∫

0

∫

R

e−μ�

√
4π�

f1(Sh, Iv)(z − c� − ξ)e− z2
4DI � dξd�

=
√

DIhDI
(z).
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Then
√

DIIh(z) ≤
√

DIhDI
(z) ≤

√
DShDS

(z) ≤
√

DSΛ
μ

, z ∈ R,

i.e., Ih(z) ≤
√

DSΛ√
DIμ

, z ∈ R. The proof of inequality for Ih is finished.
Since Sh(z) satisfies the inequality

DSS′′
h(z) − cS′

h(z) + Λ − (ρ1 + μ1)Sh(z) ≤ 0, z ∈ R,

it follows from maximum principle that Sh(z) ≥ Λ
μ1+ρ1

, z ∈ R. So, (3.3) holds for Sh and Ih. The
inequalities for Sv and Iv can be similarly proved. This ends the proof. �

According to [22, Lemma 2.2] (or see [4, Lemma 4.7]), there is the following result.

Lemma 3.2. Suppose (Sh(z), Ih(z), Sv(z), Iv(z))T be the solution of (2.2) satisfying (2.3). Then

|I ′
h(z)| ≤ (c +

√
c2 + 4γ1)

2DI
Ih(z), |I ′

v(z)| ≤ (c +
√

c2 + 4γ2)
2dI

Iv(z), for any z ∈ R.

Furthermore, the Harnack’s inequality is established as follows

Ih(z) ≤ Ih(z̄)e
(c+

√
c2+4γ1)
2DI

|z̄1−z̄2|
, Iv(z) ≤ Iv(z̄)e

(c+
√

c2+4γ2)
2dI

|z̄1−z̄2|
,

for any z, z̄ ∈ [z̄1, z̄2] with z̄1 ≤ z̄2, z̄i ∈ R, i = 1, 2.

In order to prove that the solutions of (2.2) satisfy (2.4), we give the assumption as follows
(P4)

[
Ih

I∗
h

− S∗
hf1(Sh, Iv)

Shf1(S∗
h, I∗

v )

] [
Shf1(S∗

h, I∗
v )

S∗
hf1(Sh, Iv)

− 1
]

≤ 0 and
[

Iv

I∗
v

− S∗
vf2(Sv, Ih)

Svf2(S∗
v , I∗

h)

] [
Svf2(S∗

v , I∗
h)

S∗
vf2(Sv, Ih)

− 1
]

≤ 0.

Theorem 3.1. Suppose R0 > 1 and (P1)–(P4) hold. Then for each c ≥ c∗, there exists a nontrivial trav-
eling wave solution (Sh(z), Ih(z), Sv(z), Iv(z))T of system (1.2) which meets (2.3) and (2.4). Moreover,

lim
z→−∞ χ−1

2 e−ζ1zIh(z) = 1, lim
z→−∞ χ−1

4 e−ζ1zIv(z) = 1, (3.10)

where z = x + ct and c∗, ζ1, χ2, χ4 are defined in Lemma 2.1.

Proof. First consider the case c > c∗. According to the previous discussions and Lemma 3.1, system
(2.2) admits a nonnegative solution (Sh(·), Ih(·), Sv(·), Iv(·))T satisfying (2.3), (3.3) and (3.4). The strong
maximum principle yields that (Sh(z), Ih(z), Sv(z), Iv(z))T is positive for all z ∈ R. In addition, appealing
to the following facts

χ2eζ1z(1 − HM2eε2z) ≤ I−
h (z) ≤ Ih(z) ≤ I+

h (z) ≤ χ2eζ1z,

and

χ4eζ1z(1 − HM4eε2z) ≤ I−
v (z) ≤ Iv(z) ≤ I+

v (z) ≤ χ4eζ1z,

for any z ∈ R, one sees that (3.10) holds. It is thus enough to certify (2.4), i.e.,

Sh(z) → S∗
h, Sv(z) → S∗

v , Ih(z) → I∗
h, Iv(z) → I∗

v , as z → +∞.

For the sake of convenience, denote

(Sh(·), Ih(·), Sv(·), Iv(·))T = (U1(·), U2(·), U3(·), U4(·))T := U(·).
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To apply the LaSalle’s invariance principle, letting U ′
i(·) := Vi(·), i = 1, 2, 3, 4. Hence, system (2.2) is

transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ′
1(z) = V1(z),

DSV ′
1(z) = cV1(z) − Λ + f1(U1, U4)(z) + μ1U1(z),

U ′
2(z) = V2(z),

DIV
′
2(z) = cV2(z) − f1(U1, U4)(z) + γ1U2(z),

U ′
3(z) = V3(z),

dSV ′
3(z) = cV3(z) − M + f2(U3, U2)(z) + μ2U3(z),

U ′
4(z) = V4(z),

dIV
′
4(z) = cV4(z) − f2(U3, U2)(z) + γ2U4(z).

Define a Lyapunov functional L(z) as follows

L(z) := L1(z) + L2(z) + L3(z) + L4(z), z ∈ R,

where

L1(z) := cU1(z) − DSV1(z) +
S∗

hDSV1(z)
U1(z)

− cS∗
h ln U1(z),

L2(z) := cU2(z) − DIV2(z) +
I∗
hDIV2(z)
U2(z)

− cI∗
h ln U2(z),

L3(z) := cU3(z) − dSV3(z) +
S∗

vdSV3(z)
U3(z)

− cS∗
v ln U3(z),

and

L4(z) := cU4(z) − dIV4(z) +
I∗
vdIV4(z)
U4(z)

− cI∗
v ln U4(z).

Note that Ui is bounded in C2(R), i = 1, 2, 3, 4. Since the function x − 1 − ln x is nonnegative for all
x > 0, one gets

L1(z) ≥ cU1(z) − DS‖V1‖L∞ − S∗
hDS‖V1‖L∞

U1(z)
− cS∗

h ln U1(z)

= cS∗
h

[
U1(z)
S∗

h

− ln U1(z)
]

− DS‖V1‖L∞ − S∗
hDS‖V1‖L∞

U1(z)

= cS∗
h

[
U1(z)
S∗

h

− 1 − ln
U1(z)
S∗

h

− ln S∗
h + 1

]

− DS‖V1‖L∞ − S∗
hDS‖V1‖L∞

U1(z)

≥ cS∗
h(1 − ln S∗

h) − S∗
hDS(μ1 + ρ1)‖V1‖L∞

Λ
− DS‖V1‖L∞ , z ∈ R,

which is due to Lemma 3.1. In addition,

L2(z) ≥ cU2(z) − DI‖V2‖L∞ − I∗
hDI |V2(z)|

U2(z)
− cI∗

h ln U2(z)

= cI∗
h

[
U2(z)

I∗
h

− ln U2(z)
]

− DI‖V2‖L∞ − I∗
hDI |V2(z)|

U2(z)

≥ cI∗
h(1 − ln I∗

h) − (c +
√

c2 + 4γ1)I∗
h

2
− DI‖V2‖L∞ , z ∈ R,
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which is owing to Lemma 3.2. Similarly, we can show that L3(z) and L4(z) have lower bounds. Then
L(z) has a lower bound. Because

Λ = f1(S∗
h, I∗

v ) + μ1S
∗
h, γ1I

∗
h = f1(S∗

h, I∗
v ), M = f2(S∗

v , I∗
h) + μ2S

∗
v , γ2I

∗
v = f2(S∗

v , I∗
h),

after elementary but tedious computations, we obtain

dL(z)
dz

=
dL1(z)

dz
+

dL2(z)
dz

+
dL3(z)

dz
+

dL4(z)
dz

= −μ1
[S∗

h − U1(z)]2

U1(z)
− S∗

hDSV 2
1 (z)

U2
1 (z)

− I∗
hDIV

2
2 (z)

U2
2 (z)

+ f1(S∗
h, I∗

v )
[

3 − S∗
h

U1(z)
− I∗

hf1(U1, U4)(z)
U2(z)f1(S∗

h, I∗
v )

− U1(z)f1(S∗
h, I∗

v )U2(z)
S∗

hf1(U1, U4)(z)I∗
h

]

+ f1(S∗
h, I∗

v )
[
U1(z)f1(S∗

h, I∗
v )U2(z)

S∗
hf1(U1, U4)(z)I∗

h

− U2(z)
I∗
h

− 1 +
S∗

hf1(U1, U4)(z)
U1(z)f1(S∗

h, I∗
v )

]

− μ2
[S∗

v − U3(z)]2

U3(z)
− S∗

vdSV 2
3 (z)

U2
3 (z)

− I∗
vdIV

2
4 (z)

U2
4 (z)

+ f2(S∗
v , I∗

h)
[

3 − S∗
v

U3(z)
− I∗

vf2(U3, U2)(z)
U4(z)f2(S∗

v , I∗
h)

− U3(z)f2(S∗
v , I∗

h)U4(z)
S∗

vf2(U3, U2)(z)I∗
v

]

+ f2(S∗
v , I∗

h)
[
U3(z)f2(S∗

v , I∗
h)U4(z)

S∗
vf2(U3, U2)(z)I∗

v

− U4(z)
I∗
v

− 1 +
S∗

vf2(U3, U2)(z)
U3(z)f2(S∗

v , I∗
h)

]

,

where

U1(z)f1(S∗
h, I∗

v )U2(z)
S∗

hf1(U1, U4)(z)I∗
h

− U2(z)
I∗
h

− 1 +
S∗

hf1(U1, U4)(z)
U1(z)f1(S∗

h, I∗
v )

=
[

U1(z)f1(S∗
h, I∗

v )
S∗

hf1(U1, U4)(z)
− 1

] [
U2(z)

I∗
h

− S∗
hf1(U1, U4)(z)

U1(z)f1(S∗
h, I∗

v )

]

,

and

U3(z)f2(S∗
v , I∗

h)U4(z)
S∗

vf2(U3, U2)(z)I∗
v

− U4(z)
I∗
v

− 1 +
S∗

vf2(U3, U2)(z)
U3(z)f2(S∗

v , I∗
h)

=
[

U3(z)f2(S∗
v , I∗

h)
S∗

vf2(U3, U2)(z)
− 1

] [
U4(z)

I∗
v

− S∗
vf2(U3, U2)(z)

U3(z)f2(S∗
v , I∗

h)

]

.

With the help of the mean inequality and the assumption (P4), we know that dL(z)/dz ≤ 0 and
dL(z)/dz ≡ 0 iff U1(z) ≡ S∗

h, U2(z) ≡ I∗
h, U3(z) ≡ S∗

v and U4(z) ≡ I∗
v . Therefore, the largest com-

pact invariant set

ΘE =
{

U(z)|dL(z)
dz

= 0, z ∈ R

}

≡ {E∗
1} ≡ {(S∗

h, I∗
h, S∗

v , I∗
v )T }.

Then the LaSalle’s invariance principle implies that

(U1(+∞), U2(+∞), U3(+∞), U4(+∞))T = (S∗
h, I∗

h, S∗
v , I∗

v )T .

For the case c = c∗. Similar to the arguments of [39, Theorem 2.14], we can obtain the existence of
TWS in this case. This completes the proof. �
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4. Nonexistence of traveling wave solutions

4.1. Nonexistence when R0 ≤ 1 and c > 0

The main results of this subsection are as follows:

Theorem 4.1. Assume that R0 ≤ 1. Then for any c > 0, system (1.2) has no traveling wave solutions
with speed c which meet (2.3) and (2.4).

Proof. On the contrary, we suppose that there is a (Sh(z), Ih(z), Sv(z), Iv(z))T for (1.2) satisfying (2.3)
and (2.4), z = x + ct. Denote

Īh := sup
z∈R

Ih(z), Īv := sup
z∈R

Iv(z).

For R0 < 1. By (P1)–(P2), it follows from the second and fourth equations of (2.2) that
{

cI ′
h(z) − DII

′′
h (z) + γ1Ih(z) − k1Īv ≤ 0,

cI ′
v(z) − dII

′′
v (z) + γ2Iv(z) − k2Īh ≤ 0,

(4.1)

wherein z ∈ R, k1 = ∂Iv
f1(S0

h, 0) and k2 = ∂Ih
f2(S0

v , 0). Utilizing the comparison principle, one obtains

Ih(z) ≤ k1Īv

γ1
, Iv(z) ≤ k2Īh

γ2
, z ∈ R.

That is, (Ih(z), Iv(z))T ≤ M(Īh, Īv)T for any z ∈ R, where M is defined in Sect. 2, which leads to
(Īh, Īv)T ≤ Mn(Īh, Īv)T , n ∈ N

∗. Since R0 is the spectral radius of M and the matrix M is nonnegative
and irreducible, the Perron–Frobenius theorem implies that there is a positive eigenvector U = (u1, u2)T ,
corresponding to R0 such that MU = R0U . Moreover, by Lemma 3.1, there exists a constant C3 > 0
such that (Īh, Īv)T ≤ C3U . Hence, we have

(Īh, Īv)T ≤ Mn(Īh, Īv)T ≤ C3MnU = C3R
n
0U → 0, as n → +∞,

which is owing to R0 < 1. So, one gets Īh = Īv = 0. If not, then Īh or Īv is a positive constant. Without
loss of generality, assume Īh > 0. From the fact R0 < 1, there is a sufficiently large n0 ∈ N

∗ such that
Rn0

0 < Īh/2C3u1. Thus, we get Īh ≤ C3R
n0
0 u1 < C3u1 · (Īh/2C3u1) = Īh/2 which is a contradiction.

Thus, we obtain Īh = 0. Similarly, Īv = 0. This contradicts to the fact Ih(z), Iv(z) > 0 for all z ∈ R.
For R0 = 1. Likely above discussions, there is an eigenvector V = (v1, v2)T with v1 > 0 and v2 > 0

such that MV = V. Direct calculations show that

γ1 =
k1v2

v1
, γ2 =

k2v1

v2
. (4.2)

Choosing a sequence {zn} ⊂ R, n ∈ N
∗ such that

lim
n→+∞ Ih(zn) = Īh = sup

z∈R

Ih(z).

To derive a contradiction, one intends to prove Īh = 0. Arguing by contradiction, assuming Īh > 0.
Consider the following function sequence

(Sh,n(·), Ih,n(·), Sv,n(·), Iv,n(·))T := (Sh(· + zn), Ih(· + zn), Sv(· + zn).Iv(· + zn))T ,

By using the boundedness of (Sh, Ih, Sv, Iv)T (see Lemma 3.1) and elliptic estimates, there exists a
subsequence (Sh,nj

, Ih,nj
, Sv,nj

, Iv,nj
)T , j ∈ N

∗ of (Sh,n, Ih,n, Sv,n, Iv,n)T and (S̃h, Ĩh, S̃v, Ĩv)T such that

lim
j→+∞

(Sh,nj
(z), Ih,nj

(z), Sv,nj
(z), Iv,nj

(z))T = (S̃h(z), Ĩh(z), S̃v(z), Ĩv(z))T
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in C2
loc(R) and (S̃h, Ĩh, S̃v, Ĩv)T satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cS̃′
h(z) = DSS̃′′

h(z) + Λ − f1(S̃h, Ĩv)(z) − μ1S̃h(z),

cĨ ′
h(z) = DI Ĩ

′′
h (z) + f1(S̃h, Ĩv)(z) − γ1Ĩh(z),

cS̃′
v(z) = dSS̃′′

v (z) + M − f2(S̃v, Ĩh)(z) − μ2S̃v(z),

cĨ ′
v(z) = dI Ĩ

′′
v (z) + f2(S̃v, Ĩh)(z) − γ2Ĩv(z),

(4.3)

where Ĩh(0) = Īh, Ĩh(z) ≤ Īh, 0 < S̃h(z) ≤ S0
h and 0 < S̃v(z) ≤ S0

v , for z ∈ R. Applying the comparison
principle to the second equation of (4.1) and using (4.2) yield that k2Īh ≥ γ2Īv = k2Īvv1/v2, then
Īv ≤ Īhv2/v1. Since

0 = DI Ĩ
′′
h (z) − cĨ ′

h(z) + f1(S̃h, Ĩv)(z) − γ1Ĩh(z)

≤ DI Ĩ
′′
h (z) − cĨ ′

h(z) + ∂Iv
f1(S̃h, 0)(z)Ĩv(z) − γ1Ĩh(z),

it follows from (4.2) that

0 ≤ DI Ĩ
′′
h (0) − cĨ ′

h(0) + ∂Iv
f1(S̃h, 0)(0)Ĩv(0) − γ1Ĩh(0)

≤ DI Ĩ
′′
h (0) +

∂Iv
f1(S̃h, 0)(0)v2

v1
Īh − ∂Iv

f1(S0
h, 0)v2

v1
Īh

= DI Ĩ
′′
h (0) +

[
∂Iv

f1(S̃h, 0)(0) − ∂Iv
f1(S0

h, 0)
] v2

v1
Īh

Then S̃h(0) ≥ S0
h due to Ĩ ′′

h (0) ≤ 0 and (P1). It is impossible that S̃h(0) > S0
h as S̃h(z) ≤ S0

h, z ∈ R.
Thus, we get S̃h(0) = S0

h. The strong maximum principle implies S̃h(z) ≡ S0
h, z ∈ R. Substituting it into

the first equation of (4.3) and combining (P2), we obtain Ĩv(z) ≡ 0, z ∈ R. Then Ĩh(z) ≡ 0, z ∈ R from
the fourth equation of (4.3) and (P2). Therefore, Īh = 0 which contradicts the assumption Īh > 0. This
finishes the proof. �

4.2. Nonexistence when R0 > 1 and 0 < c < c∗

To investigate the nonexistence, we first to show the following lemma by the methods of [4].

Lemma 4.1. Suppose (Sh(z), Ih(z), Sv(z), Iv(z))T be the solution of system (2.2). Then there exists a
constant B � 1 such that

1
B

Ih(z) ≤ Iv(z) ≤ BIh(z), for any z ∈ R.

Proof. By (2.2), one has
{

DII
′′
h (z) − cI ′

h(z) − γ1Ih(z) + f1(Sh, Iv)(z) = 0, z ∈ R,

dII
′′
v (z) − cI ′

v(z) − γ2Iv(z) + f2(Sv, Ih)(z) = 0, z ∈ R.

According to the Harnack’s inequality in Lemma 3.2, there is a K > 0 such that

Ii(ξ) ≥ KIi(z), ξ ∈ [z − 1, z + 1], z ∈ R, i = h, v.

The method of constant variation yields that

Ih(z) =
1

Π1

⎡

⎣

z∫

−∞
eζ−

1 (z−ξ)f1(Sh, Iv)(ξ)dξ +

+∞∫

z

eζ+
1 (z−ξ)f1(Sh, Iv)(ξ)dξ

⎤

⎦ ,
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and

Iv(z) =
1

Π2

⎡

⎣

z∫

−∞
eζ−

2 (z−ξ)f2(Sv, Ih)(ξ)dξ +

+∞∫

z

eζ+
2 (z−ξ)f2(Sv, Ih)(ξ)dξ

⎤

⎦ ,

wherein

Π1 = DI(ζ+
1 − ζ−

1 ), Π2 = dI(ζ+
2 − ζ−

2 ),

and

ζ±
1 =

c ±
√

c2 + 4DIγ1

2DI
, ζ±

2 =
c ±

√
c2 + 4dIγ2

2dI
.

Applying Lemma 3.1 and (P1)–(P2), we have

Ih(z) =
1

Π1

⎡

⎣

z∫

−∞
eζ−

1 (z−ξ)f1(Sh, Iv)(ξ)dξ +

+∞∫

z

eζ+
1 (z−ξ)f1(Sh, Iv)(ξ)dξ

⎤

⎦

≥ 1
Π1

⎡

⎣

z∫

−∞
eζ−

1 (z−ξ)ρ̂1Iv(ξ)dξ +

+∞∫

z

eζ+
1 (z−ξ)ρ̂1Iv(ξ)dξ

⎤

⎦

≥ 1
Π1

⎡

⎣

z∫

z−1

eζ−
1 (z−ξ)ρ̂1Iv(ξ)dξ +

z+1∫

z

eζ+
1 (z−ξ)ρ̂1Iv(ξ)dξ

⎤

⎦

≥ ρ̂1KIv(z)
Π1

⎡

⎣

z∫

z−1

eζ−
1 (z−ξ)dξ +

∫ z+1

z

eζ+
1 (z−ξ)dξ

⎤

⎦

=
ρ̂1K

Π1

[∫ 1

0

eζ−
1 ξdξ +

∫ 0

−1

eζ+
1 ξdξ

]

Iv(z) := A1Iv(z), (4.4)

and similarly

Iv(z) ≥ ρ̂2K

Π2

⎡

⎣

∫ 1

0

eζ−
2 ξdξ +

0∫

−1

eζ+
2 ξdξ

⎤

⎦ Ih(z) := A2Ih(z), (4.5)

for all z ∈ R with

ρ̂1 = ∂Iv
f1

(
Λ

μ1 + ρ1
,

√
dSM√
dIμ

)

, ρ̂2 = ∂Ih
f2

(
M

μ2 + ρ2
,

√
DSΛ√
DIμ

)

.

Choosing B satisfying B � max{A−1
1 , A−1

2 , 1}, then combining (4.4) and (4.5) implies that the conclusion
is valid. This ends the proof. �

The main results of this subsection are as follows:

Theorem 4.2. Assume that R0 > 1. Then system (1.2) has no nontrivial traveling wave solutions with
speed c < c∗ connecting E0 and E∗

1 .

Proof. Suppose by way of contradiction that system (1.2) has a traveling wave solution (Sh(z),
Ih(z), Sv(z), Iv(z))T with speed c connecting E0 and E∗

1 , z = x + ct.
Consider the following sequence

(Ih,m(z), Iv,m(z))T :=
(

Ih(z − m)
Ih(−m)

,
Iv(z − m)
Ih(−m)

)T

, z ∈ R, m ∈ N
∗.
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Since (Sh(· − m), Ih(· − m), Sv(· − m), Iv(· − m))T is also a solution of (2.2) for any m ∈ N
∗, and

f1(Sh(z − m), Iv(z − m)) = ∂Iv
f1(Sh(z − m), ξIv

)Iv(z − m),

and

f2(Sv(z − m), Ih(z − m)) = ∂Ih
f2(Sv(z − m), ξIh

)Ih(z − m),

where 0 ≤ ξIv
≤ Iv(z − m), 0 ≤ ξIh

≤ Ih(z − m), one obtains that (Ih,m(z), Iv,m(z))T satisfies
{

DII
′′
h,m(z) − cI ′

h,m(z) − γ1Ih,m(z) + ∂Iv
f1(Sh(z − m), ξIv

)Iv,m(z) = 0, z ∈ R,

dII
′′
v,m(z) − cI ′

v,m(z) − γ2Iv,m(z) + ∂Ih
f2(Sv(z − m), ξIh

)Ih,m(z) = 0, z ∈ R.

On the one hand, Lemma 3.2 indicates that there is a constant C4 > 0 such that

Ih,m(z) =
Ih(z − m)
Ih(−m)

≤ 1
Ih(−m)

C4Ih(−m)eC4|z−m−(−m)| = C4eC4|z|,

and then |I ′
h,m(z)| ≤ C4Ih,m(z) ≤ C2

4eC4|z|. Moreover, from Lemmas 3.2 and 4.1, there exists a C5 > 0
such that

Iv,m(z) =
Iv(z − m)
Ih(−m)

≤ 1
Ih(−m)

C5Iv(−m)eC5|z−m−(−m)| =
Iv(−m)
Ih(−m)

C5eC5|z| ≤ BC5eC5|z|.

So, |I ′
v,m(z)| ≤ C5Iv,m(z) ≤ BC2

5eC4|z|. Accordingly, one has

max{Ih,m(z), Iv,m(z), |I ′
h,m(z)|, |I ′

v,m(z)|} ≤ C6eC6|z|, for some C6 > 0.

Therefore, applying the standard elliptic estimates, there exists a (Ih,∗(·), Iv,∗(·))T such that
(Ih,m(·), Iv,m(·))T → (Ih,∗(·), Iv,∗(·))T as m → +∞ in C2

loc(R
2). Owing to Sh(·−m) → S0

h, Sv(·−m) → S0
v

and ξIh
, ξIv

→ 0, m → +∞, (Ih,∗(·), Iv,∗(·))T satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DII
′′
h,∗(z) − cI ′

h,∗(z) − γ1Ih,∗(z) + k1Iv,∗(z) = 0, z ∈ R,

dII
′′
v,∗(z) − cI ′

v,∗(z) − γ2Iv,∗(z) + k2Ih,∗(z) = 0, z ∈ R,

Ih,∗(z) > 0, Iv,∗(z) > 0, z ∈ R,

Ih,∗(0) = 1,
1
B

≤ Ih,∗(z)
Iv,∗(z)

≤ B, z ∈ R.

(4.6)

where k1 = ∂Iv
f1(S0

h, 0) and k2 = ∂Ih
f2(S0

v , 0), B is determined in Lemma 4.1. To complete the proof,
we will prove that either Ih,∗(z) or Iv,∗(z) changes sign for some z ∈ R.

By (4.6), it is not difficult to see that

d
dz

⎛

⎜
⎜
⎝

Ih,∗
Iv,∗
I ′
h,∗

I ′
v,∗

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
γ1
DI

− k1
DI

c
DI

0
−k2

dI

γ2
dI

0 c
dI

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Ih,∗
Iv,∗
I ′
h,∗

I ′
v,∗

⎞

⎟
⎟
⎠ := A

⎛

⎜
⎜
⎝

Ih,∗
Iv,∗
I ′
h,∗

I ′
v,∗

⎞

⎟
⎟
⎠ .

Thus, the characteristic equation for matrix A is

Q(ζ) = ζ2

(

ζ − c

DI

)(

ζ − c

dI

)

− ζ

(

ζ − c

DI

)
γ2

dI
− ζ

(

ζ − c

dI

)
γ1

DI
− k̄ − γ̄

DIdI
,

where k̄ = k1k2, γ̄ = γ1γ2. Since R0 =
√

k̄/γ̄ > 1, Q(0) = γ̄−k̄
DIdI

< 0. Because Q(ζ) → +∞ as ζ → ±∞,
the matrix A has at least two real eigenvalues with opposite signs. Moreover, if ζ ∈ C (the set of complex
number) is an eigenvalue of matrix A and the corresponding eigenvector is denoted by (χ̂2, χ̂4, χ̃2, χ̃4)T ,
then we have (χ̃2, χ̃4)T = (ζχ̂2, ζχ̂4)T and

A(ζ)
(

χ̂2

χ̂4

)

:=
(

DIζ
2 − γ1 k1

k2 dIζ
2 − γ2

)(
χ̂2

χ̂4

)

= cζ

(
χ̂2

χ̂4

)

.
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Thus, cζ is the eigenvalue of matrix A(ζ). Observe that, for every ζ ∈ R, the two real eigenvalues of
matrix A(ζ) are

α−(ζ) =
1
2

{
[(DI + dI)ζ2 − (γ1 + γ2)] −

√
[(DI − dI)ζ2 − (γ1 − γ2)]2 + 4k1k2

}
,

and

α+(ζ) =
1
2

{
[(DI + dI)ζ2 − (γ1 + γ2)] +

√
[(DI − dI)ζ2 − (γ1 − γ2)]2 + 4k1k2

}
.

In particular, if ζ ∈ R, then cζ ∈ {α−(ζ), α+(ζ)}. Following from the fact α−(ζ) < α+(ζ), ζ ∈ R gives
that the dimension of the eigenspace formed by any real eigenvalue ζ of matrix A is always one, i.e.,
Dim(Gζ) = 1.

Next to show cζ = α−(ζ). If not, then cζ = α+(ζ). We claim that α+(ζ) > 0, for all ζ ∈ R. Indeed,
simple calculations yield that

ζα′
+(ζ) = ζ2

{

(DI + dI) +
[(DI − dI)ζ2 − (γ1 − γ2)](DI − dI)
√

[(DI − dI)ζ2 − (γ1 − γ2)]2 + 4k1k2

}

> ζ2 (DI + dI)|(DI − dI)ζ2 − (γ1 − γ2)| + [(DI − dI)ζ2 − (γ1 − γ2)](DI − dI)
√

[(DI − dI)ζ2 − (γ1 − γ2)]2 + 4k1k2

≥ ζ2 2dI |(DI − dI)ζ2 − (γ1 − γ2)|
√

[(DI − dI)ζ2 − (γ1 − γ2)]2 + 4k1k2

So, ζα′
+(ζ) > 0 for any ζ ∈ R\{0}. Therefore, we obtain

α+(ζ) > α+(0)

=
1
2

[
−(γ1 + γ2) +

√
(γ1 − γ2)2 + 4k1k2

]

>
1
2

[
−(γ1 + γ2) +

√
(γ1 − γ2)2 + 4γ1γ2

]

= 0, ζ ∈ (0,+∞),

which is due to R0 > 1. Then α+(ζ) > 0 since α+(ζ) is an even function of ζ. So, c = α+(ζ)/ζ. Similar to
the arguments of [4, Lemma 2.2], one can obtain that c = α+(ζ)/ζ ≥ c∗ which contradicts with c < c∗.
In conclusion, we get cζ = α−(ζ).

Since (χ̂2, χ̂4)T = (1, βζ)T and (χ̃2, χ̃4)T = (ζχ̂2, ζχ̂4)T , one has

Gζ = span{(1, βζ , ζ, ζβζ)T },

where βζ = [α−(ζ) − (DIζ
2 − γ1)]/k1. Using the following facts

[α − (DIζ
2 − γ1)][α − (dIζ

2 − γ2)] = k1k2 > 0, for α ∈ {α−(ζ), α+(ζ)},

and

α−(ζ) + α+(ζ) = (DIζ
2 − γ1) + (dIζ

2 − γ2),

it is not difficult to verify that

α−(ζ) < min{DIζ
2 − γ1, dIζ

2 − γ2} ≤ max{DIζ
2 − γ1, dIζ

2 − γ2} < α+(ζ).

Then βζ = [α−(ζ) − (DIζ
2 − γ1)]/k1 < 0. For convenience, set Gζ := (1, βζ)T .

To show that either Ih,∗(z) or Iv,∗(z) changes sign, based on the distribution of eigenvalues of matrix
A, we prove it in two cases.

Case 1 Matrix A has a pair of complex eigenvalues.
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From the previous discussions, we know that A has a pair of positive and negative eigenvalues, which
can be denoted as ζ− < 0 < ζ+. Assuming that ζ = ω ± iθ with θ > 0 are the two complex eigenvalues,
then (Ih,∗(z), Iv,∗(z))T can be expressed as

(
Ih,∗(z)
Iv,∗(z)

)

= a1eζ−zGζ− + a2eζ+zGζ+

+ a3eωz

(
cos(θz)

ω cos(θz) − θ sin(θz)

)

+ a4eωz

(
sin(θz)

θ cos(θz) + ω sin(θz)

)

,

wherein ai ∈ R is not all equal to zero and is uniquely determined, i = 1, 2, 3, 4. Hence, one has

Ih,∗(z) = a1eζ−z + a2eζ+z + eωzl1(z), (4.7)

and
Iv,∗(z) = a1βζ−eζ−z + a2βζ+eζ+z + eωzl2(z), (4.8)

with l1(z) = a3 cos(θz) + a4 sin(θz) and l2(z) = a3[ω cos(θz) − θ sin(θz)] + a4[θ cos(θz) + ω sin(θz)], for
z ∈ R. Obviously, l2(z) = ωl1(z) + l′1(z).

To prove l1(z) and l2(z) change sign for |z| � 1. We first claim l1(z) �≡ 0, z ∈ R. Suppose not. If
l1(z) ≡ 0, then one gets a1 ≥ 0 and a2 ≥ 0 because Ih,∗(z) > 0, z ∈ R and ζ− < 0 < ζ+. Accordingly,
Iv,∗(z) ≤ 0, z ∈ R which is due to l2(z) = ωl1(z) + l′1(z), and βζ− < 0, βζ+ < 0. This contradicts the
system (4.6) which implies that l1(z) �≡ 0. That is, a3 and a4 are not equal to zero at the same time.
Without loss of generality, letting a3 > 0, thus we obtain l1(0) = a3 > 0, l1(π/θ) = −a3 < 0. Therefore,
l1(z) changes sign for |z| � 1. Next, we assert l2(z) �≡ 0, z ∈ R. If not, then l2(z) ≡ 0. According to
the facts Iv,∗ > 0, z ∈ R, ζ− < 0 < ζ+, βζ− < 0 and βζ+ < 0, we get a1 ≤ 0 and a2 ≤ 0. So, by
(4.7), Ih,∗(z) < 0 whenever l1(z) < 0, contradicting (4.6). This indicates l2(z) �≡ 0 which implies that
a3ω + a4θ and a4ω − a3θ are not equal to zero at the same time. Supposing a3ω + a4θ > 0, one has
l2(0) = a3ω + a4θ > 0 and l2(π/θ) = −(a3ω + a4θ) < 0. Thus, l2(z) changes sign for |z| � 1. It follows
from the above analysis and the facts Ih,∗(z) > 0, Iv,∗(z) > 0 that a1 �= 0 or a2 �= 0.

To address ω �∈ {ζ−, ζ+}. By the way of contradiction, assuming ω = ζ−. From (4.7), one gets

Ih,∗(z) = [a1 + l1(z)]eζ−z + a2eζ+z, z ∈ R.

Owing to Ih,∗(z) > 0 and ζ− < 0 < ζ+, we have a1 > −minz∈R{l1(z)} > 0. By (4.8), then

Iv,∗(z) = [a1βζ− + l2(z)]eζ−z + a2βζ+eζ+z, z ∈ R.

Hence a1βζ− > −minz∈R{l2(z)} > 0 because Iv,∗(z) > 0 and ζ− < 0 < ζ+. So, a1 < 0 < a1 due to
βζ− < 0, which is a contradiction. Similarly, one can show ω �= ζ+. Thus, ω �∈ {ζ−, ζ+}.

Since l1(z) changes sign when |z| � 1, we obtain ζ− < ω < ζ+, a1 � 0 and a2 � 0 in order to ensure
Ih,∗(z) > 0. By (4.8) and combining βζ− < 0 and βζ+ < 0, one has Iv,∗(z) < 0, |z| � 1 which contradicts
(4.6). In summary, in this case, either Ih,∗(z) or Iv,∗(z) changes sign.

Case 2 Matrix A has no complex eigenvalues.
(i) If matrix A has four real distinct eigenvalues, denote them as ζ−, ζ+, ζ3 and ζ4. Likely above

discussions, there exist eigenvectors Gζ− , Gζ+ , Gζ3 and Gζ4 such that
(

Ih,∗(z)
Iv,∗(z)

)

= a1eζ−zGζ− + a2eζ+zGζ+a3eζ3zGζ3 + a4eζ4zGζ4

=
(

a1eζ−z + a2eζ+z + a3eζ3z + a4eζ4z

a1βζ−eζ−z + a2βζ+eζ+z + a3βζ3e
ζ3z + a4βζ4e

ζ4z

)

, z ∈ R,

here ai ∈ R is not all equal to zero, i = 1, 2, 3, 4. Because the four eigenvalues are distinct, and βζ− , βζ+ ,
βζ3 and βζ4 are negative, and min{ζ−, ζ+, ζ3, ζ4} < 0 < max{ζ−, ζ+, ζ3, ζ4}, one obtains either Ih,∗(z0) < 0
or Iv,∗(z0) < 0 for some z0 ∈ R. This contradicts system (4.6).

(ii) If matrix A has a pair of double eigenvalues. It is not hard to see A cannot have two pairs of
double eigenvalues. Otherwise, the characteristic equation of A is Q(ζ) = (ζ − ζ−)2(ζ − ζ+)2. Then
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Q(0) = ζ2
−ζ2

+ > 0 which contradicts the fact Q(0) < 0. Accordingly, one only needs to consider the
following situations

Q(ζ) = (ζ − ζ3)2(ζ − ζ−)(ζ − ζ+),

where ζ− < 0 < ζ+ and ζ3 �∈ {ζ−, ζ+}. Recalling that Dim(Gζ3) = 1, so
(

Ih,∗(z)
Iv,∗(z)

)

= a1eζ−zGζ− + a2eζ+zGζ+ + eζ3z
[
a3Gζ3 + a4(zGζ3 + G1

ζ3)
]
, z ∈ R,

where Gζ3 and G1
ζ3

are two linearly independent generalized eigenvectors corresponding to ζ3.
If a4 = 0, similar to (i), then there exist some z0 ∈ R such that Ih,∗(z0) < 0 or Iv,∗(z0) < 0 which is a

contradiction.
If a4 �= 0, then there are three cases:
(ii)1 If ζ3 ≥ ζ+ > 0, then a4 > 0 and a1 > 0 to guarantee Ih,∗(z) > 0, |z| � 1. Thereby Iv,∗(z) < 0 for

sufficiently small z � −1 due to a1βζ− < 0, which contradicts system (4.6).
(ii)2 If ζ3 ≤ ζ− < 0, then a4 < 0 and a2 > 0 to ensure Ih,∗(z) > 0, |z| � 1. Hence, Iv,∗(z) < 0 for

sufficiently large z � 1 due to a2βζ+ < 0, contradicting system (4.6).
(ii)3 If ζ− < 0 < ζ3 < ζ+, then a1 > 0, a2 > 0 or a1 > 0, a2 = 0, a4 > 0 to make Ih,∗(z) > 0, |z| � 1.

If ζ− < ζ3 < 0 < ζ+, then a1 > 0, a2 > 0 or a1 = 0, a2 > 0, a4 < 0 to ensure Ih,∗(z) > 0, |z| � 1.
Consequently, when ζ− < ζ3 < ζ+, one gets Iv,∗(z) < 0 for sufficiently large |z| according to a1βζ− < 0
or a2βζ+ < 0. This is also a contradiction.

(iii) If matrix A has a triple eigenvalue. We divide it into two cases:
(iii)1 If the multiplicity of eigenvalue ζ− is three, then the characteristic equation is Q(ζ) = (ζ −

ζ−)3(ζ − ζ+). Since Dim(Gζ−) = 1, we get
(

Ih,∗(z)
Iv,∗(z)

)

= a2eζ+zGζ+ + eζ−z

[

a1Gζ− + a3(zGζ− + G1
ζ−) + a4

(
z2

2
Gζ− + zG1

ζ− + G2
ζ−

)]

, z ∈ R,

where Gζ− , G1
ζ− and G2

ζ− are three linearly independent generalized eigenvectors corresponding to ζ−.
Utilizing the facts ζ− < 0 < ζ+ and βζ± < 0, one can similarly obtain that there are some z0 ∈ R such
that Ih,∗(z0) < 0 or Iv,∗(z0) < 0 which contradicts system (4.6).

(iii)2 If the multiplicity of eigenvalue ζ+ is three, then Q(ζ) = (ζ − ζ+)3(ζ − ζ−). Similar to arguments
of (iii)1, we get Ih,∗(z) or Iv,∗(z) change sign for some z0 ∈ R which is a contradiction with system (4.6).

Consequently, combining Cases 1 and 2, we obtain that system (1.2) has no TWS connecting E0 and
E∗

1 when R0 > 1, 0 < c < c∗. This completes the proof. �

Remark 4.1. Although the idea of Theorem 4.2 comes from [4], we have further improved their methods.
In addition, from Theorems 3.1, 4.1 and 4.2, it concludes that c∗ is the minimal wave speed for (1.2).

5. Numerical simulations

In this section, we apply system (1.2) to the spread of dengue fever and provide some numerical simulations
to verify the existence of TWS. For simplicity, we let f1(Sh, Iv) = β1ShIv and f2(Sv, Ih) = β2SvIh, where
βi is positive constant and represents the transmission rate of dengue fever, i = 1, 2, and we take the
spatial domain [0, 100] and the temporal domain [0, 400].

Assume (1.2) satisfies the following initial conditions

Sh(0, x) =

{
S∗

h, x ∈ [0, 50),

S0
h, x ∈ [50, 100],

Ih(0, x) =

{
I∗
h, x ∈ [0, 50),

0, x ∈ [50, 100],
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Fig. 1. The relationship between c and ζ

and

Sv(0, x) =

{
S∗

v , x ∈ [0, 50),

S0
v , x ∈ [50, 100],

Iv(0, x) =

{
I∗
v , x ∈ [0, 50),

0, x ∈ [50, 100].

Moreover, we take homogeneous Neumann boundary conditions for system (2.2). In view of [1,4,12,29],
we assume Λ = 100, M = 0.2, DS = 0.2, DI = 0.1, dS = 0.5, dI = 0.3, μ1 = 0.83, d1 = 0.001,
d2 = 0.0001, μ2 = 0.002, β1 = 0.00682, β2 = 0.0015, α1 = 0.1667. Thus, γ1 = μ1 + d1 + α1 = 0.9977 and
γ2 = μ2 + d2 = 0.0021. By simple calculations, we obtain the threshold R0 = 7.6699 > 1, and

E0 = (120.4819, 0, 100, 0), E∗
1 = (68.4884, 43.2541, 2.9904, 92.3901).

Therefore, according to Lemma 2.1 and Theorem 3.1, there exists c∗ > 0 such that (2.2) admits a TWS
connecting E0 and E∗

1 with speed c for each c ≥ c∗. According to Fig. 1, it can be found that the minimal
wave speed c∗ is 0.352.

We reveal the results in Figs. 2 and 3. Figure 2 is the corresponding contour graphs which illustrates
the change of humans and mosquitoes densities. The red arrows in Fig. 2 indicate that the solution of
(1.2) evolves from the disease-free equilibrium E0 to endemic equilibrium E∗

1 coinciding with Theorem 3.1.
Furthermore, to present the shape of solutions more clearly, Fig. 3 depicts the cross section curves of the
solution at different times. As described in Fig. 3, one can see that the TWS of (1.2) is not monotone
owing to the constant recruitment and natural death in the model.

To explore the influence of parameters on the spread of the disease, we next investigate the sensitivity
of c∗ on parameters when R0 > 1. According to Lemma 2.1, one has

U c∗
2 (ζ∗)U c∗

4 (ζ∗) − β1β2S
0
hS0

v = 0,

where S0
h = Λ/μ1, S0

v = M/μ2 and

U c∗
2 (ζ∗) = DIζ

∗2 − c∗ζ∗ − γ1, U c∗
4 (ζ∗) = dIζ

∗2 − c∗ζ∗ − γ2.

Simple calculations show that
∂c∗
∂DI

> 0,
∂c∗
∂dI

> 0,
∂c∗
∂S0

h

> 0,
∂c∗
∂S0

v

> 0,
∂c∗
∂βi

> 0, i = 1, 2.

Thus, the c∗ increases monotonically with respect to Λ, M , βi, DI and dI , decreases with respect to μi.
Figure 4 illustrates the sensitivity of c∗ on parameters when R0 > 1 and the values of other parameters
are the same as in Fig. 1. Some noteworthy phenomena are found in Fig. 4. As can be seen in Fig. 4a, c∗
is an increasing function of DI and dI , and furthermore the effect of dI on c∗ is greater than that of DI

on c∗ which implies that the diffusion of infected mosquitoes has a more significant impact on the spread
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Fig. 2. The contour graph of traveling wave solution for system (1.2). a The evolution of Sh. b The evolution of Sv . c The
evolution of Ih. d The evolution of Iv

of dengue fever. In Fig. 4b, it can be found that c∗ increases with the increase of β2 when β1 is large,
but c∗ does not vary significantly with the increase of β2 when β1 is small. Note that β1 (β2) denotes the
disease transmission rate from infectious mosquitoes (humans) to humans (mosquitoes). Figure 4b shows
that the infected mosquitoes have a greater impact on the spread of dengue fever than infected people. In
Fig. 4c, c∗ increases with the increase of Λ when M is large, but the change of c∗ is not obvious with the
increase of Λ when M is small. From Fig. 4c, compared with the recruitment of individuals, the impact
of the recruitment of mosquitoes is greater on the spread of dengue fever. In Fig. 4d, c∗ reduces with
the increase of μ1 when μ2 is small, but the change of c∗ is not obvious with the increase of μ1 when
μ2 is large, which means that the natural death of mosquitoes has a more obvious impact on disease
transmission than the natural death of people. It can be seen from Fig. 4 that the parameters related to
mosquitoes have a greater impact on minimal wave speed. Consequently, to better prevent the spread of
disease, we should pay more attention to mosquito control, such as spraying insecticides and using bed
nets.

6. Discussion

In this work, we proposed a reaction–diffusion mosquito-borne epidemic model with general incidence and
constant recruitment, and discussed the existence and nonexistence of nontrivial TWS for this model.
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(a) (b)

(c) (d)

Fig. 3. The cross section curves of traveling wave solution for (1.2) at different times. a The curve of Sh. b The curve of
Sv . c The curve of Ih. d The curve of Iv

Specifically, for the case of R0 > 1 and c ≥ c∗, the suitable sub- and super-solutions were constructed by
means of the smallest positive eigenvalue of the characteristic equation, and the existence of solutions for
the truncated system was obtained by using the fixed-point theorem. Then it was proved that there exists
a nontrivial TWS of model (1.2) satisfying (2.3) with the help of limiting arguments. The convergence
of TWS at positive infinity was showed by constructing a Lyapunov functional. Next, the nonexistence
of nontrivial TWS when R0 ≤ 1 and c > 0 was established by utilizing contradicting approach. For
the case of R0 > 1 and 0 < c < c∗, by illustrating that Ih(·) or Iv(·) will change sign at some points,
we proved that the system (1.2) has no nontrivial TWS connecting E0 and E∗

1 . We should note that
the mathematical analysis of the process was complicated, but easier to understand than the method of
Laplace transform.

In order to better elaborate the theoretical results, we applied system (1.2) to investigate the spread
of dengue fever. We provided numerical simulations to verify the theoretical results of this paper (see
Figs. 2, 3). By discussing the sensitivity of c∗ on parameters, the combined effects of parameters on c∗
were analyzed (see Fig. 4). It can be known that (1) the c∗ can be reduced by decreasing the diffusion
of infectious humans and mosquitoes (see Fig. 4a); (2) by adopting relevant measures, such as spraying
insecticides and using bed nets, the biting rate can be reduced. As a result, the c∗ can be reduced (see
Fig. 4b–d).

As we all know, the transmission of many infectious diseases, including mosquito-borne diseases, is
deeply affected by environment temperature [19], and temperature can be characterized by time peri-
odicity. Hence, it is reasonable to incorporate time periodicity into the modeling of infectious diseases.
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Fig. 4. The sensitivity of c∗ on parameters for system (1.2). a The sensitivity of c∗ on DI and dI . b The sensitivity of c∗
on β1 and β2. c The sensitivity of c∗ on Λ and M . d The sensitivity of c∗ on μ1 and μ2

In this case, it is interesting and important to study the periodic traveling wave solutions of epidemic
models [8,28,31,34]. However, there are some challenges in exploring the periodic traveling wave solutions
of mosquito-borne disease models. We leave these issues for future study.
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