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Abstract
Autotrophs, mixotrophs and bacteria exhibit complex interrelationships containing
multiple ecological mechanisms. A mathematical model based on ecological stoi-
chiometry is proposed to describe the interactions among them.Somedynamic analysis
and numerical simulations of this model are presented. The roles of autotrophs and
mixotrophs in controlling bacterioplankton are explored to examine the experiments
and hypotheses of Medina–Sánchez, Villar–Argaiz and Carrillo for La Caldera Lake.
Our results show that the dual control (bottom-up control and top-down control) of
bacteria by mixotrophs is a key reason for the ratio of bacterial and phytoplankton
biomass in La Caldera Lake to deviate from the general tendency. The numerical bifur-
cation diagrams suggest that the competition between phytoplankton and bacteria for
nutrients can also be an important factor for the decrease of the bacterial biomass in
an oligotrophic lake.
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1 Introduction

Autotrophs (Autotrophic phytoplankton) and mixotrophs (mixotrophic phytoplank-
ton) are two important components of phytoplankton in lakes. Autotrophs generally
use photosynthesis to combine inorganic matters into organic matters for their own
growth (Crane and Grover 2010; Stickney et al. 2000). Mixotrophs are the combina-
tion of autotrophic and heterotrophic nutrition, which can not only synthesize organic
matters by photosynthesis, but also supply its own growth by ingesting bacteria and
other microorganisms (Edwards 2019). Bacteria are also an important part of aquatic
communities. They degrade organic matters and play indispensable roles in restor-
ing water quality and maintaining the sustainable development of aquatic ecosystems
(Chang et al. 2021; Grover 2003; Kong et al. 2018).

There are complex interactions between autotrophs, mixotrophs and bacteria with
a variety of biological mechanisms (see Fig. 1). Nutrients and light are two essential
resources for the growth of autotrophs (Chen et al. 2015; Yoshiyama and Nakajima
2002; Zhang et al. 2021). In the case of autotrophic nutrition, mixotrophs need to
consume light and nutrients. This means that autotrophs and mixotrophs compete for
light and nutrients (Moeller et al. 2019; Nie et al. 2019, 2020; Wilken et al. 2014a). In
aquatic ecosystems, autotrophs and mixotrophs have an important impact on bacterial
growth and biomass. First, autotrophs and mixotrophs release organic carbon through
photosynthesis, which is an essential resource for bacterial growth (Edwards 2019;
Wang et al. 2007). This creates a bottom-up control of bacteria. Second, mixotrophs
in heterotrophic nutrition feed on bacteria and produce a top-down control for bacteria
(Edwards 2019; Grover 2003). Third, the survival and reproduction of bacteria depend
on organic carbon and nutrients (Crane and Grover 2010; Wang et al. 2007). This
shows that there is a direct competition among autotrophs, mixotrophs and bacteria
for nutrients. According to the above analysis, it is of great interest to propose a
mathematical model to describe this complicated relationship among them. This is the
original motivation of the paper.

Medina-Sánchez et al. (2004) evaluated the effects of biotic and abiotic factors
on bacterioplankton production and biomass in La Caldera Lake, which is located
in Spain. This lake is a high mountain lake with a surface area of 20,000 m2. Its
average water depth is 4.3 m (from 2 to 14 m), and nutrients are extremely scarce.
Organic carbon is generated from phytoplankton photosynthesis, and the input of
external organic carbon is negligible. Based on the data and experimental analysis
from 1986 to 1999, they pointed out that phytoplankton were the most important
factor for controlling bacterial biomass in this lake. Particularly, a top-down control
of bacteria by mixotrophs was a key reason why the planktonic community of La
Caldera Lake is different from the traditional tendency of a high ratio of bacterial to
phytoplankton biomass in oligotrophic lakes. Another aim of this paper is to examine
these experimental results theoretically via a mathematical model as describe above.

Ecological stoichiometry is a powerful tool for combining energy balance with
multiple nutrients in an ecological system (Sterner and Elser 2002). Theoretical ecol-
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Fig. 1 (Color Figure Online) Autotroph–mixotroph–bacteria interactions in the epilimnion

ogy and experimental results have proved the importance of ecological stoichiometry.
Models based on ecological stoichiometry are used to explore various ecologicalmech-
anisms and explain some existing paradoxes, such as producer–grazer systems (Li
et al. 2011; Loladze et al. 2000; Peace and Wang 2019; Wang et al. 2008), three
species model (Loladze et al. 2004; Peace 2015), plant and herbivore interactions
(Rong et al. 2020), and organic matter decomposition (Kong et al. 2018; Wang et al.
2007). There is increasing recognition that phytoplankton including autotrophs and
mixotrophs have varying nutrient/carbon ratios, which indicate their quality for zoo-
plankton. It is thought to have important implications on the aquatic ecosystems
(Loladze et al. 2000; Sterner and Elser 2002). In contrast, bacteria generally have
a fixed ratio of nutrient/carbon. We will construct a stoichiometric model to explore
autotroph–mixotroph–bacteria interactions.

Most lakes on theEarth have the phenomenonof stratification (Boehrer andSchultze
2008). Lakes are generally separated by a thermocline into two parts: epilimnion and
hypolimnion (Boehrer and Schultze 2008; Zhang et al. 2021). Due to the abundant
light and strong turbulence, the epilimnion is the upper warmer layer, which is usually
well-mixed. The hypolimnion is the bottom colder layer which is usually dark and
relatively undisturbed. Light from the surface of the lake gradually weakens with the
increase of lake depth (Hsu and Lou 2010; Jiang et al. 2019; Peng and Zhao 2016;
Wang et al. 2007). Nutrients from the bottom of the lake go through the hypolimnion
and reach the epilimnion by water exchange (Wang et al. 2007; Zhang and Shi 2021;
Zhang et al. 2018).

Autotroph–bacteria interactions in lakes have been modeled by many researchers
(Heggerud et al. 2020; Wang et al. 2007). Various mathematical models have been
developed to explore autotrophs and mixotrophs competition for nutrients or light in
lakes (Moeller et al. 2019; Nie et al. 2019, 2020; Wilken et al. 2014a). To our knowl-
edge, none of models consider autotroph–mixotroph–bacteria complex interactions
(see Fig. 1). In view of the existing research and the above discussion, we will pro-
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pose a mathematical model to characterize the interactions of autotrophs, mixotrophs
and bacteria based on ecological stoichiometry. Our model extends, by incorporating
mixotrophs, the work of Wang et al. (2007) where bacteria–algae interactions were
modeled in the epilimnion.

The rest of the paper is organized as follows. In Sect. 2, we derive a stoichiomet-
ric model to explore the interactions of autotrophs, mixotrophs and bacteria in the
epilimnion. In Sect. 3, we investigate the experiments and hypotheses of Medina-
Sánchez, Villar-Argaiz and Carrillo in (Medina-Sánchez et al. 2004) based on this
model. According to theoretical analysis and numerical simulations, we evaluate the
roles of autotrophs and mixotrophs in controlling bacterioplankton in aquatic ecosys-
tems by using the realistic environmental parameters. In the discussion section, we
summarize our findings and state some questions for future study.

2 Derivation of theModel

We propose a stoichiometric model to describe the interactions of autotrophs,
mixotrophs, bacteria, dissolved nutrients and dissolved organic carbon in the epil-
imnion. The epilimnion is generally a well-mixed layer due to turbulent diffusion
effect (Huisman and Weissing 1994; Wüest and Lorke 2003; Yoshiyama and Naka-
jima 2002). Assume that x is the depth coordinate of the lake, x = 0 is the water
surface and x = L is the bottom of the epilimnion. Our model contains seven com-
plex nonlinear ordinary differential equations, characterizing the rate of change for
autotrophs (A), autotrophic cell quota (Qa), mixotrophs (M), mixotrophic cell quota
(Qm), dissolved nutrients (N ), bacteria (B) and organic carbon (C). All the variables
and parameters with biological significance and realistic values of the model are listed
in Table 1.

According to the Lambert-Beer law (Huisman and Weissing 1994), the light inten-
sity at the depth x of a lake is

I (x, A, M) = Iin exp
(−Kbgx − (ka A + kmM)x

)
, 0 < x < L.

The growth of autotrophs is assumed to be mainly dependent on dissolved nutrients
N and light I (x, A, M). The growth function of autotrophs takes the multiplication
of a Monod form and a Droop form (Heggerud et al. 2020; Wang et al. 2007; Zhang
et al. 2021) as

μa(A, Qa, M) = ra

(
1 − Qmin,a

Qa

)
Īa(A, M),

where

Īa(A, M) = 1

L

∫ L

0

I (x, A, M)

I (x, A, M) + ha
dx = 1

W
ln

(
Iin + ha

I (L, A, M) + ha

)
,
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andW = L(Kbg + ka A+ kmM). Here Qmin,a is the minimum dissolved nutrient cell
quota of autotrophs. The loss of autotrophic biomass density is da A due to respiration,
predation and death. In the bottom of the epilimnion, there are phytoplankton sinking
and water exchange. Let va and D be the sinking rate and exchange rate, respectively.
The nutrient uptake rate of autotrophs is ρa(Qa)ga(N ), where

ρm(Qm) = δm
Qmax,m − Qm

Qmax,m − Qmin,m
, Qmin,m ≤ Qm ≤ Qmax,m,

gm(N ) = N

lm + N
.

The cell quota dilution rate of autotrophs is μa(A, Qa, M).
Mixotrophs are a combination of autotrophic and heterotrophic nutrition (Edwards

2019). In autotrophic activities, the growth of mixotrophs alsomainly depends on light
andnutrient availability; thus, they competewith autotrophs. In heterotrophic situation,
mixotrophsmainly ingest bacteria and sometimes a small amount of autotrophic organ-
isms (Crane and Grover 2010; Moeller et al. 2019;Wilken et al. 2014a). To investigate
the interactions between phytoplankton and bacteria, we here assume that mixotrophs
only feed on bacteria in heterotrophic condition. The growth rate of mixotrophs is a
complex function containing the light density I (x, A, M), mixotrophic cell quota Qm

and heterotrophic bacteria B (Edwards 2019) as

μm(A, M, Qm, B) =
(
1 − Qmin,m

Qm

) (
rm Īm(A, M) + eθ f (B)

)
,

where

Īm(A, M) = 1

L

∫ L

0

I (x, A, M)

I (x, A, M) + hm
dx = 1

W
ln

(
Iin + hm

I (L, A, M) + hm

)
,

f (B) = aB

δ + B
.

Here Qmin,m is the minimum nutrient cell quota of mixotrophs, e is conversion effi-
ciency, and θ is the ratio of bacterial to mixotrophic carbon in per cell.

The reduction of biomass of mixotrophs consists of three parts: lost biomass dmM
due to death, respiration and predation, sinking biomass vmM/L and water exchange
biomass DM/L . The absorption of dissolved nutrients of mixotrophs mainly comes
from dissolved nutrients and heterotrophic bacteria. The mixotrophic nutrient uptake
rate is ρm(Qm)gm(N ) + q f (B), where

ρm(Qm) = δm
Qmax,m − Qm

Qmax,m − Qmin,m
, Qmin,m ≤ Qm ≤ Qmax,m, gm(N ) = N

lm + N
.

The cell quota dilution rate of mixotrophs is μm(A, M, Qm, B).
The bacterial growth function depends on dissolved nutrients and organic carbon

in the following form

gb(N ,C) = N

κn + N

C

κc + C
.
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The reduction of bacterial biomass includes lost biomass dbB as death, respiration
and grazing, water exchange biomass DB/L , and biomass f (B)M of mixotroph
predation.

The dissolved organic carbon (DOC) comes from the exudation of phytoplankton
(autotrophs and mixotrophs) photosynthesis (Wang et al. 2007). It is expressed as

μc(A, Qa, M, Qm) = ra
Qmin,a

Qa
Īa(A, M)A + rm

Qmin,m

Qm
Īm(A, M)M .

The reduction of dissolved organic carbon is decided by the consumption of bacteria
rbgb(N ,C)B/γ and water exchange DC/L .

The change of dissolved nutrients N depends on consumption by autotrophs,
mixotrophs and bacteria with consumption rate

ρa(Qa)ga(N )A + ρm(Qm)gm(N )M + qrbgb(N ,C)B

and nutrient exchange (D/L)(Nb − N ) at the bottom of the epilimnion, where Nb is
a fixed nutrient input concentration.

According to the above formulations, we obtain the following autotroph–
mixotroph–bacteria interaction model:

dA

dt
= μa(A, Qa, M)A︸ ︷︷ ︸

growth of autotrophs

− da A︸︷︷︸
loss

− va + D

L
A,

︸ ︷︷ ︸
sinking and exchange

dQa

dt
= ρa(Qa)ga(N )

︸ ︷︷ ︸
nutrient uptake of autotrophs

− μa(A, Qa, M)Qa,︸ ︷︷ ︸
dilution due to autotrophic growth

dM

dt
= μm(A, M, Qm, B)M︸ ︷︷ ︸

growth of mixotrophs

− dmM︸ ︷︷ ︸
loss

− vm + D

L
M,

︸ ︷︷ ︸
sinking and exchange

dQm

dt
= ρm(Qm)gm(N ) + q f (B)

︸ ︷︷ ︸
nutrient uptake of mixotrophs

− μm(A, M, Qm, B)Qm,︸ ︷︷ ︸
dilution due to mixotrophic growth

dN

dt
= D

L
(Nb − N )

︸ ︷︷ ︸
nutrient exchange

− ρa(Qa)ga(N )A
︸ ︷︷ ︸

autotrophic consumption

− ρm(Qm)gm(N )M
︸ ︷︷ ︸
mixotrophic consumption

− qrbgb(N ,C)B,
︸ ︷︷ ︸
bacterial consumption

dB

dt
= rbgb(N ,C)B

︸ ︷︷ ︸
bacterial growth

− dbB︸︷︷︸
loss

− D

L
B

︸︷︷︸
exchange

− f (B)M,
︸ ︷︷ ︸

predation by mixotrophs

dC

dt
= μc(A, Qa, M, Qm)︸ ︷︷ ︸

DOC exudation from autotrophs and mixotrophs

− 1

γ
rbgb(N ,C)B

︸ ︷︷ ︸
consumption by bacteria

− D

L
C .

︸ ︷︷ ︸
exchange

(1)
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Model (1) describes the complex interrelationships among autotrophs, mixotrophs
and bacteria. If mixotrophs are not considered (M = 0 and Qm = 0), model (1) will
be transformed into a stoichiometric autotroph–bacteria interaction model, which is
studied in (Wang et al. 2007).

In view of the biological meaning of (1), we will investigate the solutions of (1)
with the initial values satisfying

A(0) > 0, Qmin,a ≤ Qa(0) ≤ Qmax,a, M(0) > 0,

Qmin,m ≤ Qm(0) ≤ Qmax,m, N (0) > 0, B(0) > 0,C(0) > 0.
(2)

By using standard mathematical arguments, we conclude that for the initial values
(2), (1) has a unique positive solution defined for all t ≥ 0, and solutions with initial
conditions in the set

� :=
{
(A, Qa, M, Qm , N , B,C) ∈ R

7+
∣∣∣
∣
A ≥ 0, M ≥ 0, N ≥ 0, B ≥ 0,C ≥ 0,
Qmin,a ≤ Qa ≤ Qmax,a, Qmin,m ≤ Qm ≤ Qmax,m

}

will remain there for all forward time.
In oligotrophic lake ecosystems, the general tendency is to have a high ratio of

bacterial to phytoplankton biomass. However, Medina-Sánchez, Villar-Argaiz and
Carrillo (Medina-Sánchez et al. 2004) found that this ratio shows the opposite trend in
La Caldera Lake, and the similar phenomenon also appears in other middle and high
latitude lakes. The possible factor for this phenomenon is the control of bacteria by
autotrophs and mixotrophs. Especially, the dual control (bottom-up control and top-
down control) of mixotrophs is a key reason for the planktonic community structure
of La Caldera Lake.

In the following section, we will examine the above statements and hypotheses in
(Medina-Sánchez et al. 2004) by using model (1). The reason for using model (1) is
mainly based on the following considerations. Actual data in La Caldera Lake from
1986 to 1999 show that autotrophs, mixotrophs and bacteria have been interacting in
aquatic communities, and the growth of bacteria depends on the release of organic
carbon by photosynthesis of phytoplankton. This is in line with the assumptions of
model (1). The nutrient input concentration is relatively low in the model, and only
the epilimnion is considered. These are consistent with the fact that La Caldera Lake
is an oligotrophic shallow lake. Therefore, model (1) can be well connected to aquatic
ecosystems in La Caldera Lake.

3 Autotrophs andMixotrophs Controlling Bacteria

In this section, we investigate the roles of autotrophs and mixotrophs in controlling
bacterioplankton in lakes. There is a bounded set that attracts all solutions of (1)
with initial conditions in � and system (1) is dissipative. The proof can be found in
Appendix.
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Theorem 1 The set

� :=
{

(A, Qa, M, Qm, N , B,C) ∈ �

∣∣∣
∣∣

AQa + MQm + qB + N ≤ Nb,

C ≤ LNb
D

(
ra

Qmin,a
+ rm

Qmin,m

)
}

is a globally attracting region, which means that system (1) is dissipative.

Model (1) is a very complex system such that it is difficult to describe its whole
dynamic properties. In the following discussion, in order to examine experimental
results and hypotheses in Medina-Sánchez et al. (2004), we will consider two sub-
systems: autotroph–bacteria model and mixotroph–bacteria model. By exploring the
bacterial biomass in the two subsystems, we will evaluate the effect of autotrophs and
mixotrophs in controlling bacterioplankton in lakes.

3.1 Autotroph–Bacteria Model

In the absence of mixotrophs, we consider the autotroph–bacteria interactions as a
special case and choose

μa(A, Qa) = μa(A, Qa, 0) = ra

(
1 − Qmin,a

Qa

)
Īa(A, 0),

μc(A, Qa) = μc(A, Qa, 0, 0) = ra
Qmin,a

Qa
Īa(A, 0)A,

and model (1) reduces to

dA

dt
= μa(A, Qa)A − da A − va + D

L
A,

dQa

dt
= ρa(Qa)ga(N ) − μa(A, Qa)Qa,

dN

dt
= D

L
(Nb − N ) − ρa(Qa)ga(N )A − qrbgb(N ,C)B,

dB

dt
= rbgb(N ,C)B − dbB − D

L
B,

dC

dt
= μc(A, Qa) − 1

γ
rbgb(N ,C)B − D

L
C .

(3)

Wang et al. (2007) has investigated dynamics of model (3) and showed that (3) has
three possible steady states as follows:
Nutrient-only steady state E1 = (0, Qa1, Nb, 0, 0), where

Qa1 = raQmin,a(Qmax,a − Qmin,a) Īa(0, 0) + δaQmax,aga(Nb)

ra(Qmax,a − Qmin,a) Īa(0, 0) + δaga(Nb)
.
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Autotroph–nutrient–organic carbon steady state E2 = (A2, Qa2, N2, 0,C2), where
A2, Qa2, N2,C2 satisfy

μa(A, Qa) − da − va + D

L
= 0, ρa(Qa)ga(N ) − μa(A, Qa)Qa = 0,

D

L
(Nb − N ) − ρa(Qa)ga(N )A = 0, μc(A, Qa) − D

L
C = 0.

(4)

Coexistence steady state E3 = (A3, Qa3, N3, B3,C3), where A3, Qa3, N3, B3,C3
satisfy

μa(A, Qa) − da − va + D

L
= 0, ρa(Qa)ga(N ) − μa(A, Qa)Qa = 0,

D

L
(Nb − N ) − ρa(Qa)ga(N )A − qrbgb(N ,C)B = 0,

rbgb(N ,C) − db − D

L
= 0, μc(A, Qa) − 1

γ
rbgb(N ,C) − D

L
C = 0.

(5)

We define the following critical values:

d∗
a := μa(0, Qa1) − va + D

L
, db1 := rbgb(N2,C2) − D

L
. (6)

The threshold d∗
a represents the growth rate of autotrophs, which is related to the

input nutrient concentration, water surface light intensity andminimum andmaximum
autotrophic cell quota. The threshold db1 is the growth rate of bacteria when its growth
depends on nutrient and organic carbon concentration. From Wang et al. (2007), the
following conclusions hold:

1. E1 always exists and is locally asymptotically stable if da > d∗
a ;

2. E2 exists and is unique if 0 < da < d∗
a and it is locally asymptotically stable if

db > db1.

This indicates that d∗
a is a threshold for autotrophs to invade a lake, and db1 is a

threshold for bacteria to invade a lake in the presence of autotrophs.
We next establish the bifurcation of E3 from E2 at db = db1 using bifurcation

theory (see (Crandall and Rabinowitz 1971, Theorem 1.7) and (Shi and Wang 2009,
Theorem 3.3 and Remark 3.4)). The proof of the following theorem can be found in
the Appendix.

Theorem 2 If 0 < da < d∗
a holds, then

(i) model (3) has at least one positive coexistence steady state E3 for 0 < db < db1;
(ii) near (db1, A2, Qa2, N2, 0,C2), the set of the coexistence steady states is a smooth

curve with a form {(db1(s), A3(s), Qa3(s), N3(s), B3(s),C3(s)) : 0 < s < δ1}
for some δ1 > 0;
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Fig. 2 Parameter ranges in the (da , db) plane with different extinction/existence scenarios. �i , i = 1, 2, 3
are defined in (7), d∗

a is a critical threshold for autotroph invasion, and db1 is a critical threshold for bacteria
invasion when autotrophs exist. Here the rest parameter values are from Table 1

According to the above model analysis, we divide the parameters (da, db) plane as
follows:

�1 := {(da, db) : da > d∗
a },

�2 := {(da, db) : 0 < da < d∗
a , db > db1},

�3 := {(da, db) : 0 < da < d∗
a , 0 < db < db1}.

(7)

As a result of the presence of Nb, the system will not be completely extinct. The
extinction of autotrophs and bacteria is inevitable if the autotrophic loss rate da is
larger than d∗

a , regardless of the value of db (see �1 in Fig. 2). Theoretical analysis
and numerical simulations also indicate that E1 is stable for (3) in �1. This is because
the organic carbon released by photosynthesis of autotrophs is a essential resource for
the bacterial growth. Hence, the extinction of autotrophs will cause the extinction of
bacteria. This means that autotrophs have a bottom-up control of bacteria.

Autotrophs, nutrients and organic carbon can coexist in a lake if the loss rate of
bacteria is large (see �2 in Fig. 2). In this case, E2 is stable in the region �2. From
(4), (6) and Fig. 2, db1 is a strictly monotone increasing function with respect to
da . This shows that the decrease of the biomass of autotrophs is conducive to the
invasion of bacteria into the lake when autotrophs exist. Autotrophs and bacteria can
appear together in �3 for two different cases. The first case is that the two coexist in
a positive steady state E3 (see Theorem 2 and da ∈ (0.077, 0.138) ∪ (0.252, 0.287)
in Fig. 3). It is not known whether E3 is unique and stable although it is confirmed
by numerical simulations. The second case is that they coexist at a periodic solution
(see da ∈ (0.138, 0.252) in Fig. 3). Bacterial biomass and autotrophic biomass exhibit
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Fig. 3 Bifurcation diagrams of bacteria and autotrophs for da ∈ (0, 0.4) and db = 0.04. Figures show the
influence of autotrophic biomass density changes on bacterial biomass density by a bottom-up control and
competition. Here the rest parameter values are from Table 1
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Fig. 4 Bifurcation diagrams of bacteria for Nb ∈ (0, 800) and Iin ∈ (0, 800). The results show the effects
of abiotic factors (the water surface light intensity and nutrient input concentration) on bacterial biomass
for the autotrophic loss rate da = 0.06 or da = 0.17. Here db = 0.08 and the rest parameter values are
from Table 1

periodic oscillations. It is consistent with the findings in Wang et al. (2007). In Fig. 3,
the numerical bifurcation diagrams imply that E3 has two stability switches for the
autotrophic loss rate da .

Inmodel (3), the nutrient input concentration Nb and thewater surface light intensity
Iin are two important abiotic factors. Figure 4a shows that the high nutrient input
concentration is beneficial to improve the bacterial biomass for the autotrophic loss
rate da = 0.17. The reason for this phenomenon is that high nutrient concentration can
weaken the competition between autotrophs and bacteria for nutrients, which leads to
the increase of the bacterial biomass. If the biomass of autotrophs is relatively high
(da = 0.06), it is difficult to raise the bacterial biomass with the increase of the nutrient
concentration. This indicates that the competition between autotrophs and bacteria for
nutrients directly affects the bacterial biomass in oligotrophic aquatic ecosystems.
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Only moderate light intensity is conducive to the growth of bacteria. The lower and
higher light intensities are harmful to bacteria (see Fig. 4b). This is because organic
carbon and nutrients are two essential resources for the bacterial growth. The lower
light intensity reduces organic carbon production in autotrophs. On the contrary, the
higher light intensity causes a rapid increase in the biomass of autotrophs, which
consumes more nutrients.

From Figs. 2 and 3, one can observe the extinction of bacteria for the smaller
or larger da . The organic carbon released by autotrophs is an essential resource for
the survival of bacteria, thus forming a bottom-up control of bacteria. The larger da
would lead to the death of autotrophs and then cause the extinction of bacteria. Another
different scenario is the smallerda . In this situation, the biomass of autotrophs increases
drastically. Although autotrophs producemore organic carbon for the bacterial growth,
it also consumes a great quantity of nutrients, which are another essential resource for
bacteria to survive. Therefore, the principle of competition exclusion holds, and it is
likely to cause the extinction of bacteria. It can be seen from the above discussion that
the bacterial biomass ismore sensitive to the biomass change of autotrophs than abiotic
factors. From Fig. 4a, in an oligotrophic lake, the competition between autotrophs and
bacteria for nutrients may also be one of important reason for the decrease of the
bacterial biomass.

3.2 Mixotroph–Bacteria Model

In the absence of autotrophs, we consider the mixotroph–bacteria interactions as a
special case and choose

μm(M, Qm, B) = μm(0, M, Qm, B) =
(
1 − Qmin,m

Qm

)
(
rm Īm(0, M) + eθ f (B)

)
,

μc(M, Qm) = μc(0, 0, M, Qm) = rm
Qmin,m

Qm
Īm(0, M)M .

Model (1) transforms into

dM

dt
= μm(M, Qm, B)M − dmM − vm + D

L
M,

dQm

dt
= ρm(Qm)gm(N ) + q f (B) − μm(M, Qm, B)Qm,

dN

dt
= D

L
(Nb − N ) − ρm(Qm)gm(N )M − qrbgb(N ,C)B,

dB

dt
= rbgb(N ,C)B − dbB − D

L
B − f (B)M,

dC

dt
= μc(M, Qm) − 1

γ
rbgb(N ,C)B − D

L
C .

(8)

Compared with the model (3), the relationship between mixotrophs and bacte-
ria is more complicated. Mixotrophs release organic carbon by photosynthesis in

123



Dynamics of Stoichiometric Autotroph–Mixotroph–Bacteria… Page 15 of 30     5 

autotrophic conditions to support the growth of bacteria, and they compete for nutri-
ents. In heterotrophic cases, mixotrophs feed on bacteria.

We investigate the existence and local stability of boundary and positive steady
states of (8). The possible steady states of (8) are listed below:
Nutrient-only steady state E4 = (0, Qm4, Nb, 0, 0), where

Qm4 = rmQmin,m(Qmax,m − Qmin,m) Īm(0, 0) + δmQmax,mgm(Nb)

rm(Qmax,m − Qmin,m) Īm(0, 0) + δmgm(Nb)
.

Mixotroph–nutrient–organic carbon steady state E5 = (M5, Qm5, N5, 0,C5), where
M5, Qm5, N5,C5 solve

μm(M, Qm, 0) − dm − vm + D

L
= 0, ρm(Qm)gm(N ) − μm(M, Qm, 0)Qm = 0,

D

L
(Nb − N ) − ρm(Qm)gm(N )M = 0, μc(M, Qm) − D

L
C = 0.

(9)

Coexistence steady state E6 = (M6, Qm6, N6, B6,C6), where M6, Qm6, N6, B6,C6
solve

μm(M, Qm, B) − dm − vm + D

L
= 0,

ρm(Qm)gm(N ) + q f (B) − μm(M, Qm, B)Qm = 0,

D

L
(Nb − N ) − ρm(Qm)gm(N )M − qrbgb(N ,C)B = 0,

rbgb(N ,C)B − dbB − D

L
B − f (B)M = 0,

μc(M, Qm) − 1

γ
rbgb(N ,C)B − D

L
C = 0.

We let

d∗
m := μm(0, Qm4, 0) − vm + D

L
, db2 := rbgb(N5,C5) − D

L
− aM5

δ
. (10)

The quantity d∗
m describes the growth rate of mixotrophs. It is related to the nutrient

input concentration, light intensity and mixotrophic cell quota. The quantity db2 is the
growth rate of bacteria containing nutrients, organic carbon and mixotrophs.

The following result determines the existence and stability of E4, E5 and E6. The
proof can be found in the Appendix.

Theorem 3 (i) E4 always exists and it is locally asymptotically stable if dm > d∗
m;

(ii) E5 exists and is unique if 0 < dm < d∗
m and it is locally asymptotically stable if

db > db2;
(iii) Assume that 0 < dm < d∗

m. Then model (8) has at least one positive coexistence
steady state E6 for 0 < db < db2;
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Fig. 5 Parameter ranges in the (dm , db) plane with different extinction/existence scenarios. �i , i = 4, 5, 6
are defined in (11), d∗

m is a critical threshold for mixotroph invasion, and db2 is a critical threshold for
bacteria invasion when mixotrophs exist. Here the rest parameter values are from Table 1

(iv) Near (db2, M5, Qm5, N5, 0,C5), the set of the coexistence steady states is a smooth
curve with a form {(db(s), M6(s), Qm6(s), N6(s), B6(s),C6(s)) : 0 < s < δ2}
for some δ2 > 0.

Theorem 3 shows that d∗
m and db2 are the critical values for mixotrophs and bacteria

in the epilimnion from extinction to survival respectively. Compared with the expres-
sion of db1 in (6), there is one more term aM5/δ in db2. It is caused by mixotrophs
ingesting bacteria. Hence, mixotrophs have a top-down control of bacteria. This indi-
cates that bacteria are more difficult to invade the aquatic system due to the influence
of mixotrophs on bacterial predation.

For the convenience of the following discussion, the parameter space of (dm, db)
is partitioned into the following regions according to Theorem 3 (see Fig. 5):

�4 := {(dm, db) : dm > d∗
m},

�5 := {(dm, db) : 0 < dm < d∗
m, db > db2},

�6 := {(dm, db) : 0 < dm < d∗
m, 0 < db < db2}.

(11)

During autotrophic activities, mixotrophs release organic carbon by photosynthesis to
support the bacterial growth. It reveals a bottom-up control of bacteria by mixotrophs.
If mixotrophs are extinct, bacteria will not survive. Therefore, only if the loss rate of
mixotrophs is greater than d∗

m , solutions of (8) converge to E4 in the region�4 (see (i)
in Theorem 3). Conclusion (ii) in Theorem 3 shows that E5 is stable in the region �5.
This means that mixotrophs, nutrients and organic carbon can coexist in an aquatic
ecosystem. Theorem 3 and numerical bifurcation diagrams show that mixotrophs and
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Fig. 6 Bifurcation diagrams of bacteria and mixotrophs for dm ∈ (0, 0.4) and db = 0.04. Figures show
the influence of mixotrophic biomass density changes on bacterial biomass density by a dual control and
competition. Here the rest parameter values are from Table 1

bacteria can also coexist in a stable positive steady state E6 or a positive periodic
solution in �6. Note that mixotrophs and bacteria directly compete for nutrients; the
low loss rate of mixotrophs causes a rapid decrease of bacterial biomass, or even
extinction (see Fig. 6).

By comparing the effects of autotrophs andmixotrophs on bacteria in the autotroph–
bacteria model and the mixotroph–bacteria model, it is found that there are similarities
as well as many differences between them. They all have a bottom-up control of
bacteria through the organic carbon released by photosynthesis. The result of this
control is that the extinction of autotrophs and mixotrophs will inevitably bring about
the extinction of bacteria (see �1 in Fig. 2 and �4 in Fig. 5). Because of the direct
competition for nutrients, the lower loss rate of autotrophs or mixotrophs will cause
the extinction of bacteria (see�2 in Fig. 2 and�5 in Fig. 5). Autotrophs and bacteria or
mixotrophs and bacteria can coexist in lakes, but there are differences between the two
coexistence. One difference is the parameter range of bacterial survival. The loss rate
range of bacterial survival in the model (8) is much smaller than that in the model (3)
(see �3 in Fig. 2 and �6 in Fig. 5). Another difference is the bacterial biomass. From
(a) in Figs. 3 and 6, bacteria in the model (3) exhibit strong periodic oscillation and
higher biomass compared to the model (8). The main reason for the above differences
is the predation effect of mixotrophs on bacteria, which produces a top-down control.

The growth of autotrophs generally declines sharply in winter or under oligotrophic
conditions. But mixotrophs exhibit better adaptability due to heterotrophic activities.
Even when the light intensity and nutrients are insufficient, they can still survive by
preying on bacteria. La Caldera Lake is an oligotrophic high mountain lake. This
makes mixotrophs to obtain an advantage in the competition with autotrophs and to
occupy a dominant position through heterotrophic effects within a certain period of
time. Compared with the theoretical analysis and numerical simulations of models
(3) and (8), it is found that the top-down control of bacteria by mixotrophs makes
an obvious difference between the two models and significantly reduces the bacterial
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Fig. 7 Bifurcation diagrams of bacteria for Nb ∈ (0, 200) and Iin ∈ (0, 400). The results show the effects
of abiotic factors on bacterial biomass for the mixtotrophic loss rate dm = 0.17 or dm = 0.28. Here
db = 0.08 and the rest parameter values are from Table 1

biomass. This also shows that the top-down control is a key factor for the composition
of phytoplankton and bacteria in La Caldera Lake.

Wenowexplore the influence of Nb and Iin on the bacterial biomass in themodel (8).
FromFig. 7, it can be observed that the phenomenon similar to Fig. 4 is that the increase
in the input nutrient concentration and the moderate light intensity are beneficial to
the bacterial growth. As a result of the predation of bacteria by mixotrophs and their
competition for nutrients, the high biomass of mixotrophs can cause the extinction of
bacteria even if the nutrients are abundant (see dm = 0.17 in Fig. 7a). An interesting
observation is that the bacterial biomass remains unchanged when the nutrient input
concentration reaches a certain value (see dm = 0.28 in Fig. 7a). This is mainly caused
by the predator of mixotrophs on bacteria, resulting in a top-down control.

In the models (3) and (8), we explore the influence of autotrophs and mixotrophs
in controlling bacterioplankton respectively. From Figs. 3 and 6, one can also observe
that the biomass of bacteria is very sensitive to the change of the biomass of autotrophs
or mixotrophs near the thresholds. The small change for the biomass of autotrophs or
mixotrophswill have a greater impact on the bacterial biomass. The theoretical analysis
and numerical simulations in the models (3) and (8) indicate that both autotrophs and
mixotrophs can reduce the bacterial biomass through a bottom-up control. In particular,
the dual control (bottom-up control and top-down control) of mixotrophs has a more
obvious effect on the bacterial biomass because of the predation of mixotrophs on
bacteria. This implies that the role of mixotrophs is more prominent in reducing the
bacterial biomass.

3.3 Autotroph–Mixotroph–Bacteria Model

The interactions among autotrophs, mixotrophs and bacteria are extremely complex
including competition and predation, bottom-up and top-down control. It is chal-
lenging to characterize the complete dynamic properties of model (1). Here we only
describe the existence and local stability of steady states of (1). Model (1) may have
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seven steady states:

e1 = (0, Qa1, 0, Qm1, Nb, 0, 0), e2 = (A∗
2, Q

∗
a2, 0, Q

∗
m2, N

∗
2 , 0,C∗

2 ),

e3 = (0, Q∗
a3, M

∗
3 , Q∗

m3, N
∗
3 , 0,C∗

3 ), e4 = (A∗
4, Q

∗
a4, M

∗
4 , Q∗

m4, N
∗
4 , 0,C∗

4 ),

e5 = (A∗
5, Q

∗
a5, 0, Q

∗
m5, N

∗
5 , B∗

5 ,C∗
5 ), e6 = (0, Q∗

a6, M
∗
6 , Q∗

m6, N
∗
6 , B∗

6 ,C∗
6 ),

e7 = (A∗
7, Q

∗
a7, M

∗
7 , Q∗

m7, N
∗
7 , B∗

7 ,C∗
7 ).

We consider the following critical death rates:

d∗
a1 := μa(0, Q

∗
a3, M

∗
3 ) − va + D

L
, d∗

a2 := μa(0, Q
∗
a6, M

∗
6 ) − va + D

L
,

d∗
m1 := μm(A∗

2, 0, Q
∗
m2, 0) − vm + D

L
, d∗

m2 := μm(A∗
5, 0, Q

∗
m5, 0) − vm + D

L
,

d∗
b1 := rbgb(N

∗
2 ,C∗

2 ) − D

L
, d∗

b2 := rbgb(N
∗
3 ,C∗

3 ) − D

L
− aM∗

3

δ
,

d∗
b3 := rbgb(N

∗
4 ,C∗

4 ) − D

L
− aM∗

4

δ
.

By using similar arguments to those in Theorems 2 and 3, wewill show the coexistence
and local stability of boundary steady states of (1).

Theorem 4 (i) The nutrient-only steady state e1 always exists and it is locally asymp-
totically stable if da > d∗

a , dm > d∗
m, where d

∗
a , d∗

m are given in (6) and (10);
(ii) The autotroph-only steady state e2 exists and is unique if 0 < da < d∗

a and it is
locally asymptotically stable if dm > d∗

m1, db > d∗
b1; The mixotroph-only steady

state e3 exists and is unique if 0 < dm < d∗
m and it is locally asymptotically stable

if da > d∗
a1, db > d∗

b2;
(iii) Model (1) has at least one autotroph–mixotroph-only steady state e4 if 0 < da <

d∗
a1, 0 < dm < d∗

m1, one autotroph–bacteria-only steady state e5 if 0 < da <

d∗
a , 0 < db < d∗

b1, and one mixotroph–bacteria-only steady state e6 if 0 < dm <

d∗
m, 0 < db < d∗

b2.

It is very difficult to obtain the existence of coexistence positive steady state e7.
The numerical simulation results indicate that e7 exists if

0 < da < d∗
a2, 0 < dm < d∗

m2, 0 < db < d∗
b3.

Model (1) can showmore complexdynamic phenomena includingperiodic oscillations
andmultiple stability switches. In consideration of the motivation of the present paper,
we characterize the biomass changes of autotrophs, mixotrophs and bacteria through
numerical simulations and then evaluate their interactions when these three groups
coexist.

From Fig. 8a, it is observed that there exist three interesting phenomena: (1) the
biomass of autotrophs, mixotrophs and bacteria exhibits oscillations; (2) when the
biomass of mixotrophs is relatively high, the biomass of autotrophs and bacteria is at a
relatively low value; (3) the biomass of bacteria is at a low level for a long time, which
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Fig. 8 The interactions between autotrophs, mixotrophs and bacteria. a Autotroph–mixotroph–bacteria
coexistence (da = 0.2, dm = 0.27, db = 0.04); b autotroph–bacteria coexistence (da = 0.2, dm =
0.3, db = 0.27); c mixotroph–bacteria coexistence (da = 0.25, dm = 0.27, db = 0.04); d autotroph–
mixotroph coexistence (da = 0.2, dm = 0.25, db = 0.15). Here the rest parameter values are from Table 1

means that there is a low ratio of bacterial to phytoplankton biomass. These findings
are consistent with the data in La Caldera Lake from 1992 to 1999 in Medina-Sánchez
et al. (2004). If mixotrophs are extinct, autotrophs and bacteria can survive, and the
biomass of bacteria is higher than that of bacteria when the three coexist (see Fig. 8b).
On the contrary, whenmixotrophs and bacteria appear together, the biomass of bacteria
is at a lower value (see Fig. 8c). This indicates that the influence of mixotrophs on
the bacterial biomass is greater than that of autotrophs. Autotrophs and mixotrophs
can coexist since they compete for two different resources (see Fig. 8d). Figure 8 also
shows that if the phytoplankton biomass is relatively high, the bacterial biomass is at
a very low value. This is because in an oligotrophic aquatic ecosystem, phytoplankton
and bacteria compete for nutrients, which are an essential resource of their growth.
Although the increase of phytoplankton biomass provides more organic carbon, it
also consumes more nutrients. This competitive relationship causes the decrease of
bacterial biomass.

These theoretical and numerical findings further confirm the statements of Medina-
Sánchez, Villar-Argaiz and Carrillo in Medina-Sánchez et al. (2004). Phytoplankton
containing autotrophs and mixotrophs are the main reason for the lower bacterial
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biomass in La Caldera Lake. The dual control of mixotrophs on bacteria is a key
factor why the biomass ratio of bacteria to phytoplankton in La Caldera Lake deviates
from the traditional trend. There is a direct competition for nutrients among autotrophs,
mixotrophs and bacteria. This competitive relationship is an important factor in the
reduction of the bacterial biomass when the biomass of autotrophs and mixotrophs
increases in an oligotrophic lake.

4 Discussion

Model (1) is proposed to describe autotroph–mixotroph–bacteria interactions based on
the theory of ecological stoichiometry.Motivated by the experiments andhypotheses of
Medina-Sánchez, Villar-Argaiz and Carrillo in (Medina-Sánchez et al. 2004), models
(1) (3) and (8) give more detailed interpretations through theoretical analysis and
numerical simulations. Our results further verify that mixotrophs are a key reason for
the ratio of bacterial and phytoplankton biomass in LaCaldera Lake to deviate from the
general tendency. Our bifurcation diagrams (Figs. 3 and 6) show that the competition
between phytoplankton and bacteria for nutrients can also be an important factor for
the decrease of the bacterial biomass in an oligotrophic lake.

Model (1) is a very complex system containing multiple biological mechanisms.
In the theoretical analysis, we establish the threshold conditions of phytoplankton and
bacteria to invade the aquatic ecosystems for (3), (8) and (1) (see Theorems 2, 3 and
4). But there are still some remaining questions to be solved. For example, how to
prove theoretically that the positive steady state of (3) or (8) will produce multiple
stability switches. Due to the motivation of the present paper, we only do some simple
theoretical analysis for steady state solutions of model (1). According to numerical
simulation results, model (1) produce oscillations and multiple stability switches.
Rigorously investigating more dynamic properties of model (1) is an interesting and
important question.

Our work provides an extension of the research results in (Wang et al. 2007). Wang
et al. (Wang et al. 2007) explored the interactions between bacteria and algae but
without mixotrophs. They stated that an important reason for low nucleic acid (LNA)
bacteria to win the competition is severely phosphorus limitation in Lake Biwa. By
comparing models (3) and (8), it is found that mixotrophs have a more important
impact on the bacterial biomass because of its bottom-up and top-down dual control.
It is of interest to explore the role of mixotrophs in Lake Biwa, and one can expect to
obtain some new insights.

Mixotrophs arewidely distributed in various aquatic ecosystems, ranging from low-
latitude to high-latitude lakes, rivers and oceans (Crane and Grover 2010; Edwards
2019). It effectively increases carbon fixation, transfers more organic matter to higher
trophic levels, and controls the biomass of bacteria. Our study here attempts to model
the interactions between autotrophs, mixotrophs and bacteria, and reveals the impor-
tant role of mixotrophs in aquatic ecosystems. From the present discussion, there are
more interesting biological questions that need to be further explored. For example,
previous studies have shown that mixotrophs not only compete with autotrophs for
resources, but also consume small autotrophic organisms (Crane and Grover 2010;
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Moeller et al. 2019; Wilken et al. 2014a). They form an intraguild predation structure.
In the model (1), we ignore the predation of mixotrophs on autotrophs because of the
motivation of this paper. Zooplankton is also an important part of the aquatic ecolog-
ical community (Loladze et al. 2000; Lv et al. 2016). The addition of zooplankton
to the phytoplankton–bacteria model will produce more complex dynamic behaviors
and provide new biological implications.
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Appendix

Proof of Theorem 1 Let 	 = AQa + MQm + qB + N . It follows from (1) that

d	

dt
=D

L
(Nb − (AQa + MQm + qB + N ))

−
(
da + va

L

)
AQa −

(
dm + vm

L

)
AQm − dbqB

≤D

L
(Nb − 	),

and then lim sup
t→∞

	(t) ≤ Nb. Note that Qmin,a ≤ Qa(t) ≤ Qmax,a, Qmin,m ≤
Qm(t) ≤ Qmax,m for all t ≥ 0. Then

lim sup
t→∞

A(t) ≤ Nb

Qmin,a
, lim sup

t→∞
M(t) ≤ Nb

Qmin,m
.

From the last equation of (1), we have

dC

dt
≤ μc(A, Qa, M, Qm) − D

L
C ≤ ra A + rmM − D

L
C

≤
(

ra
Qmin,a

+ rm
Qmin,m

)
Nb − D

L
C

for sufficiently large t and

lim sup
t→∞

C(t) ≤ LNb

D

(
ra

Qmin,a
+ rm

Qmin,m

)
.

This means that the set � is a globally attracting region and system (1) is dissipative.
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Proof of Theorem 2 By using local bifurcation theory in (Crandall and Rabinowitz
1971), we first show that E3 bifurcates from E2 at db = db1. Define a mapping
F : R+ × R

5 → R
5 by

F(db, A, Qa, N , B,C) =

⎛

⎜⎜⎜⎜
⎝

μa(A, Qa)A − da A − va+D
L A

ρa(Qa)ga(N ) − μa(A, Qa)Qa
D
L (Nb − N ) − ρa(Qa)ga(N )A − qrbgb(N ,C)B

rbgb(N ,C)B − dbB − D
L B

μc(A, Qa) − 1
γ
rbgb(N ,C)B − D

L C

⎞

⎟⎟⎟⎟
⎠

.

It is easy to see that F(db, A2, Qa2 , N2, 0,C2) = 0. Let

P := F(A,Qa ,N ,B,C)(db1, A2, Qa2, N2, 0,C2).

For any (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R
5, we have

P[ξ1, ξ2, ξ3, ξ4, ξ5] =

⎛

⎜⎜⎜⎜
⎝

p1(ξ1, ξ2)
p2(ξ1, ξ2, ξ3)

p3(ξ1, ξ2, ξ3, ξ4)
0

p4(ξ1, ξ2, ξ4, ξ5)

⎞

⎟⎟⎟⎟
⎠

,

where

p1(ξ1, ξ2) =∂μa

∂A
(A2, Qa2)A2ξ1 + ∂μa

∂Qa
(A2, Qa2)A2ξ2,

p2(ξ1, ξ2, ξ3) = − ∂μa

∂A
(A2, Qa2)Qa2ξ1+

(
∂ρa

∂Qa
(Qa2)ga(N2)−ra Īa(A2, 0)

)
ξ2

+ρa(Qa2)
∂ga
∂N

(N2)ξ3,

p3(ξ1, ξ2, ξ3, ξ4) = − ρa(Qa2)ga(N2)ξ1 − ∂ρa

∂Qa
(Qa2)ga(N2)A2ξ2

−
(
D

L
+ ρa(Qa2)

∂ga
∂N

(N2)A2

)
ξ3 − qrbgb(N2,C2)ξ4,

p4(ξ1, ξ2, ξ4, ξ5) =∂μc

∂A
(A2, Qa2)ξ1+ ∂μc

∂Qa
(A2, Qa2)ξ2− 1

γ
rbgb(N2,C2)ξ4−D

L
ξ5.

If (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ ker P , then

p1(ξ1, ξ2, ξ4) = 0, p2(ξ1, ξ2, ξ3, ξ4) = 0, p3(ξ1, ξ2, ξ3, ξ4) = 0,

p4(ξ1, ξ2, ξ4, ξ5) = 0.
(A.1)

Let ξ4 = 1, then it is clear that (A.1) has a unique solution (ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5).
Then dim ker P = 1 and ker P = span{ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5}. It is also noted that
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codim range P = 1 as

range P =
{
(σ1, σ2, σ3, σ4, σ5) ∈ R

5 : σ4 = 0
}

,

and

Pdb(A,Qa ,N ,B,C)(db1, A2, Qa2 , N2, 0,C2)(ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5)

= (0, 0, 0,−1, 0) /∈ range P.

From Theorem 1.7 in (Crandall and Rabinowitz 1971), there exists a δ1 > 0 such
that all positive coexistence steady states of (3) near (db1, A2, Qa2 , N2, 0,C2) lie on
a smooth curve


ba = {(db(s), A3(s), Qa3(s), N3(s), B3(s),C3(s)) : 0 < s < δ1}

with the form

{
A3(s) = A2 + sξ̂1 + o(s), Qa3(s) = Qa2 + sξ̂2 + o(s), N3(s) = N2 + sξ̂3 + o(s),

B3(s) = s + o(s),C3(s) = C2 + sξ̂5 + o(s).

Then part (ii) holds.
We next establish global bifurcation of positive coexistence steady states of (3).

Let ϒ be the set of all positive coexistence steady states of (3). It can be seen that the
conditions of Theorem 3.3 and Remark 3.4 in (Shi and Wang 2009) hold. This shows
that there exists a connected component ϒ+ of ϒ such that it includes 
ba , and its
closure contains the bifurcation point (db1, A2, Qa2, N2, 0,C2). Moreover, ϒ+ has
one of the following three cases:

(1) it is not compact in R
6;

(2) it includes another bifurcation point (d̄b, A2, Qa2, N2, 0,C2) with d̄b �= db1;
(3) it includes a point (db, A2 + Â, Qa2 + Q̂a, N2 + N̂ , B̂,C2 + Ĉ) with 0 �=

( Â, Q̂a, N̂ , B̂, Ĉ) ∈ Z ,where Z is a closed complement of ker P = span(ξ̂1, ξ̂2, ξ̂3,
1, ξ̂5) in R5.

If the case (3) occurs, then B̂ = 0, which is a contradiction to B̂ > 0 since it
is a positive steady state. Assume that the case (2) holds and d̄b is another bifurca-
tion value from 
a . Hence, there exists a positive coexistence steady state sequence
{(dnb , An, Qn

a, N
n, Bn,Cn)} satisfying

{(dnb , An, Qn
a, N

n, Bn,Cn)} → (d̄b, A2, Qa2, N2, 0,C2)

as n → ∞. From the fourth equation in (3), we have

rbgb(N
n,Cn) − dnb − D

L
= 0.
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Hence

rbgb(N2,C2) − d̄b − D

L
= 0

when n → ∞, which means that d̄b = db1.
The above analysis shows that the case (1) must happen. Then ϒ+ is not compact

in R6. It follows from Theorem 1 that

Qmin,a ≤ Qa3 ≤ Qmax,a, A3Qa3 + qB3 + N3 ≤ Nb, C3 ≤ ra LNb

DQmin,a

for all db ∈ (0, db1). This indicates that the projection of ϒ+ onto db-axis contains
(0, db1). This proves part (i). 	


Proof of Theorem 3 (i) It is obvious that E4 always exists. The Jacobian matrix at E4
is

J (E4) =

⎛

⎜⎜
⎜⎜
⎝

a11 0 0 0 0
a21 a22 a23 a24 0
a31 0 a33 0 0
0 0 0 a44 0
a51 a52 0 a54 a55

⎞

⎟⎟
⎟⎟
⎠

,

where

a11 = μm(0, Qm4, 0) − dm − vm + D

L
, a21 = −∂μm

∂M
(0, Qm4, 0)Qm4,

a22 = ∂ρm

∂Qm
(Qm4)gm(Nb) − rm Īm(0, 0), a23 = ρm(Qm4)

∂gm
∂N

(Nb),

a24 = aq

δ
− ∂μm

∂B
(0, Qm4, 0)Qm4, a31 = −ρm(Qm4)gm(Nb), a33 = −D

L
,

a44 = −db − D

L
, a51 = ∂μc

∂M
(0, Qm4), a52 = ∂μc

∂Qm
(0, Qm4),

a54 = −rb
γ
gb(Nb, 0), a55 = −D

L
.

It can be observed that J (E4) has five eigenvalues aii , i = 1, · · · , 5. Note that
aii < 0 for i = 2, 3, 4, 5. Therefore, if dm > d∗

m holds, then a11 < 0. This means
that all the five eigenvalues of J (E4) have negative real parts. This shows that E4
is locally asymptotically stable.
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(ii) The existence of E5 is from Theorem 2 in (Wang et al. 2007). The Jacobian matrix
at E5 is

J (E5) =

⎛

⎜⎜⎜
⎜
⎝

a11 a12 0 a14 0
a21 a22 a23 a24 0
a31 a32 a33 a34 0
0 0 0 a44 0
a51 a52 0 a54 a55

⎞

⎟⎟⎟
⎟
⎠

,

where

a11 = ∂μm

∂M
(M5, Qm5, 0)M5,

a12 = ∂μm

∂Qm
(M5, Qm5, 0)M5,

a14 = ∂μm

∂B
(M5, Qm5, 0)M5,

a21 = −∂μm

∂M
(M5, Qm5, 0)Qm5, a22 = ∂ρm

∂Qm
(Qm5)gm(N5) − rm Īm(0, M5),

a23 = ρm(Qm5)
∂gm
∂N

(N5), a24 = aq

δ
− ∂μm

∂B
(M5, Qm5, 0)Qm5,

a31 = −ρm(Qm5)gm(N5), a32 = − ∂ρm

∂Qm
(Qm5)gm(N5)M5,

a33 = −D

L
− ρm(Qm5)

∂gm
∂N

(N5)M5, a34 = −qrbgb(N5,C5),

a44 = rbgb(N5,C5) − db − D

L
− a

δ
M5, a51 = ∂μc

∂M
(M5, Qm5),

a52 = ∂μc

∂Qm
(M5, Qm5), a54 = −rb

γ
gb(N5,C5), a55 = −D

L
.

J (E5) has eigenvalues a44, a55, and the remaining three eigenvalues satisfy

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = −(a11 + a22 + a33),

A2 = a11a22 + (a11 + a22)a33 − (a23a32 + a12a21),

A3 = −a11a22a33 − a12a23a31 + a11a23a32 + a12a21a33.

A direct calculation gives Ai > 0, i = 1, 2, 3 and A1A2 − A3 > 0. According
to the Routh–Hurwitz criterion, the three eigenvalues have negative real parts. It
is clear that a55 < 0. If db > db2 holds, then a44 < 0. This shows that all the
five eigenvalues of J (E5) have negative real parts if db > db2 holds. Hence, E5 is
locally asymptotically stable.
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(iii)-(iv) Define a mapping G : R+ × R
5 → R

5 by

G(db, M, Qm, N , B,C) =

⎛

⎜⎜⎜⎜
⎝

μm(M, Qm, B)M − dmM − vm+D
L M

ρm(Qm)gm(N ) + q f (B) − μm(M, Qm, B)Qm
D
L (Nb − N ) − ρm(Qm)gm(N )M − qrbgb(N ,C)B

rbgb(N ,C)B − dbB − D
L B − f (B)M

μc(M, Qm) − 1
γ
rbgb(N ,C)B − D

L C

⎞

⎟⎟⎟⎟
⎠

.

It follows that G(db, M5, Qm5, N5, 0,C5) = 0. Let

H := G(M,Qm ,N ,B,C)(db2, M5, Qm5, N5, 0,C5).

For any (ζ1, ζ2, ζ3, ζ4, ζ5) ∈ R
5, we have

H [ζ1, ζ2, ζ3, ζ4, ζ5] =

⎛

⎜⎜
⎜⎜
⎝

h1(ζ1, ζ2, ζ4)
h2(ζ1, ζ2, ζ3, ζ4)
h3(ζ1, ζ2, ζ3, ζ4)

0
h4(ζ1, ζ2, ζ4, ζ5)

⎞

⎟⎟
⎟⎟
⎠

,

where

h1(ζ1, ζ2, ζ4) =∂μm

∂M
(M5, Qm5, 0)M5ζ1 + ∂μm

∂Qm
(M5, Qm5, 0)M5ζ2

+ ∂μm

∂B
(M5, Qm5, 0)M5ζ4,

h2(ζ1, ζ2, ζ3, ζ4) = − ∂μm

∂M
(M5, Qm5, 0)Qm5ζ1

+
(

∂ρm

∂Qm
(Qm5)gm(N5) − rm Īm(0, M5)

)
ζ2

+ ρm(Qm5)
∂gm
∂N

(N5)ζ3 +
(
aq

δ
− ∂μm

∂B
(M5, Qm5, 0)Qm5

)
ζ4,

h3(ζ1, ζ2, ζ3, ζ4) = − ρm(Qm5)gm(N5)ζ1 − ∂ρm

∂Qm
(Qm5)gm(N5)M5ζ2

−
(
D

L
+ ρm(Qm5)

∂gm
∂N

(N5)M5

)
ζ3 − qrbgb(N5,C5)ζ4,

h4(ζ1, ζ2, ζ4, ζ5)=∂μc

∂M
(M5, Qm5)ζ1+ ∂μc

∂Qm
(M5, Qm5)ζ2− rb

γ
gb(N5,C5)ζ4− D

L
ζ5.

If (ζ1, ζ2, ζ3, ζ4, ζ5) ∈ ker H , then

h1(ζ1, ζ2, ζ4) = 0, h2(ζ1, ζ2, ζ3, ζ4) = 0,

h3(ζ1, ζ2, ζ3, ζ4) = 0, h4(ζ1, ζ2, ζ4, ζ5) = 0.
(A.2)
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Let ζ4 = 1, then (A.2) has a unique solution (ζ̂1, ζ̂2, ζ̂3, 1, ζ̂5). This implies that
dim ker H = 1 and ker H = span{ζ̂1, ζ̂2, ζ̂3, 1, ζ̂5}. It is also easy to show that
codim range H = 1 as

range H =
{
(ω1, ω2, ω3, ω4, ω5) ∈ R

5 : ω4 = 0
}

,

and

Gdb(M,Qm ,N ,B,C)(db5, M5, Qm5, N5, 0,C5)(ζ̂1, ζ̂2, ζ̂3, 1, ζ̂5)

= (0, 0, 0,−1, 0) /∈ range H .

Byusing Theorem1.7 in (Crandall andRabinowitz 1971), there exists a δ2 > 0 such
that all positive steady states of (8) near (db5, M5, Qm5, N5, 0,C5) lie on a smooth
curve


bm = {(db(s), M6(s), Qm6(s), N6(s), B6(s),C6(s)) : 0 < s < δ2}

with the form

⎧
⎪⎪⎨

⎪⎪⎩

M6(s) = M5+sζ̂1+o(s),
Qm6(s) = Qm5+sζ̂2+o(s),
N6(s) = N5+sζ̂3+o(s),
B6(s) = s + o(s), C6(s) = C5 + sζ̂5 + o(s).

This completes the proof of part (iv). Note that the proof of part (iii) is similar to those
in Theorem 2. Then we omit it here. 	
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