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A B S T R A C T

Understanding how tipping points arise is critical for population protection and ecosystem robustness. This
work evaluates the impact of environmental stochasticity on the emergence of tipping points in a predator–
prey system subject to the Allee effect and Holling type IV functional response, modeling an environment in
which the prey has high group cohesion. We analyze the relationship between stochasticity and the probability
and time that predator and prey populations in our model tip between different steady states. We evaluate
the safety from extinction of different population values for each species, and accordingly assign extinction
warning levels to these population values. Our analysis suggests that the effects of environmental stochasticity
on tipping phenomena are scenario-dependent but follow a few interpretable trends. The probability of tipping
towards a steady state in which one or both species go extinct generally monotonically increased with noise
intensity, while the probability of tipping towards a more favorable steady state (in which more species were
viable) usually peaked at intermediate noise intensity. For tipping between two equilibria where a given
species was at risk of extinction in one equilibrium but not the other, noise affecting that species had greater
impact on tipping probability than noise affecting the other species. Noise in the predator population facilitated
quicker tipping to extinction equilibria, whereas prey noise instead often slowed down extinction. Changes in
warning level for initial population values due to noise were most apparent near attraction basin boundaries,
but noise of sufficient magnitude (especially in the predator population) could alter risk even far away from
these boundaries. Our model provides critical theoretical insights for the conservation of population diversity:
management criteria and early warning signals can be developed based on our results to keep populations
away from destructive critical thresholds.
1. Introduction

Recently, ecological tipping points, where the state of an ecosystem
abruptly transitions from a steady state to an alternate dynamic regime,
have been increasingly observed in the field [1,2]. It is known that the
emergence of these tipping points can disrupt interactions between prey
and predator populations, and therefore potentially lead to the collapse
of important ecosystem functions [3]. Hence, much contemporary re-
search has focused on identifying and preparing for these ecological
transitions, including finding early warning signals before catastrophic
thresholds are approached (see e.g. [4]). This has incorporated both ex-
perimental and theoretical work, and has led to advances that link both
of these domains, such as inferring bifurcations in population data that
are directly due to manipulation of environmental parameters in a lab
setting [4,5], refining tipping point detection methodology to reduce
false positives [6], and mathematical derivation of control methods and

∗ Corresponding author.
E-mail addresses: tfeng.math@gmail.com (T. Feng), rmilne@ualberta.ca (R. Milne), hao8@ualberta.ca (H. Wang).

management strategies for ecosystems vulnerable to tipping [7,8]. The
study of tipping points has additionally been extended to those taking
place over larger spatial scales, by the use of network-based models [9–
11]. Because of the possibility for sudden and potentially irreversible
changes to an ecosystem that tipping brings with it, understanding the
mechanisms by which tipping points occur is crucial for population
conservation.

Within ecology, tipping points are classically categorized based on
what causes them. Bifurcation-induced tipping occurs when changes
in an environmental parameter cause it to pass through a critical
threshold, at which point a previously stable steady state destabilizes
or disappears [12–15]. Rate-induced tipping occurs when an environ-
mental parameter changes too quickly. This changes the locations of
the system’s equilibria, as well as the boundaries of their basins of
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attraction, making the system fail to track a continuously changing
attractor and move into a different attraction basin [1,16–18]. Noise-
induced tipping happens when environmental stochasticity drives the
system too far from the steady state, leading it on a path that instead
draws it towards a different one [19–21]. Phase tipping occurs when
external input causes the system to tip to a different steady state due to
stochastic noise or rapid parameter changes, but only for certain areas
of a given steady state’s neighborhood, commonly expressed as phase
values of a periodic orbit [22,23].

Most fluctuations in species’ populations can be attributed to envi-
ronmental stochasticity rather than periodic or chaotic phenomena, and
environmental stochasticity has been shown to lead to the irreversible
collapse of populations from persistence to extinction [24]. Because of
this, noise-induced tipping is likely to have outsize effects on predator–
prey interactions. So far, theoretical studies on how environmental
stochasticity affects steady-state switching have yielded important in-
sights. For example, Meng et al. [25] explored the effect of stochasticity
on average transient time in complex mutualistic networks of plant
and pollinator species, finding that increases in the amplitude of the
system’s noise terms result in shorter transient times, with an algebraic
relationship between the two conjectured. Similarly, prior work on
stochasticity and tipping within a model of glycolysis showed that
noise can induce rich dynamical behavior even within a relatively
simple framework [26], indicating that the appearance of similarly
complex phenomena in a stochastic predator–prey model is likely. At
the same time, few studies have explored the relationship between en-
vironmental stochasticity and the probability and time of tipping point
occurrence, as well as the problem of identifying which predator and
prey population levels produce heightened extinction risk in stochastic
environments.

Predator–prey interaction is the primary driving force for energy
transfer in a food web, and hence different patterns of predator–prey in-
teraction can have broad-ranging effects throughout an ecosystem [27,
28]. This means that predator–prey interaction has a profound im-
pact on the healthy and sustainable development of ecosystems, and
hence it has been a focal point for the development and testing of
ecological theory (see e.g. [29,30]). Since the pioneering work of
Lotka [31] and Volterra [32], researchers worldwide have explored
many different aspects of the predator–prey relationship. These include
prey defense against predators [33,34], delays corresponding to the
predator’s gestation time [35], availability of additional food sources
for the predator [36], harvesting of the prey independently from pre-
dation [37], and migration patterns of both species [38], as well as
extensions to specific ecosystems such as herbivorous fish grazing on
algae [39] and plankton communities [40]. Due to the multitude of
different ecological factors that can affect either species in a predator–
prey system, intrinsic environmental fluctuations may be stronger in
the population of one or the other. For instance, a disease carried
only by the predators (see e.g. [41]) would have intrinsic effects on
dynamics of the predators but not those of the prey. Since imbalances
in predator–prey interactions can have cascading effects throughout
an entire food web, stochastic variation in the population of one or
the other can have significant consequences for all species within a
community. Determining which of these is more likely to result in
tipping will allow ecosystem managers to focus on maintaining a stable
environment for whichever species is most important.

Evidence of the Allee effect has been found to be widespread
in nature [42–44], with examples found in populations of both ani-
mals [45,46] and plants [47,48]. The precursors leading to the Allee
effect are diverse, including ecological mechanisms such as mate lim-
itation [49,50] and habitat alteration [43]; invasive species also often
display Allee effects due to the fragmented nature of their spread into
a new habitat [48,51]. Allee effects can also be caused by human-
induced factors such as the overharvesting of uncommon species due
to humans putting a premium on rarity [52], as well as genetic mech-
2

anisms such as inbreeding depression [53]. Because of its real-world b
prominence, the Allee effect has been featured in many theoretical
studies in population biology (see e.g. [54–59]).

The Holling type IV functional response describes the rate of preda-
tion for a scenario in which the prey population exhibits group defense
against predators, reducing predation pressure when high levels of
prey are present [60–63]. This makes it conceptually similar to the
Allee effect, since both represent processes with maximum efficiency at
intermediate input levels. Examples of the Holling type IV functional
response observed in the field include moose intimidating wolves to
reduce their predation ability [64] and ant colonies acting in uni-
son against spider attacks [65]; it can also occur in producer–grazer
systems, where thick grass can inhibit grazers’ mobility [66]. This
formulation is capable of rich and complex dynamics: for instance,
introducing group defense can cause a predator–prey system to exhibit
the paradox of enrichment [67,68], but stronger levels of group defense
can instead rescue a predator population from extinction [69]. Cooper-
ation in hunting and defense against predators has been mentioned as a
potential cause of the Allee effect [45], providing a link between it and
the Holling Type IV functional response. Consequently, a predator–prey
system in which the prey has a high level of group cohesion would
be expected to exhibit both of these phenomena. However, studies
on the vulnerability to tipping of a predator–prey system featuring
both of these mechanisms have not yet been conducted, despite their
fundamental importance in ecological theory. Because demographic
stochasticity can play a role in establishing Allee effects [50], determin-
ing the propensity for such systems to undergo noise-related tipping is
especially important.

The rest of the paper is organized as follows. Section 2 illustrates the
derivation of the stochastic predator–prey system and the techniques
used to obtain the main results. Section 3 presents the main results of
the paper. Section 4 concludes the work with a summary of results, and
potential future work.

2. Methods and model formulation

2.1. Model formulation

A general predator–prey system can be described by the following
differential equation model [70]

⎧

⎪

⎨

⎪

⎩

d𝑥
d𝑡 =𝑞(𝑥)𝑥 − 𝑝(𝑥)𝑦,

d𝑦
d𝑡 =𝑐𝑝(𝑥)𝑦 − 𝑑𝑦,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) represent the density of prey and predator popula-
ions at time 𝑡, respectively. Prey grow at a rate 𝑞(𝑥) and are eaten
y predators at a rate 𝑝(𝑥), which can vary between models, while
represents the conversion rate of prey into predators and 𝑑 is the

redator death rate. In this work, we will consider the case where the
rowth rate of the prey population is affected by the Allee effect, and
he predator population obeys the Holling type IV functional response.
aking the general model (1) as the starting point, the derivation of
he predator–prey model with the Allee effect and a Holling type IV
unctional response is presented below.

The Allee effect was first discovered by Warder Clyde Allee in
n experiment on the survival rate of goldfish in the 1930s; it de-
cribes a positive association between the per-individual growth rate
nd population density [71]. At the scale level, there can exist the
omponent Allee effect (i.e., the positive relationship between any
easurable component of individual fitness and population density)

nd the demographic Allee effect (i.e., the positive relationship between
verall individual fitness and population density). According to the
ature of density dependence at low densities, the demographic Allee
ffect can be divided into two types: the strong Allee effect and the
eak Allee effect (see Fig. B.1), where the strong Allee effect results in
critical population density under which the population growth rate

ecomes negative [43].
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To incorporate the Allee effect, we assume that the density-dependen
growth rate 𝑞(𝑥) takes the form

𝑞(𝑥) = 𝑟(𝐾 − 𝑥)(𝑥 − 𝐴),

where 𝑟 is the intrinsic growth rate of the prey population, 𝐾 denotes
he carrying capacity of the prey population in the absence of predator
ressure, and 𝐴 denotes the Allee threshold. In this formulation, there
re three distinct cases for the nature of the Allee effect, depending on
he value of 𝐴. Firstly, when 𝐾 > 𝐴 > 0, the strong Allee effect emerges,
.e. prey population growth is negative when 𝑥 < 𝐴. Secondly, when
𝐾 < 𝐴 < 0, the weak Allee effect emerges, where low values of 𝑥
ean lower, but not negative, prey growth. Lastly, when 𝐴 = 0, the

Allee effect disappears.
The functional response describes the relationship between the

amount of prey consumed by a predator per unit of time and its prey
density [72,73]. Classical functional responses include three introduced
by Crawford Stanley (Buzz) Holling, namely Holling type I, II, and
III functional responses [74]. In these three functional responses, the
consumption rate of the predator increases monotonically with prey
density, and saturates when prey density is large enough (see Fig.
B.2(a) – Fig. B.2(c)). In addition to the three classic functional responses
mentioned above, Holling [75] proposed a functional response with
swarming effects, often referred to as Holling type IV functional re-
sponse. A significant difference from the first three functional responses
is that Holling type IV functional response is non-monotonic, suggesting
that the consumption rate of the predator will decrease when the prey
population is sufficiently dense (see Fig. B.2(d)).

To incorporate the Holling type IV functional response, we assume
that

𝑝(𝑥) = 𝑚𝑥
𝑎𝑥2 + 𝑏𝑥 + 1

,

where 𝑎, 𝑚 > 0, and 𝑏 > −2
√

𝑎 so that 𝑝(𝑥) > 0 for all 𝑥 > 0.
Therefore, the predator–prey model with Allee effect and Holling type
IV functional response can be shown as

⎧

⎪

⎨

⎪

⎩

d𝑥
d𝑡 =𝑟𝑥(𝐾 − 𝑥)(𝑥 − 𝐴) −

𝑚𝑥𝑦
𝑎𝑥2 + 𝑏𝑥 + 1

,

d𝑦
d𝑡 =

𝑐𝑚𝑥𝑦
𝑎𝑥2 + 𝑏𝑥 + 1

− 𝑑𝑦.
(2)

Through simple calculations and referring to Arsie et al. [76], we
can get the following results concerning the existence and stability of
equilibria of the deterministic model (2).

Lemma 2.1. The deterministic system (2) always has two boundary
equilibria: 𝐸0 = (0, 0) representing the extinction of both species and 𝐸𝐾 =
(𝐾, 0) representing the extinction of predator population; there is a third
boundary equilibrium 𝐸𝐴 = (𝐴, 0) if 0 < 𝐴 < 𝐾. Moreover, the system (2)
can have up to two interior equilibria 𝐸∗

1 = (𝑥∗1 , 𝐺(𝑥∗1)) and 𝐸
∗
2 = (𝑥∗2 , 𝐺(𝑥∗2))

f 𝑑 ∈
(

0, 𝑐𝑚
2
√

𝑎+𝑏

)

, where

∗
1 =

𝑐𝑚 − 𝑏𝑑 −
√

(𝑏𝑑 − 𝑐𝑚)2 − 4𝑎𝑑2

2𝑎𝑑
, 𝑥∗2

=
𝑐𝑚 − 𝑏𝑑 +

√

(𝑏𝑑 − 𝑐𝑚)2 − 4𝑎𝑑2

2𝑎𝑑
,

and

𝐺(𝑥∗𝑖 ) =
𝑟
𝑚
(𝐾 − 𝑥∗𝑖 )(𝑥

∗
𝑖 − 𝐴)(𝑎𝑥∗2𝑖 + 𝑏𝑥∗𝑖 + 1).

The conditions for the existence and stability of the equilibria are summa-
rized in Table 1.

Interactions between predator and prey populations can be influ-
enced by abiotic factors present in the surrounding environment. This
includes common environmental factors such as temperature, humidity
and rainfall, as well as sudden environmental factors such as volcanic
eruptions and flash floods. Mathematically, common environmental
3

factors are usually characterized by white Gaussian noise [77], while
sudden environmental factors are usually described by Lévy noise [78].
In this work, we only consider the case where the predator–prey system
(2) is affected by common environmental factors, and the intensity
of environmental factors is positively correlated with the population
density. This latter condition has been used in previous stochastic
ecological systems [79], and stems from assumptions made about the
format of the solution to such systems. By standard arguments [79,80],
for any initial value 𝑋0 = (𝑥(0), 𝑦(0))′ and 0 ≤ 𝛥𝑡 ≪ 1, we assume that
he solution 𝑋𝑡 = (𝑥(𝑡), 𝑦(𝑡))′ is a Markov process with the conditional
ean

[𝑋𝑡+𝛥𝑡 −𝑋𝑡|𝑋 = 𝑋0] ≈

[

𝑟𝑥(𝐾 − 𝑥)(𝑥 − 𝐴) − 𝑚𝑥𝑦
𝑎𝑥2+𝑏𝑥+1𝑐𝑚𝑥𝑦

𝑎𝑥2+𝑏𝑥+1 − 𝑑𝑦

]

𝛥𝑡

and the conditional variance

Var[𝑋𝑡+𝛥𝑡 −𝑋𝑡|𝑋 = 𝑋0] ≈
[

𝜎21𝑥
2

𝜎22𝑦
2

]

𝛥𝑡.

More formally, we can extend the deterministic model (2) to the
following stochastically forced system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥 =
[

𝑟𝑥(𝐾 − 𝑥)(𝑥 − 𝐴) −
𝑚𝑥𝑦

𝑎𝑥2 + 𝑏𝑥 + 1

]

d𝑡 + 𝜎1𝑥d𝜉1(𝑡),

d𝑦 =𝑦
(

𝑐𝑚𝑥
𝑎𝑥2 + 𝑏𝑥 + 1

− 𝑑
)

d𝑡 + 𝜎2𝑦d𝜉2(𝑡),
(3)

here 𝜉1(𝑡), 𝜉2(𝑡) are one-dimensional independent Brownian motion
ith intensities 𝜎21 , 𝜎

2
2 , respectively. Throughout this paper, we assume

hat 𝜉𝑖(𝑡) are defined on the complete probability space (𝛺, ,P) with
iltration {𝑡}𝑡≥0 satisfying the usual conditions.

Since System (3) describes the interactions between predator and
rey populations, we need to verify that System (3) is biologically
ell-defined. This is done by proving that System (3) has a unique
ositive solution for any given initial condition, which is accomplished
n Appendix A.

.2. Methods

Here, we explain how stochastic model (3) is discretized to perform
umerical simulations. We also explain how vital indicators such as the
robability of and time to extinction, as well as which initial conditions
re safe from extinction, are estimated.

efinition 2.1. Consider the noise-induced system

𝑋(𝑡) = 𝐅(𝑋)d𝑡 +
𝑘
∑

𝑚=1
𝐆𝑚(𝑋)d𝜉𝑚(𝑡), (4)

nd the corresponding truncated system (i.e., with 𝐆𝑚(𝑋) = 0), where
,𝐆𝐦,∈ R𝑛, 𝜉𝑚(𝑡) is a standard 𝑛-dimensional independent Brownian
otion. Assume that the truncated system has 𝑛 (𝑛 ≥ 2) steady states
𝑖, 𝑖 = 1, 2,… , 𝑛 (e.g., stable equilibria or stable cycles). When a

olution starts from the basin of attraction of steady state 𝐸1, we call the
robability that the solution crosses the separatrix and settles within
he basin of attraction of steady state 𝐸𝑗 within a predetermined time
nterval 𝑇 as the tipping probability of the solution from the steady
tate 𝐸𝑖 to the steady state 𝐸𝑗 . In addition, the time consumed by the
hole tipping process is called a tipping time.

iscretization of the stochastic model (3). In order to perform nu-
erical simulations on the stochastic predator–prey model (3), we first
iscretize it in time, which allows us to produce the populations in
he model at a given time step as a function of the populations at
he previous time step and the stochastic noise input. By using the
uler–Maruyama numerical method [81], we discretized the model as

𝑘+1 =𝜙𝑘 + 𝑓 (𝜙𝑘)𝛥𝑡 + 𝑔(𝜙𝑘)𝜉𝑘
√

(𝛥𝑡)

+ 1√𝛥𝑡(𝜉2 − 1)(𝑔(𝜙 +
√

𝛥𝑡𝑔(𝜙 )) − 𝑔(𝜙 )).
(5)
2 𝑘 𝑘 𝑘 𝑘
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Table 1
Existence and stability of equilibria of system (2), where DNE means that the equilibrium does not exist.
Conditions 𝐸0 𝐸𝐴 𝐸𝐾 𝐸∗

1 𝐸∗
2

𝑥∗1 < 𝐴 < 𝐾 < 𝑥∗2 stable node unstable node saddle DNE DNE
𝑥∗1 < 𝑥∗2 < 𝐴 < 𝐾 stable node saddle stable node DNE DNE
𝐴 < 𝐾 < 𝑥∗1 < 𝑥∗2 stable node saddle stable node DNE DNE
𝑥∗1 < 𝐴 < 𝑥∗2 < 𝐾 stable node unstable node stable node DNE saddle
𝐴 < 𝑥∗1 < 𝐾 < 𝑥∗2 stable node saddle saddle attracting if 𝐺′(𝑥∗1) < 0 DNE

repelling if 𝐺′(𝑥∗1) > 0
𝐴 < 𝑥∗1 < 𝑥∗2 < 𝐾 stable node saddle stable node attracting if 𝐺′(𝑥∗1) < 0 saddle

repelling if 𝐺′(𝑥∗1) > 0
𝐴 < 0, 𝐾 < 𝑥∗1 < 𝑥∗2 saddle DNE stable node DNE DNE
𝐴 < 0, 𝑥∗1 < 𝐾 < 𝑥∗2 saddle DNE saddle attracting if 𝐺′(𝑥∗1) < 0 DNE

repelling if 𝐺′(𝑥∗1) > 0
𝐴 < 0, 𝑥∗1 < 𝑥∗2 < 𝐾 saddle DNE stable node attracting if 𝐺′(𝑥∗1) < 0 saddle

repelling if 𝐺′(𝑥∗1) > 0
In these discretized equations, 𝜙𝑘 = (𝑥(𝑘), 𝑦(𝑘))′ is a vector contain-
ing the predator and prey populations at time 𝑘; 𝛥𝑡 = 10−5 is the time
step; 𝜉𝑘 for 𝑘 = 1, 2 obey the Gaussian distribution 𝑁(0, 1); and the
vector-valued functions 𝑓, 𝑔 ∶ R2

+ → R2 are given by

𝑓 (𝑢) =
⎡

⎢

⎢

⎣

𝑟𝑢1(𝐾 − 𝑢1)(𝑢1 − 𝐴) − 𝑚𝑢1𝑢2
𝑎𝑢21+𝑏𝑢1+1𝑐𝑚𝑢1𝑢2

𝑎𝑢21+𝑏𝑢1+1
− 𝑑𝑢2

⎤

⎥

⎥

⎦

, 𝑔(𝑢) =
[

𝜎1𝑢1
𝜎2𝑢2

]

.

for an input vector 𝑢 = (𝑢1, 𝑢2)′ ∈ R2
+.

Estimation of tipping probability.MATLAB R2021a software was em-
ployed to perform numerical simulations of the discretized system (5)
on the time interval [0, 𝑇 ], where 𝑇 is set large enough to capture end
behavior of the model. To determine whether a tipping point occurs, we
numerically checked whether the simulated solution of the discretized
system (5) falls within a small neighborhood of a given alternative
steady state (i.e. besides the steady state whose basin of attraction the
system was initialized in) during the interval [0, 𝑇 ]; an example of this is
the neighborhood [0, 10−6] of the boundary equilibrium 𝐸0 for solutions
that start outside 𝐸0’s basin of attraction. If this process is performed 𝑀
times (for sufficiently large 𝑀 , such as 𝑀 = 105), and a tipping point
is present in 𝑛 of these simulations, then the probability of a tipping
point occurring can be estimated by the following frequency formula:

P𝑇 𝑖𝑝𝑝𝑖𝑛𝑔 = 𝑛
𝑀

.

Estimation of tipping time. When we performed our simulations, the
robability of tipping approached 1 under some conditions. In these
ases, we determined the estimated time until the system was expected
o reach a tipping point. To do this, we first ran the discretized system
5) a total of 𝑀 = 105 times until the tipping point appeared. During
ach run, we recorded the time 𝑡𝑖, 𝑖 = 1, 2,… ,𝑀 of the tipping point
eached during that run. Therefore, the estimated tipping time can be
stimated as

1
𝑀

𝑀
∑

𝑖=1
𝑡𝑖.

Determination of safe areas. We also evaluated the risk of extinc-
tion associated with different initial conditions of the model, and
consequently determined which initial conditions were generally safe
from extinction for different levels of environmental stochasticity. To
identify the extinction risk of different initial conditions, we traversed
the initial population values within the space (𝑥(0), 𝑦(0)) ∈ [0, 𝑥max] ×
[0, 𝑌max]. For each chosen initial condition, we performed the steps
listed above in Definition 2.1, specifically evaluating the probability of
tipping to an extinction equilibrium. After determining this probability
for all surveyed initial conditions, we categorized them into four levels
of extinction risk based on ranges of values that their tipping probabili-
ties fell into, with the lowest probability range (0 to 20 percent chance
of tipping to an extinction equilibrium) being designated as safe. We
additionally color-coded each level of extinction risk for easy graphical
interpretation: from high to low, we designated our risk levels as red,
orange, yellow and blue. (Further details are available in Section 3.2.)
4

Table 2
Parameters for the numerical simulations of the stochastic system (3).

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Source

𝐾 30 21 21 20 Arsie et al. [76]
𝐴 15 −1 1 2 Arsie et al. [76]
𝑎 0.004905 0.004905 0.004905 0.004905 Arsie et al. [76]
𝑏 −0.10891 −0.10891 −0.10891 −0.10891 Arsie et al. [76]
𝑐 1 1 1 1 Arsie et al. [76]
𝑑 24.28 24.28 24.28 24.28 Arsie et al. [76]
𝑚 1 1 1 1 Arsie et al. [76]
𝑟 1 1 1 1 Arsie et al. [76]
𝜎1 – – – – –
𝜎2 – – – – –

3. Main results

Here, we evaluate the impact of environmental stochasticity on pop-
ulation dynamics by analyzing the relationship between vital indicators
outlined previously (extinction probability, extinction time, and safe
area from extinction) and the density of environmental stochasticity
(hereinafter referred to as noise).

3.1. Tipping probability and tipping time

Using the numerical methods described previously, we analyze the
effects of environmental stochasticity from prey and predator pop-
ulations on the probability that a tipping point occurs and, when
this probability is 1, the expected time until tipping. The equilib-
ria that our system can possess, and hence can tip between, were
previously established by Lemma 2.1. To ensure that our analysis is
performed on a representative selection of model behavior, we use
four different parameter sets that each cause the system to admit a
different combination of equilibria. These parameter values are shown
in Table 2.

Scenario 1. Noise-induced tipping between boundary equilibria 𝐸0 and
𝐸𝐾

When 𝐾 = 30, 𝐴 = 15, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 =
24.28, 𝑚 = 1, and 𝑟 = 1, from Lemma 2.1 we know that the deterministic
model (2) has four equilibria: the boundary equilibria 𝐸0 and 𝐸𝐾 , the
Allee equilibrium 𝐸𝐴 and the interior equilibrium 𝐸∗

2 . In this case, the
deterministic model (2) has bistability between the boundary equilibria
𝐸0 and 𝐸𝐾 , while the Allee equilibrium 𝐸𝐴 is an unstable node and the
interior equilibrium 𝐸∗

2 is a saddle (see Fig. B.3). Due to the included
noise, the stochastic model (3) can converge to either of the two stable
equilibria from the same initial conditions (see Fig. B.4).

Fig. 1 shows that the occurrence probability of tipping points
(i.e. tipping probability) is closely related to the intensity and source of
noise. However, different trends were observed depending on whether
the system started in the basin of attraction of 𝐸𝐾 or that of 𝐸0, as
well as which populations (prey and/or predator) experienced noise.
Because both stable equilibria in this scenario featured zero predators,
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Fig. 1. Tipping probabilities of the stochastic system (3) with 𝐾 = 30, 𝐴 = 15, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial values in Figs. 1(a) and 1(b) are
given by (𝑥(0), 𝑦(0)) = (30, 80) (in the basin of attraction of 𝐸𝐾 ) and (𝑥(0), 𝑦(0)) = (30, 83) (in the basin of attraction of 𝐸0), respectively.
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Fig. 2. Tipping times of the stochastic system (3) with 𝐾 = 30, 𝐴 = 15, 𝑎 = 0.004905, 𝑏 =
0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial value is given by (𝑥(0), 𝑦(0)) = (30, 80),
hich is in the basin of attraction of 𝐸𝐾 .

he probability of tipping depended mostly on the magnitude of noise
n the prey population. When the prey population experienced noise,
ncreasing the magnitude of this noise resulted in a monotonic increase
n the likelihood of a solution starting in the basin of attraction of
𝐾 experiencing a tipping point and being drawn instead to 𝐸0; this
robability reached 1 for sufficiently large values of prey noise intensity
1 (Fig. 1(a)). In contrast, for solutions starting within the basin of
ttraction of 𝐸0 with prey noise present, tipping probability had a
oncave relationship with noise intensity: increases in 𝜎1 caused tipping
robability first to rise and then to lower (Fig. 1(b)). This can be
nterpreted as small amounts of noise helping the prey escape the
xtinction equilibrium, but large amounts of noise preventing such an
scape. If noise was present in the predator population, but not the
rey, tipping probability increased with the predator noise intensity
2 at low levels, but saturated between 40% and 50% probability of
ipping when 𝜎2 was increased further. This effect was nearly identical
egardless of which basin of attraction the initial population densities
ere located in. Despite long-term predator trajectories tending to-
ards extinction, adding noise to the predator population reduced the

hances of tipping from 𝐸𝐾 to 𝐸0 and increased the chances of tipping
n the other direction, on the whole positively affecting the prey’s
hances for survival. This suggests that in situations where a predator
pecies in search of prey enters an area where it cannot survive in the
ong term, stochasticity affecting just the predators can still increase
he likelihood of prey persistence.

Because high levels of prey noise intensity can lead to tipping from
he basin of attraction of 𝐸𝐾 to that of 𝐸0 with probability 1, we further
nalyzed the tipping time in such cases. There, as with tipping probabil-
ty, noise in the predator population can significantly alter tipping time
espite all predator trajectories being destined for extinction (Fig. 2).
hen only the prey population exhibited noise, changing the intensity

1 of this noise had very little effect on tipping time, but additionally
ncluding nonzero noise in the predator population established a clear
5

elationship where increasing the prey noise 𝜎1 and the predator noise
2 caused faster tipping. This relationship was mostly dependent on
he predator noise. Compared to the tipping times observed when 𝜎1

and 𝜎2 were both set equal to a common value of 𝜎, increasing the
redator noise to 2𝜎 while keeping the prey noise at 𝜎 caused tipping
imes to drop substantially, while the opposite case (where 𝜎1 = 2𝜎
nd 𝜎2 = 𝜎) showed essentially no difference. This shows that in
nvironments which are hostile for the predator but survivable for the
rey, tipping probability and tipping time are primarily influenced by
wo separate mechanisms.
Scenario 2. Noise-induced tipping between boundary equilibrium 𝐸𝐾 and

nterior equilibrium 𝐸∗
1

When the model parameters are given by 𝐾 = 21, 𝐴 = −1,
= 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, and 𝑟 =

, the deterministic model (2) has bistability between the boundary
quilibrium 𝐸𝐾 (a stable node) and the interior equilibrium 𝐸∗

1 (an
ttracting point). In contrast, the boundary equilibrium 𝐸0 and the
nterior equilibrium 𝐸∗

2 are saddles. The vector field of the deterministic
odel (2) in this scenario is shown in Fig. B.5. Under the disturbance

f noise, solutions that should tend to 𝐸∗
1 in the deterministic model

2) may eventually stabilize in a small neighborhood of 𝐸𝐾 (see Fig.
.6(a)), and vice versa (see Fig. B.6(b)).

In this scenario, for most of the values of prey noise 𝜎1 and predator
oise 𝜎2 that we tested, some similar patterns to those seen in Scenario
emerged. However, here it was the predator noise (instead of the

rey noise) that primarily determined tipping probability. When the
redator population experienced some degree of noise, increasing 𝜎2

caused a monotonic rise in the probability of tipping from the basin
of attraction of the coexistence equilibrium 𝐸∗

1 to that of the prey-
only equilibrium 𝐸𝐾 , with this probability eventually reaching 1 (see
Fig. 3(a)), and a concave response for the probability of tipping in
the other direction that eventually reached zero (see Fig. 3(b)). This
mirrored the relationships between noise level and tipping probability
from 𝐸𝐾 to 𝐸0 and vice versa in Scenario 1: noise caused the probability
of tipping to an extinction equilibrium to approach 1, and the probabil-
ity of tipping to the ‘‘better’’ equilibrium to increase and subsequently
return to zero. When the system exhibited both predator noise and prey
noise, increasing the ratio of 𝜎1 to 𝜎2 lowered the probability of tipping
from 𝐸∗

1 ’s basin of attraction to that of 𝐸𝐾 and raised the tipping proba-
bility from 𝐸𝐾 to 𝐸∗

1 , while decreasing this ratio had the opposite effect.
This meant that while the prey noise had lesser impact in determining
tipping probability, increasing its magnitude improved the odds of the
predator’s survival (by pulling solution trajectories towards 𝐸∗

1 rather
than 𝐸𝐾 ); this state of affairs represents the converse of the results for
Scenario 1. When only the prey population had noise, increasing 𝜎1
caused the probability of tipping from 𝐸𝐾 ’s basin of attraction to that
of 𝐸∗

1 rose to 1, showing opposite trends at high noise levels to the cases
where the predator population also exhibited noise. However, solutions
starting in the basin of attraction of 𝐸∗

1 that only experienced prey
noise were generally unchanged from their deterministic trajectories
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Fig. 3. Tipping probabilities of solution trajectories of the stochastic system (3) with 𝐾 = 21, 𝐴 = −1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial values in
igs. 3(a) and 3(b) are given by (𝑥(0), 𝑦(0)) = (0.5, 20) and (𝑥(0), 𝑦(0)) = (0.4, 20), respectively, within the basins of attraction of the coexistence and prey-only steady states.
Fig. 4. Tipping times of solution trajectories of the stochastic system (3) with 𝐾 =
1, 𝐴 = −1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial values
n Figs. 3(a) and 3(b) are given by (𝑥(0), 𝑦(0)) = (0.5, 20) and (𝑥(0), 𝑦(0)) = (0.4, 20),
espectively. Fig. 3(c) is the time series plot of the stochastic model (3) and the
orresponding deterministic case (2).

although a concave relationship between prey-only noise level and
ipping probability was observed).

For solutions starting from the basin of attraction of 𝐸∗
1 , tipping

ay occur with probability 1 if there is enough noise in the predator
opulation. In this case, if the prey noise intensity is fixed, then the
ipping time is negatively correlated with the noise intensity in the
redator population, while if the predator noise intensity is fixed,
hen the tipping time is positively correlated with the noise intensity
n the prey population. Tipping time decreases if noise intensities in
oth predator and prey populations increase simultaneously, suggesting
hat noise from the predator population plays a dominant role in
etermining tipping time, as it does for tipping probability in this
cenario. Moreover, as noise intensity increases, this decrease happens
t a slower rate (see Fig. 4(a)).

Intuitively, since the boundary equilibrium 𝐸𝐾 is an absorbing
tate, the probability of tipping from the boundary equilibrium 𝐸𝐾
o the coexistence equilibrium 𝐸∗

1 is unlikely to reach 1. However,
uch a transition was observed to occur with probability 1 when the
rey population experienced large amounts of noise and the predators
xperienced none (see Fig. 3(b)). In this case, the tipping time de-
reases monotonically with increasing noise intensity (see Fig. 4(b)).
his suggests that under conditions similar to those in Scenario 2
e.g. an environment that the prey is very well adapted to), noise within
he prey population may be beneficial for population coexistence (see
ig. 4(c)).
Scenario 3. Noise-induced tipping between boundary equilibria 𝐸0, 𝐸𝐾

nd interior equilibrium 𝐸∗
1

Numerical simulation of the deterministic model (2) with parameter
alues 𝐾 = 21, 𝐴 = 1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28,
6

𝑚 = 1, 𝑟 = 1 shows that the boundary equilibria 𝐸0 and 𝐸𝐾 are
stable nodes, the interior equilibrium 𝐸∗

1 is an attracting point, and the
interior equilibrium 𝐸∗

2 and the Allee equilibrium 𝐸𝐴 are both saddles
(see Fig. B.7), which is consistent with the results of Lemma 2.1.

When noise is involved, a solution starting from the basin of at-
traction of a particular steady state may always fluctuate around that
one, or it may pass a critical point and stabilize within the small
neighborhood of alternative steady states (see Fig. B.8). The solu-
tion may experience multiple wanderings between steady states before
it finally settles into the small neighborhood of one of them (e.g.,
Figs. B.8(b4) and (c5)). However, trajectories that approached the zero
steady-state tended to stay near it, without fluctuations. We therefore
conjecture that the zero steady state may draw in solutions fluctuating
around other steady states in finite time, making it potentially the
only absorbing state. To further elucidate the relationship between
noise intensity and tipping probability of the stochastic system (3),
we performed repeated numerical experiments on the state of the
stochastic solution when the time is sufficiently large (see Fig. 5). These
results are summarized in Table 3. As in Scenario 1, the probability of
tipping away from 𝐸0 never reached 1. Additionally, the probability of
tipping from a given equilibrium to one that was more conducive to
survival (𝐸0 to either 𝐸𝐾 or 𝐸∗

1 , and 𝐸𝐾 to 𝐸∗
1 ) usually followed the

concave pattern shown previously.
For solutions starting from the basin of attraction of 𝐸𝐾 , there were

two cases in which the tipping phenomenon occurs with probability
1, namely when noise is present solely in the prey population and
when it is present in both species. In each of these cases, increasing the
noise intensity decreases the expected tipping time, although this is a
shallow decrease when just the prey is exposed to noise and a steeper
one when both species are. Hence, for solutions tipping away from
𝐸𝐾 , moderately high noise intensity meant tipping happened more
quickly when only the prey suffered from noise, while very high noise
intensity meant tipping was faster when both populations suffered from
noise (Fig. 6(a)). In cases where the solution starts from the basin
of attraction of 𝐸∗

1 and tipping is assured, tipping time is negatively
correlated with noise intensity, especially when noise is present in the
predator population. For solutions tipping away from 𝐸∗

1 , tipping occurs
more quickly when the predator is exposed to noise compared to when
the prey is, and most quickly when both populations experience noise
(Fig. 6(b)).

Scenario 4. Noise-induced tipping between boundary equilibrium 𝐸0,
interior equilibrium 𝐸∗

1 and the stable cycle
When 𝐾 = 20, 𝐴 = 2, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28,

𝑚 = 1, and 𝑟 = 1, the deterministic model (2) admits a periodic cycle. It
follows from Fig. B.9 that the boundary equilibrium 𝐸𝐾 is a saddle, the
boundary equilibrium 𝐸0 is a stable node, and the interior equilibrium
𝐸∗
1 is an attracting point. In addition, there is a stable cycle around

the interior equilibrium 𝐸∗
1 . Fig. B.10 illustrates how tipping can occur

between any combination of the basins of attraction of 𝐸0, 𝐸∗
1 , and the

stable cycle when noise is introduced to the system.
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Fig. 5. Tipping probabilities of the stochastic system (3) with 𝐾 = 21, 𝐴 = 1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, and 𝑟 = 1. The initial values in Figs. 5(𝑎1)-(𝑎3),
(𝑏1)-(𝑏3), and 5(𝑐1)-(𝑐3) are given by (𝑥(0), 𝑦(0)) = (1.3, 11), (1.78, 11) and (1.8, 11), respectively. These points lie in the basins of attraction of 𝐸0, 𝐸𝐾 , and 𝐸∗

1 , in that order. In
each subfigure, the red and purple lines represent the probability that the solution enters the vicinity of a specific alternative equilibrium; respectively, these are 𝐸𝐾 and 𝐸∗

1 in
Fig. 5(𝑎1)-(𝑎3), 𝐸0 and 𝐸∗

1 in Fig. 5(𝑏1)-(𝑏3), and 𝐸0 and 𝐸𝐾 in Fig. 5(𝑐1)-(𝑐3). The green line in each subfigure represents the total probability of tipping.
Table 3
Relationship between noise and tipping probability in the stochastic system (3), organized by which species
experiences noise (𝜎1 ≠ 0 for the prey, 𝜎2 ≠ 0 for the predator), which basin of attraction a solution starts
in (that of 𝐸0, 𝐸𝐾 , or 𝐸∗

1 ), and which steady state the solution tips towards. The option Concave (resp.
Positive) means that the relationship between noise intensity and the probability of the solution passing
a tipping point and entering a small neighborhood of the specified final steady state (i.e., 𝐸0 , 𝐸𝐾 , 𝐸∗

1 ) is
concave (resp. positive).
Noise source Initial state Final state Total tipping probability

𝐸0 𝐸𝐾 𝐸∗
1

𝜎1 ≠ 0, 𝜎2 = 0
𝐸0 – Concave Concave Concave
𝐸𝐾 Positive – Concave Positive
𝐸∗

1 Positive Concave – See Fig. 5(c1)

𝜎1 = 0, 𝜎2 ≠ 0
𝐸0 – Positive Irrelevant Positive
𝐸𝐾 Concave – Concave Concave
𝐸∗

1 Concave Positive – Positive

𝜎1 ≠ 0, 𝜎2 ≠ 0
𝐸0 – Concave Irrelevant Concave
𝐸𝐾 Positive – Concave See Fig. 5(b3)
𝐸∗

1 Positive Concave – Positive
t
t
a
w
a
s
p
o
p

Here, the probability of a solution tipping out of the basin of attrac-
ion of 𝐸0 (into those of either 𝐸∗

1 or the stable cycle) followed patterns
that were similar to but more complex than those demonstrated in the
other scenarios (Fig. 7(a)). If only the prey was affected by noise, a
concave relationship between noise intensity and tipping probability
was seen, with the peak probabilities occurring at relatively low values
of 𝜎1. When noise was only experienced by the predator population,
the probability of tipping away from the extinction equilibrium 𝐸0 rose
with noise intensity in a saturation-like response (after first undergoing
a small rise at low intensity). These patterns were akin to those found
in Scenarios 1 and 3, the other two that we considered in which 𝐸0
existed. However, we saw here that when both 𝜎1 and 𝜎2 were nonzero,
complex relationships between noise intensity and tipping probability
7

l

emerged that resembled hybrids of the cases where only one of the two
was present. This stands in contrast to the other scenarios, in which
the effects of one noise term (i.e. either 𝜎1 or 𝜎2) would dominate
hose of the other when both were nonzero. In particular, when both
he predator and prey experienced noise, the probability of tipping
way from 𝐸0 showed a double-concave response to noise intensity,
ith one peak at low intensity values and another, usually wider, peak
t intermediate ones. Increasing the ratio of 𝜎1 to 𝜎2 diminished the
econd peak in tipping probability, thus making the graph of tipping
robability as a function of noise intensity more closely resemble the
ne in the case where 𝜎2 = 0. Decreasing that ratio, i.e. making the
redator population relatively noisier than the prey, often raised the
ikelihood of tipping away from 𝐸 , but did not change the fact that
0
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Fig. 6. Tipping times of solution trajectories of the stochastic system (3) with 𝐾 =
1, 𝐴 = 1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial values
n Figs. 6(a) and 6(b) are given by (𝑥(0), 𝑦(0)) = (1.78, 11) and (𝑥(0), 𝑦(0)) = (1.8, 11),
espectively.

ll solution trajectories that started within 𝐸0’s attraction basin stayed
here for sufficiently large noise magnitudes.

For both 𝐸∗
1 and the stable cycle, the graphs of the probability of

ipping to the extinction equilibrium 𝐸0 as a function of noise intensity
(Figs. 7(b) and 7(c)) resembled mirror images of the graph of the
probability of tipping away from 𝐸0 when reflected vertically. If noise

as present in the prey population, the probability of tipping towards
0 from either 𝐸∗

1 or the stable cycle reached 1 for sufficiently large
alues of noise intensity, with decreases to probabilities less than 1
bserved seen for very low and intermediate such values. As mentioned
bove, this double-dip structure was analogous to the double-concave
tructure seen in the probabilities of tipping away from 𝐸0. In fact, for
ll noise configurations and nearly all values of noise intensity that we
onsidered, the sum of the probability of tipping away from 𝐸0 and
he probability of tipping from 𝐸∗

1 to 𝐸0 was very close to 1. (In other
ords, the concavities in both Figs. 7(a) and 7(b) were of the same size
nd occurred at the same values of 𝜎.) The probability of tipping from
he stable cycle to 𝐸0 followed similar patterns as that of tipping from
∗
1 to 𝐸0. However, so long as there was some noise in the predator
opulation, extinction was less probable for solutions starting near the
table cycle than it was for solutions starting in the basin of attraction
f 𝐸∗

1 .
In the cases in this scenario for which tipping to 𝐸0 was assured,

xtinction time could be decreased by greater noise in the predator
opulation, which was similar to the effects seen in the other scenarios.
n particular, if 𝜎2 (the predator noise) was equal to or larger than 𝜎1,
ncreasing the noise intensity overall caused solution trajectories that
ipped towards 𝐸0 with probability 1 to do so more quickly (Fig. 8).
owever, if 𝜎1 was larger than 𝜎2, noise intensity had very little effect
n tipping time.

.2. Safe areas and extinction warnings

In the previous subsection, we determine tipping probabilities and
ipping times of the stochastic system (3) for initial population values
lose to attraction basin boundaries. To identify how different levels of
nvironmental noise can affect tipping away from these boundaries, we
btain probabilities of tipping to an extinction equilibrium for a wide
ange of initial conditions for both predator and prey species. Following
his, we assign different extinction warnings to these initial population
evels according to the extinction probability of predator and prey
opulations (see Table 4). We assign an initial population density a
evel IV (blue) warning when the extinction probability of predator and
rey populations is below 20%, at which point the risk of population
xtinction is relatively low. When the extinction probability of predator
8

nd prey populations is between 20% and 50% when starting from a
Table 4
Warning levels and associated extinction probabilities.

Warning level Extinction probability Marker color

Level I warning (Red warning) ≥80% Red
Level II warning (Orange warning) 50%–80% Orange
Level III warning (Yellow warning) 20%–50% Yellow
Level IV warning (Blue warning) ≤20% Blue

given initial density, we assign that initial condition a Level III (yellow)
warning, indicating moderate extinction risk. If an initial condition
yields extinction probability of predator and prey populations between
50% and 80%, we assign it a Level II (orange) warning, denoting a high
probability of extinction. At extinction probability greater than 80%,
an initial population density receives a Level I (red) warning, meaning
that the extinction risk of a population starting from that density is
extremely high.

From Section 3.1, we know that in Scenario 2, the deterministic
model (2) has bistability between the coexistence equilibrium 𝐸∗

1 and
he prey-only equilibrium 𝐸𝐾 , and the basin of attraction is divided
nto two regions (see Fig. 9(a)). In the deterministic case, we mark
he basins of attraction of 𝐸𝐾 and 𝐸∗

1 in red and blue, respectively,
which correspond to warning levels I and IV. The green line indicates
the boundary of the deterministic basin of attraction for the extinction
(in this case prey-only) and coexistence states.

When evaluating warning levels for Scenario 2, we found that the
patterns that we saw in tipping probability also manifested themselves
in the safety of initial conditions. We found that compared to the
baseline case with no noise, introducing noise into the prey popula-
tion downgraded the warning level for initial conditions with Level
I warnings to Level II, Level III, or even Level IV (the lowest risk
of extinction; see Fig. 9(b)). This is in concordance with the higher
tipping probability from 𝐸𝐾 to 𝐸∗

1 rather than from 𝐸∗
1 to 𝐸𝐾 when

1 = 1 and 𝜎2 = 0 (Fig. 3), as well as the fact that increasing
𝜎1 relative to 𝜎2 delays tipping in this scenario (Fig. 4). In contrast,

hen the predator population experienced noise, areas in which the
redators would survive in the deterministic case instead saw their
arning levels increase (Figs. 9(c)–(f)). When both predator and prey
opulations were exposed to noise, the different warning areas were
ardly distinguishable from the case where only the predator is exposed
o noise (Figs. 9(c) and 9(d)), analogous with how predator noise was
een to dominate prey noise in terms of influence on tipping probability
n this scenario. Increasing the ratio of 𝜎1 to 𝜎2, by taking 𝜎1 = 2 and
𝜎2 = 1, did not add many initial conditions to the Level IV warning area,
ut it did shrink the Level I warning area substantially (Fig. 9(e)). This
esulted in many initial conditions falling into the two intermediate
arning levels, including both initial conditions where the predators
eterministically survived and those where they deterministically went
xtinct. However, decreasing the ratio of 𝜎1 to 𝜎2 (by taking 𝜎1 = 2
nd 𝜎2 = 1) enlarged the Level I warning area to encompass all initial

conditions for which the starting prey population was less than about
50 (Fig. 9(f)). This meant that the boundary between very high and very
low risks of predator extinction now depended solely on the initial prey
value. Across all cases, the closer to the deterministic attraction basin
boundary an initial condition was, the more significant its change in
warning level was; this was consistent with our intuition.

In Scenario 3, the deterministic model (2) is tristable between the
extinction states 𝐸0 and 𝐸𝐾 and the coexistence state 𝐸∗

1 . Since we
ssign warning levels according to the probability of extinction of at
east one species, we group the basins of attraction of 𝐸0 and 𝐸𝐾
ogether in this analysis; this combined basin for the deterministic case
f the model is marked in red in Fig. 10(a). Likewise, the deterministic
asin of attraction of 𝐸∗

1 is marked in blue. In this scenario, small to
oderate amounts of noise in either the predator or prey population
ad the effect of making the attraction basin boundary less sharp,
ith Level I warnings near the boundary downgraded to Level II, and
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Fig. 7. Tipping probabilities for the stochastic system (3) with 𝐾 = 20, 𝐴 = 2, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. The initial values in Figs. 7(a), 7(b), and 7(c)
are (𝑥(0), 𝑦(0)) = (2.22, 5), (2.23, 5) and (9.8, 32.1), respectively, which are in the basins of attraction of 𝐸0, 𝐸∗

1 , and the stable cycle, respectively. Fig. 7(a) shows the probability of
tipping away from 𝐸0 into the basin of attraction of either 𝐸∗

1 or the stable cycle, while the other two subfigures show the probability of tipping to 𝐸0.
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Fig. 8. Extinction times of solution trajectories of the stochastic system (3) with
𝐾 = 20, 𝐴 = 2, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1 and
𝑥(0), 𝑦(0)) = (9.8, 32.1).

evel IV warnings upgraded to Level II (see Figs. 10(b)–(d)). This took
lace as long as the maximum noise value in either was at most 0.5,
nd stands in contrast to the trends seen in Scenario 2, where the
ttraction basin boundary could be ‘‘moved’’ in one direction or another
epending on which species experienced noise. However, in Scenario 3,
urther increasing noise levels in either population resulted in the level
V warning area drastically shrinking or even disappearing. Taking 𝜎1 =
and 𝜎2 = 0.5 caused nearly all of the initial conditions that converged

o the coexistence equilibrium in the deterministic case to fall under
evel III or Level II warnings (Fig. 10(e)), while taking 𝜎1 = 0.5 and
2 = 1 led to all initial conditions that we tested being assigned a Level
warning, the most severe (Fig. 10(f)).

In Scenario 4, the deterministic model (2) is tristable between the
xtinction state (𝐸0) and two coexistence states (𝐸∗

1 and the stable
ycle). In this case, the changes in warning levels induced by noise are
ery similar to those in Scenario 3 (see Fig. 11). Mild noise intensity
ncreases in either population meant that the attraction basin boundary
tayed roughly in the same place, but became fuzzier, while more
ubstantial increases (especially in predator noise) facilitated harsher
arning levels for initial conditions that would deterministically lead

o coexistence.

. Discussion

Ecosystems can undergo irreversible transitions from one steady-
tate to another alternative steady-state [5,7]. Environmental stochas-
icity is recognized as an essential underlying factor leading to such
9

teady-state transitions [20,25]. Within this paper, we first analytically
emonstrate the biological plausibility of our stochastic predator–prey
odel (see Appendix A). Subsequently, we use numerical simulations

o evaluate the specific effects of noise intensity and noise type on
he probability of, and expected time until, tipping to an alternative
teady state. We also rank initial population levels of predators and
rey according to the extinction probability of one or more of these
opulations, providing different extinction warning tiers. This work
hus provides an in-depth analysis of the impact of environmental
tochasticity on the transition of a predator–prey system with Allee
ffects and Holling type IV functional response between multiple steady
tates, based on the modeling framework of stochastic differential
quations. An important contribution of this study is to provide a new
ethod for exploring the relationship between environmental stochas-

icity and tipping points in population systems, and to extend the work
f Arsie et al. [76] on the deterministic predator–prey system (2). The
ethods presented in this work can also be applied to study related
roblems involving tipping phenomena in other natural systems, such
s those representing infectious disease transmission [82–84] and social
nsect collective behavior [85–87].

Our insights suggest that the effects of noise on tipping-related phe-
omena are diverse, depending on both the type and intensity of noise
nd the specific context of the predator–prey system. In our results,
oise may be either beneficial or detrimental to population survival,
hich coincides with the point of view of Petrovskii et al. [88]. One

rend that we observed was that the probability of tipping towards
steady state in which more species were viable (e.g. from 𝐸𝐾 to
∗
1 , from 𝐸0 to 𝐸𝐾 or 𝐸∗

1 ) tended to be a concave function of noise
ntensity, while the probability of tipping to a steady state in which
ewer species were viable instead usually monotonically increased with
oise intensity. This trend specifically took place so long as the species
t risk of extinction suffered from noise: for example, in Scenario
, the stable equilibria being 𝐸∗

1 and 𝐸𝐾 implied that the predators
ere at risk of extinction, and the above trend was observed when 𝜎2

noise in the predator population) was nonzero. Similarly, we found
hat in the impact on tipping probability of noise in the population
t risk of extinction generally dominated that of noise in the other
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Fig. 9. Warning level of the stochastic system (3) with 𝐾 = 21, 𝐴 = −1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. In Fig. 9(a), the noise densities are given by
𝜎1 = 𝜎2 = 0. Therefore, the blue and red regions represent the basins of attraction for the coexistence equilibrium (𝐸∗

1 ) and prey-only equilibrium (𝐸𝐾 ), respectively. The green
line is the attraction basin boundary. In Figs. 9(b)–(f), the noise densities (𝜎1 , 𝜎2) are given by (1, 0), (0, 1), (1, 1), (2, 1) and (1, 2), respectively. The blue, yellow, orange and red
areas indicate the probability of predator extinction as 0% − 20%, 20% − 50%, 50% − 80% and 80% − 100%, respectively.
Fig. 10. Warning level of the stochastic system (3) with 𝐾 = 21, 𝐴 = 1, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. In Fig. 10(a), the noise densities are given by
𝜎1 = 𝜎2 = 0. Therefore, the blue and red regions represent the basins of attraction for the coexistence equilibrium (𝐸∗

1 ) and the equilibria for which at least one species goes extinct
(𝐸0&𝐸𝐾 ), respectively. The green line is the attraction basin boundary. In Figs. 10(b)–(f), the noise densities (𝜎1 , 𝜎2) are given by (0.5, 0), (0, 0.5), (0.5, 0.5), (1, 0.5) and (0.5, 1),
espectively. The blue, yellow, orange and red areas indicate the probability of simultaneous extinction of predator and prey populations as 0% − 20%, 20% − 50%, 50% − 80% and
0% − 100%, respectively.
b
s

o
t

opulation. (These trends did not show up as much in Scenario 4, since
he stable states in that scenario either had both species coexisting or
oth extinct.) Additionally, the primary determinants of tipping time in
ll four scenarios were 𝜎2 and the ratio between 𝜎1 and 𝜎2. Increasing
he predator noise hastened extinction; increasing the prey noise 𝜎1
ften delayed extinction or offset the effects of 𝜎 . Furthermore, in
10

2 b
oth Scenarios 2 and 3, the ‘‘worst’’ steady state with the fewest viable
pecies was observed to be absorbing.

With regards to the tipping warnings for initial conditions that we
btained, our results show that noise intensity may increase or decrease
he observed warning level, especially near attraction basin boundaries
ut also substantially further away from them. In Scenario 2, increases
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Fig. 11. Warning level of the stochastic system (3) with 𝐾 = 20, 𝐴 = 2, 𝑎 = 0.004905, 𝑏 = −0.10891, 𝑐 = 1, 𝑑 = 24.28, 𝑚 = 1, 𝑟 = 1. In Fig. 11(a), the noise densities are given by
𝜎1 = 𝜎2 = 0. Therefore, the blue and red regions represent the basins of attraction for steady states involving coexistence (𝐸∗

1 & the stable cycle) and the extinction equilibrium (𝐸0),
espectively. The green line is the attraction basin boundary. In Figs. 11(b)–(f), the noise densities (𝜎1 , 𝜎2) are given by (0.3, 0), (0, 0.3), (0.3, 0.3), (0.6, 0.3) and (0.3, 0.6), respectively.

The blue, yellow, orange and red areas indicate the probability of simultaneous extinction of predator and prey populations as 0% − 20%, 20% − 50%, 50% − 80% and 80% − 100%,
espectively.
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n predator noise were accompanied by more severe warning levels,
hile raising prey noise conversely reduced warning levels; this mir-

ored the pattern found for tipping time in which predator noise was
armful and prey noise was often beneficial for survival. However, in
cenarios 3 and 4, the effect of noise in either population was similar,
amely to blur the attraction basin boundary and raise warning levels
or initial conditions that would ordinarily result in coexistence. This
ay stem from the fact that in these scenarios, both species carry

t least some risk of extinction (rather than just the predator, as in
cenario 2), so noise in both populations may be expected to have
nalogous effects. In all three scenarios that we evaluated warning
evels for, the effects of predator noise dominated those of prey noise.
he diverse insights in our work send us an important message that

n species conservation or farming of commercial species, adaptive
arly warning mechanisms should be developed according to the spe-
ific environment in which the species is located in case catastrophic
opulation extinction occurs.

To incorporate environmental stochasticity into the deterministic
opulation system (2) proposed by Arsie et al. [76], this work as-
umes that the type of environmental stochasticity obeys uncorrelated
tandard white Gaussian noise whose intensity is positively correlated
ith the population density. This classical assumption has been widely
sed in recent years to assess the impact of environmental stochasticity
n the dynamics of biological systems [89,90], based on the fact that
iological populations are more susceptible to environmental factors
uch as rainfall and temperature. In some specific scenarios, the popu-
ation may also suffer from other types of environmental stochasticity
uch as telegraph noise and Lévy noise [78,91]; for example, rare
ut potentially catastrophic events within an ecosystem have been
escribed using Lévy noise. The impact on these types of environmental
tochasticity is beyond the scope of this work, but will be one of our
uture research questions.

At the same time, there are some limitations in this work. One
f the examined scenarios (specifically Scenario 4) involved tipping
nto and out of a basin of attraction for a stable cycle. It is of great
11

ignificance to further analyze which parts of the limit cycle are more
rone to tipping, and the proportion of time that the solution spends
n these parts. Techniques from the literature on phase tipping will be
elpful in this regard. Furthermore, numerical simulations suggest that
he extinction equilibrium may be the unique absorbing state of the
tochastic predator–prey system (3). New theoretical techniques need
o be developed to prove this conjecture.
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