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a b s t r a c t

The development of aquatic food chain models that incorporate both the effects of nutrient availability,
as well as, track toxicants through trophic levels will shed light on ecotoxicological processes and ulti-
mately help improve risk assessment efforts. Here we develop a stoichiometric aquatic food chain model
of two trophic levels that investigates concurrent nutrient and toxic stressors in order to improve our
understanding of the processes governing the trophic transfer for nutrients, energy, and toxicants.
Analytical analysis of positive invariance, local stability of boundary equilibria, numerical simulations,
and bifurcation analysis are presented. The model captures and explores a phenomenon called the So-
matic Growth Dilution (SGD) effect recently observed empirically, where organisms experience a greater
than proportional gain in biomass relative to toxicant concentrations when consuming food with high
nutritional content vs. low quality food.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Chemical contaminants are widely dispersed throughout
Earth's ecosystems due to a multitude of human activities, as well
as natural phenomena, and have the potential to adversely impact
a diverse range of organisms (Walker et al., 2012). Bioaccumula-
tion of toxic compounds in aquatic food chains can pose risk to
ecosystem conservation as well as wildlife and human health.
Accurately assessing the risks of contaminants requires more than
an understanding of the effects of contaminants on individual
organisms, but requires further understandings of complex eco-
logical interactions, elemental cycling, and the interactive effects
tics and Statistics, Texas Tech
of natural stressors, such as resource limitations, and contaminant
stressors.

Ecotoxicological modeling aims to predict how contaminants
cycle through aquatic food systems. It is vital to understand the
processes that determine the trophic transfer of toxicants to im-
prove developed risk assessment protocols. Wang et al. (1996)
developed a simple biokinetic model that has been used to predict
total bioaccumulated toxicant concentrations in multiple species
of aquatic organisms over that last decade (Wang and Rainbow,
2008; Wang, 2012). It models the change in toxicant concentration
(v) in an organism due to uptake and loss due to efflux and
growth:
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where a2 is the uptake rate constant from the dissolved toxicant, T
is the concentration of dissolved toxicant, ξ is the toxicant as-
similation efficiency, f is the predator's ingestion rate, u is the
toxicant concentration in the prey, s2 is the toxicant efflux rate,
and g is the predator's growth rate. The Biokinetic model (1) in-
corporates constant parameters for the predator's growth rate (g)
and ingestion rate (f). It also assumes the quantity and toxicant
concentration in the prey are constant.

Dynamic ecological population models can offer insight on the
variability of these biokinetic parameters and their influences on
the trophic transfer of toxicants. Huang et al. (2014) developed a
toxicant-mediated predator–prey model that incorporates a vari-
able prey quantity. This model tracks the prey and predator po-
pulation densities, as well as the toxicant body burdens in each
population. The biokinetic model (1) corresponds with the pre-
dator body burden equation from Huang et al. (2014):

⏟ ⏟⏟ ( )

ξ σ= + ( ) − − ( ) ( )
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where e(v) is the toxicant dependent biomass conversion effi-
ciency. The original constant ingestion rate f is replaced with
function f(x) and depends on prey quantity; the constant predator
growth rate g is replaced with the expression ( ) ( )e v f x and de-
pends on the prey quantity, as well as, the predator's toxicant
concentration. Huang et al. (2014) parameterize their model with
the toxicant mercury (Hg), a toxic contaminant that can bioaccu-
mulate in aquatic food chains as methylmercury (MeHg) posing
risk to ecosystems and humans (Mergler et al., 2007). Their tox-
icant-mediated predator–prey model helped shed light on the
different complicated ways varying toxicant concentrations affects
organisms at different trophic levels.

While this model incorporates variable food quantity, it does
not consider food quality. Elemental imbalances, such as phos-
phorus:carbon (P:C) ratios, between trophic levels affect life-his-
tory traits such as growth and reproduction. Toxic compounds can
have similar impacts on these traits. There is increasing evidence
that considering resource stoichiometry and nutrient availability
will improve risk assessment protocols in ecotoxicology (Ieromina
et al., 2014; Sarwar et al., 2010; Lessard and Frost, 2012; Alexander
et al., 2013). The interactive effects of nutrient availability and
aqueous Hg concentration may play a significant role in the
bioaccumulation of MeHg. Karimi et al. (2007) show stoichio-
metric constraints, such as food quality, can affect the accumula-
tion of MeHg in Daphnia. They show empirical evidence of Somatic
Growth Dilution (SGD) as Daphnia experience a greater than
proportional gain in biomass relative to MeHg under high phos-
phorus concentrations (Fig. 1). They used MeHg radio-tracer to
measure juvenile Daphnia pulex MeHg concentrations, growth
rate, and ingestion rate when fed on A. falcatus algae of low and
high quality (vary algal P:C ratio). Estimated Daphnia steady-state
MeHg concentrations using the biokinetic model (System (1))
showed that Daphnia grown on high quality food had 3.5 times
higher growth rates, slightly lower ingestion rates, and MeHg
concentrations at steady-state a third lower than Daphnia grown
on low quality food.

Given this empirical evidence, the interactive effects of re-
source limitation and contaminant stress on organisms and
Fig. 1. Simple depiction of Somatic Growth Dilution (SGD), where an organism
experiences a greater than proportional gain in biomass relative to toxicant under
high food quality conditions.
ecosystems needs to be considered in toxicological risk assessment
applications. Models have proven to be useful tools in ecotox-
icological predictions, however current models do not consider
dynamical interactive effects of contaminant stressors and stoi-
chiometric constraints, such as nutrient/light availability and food
quality.

In order to incorporate and balance multiple essential elements
and contaminants, the mathematical models and the empirical
experiments will be structured under the framework of the theory
of Ecological Stoichiometry (Sterner and Elser, 2002). This theory
considers the balance of multiple chemical elements and how the
relative abundance of essential elements, such as carbon (C), ni-
trogen (N), and phosphorus (P), in organisms affects ecological
dynamics. Ecologists have made important progress collecting
large amounts of data from both lab experiments and field sites to
support Ecological Stoichiometry (Andersen, 1997; Sterner and
Elser, 2002; Urabe and Sterner, 1996; Elser et al., 1996; Elser and
Urabe, 1999; Elser et al., 2000, 2001; Urabe et al., 2002; McCauley
et al., 2008; Hessen et al., 2013). Since the development of the
theory of ecological stoichiometry, a wide variety of stoichiometric
food web models have been proposed and analyzed (Andersen,
1997; Loladze et al., 2000; Grover, 2004; Hall, 2004; Wang et al.,
2008a; Hall, 2009; Wang et al., 2012; Peace et al., 2013, 2014).
Stoichiometric models incorporate the effects of both food quan-
tity and food quality into a single framework that produces rich
dynamics. Stoichiometric models allow one to investigate the ef-
fects of nutrient stressors on population dynamics and track the
trophic transfer of energy and nutrients (Peace, 2015). Empirical
efforts and models developed under the theory of Ecological
Stoichiometry have advanced our understanding of ecological in-
teractions (Andersen et al., 2004; Hessen et al., 2013).

Two existing ecotoxicology models do consider a contaminant
stressor along with a single stoichiometric constraint: (1) Bontje
et al. (2009) developed a model that considers both nutrient stress
and toxicant stress parameterized for a N-limited algal population
and (2) Ankley et al. (1995) developed a model that considers both
light availabilities and contaminant concentrations to looks at the
effects of varying light intensities on a photo-activated con-
taminant stressor on aquatic organisms. However, unlike Ecolo-
gical Stoichiometric models, these models do not allow for mul-
tiple dynamic stoichiometric constraints where the element lim-
iting growth can change with environmental nutrient and light
availabilities.

Ecological Stoichiometry has proven successful in aquatic eco-
logical applications and has the potential to improve our under-
standing of the effects chemical contaminants have on organisms
and ecosystems (Hansen et al., 2008). It offers a conceptual fra-
mework to investigate the impact of elemental imbalances on the
response of organisms to contaminants while simultaneously
considering the effects of contaminants on ecosystem processes
(Danger and Maunoury-Danger, 2013).

Here, we extend System (3) under the framework of Ecological
Stoichiometry (Sterner and Elser, 2002) to develop a toxicant-medi-
ated predator–prey model that incorporates a variable food quantity as
well as quality. Loladze et al. (2000) formulated a stoichiometric pre-
dator–prey Lotka–Volterra type model (LKE model) of the first two
trophic levels of an aquatic food chain incorporating the fact that both
the predator and prey are chemically heterogeneous organisms com-
posed of two essential elements, carbon (C) and phosphorus (P). The
model allows the phosphorus to carbon ratio (P:C) of the prey to vary
above aminimumvalue, which brings food quality into themodel. The
LKE model is described in detail in Appendix A and is used as guide as
we expand System (3) under the Ecological Stoichiometric framework.
These modeling efforts help shed light on nutrient and chemical
contaminant cycling and ultimately can improve toxicological risk
assessment protocols.
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2. Model formulation

We start with the toxicant-mediated predator–prey model de-
veloped by Huang et al. (2014):
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where x and y are the prey and predator population densities
(mg C/L) respectively and u and v give toxicant body burden, or
the concentrations of the toxicant in the prey and predatory, re-
spectively. Function ( )b u x, is the toxicant dependent prey growth
rate, ( )d u1 and ( )d v2 are toxicant dependent death rates for the
prey and predator, respectively, ( )f x is the predator ingestion rate,
e(v) is the toxicant dependent biomass conversion efficiency, a1, a2
are toxicant uptake rates and s1, s2 are toxicant efflux rates for the
prey and predator, respectively, and ξ is the predator toxicant
assimilation efficiency.

We extend System (3) under the framework of Ecological
Stoichiometry (Sterner and Elser, 2002) to develop a toxicant-
mediated predator–prey model that incorporates a variable food
quantity as well as quality. First, consider the prey growth rate
presented in Huang et al. (2014),

α α
α

( ) = { − }
+

b u x
u

x
,

max 0, 1
1

1 2

3

where α≤ { − } ≤u0 max 0, 1 12 comes from a linear dose response
for the gain rate. Parameter α1 is the maximum prey growth rate,
α2 is the effect of the toxicant on the prey growth rate, and α3

accounts for the effect of crowding on the prey. Logistic growth is
commonly used in the Ecological Stoichiometry framework, as the
carrying capacity is easily modified to depend on carbon (light)
and P availability. Here we represent growth with a logistic growth
expression where the linear dose response gain rate is in-
corporated into the maximum growth rate parameter:
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Here α1 is the maximum intrinsic growth rate of the prey and the
above logistic growth expression includes any natural morality of
the prey, K is the prey carrying capacity in terms of carbon or light
availability, P is the total about of phosphorus in the system, θ is
the constant predator P:C ratio, q is the minimum P:C ratio of the
prey, and Q is the variable prey P:C ratio:
θ= −
( )Q

P y
x

. 5

The above equation is based on the assumption that all avail-
able nutrients are either in the prey or the predator. The model
does not allow for free nutrients to be in the environment. This
assumption is based on the fact that algae take up nutrients very
quickly. This is also assumed in Loladze et al. (2000). Relaxation of
this assumption has been investigated in stoichiometric models
that track free nutrients in the environment (Wang et al., 2008a;
Peace et al., 2014). A minimum function is used to describe the
prey carrying capacity, θ{ ( − ) }K P y qmin , / . The first input, K, is the
carrying capacity determined by light availability. The second in-
put, θ( − )P y q/ is the carrying capacity determined by phosphorus
availability.

Now, consider the predator's conversion efficiency presented in
Huang et al. (2014),

β β( ) = { − }e v vmax 0, 11 2

where β< <0 11 is the growth efficiency, and β{ − }vmax 0, 1 2
represents a linear dose response for the growth efficiency where
β2 is the effect of the toxicant on predator growth. Under the
stoichiometric framework, predator growth efficiency depends on
the prey's variable P:C ratio Q and the predator's constant P:C ratio
θ. A portion of the ingested carbon is used for the predator's
metabolic costs, such as respiration. Let β1 be the predator's
maximal production efficiency in terms of carbon. Then

β
Q

1
is the P:

C ratio of the post-ingested prey representing the amount of P and
C available for predator growth. When θ>

β
Q

1
, the growth of the

predator is limited by carbon and the maximum conversion effi-
ciency is β1. However when θ<

β
Q

1
, the growth of the predator is

limited by phosphorus and the maximum conversion efficiency is

θ
Q . The predator's conversion efficiency takes the following form:

⎧⎨⎩
⎫⎬⎭β

θ
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( )
e v x y

Q
v, , min , max 0, 1 .

61 2

Note that β1 corresponds with the parameter e in the LKE
model as the predator's conversion efficiency in terms of carbon. A
minimum function is used to describe the consumer growth rate,

{ }β
θ

min , Q
1 . The first input, β1, is used when consumer growth is

limited by carbon. The second input,
θ
Q is used when consumer

growth is limited by phosphorus.
Incorporating the stoichiometric logistic growth expression for

the prey (4) and conversion efficiency for the predator (6) yields
the following toxicant-mediated model that incorporates a vari-
able food quantity as well as quality:
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The biokinetic model (1) corresponds with dv
dt

from Eq. (7d). The
original constant ingestion rate f is replaced with function f(x) and
depends on prey quantity; the constant predator growth rate g is
replaced with the expression ( ) ( )e v x y f x, , and depends on the
prey quantity and quality, as well as, the predator's toxicant
concentration.
3. Model parameterization

We apply the stoichiometric toxicant-mediated predator–prey
model (7) to a system of algae (prey) and Daphnia (predator), in
order to investigate the effects of co-occurring phosphorus and Hg
availabilities on population dynamics and Hg bioaccumulation.
Details on the parameterization are in Appendix B. All parameter
values are listed in Table 1.
4. Model analysis

We assume the dynamics of the body burden equations (7 c,d)
Table 1
Model parameters.

Parameter Description Va

α1 Algae maximal growth rate 1.2
α2 Toxicant effect on algal reproduction 0.0
K Algae C carrying capacity 0–3
β1 Daphnia C growth efficiency 0.8
β2 Toxicant effect on Daphnia reproduction 10
θ Daphnia constant P:C 0.0
q Algae minimal P:C 0.0
h2 Toxicant coefficient for Daphnia mortality 0.3
I Toxicant exponent for Daphnia mortality 1.6
m2 Daphnia natural loss rate 0.2
c Daphnia max ingestion rate 0.8
a Daphnia ingestion half saturation constant 0.2
a1 Algae uptake coefficient 0.0
a2 Daphnia uptake coefficient 0.0
s1 Algae toxicant efflux rate 0.0
s2 Daphnia toxicant efflux rate 0.0
ξ Daphnia toxicant assimilation efficiency 0.9
T Total toxicant μg
P Total phosphorus mg

a Parameter estimation discussed in Section B.2.
b Data fitting discussed in Section B.3.2.
c Data fitting discussed in Section B.3.1.
operate on a faster time scale than the dynamics of population
growth (7 a,b). The uptake and efflux of the toxicant may balance
out and drive the body burden equations to approach a quasi-
steady-state. For the model analysis we make this quasi-steady-
state assumption to reduce the system down to two equations.
Define the small parameter α σϵ = 1 1. Note that using the para-
meters in Table 1 for algae and Daphnia ϵ = 0.0576. This small
parameter is introduced in the following nondimensionalization.
We then analyze the reduced nondimensional system. For math-
ematical convenience, we assume I¼1 for the following analysis.
The parameterization of this simplifying assumption on the mor-
tality function is discussed in Appendix B.
4.1. Nondimensionalization and quasi-steady-state approximation

Here we rescale the Model (7) with the following nondimen-
sional parameters:
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Dropping the tildes for more convenient notation, Model (7) can
then be written as the following nondimensional system:
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9b1 2 2
lue Source

/day Andersen (1997)
μ051 mg C/ g T Estimated from data compiled in Vocke (1978)a

mg C/L Andersen (1997)
(unitless) Andersen (1997)

μ.13 mg C/ g T Fit to data from Biesinger et al. (1982)b

3 mg P/mg C Andersen (1997)
038 mg P/mg C Andersen (1997)

μ47 mg C/ g T/day Fit to data from Biesinger et al. (1982)c

85 (unitless) Fit to data from Biesinger et al. (1982)c

5/day Andersen (1997)
1/day Andersen (1997)
5 mg C/L Andersen (1997)
12 L/mg C/day Hill and Larsen (2005)
11 L/mg C/day Tsui and Wang (2004)
48/day Hill and Larsen (2005)
4/day Tsui and Wang (2004), Karimi et al. (2007)
7 (unitless) Tsui and Wang (2004), Karimi et al. (2007)
T/L
0.01–0.08 mg P/L



Fig. 2. Predator–prey phase portraits for varying light levels: (a) low light K¼0.5 mg C/L, (b) high light K¼1 mg C/L, (c) very high light K¼1.5 mg C/L. The x-nullclines are
dashed curves and the y-nullclines are solid curves. Open circles depict unstable equilibria and closed circles depict locally stable equilibria. Points E0 and E1 are boundary
equilibria. Points E2, E3, and E4 are interior equilibria. The grey arrowed-curve in figure (b) shows a stable limit cycle. Parameter values listed in Table 1 with P¼0.03 mg P/L
and = μT 0.025 g MeHg/L. Population dynamics are similar to those obtained in Loladze et al. (2000).
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Applying the quasi-steady-state assumption and letting ϵ → 0
yields
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Substituting (10) into the x and y equations of System (9) produces
the following quasi-steady-state nondimensional system:
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Note that if σ>T 1
2 then the toxicant levels are too high for the

prey to reproduce and grow and ( ) → ( )x y, 0, 0 . For the following

analysis we assume that σ<T 1
2 and let { }= Kk min , P

q
.

4.2. Positive invariance
Theorem 4.1. Solutions to System (11) with initial conditions in the
set
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will remain there for all forward time.

The proof can be found in Appendix D.

4.3. Asymptotic dynamics

To investigate the equilibria we first rewrite System (11) in the
following form:
= ( ) ( )
dx
dt

xF x y, 13a

= ( ) ( )
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yG x y, 13b
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The Jacobian takes the following form:

=
( ) + ( ) ( )

( ) ( ) + ( )
J

F x y xF x y xF x y
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.

x y
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There are two equilibria on the boundary, = ( )E 0, 00 and
= ( )E k, 01 . The following theorem shows local stability of these

boundary equilibria.

Theorem 4.2. = ( )E 0, 00 is saddle point. The stability of = ( )E k, 01

depends on the sign of ( )G k, 0 . E1 is locally asymptotically stable if
( ) <G k, 0 0 and E1 is saddle point if ( ) >G k, 0 0.

The proof can be found in Appendix E.
Fig. 2 illustrates phase portraits with the prey x-nullclines and

the predator y-nullclines for varying levels of light. Equilibria are
located at the intersection of these nullclines. In addition to the
two boundary equilibria E0 and E1, numerical observations show
the existence of three interior equilibria E2, E3, and E4. As light
levels vary, the shape of the x-nullcline changes which affects the
number and the nature of the interior equilibria. For low light
(Fig. 2a) there is one interior equilibria, E2. Numerical observations
show that this is locally stable. For high light (Fig. 2b) this interior
equilibria E3 becomes unstable and a stable limit cycles emerges.
Under very high light (Fig. 2c) there are three interior equilibria E2,
E3, and E4. Here the limit cycles have collapsed and E4 is locally
stable.



A. Peace et al. / Journal of Theoretical Biology 407 (2016) 198–211 203
5. Numerical analysis

Loladze et al. (2000) investigate the effects of light enrichment
on the basic stoichiometric predator–prey model (System (A1)).
Peace et al. (2013) investigate the effects of nutrient enrichment
on an expanded stoichiometric predator–prey model. It is ob-
served that increasing light levels K causes the prey food quality Q
to decrease, whereas increasing the nutrient levels P causes the
prey food quality to increase. Here we numerically explore how
stoichiometric constraints affect the populations densities and the
trophic transfer of the toxicant. We vary the light level K, in order
to manipulate the prey food quality. Additionally, we investigate
Fig. 3. Numerical simulations for (a)–(c) population densities x (dashed), y (solid) mg C/L,
mg C, and (j)–(l) phase portraits for three different light intensities: low light K¼0.5
K¼1.5 mg C/L (column three). Parameter values listed in Table 1 with P¼0.03 mg P/L and
are similar to those obtained in Loladze et al. (2000).
the effects of increasing toxicant concentrations T on the popula-
tion dynamics. Simulations from numerical experiments are pre-
sented in Section 5.1 and bifurcation analyses are presented in
Section 5.2.

5.1. Numerical simulations

These simulations use the parameters listed in Table 1 with
P¼0.03 mg P/L for varying light intensities K (Fig. 3) and varying
toxicant concentrations T (Fig. 4).

Fig. 3 shows the population densities, food quality, body burden,
and phase portraits predicted by model (7) for three different light
(d)–(f) algal quota Qmg P/mg C, (g)–(i) body burdens u (dashed), v (solid) μg MeHg/
mg C/L (column one), high light K¼1 mg C/L (column two), and very high light

= μT 0.025 g MeHg/L. Data obtained using MATLAB and XPP. Population dynamics



Fig. 4. Numerical simulations for (a)–(c) population densities x (dashed), y (solid) mg C/L, (d)–(f) algal quota Q mg P/mg C, and (g)–(i) body burdens u (dashed), v (solid)
μg MeHg/mg C, and (j)–(l) phase portraits for three different MeHg toxicant levels: low contamination = μT 0.1 g MeHg/L (column one), medium contamination T¼0.5
μg MeHg/L (column two), and high contamination = μT 1 g MeHg/L (column three). Parameter values listed in Table 1 with P¼0.03 mg P/L and K¼0.6 mg C/L. Data obtained
using MATLAB and XPP.
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levels K¼0.5, 1, 1.5 mg C/L and a fixed toxicant level. The food quality
Q predictions (Fig. 3d–f) follow from Eq. (5). Under low light, the
system exhibits a stable steady state where the population densities
x y, are low (Fig. 3a), food quality Q is high (Fig. 3d), and predator body
burden u is low (Fig. 3g). Here y is low due to low food quantity.
Increasing the light level to high light causes a Hopf bifurcation to
occur as the steady state looses stability and limit cycles emerge
(Fig. 3b, e, and h). The limit cycles collapse as the light level continues
to increase. Under very high light, the system exhibits another stable
steady state where the population density x is high but y is low
(Fig. 3c), food quality Q is low (Fig. 3f), and predator body burden v is
high (Fig. 3g). Here y is low due to low food quality rather than
quantity. The low food quality (Fig. 3f) has significant influences on the
predator population; reducing the density (Fig. 3c) and increasing the
body burden (Fig. 3i). The Somatic Growth Dilution (SGD) effect is
seen when comparing the food quality and body burden under low
light (Fig. 3d and g) versus very high light (Fig. 3f and i).

Asymptotic dynamics can been seen in the phase portraits
(Fig. 3j, k, and l). Under low light levels, the interior equilibria E2 is
stable (Fig. 3j). The existence of a stable limit cycle is observed
under high light (Fig. 3k). Under very high light levels, the interior
equilibria E4 is stable (Fig. 3l).
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Fig. 4 shows the population densities, food quality, body bur-
den, and phase portraits predicted by model (7) for three different
toxicant levels T¼0.5, 0.75, μ1 g MeHg/L and a fixed light level. The
food quality Q predictions (Fig. 4d–f) follow from Eq. (5). Under
low toxicant contamination, the system exhibits limit cycles for
this fixed light level K¼0.6 mg C/L (Fig. 4a, d, and g). Increasing the
toxicant contamination collapses the limit cycles as the system
passes the Hopf bifurcation and exhibits a stable steady state
(Fig. 4b, e, and h). Increasing the toxicant contamination further
leads the predator population to extinction (Fig. 4c). Here the prey
actually benefits from high contamination levels. According to the
parameter values obtained, the algae are much less sensitive to
MeHg contamination than Daphnia and the extinction of the
predator relieves predation pressure off the prey (Fig. 4c). The
increased population density of the prey x, under high con-
tamination, reduces the prey food quality Q (Fig. 4f). The body
burdens u v, increase as the toxicant levels increase. Under high
contamination the predator body burden v increases very rapidly
as the predator goes towards extinction →y 0 (Fig. 4i). Note the
difference in the scale on the vertical axes of Fig. 4g, h, and i.

Asymptotic dynamics can been seen in the phase portraits
(Fig. 4j, k, and l). Under low toxicant contamination, there exists of
a stable limit cycle (Fig. 4j). The interior equilibria E4 is stable
under high contamination (Fig. 3k). Under very high contamina-
tion, there are no stable interior equilibria or limit cycles and
boundary equilibria E1 is stable. Here the very high toxicant levels
drives the predator to extinction.
Fig. 5. Bifurcation diagrams for (a) y predator biomass, (b) V total toxicant in predator p
curves depict stable equilibria and limit cycles and dashed curves depict unstable equili
maximum and minimum values of the stable limit cycle. Parameter values listed in Tabl
Population dynamics are similar to those obtained in Loladze et al. (2000) and globally
5.2. Bifurcation analysis

Bifurcation diagrams for the predator population density y, the
total amount of toxicant in the predator population V, and the
predator body burden v are shown in Figs. 5 and 6.

Fig. 5 uses the light level K as the bifurcation parameter. These
bifurcations are similar to those obtained in the LKE model (Loladze
et al., 2000) and globally investigated by Van Voorn et al. (2010), Li
et al. (2011), and Xie et al. (2016). When light levels are very low there
is not enough energy in the system to support the predator popula-
tion. As K increases, a stable steady state emerges. The predator po-
pulation starts off at low density (Fig. 5a) with low body burden
(Fig. 5c). As K continues to increase, the predator density increases
until the stable steady state looses it's stability and limit cycles emerge
at a Hopf bifurcation. This is the well known “paradox of enrichment”
(Rosenzweig, 1971; Diehl, 2007). Eventually, as K increases further,
another bifurcation occur where the limit cycles collapse and a new
interior stable state appears. For the LKE model, Van Voorn et al.
(2010) found this bifurcation to be a homoclinic bifurcation coinciding
with a tangent bifurcation where a saddle-node homoclinic connec-
tion is formed. After this bifurcation the predator density will begin to
decrease as K increases to very high values. This decline in predator
density caused by high light levels is a phenomenon called the
“paradox of energy enrichment” (Loladze et al., 2000). At high light
levels, the low density predator population has high body burden
(Fig. 5c). The SGD effect is observed when comparing the body burden
values on the left (low K) with the values on the right (high K) in
Fig. 5c. Food quality Q is high for low light levels and is low for high
light levels.
opulation, (c) v predator body burden using bifurcation parameter K mg C/L. Solid
bria. The solid curves in between the Hopf and saddle node bifurcations depict the
e 1 with P¼0.03 mg P/L and = μT 0.025 g MeHg/L. Data generated using XPP-AUTO.
investigated in Van Voorn et al. (2010), Li et al. (2011), and Xie et al. (2016).



Fig. 6. Bifurcation diagrams for (a) y predator biomass, (b) V total toxicant in predator population, (c) v predator body burden using bifurcation parameter μT g MeHg/L. Solid
curves depict stable equilibria and limit cycles and dashed curves depict unstable equilibria. The solid curves prior to the Hopf bifurcations depict the maximum and
minimum values of the stable limit cycle. Parameter values listed in Table 1 with P¼0.03 mg P/L and K¼0.6 mg C/L. Data generated using XPP-AUTO.
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Fig. 6 uses the toxicant contamination level T as the bifurcation
parameter and a fixed light level K¼0.6 mg C/L. Under this para-
meterization, the system exhibit limit cycles for low toxicant le-
vels. As T increases, the limit cycles collapse at the Hopf bifurcation
and a stable steady state emerges. The predator population ex-
perience a slight decrease as T, and therefore their body burden v

increases. Eventually, for very high T levels not shown in the
diagrams, the predator population will decline to extinction.
6. Discussion

The development of ecotoxicological models over the last couple
decades have significantly contributed to interpreting how con-
taminants impact organisms and cycle through aquatic food webs
(Hallam and De Luna, 1984; Ankley et al., 1995; Kooijman and Be-
daux, 1996; Wang et al., 1996; Mackay et al., 1992; Pieters et al.,
2006; Ashauer et al., 2007; Wang and Rainbow, 2008; Ashauer and
Brown, 2008; Bontje et al., 2009; Huang et al., 2014). These mod-
eling efforts take a variety of approaches to predict the effects of
diverse chemical contaminants on organismal growth and survival.
Many of these models assume the food quantity and quality are
constant. (Huang et al., 2014 and Pieters et al., 2006 incorporate
variable food quantities in their models but do not consider variable
food quality.) However, there is increasing evidence that organisms
experience interactive effects of contaminant stressors and food
conditions, such as resource stoichiometry and nutrient availability
(Danger and Maunoury-Danger, 2013).

We developed a model that expands conventional toxicological
approaches that only consider constant food quantity and quality
using the framework of Ecological Stoichiometry (Sterner and
Elser, 2002). Model (7) incorporates the effects of concurrent nu-
trient and toxicant stressors on population dynamics and the
trophic transfer of toxicants. While the model can be generalized
to a variety of aquatic species and chemicals, we parameterized
model (7) to an algae–Daphnia system that investigates levels of
phosphorus, carbon (light), and MeHg.

In order to analytically analyze the model, we employed a quasi-
steady-state assumption to reduce the model down to two di-
mensions. We assumed population metabolism occurs on a faster
time scale than population growth dynamics. Analytical analysis of
the reduced model (System (11)) shows the model is positive and
bounded. We analytically investigated the existence and local sta-
bility of boundary equilibria. The existence and stability of interior
equilibria and limit cycles were observed numerically.

Recent data show that the interactive effects of nutrient avail-
ability and aqueous Hg concentration may play a significant role in
the bioaccumulation of MeHg. The model is used to explored the
effects of varying light levels and toxicant concentrations on po-
pulation dynamics and the flow of MeHg across the two trophic
levels. The model captures the Somatic Growth Dilution (SGD)
phenomenon, which has been observed empirically in Daphnia
contaminated with MeHg, as they experience a greater than pro-
portional gain in biomass relative to MeHg under high phosphorus
concentrations (Karimi et al., 2007). SGD can be seen in the nu-
merical simulations and bifurcation analysis (Section 5).

It is important to note that the nonstoichiometric toxicant-
mediated predator prey model developed by Huang et al. (2014),
model (3) and the stoichiometric model developed here, model (7)
ignore the influences of the populations on the toxicant in the
environment. Environmental toxicant concentration is treated as a
parameter, T. These models assume the toxicant concentrations in
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the environment are determined by external conditions and are
not regulated by the population dynamics. This assumption is
reasonable because the toxicant contained in the studied popula-
tions is a tiny portion of the environmental toxicant.

The model developed here integrates an a ecotoxicological
model into the theory of Ecological Stoichiometry. Eqs. (4) and (6)
are an initial attempt at coupling toxicant and nutrient stressors in
the growth functions of the prey and predator. Here we assume
that the organisms pay an energy or carbon cost when exposed to
contaminants, that reduce the growth rates based on a linear dose
response of growth to concentrations of the toxicant. The model
allows us to mathematically explore toxicant-induced carbon
costs. It is important to note that this initial model iteration as-
sumes the toxicant-induced costs is paid in carbon.

Future model iterations should consider the impact of con-
taminants on organism elemental compositions. In addition to
influencing life history traits specific contaminants can impact
organism elemental composition (Danger and Maunoury-Danger,
2013). This phenomenon has recently been observed: Wang et al.
(2008b) observed plants have lower nitrogen leaf concentrations
when exposed to cadmium, and Xing et al. (2010) observed aquatic
plants have lower nitrogen and phosphorus concentrations when
exposed to iron or copper. Some chemical contaminants have the
ability to alter an organism's physiology, such as their stoichio-
metric P:C ratio. Such impacts on the elemental composition will
alter the elemental balances between the organisms and their
consumed resources, resulting in stoichiometric constraints that
will in turn influence population dynamics. More work is needed
that focuses on how toxicants impact elements compositions.
Future directions can mathematically and empirically explore
toxicant-induced nutrient costs, in addition to the toxicant-in-
duced carbon costs incorporated in the model presented here.
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Fig. B1. Experimental data from Biesinger et al. (1982) of Daphnia magna exposed
to MeHg for 21 days and the mortality function (B.3) with the obtained parameter
values using MATLAB's LSQCURVEFIT to fit the data. The solid curve gives the
empirical mortality function with parameters = μh 0.347 mg C/ g2 toxicant/day and
I¼1.685. The dashed curve gives the simplified mortality function with parameters

= μh 0.0949 mg C/ g2 toxicant/day and I¼1.
Appendix A. LKE model with slight modification

Loladze et al. (2000) formulated a stoichiometric prey-predator
Lotka-Volterra type model (LKE model) of the first two trophic
levels of an aquatic food chain incorporating the fact that both
preys and predators are chemically heterogeneous organisms
composed of two essential elements, carbon (C) and phosphorus
(P). The model allows the phosphorus to carbon ratio (P:C) of the
prey to vary above a minimum value, which brings food quality
into the model. Below is the LKE model presented by Loladze et al.
(2000):
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and α1 is the prey maximum growth rate, K is the prey carrying ca-
pacity in terms of carbon or light availability, P is the total about of
phosphorus in the system, θ is the constant predator P:C ratio, Q is the
variable prey P:C ratio, and q is the minimum P:C ratio of the prey.

Here, a minimum function is used to describe the prey carrying
capacity, θ{ ( − ) }K P y qmin , / . The first input, K, is the carrying ca-
pacity determined by light availability. The second input, θ( − )P y q/
is the carrying capacity determined by phosphorus availability.
Another minimum function is used to describe the consumer

growth rate, { }θ
min 1, Q . The first input, 1, is used when consumer

growth is limited by carbon. The second input,
θ
Q is used when

consumer growth is limited by phosphorus.
Here we make a small modification to the LKE model (A.1) to

put e inside the minimum function in the expression for predator's
growth. It is well known that not all carbon biomass of the prey
ends up as carbon biomass of the predator. Some carbon is used
for metabolic processes, such as respiration. This is represented by
the predator's conversion efficiency <e 1. It is important to note
that this constant is defined in terms of carbon. Therefore Q e/ is
the P:C of the post ingested prey available for predator's growth.
Consider ( )g x y, the predator's growth rate. When θ>Q

e
, the

growth of the predator is limited by carbon and satisfies
( ) = ( )g x y f x e, . However when θ<Q

e
, the growth of the predator is

limited by phosphorus and satisfies θ( ) = ( )g x y f x Q, . Together,
these two cases can be written as:
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Appendix B. Parameterization

B.1. Nontoxicant-related parameters

Many of the nontoxicant-related parameters of algae and
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Daphnia population dynamics are biologically realistic values ob-
tained from Andersen (1997), Urabe and Sterner (1996) and used
in Loladze et al. (2000).

The predator's ingestion rate, f(x) is a monotonic increasing and
differentiable function, ′ ( ) ≥f x 0, ( ) =f 0 0. f(x) is saturating with

( ) =→∞f x climx . For the following analysis, we assume the inges-
tion rate is a Holling type II function of the following form,

( ) =
+

f x
cx

a x

where c is the maximal Daphnia ingestion rate and a is the half
saturation constant.
B.2. Prey toxicant-related parameters

Hill and Larsen (2005) examined the uptake and elimination of
Hg by microalgal biofilms. Their experiment involved observing
microalgal biofilm Hg accumulation over a two day period where
they measured the algae Hg uptake coefficient to be a1¼0.0123 L/
mgC/day. They also observed the Hg loss rate by microalgal bio-
films over a four day period and calculated the algal Hg efflux rate
to be σ = 0.048/day1 .

In order to estimate the effect of the toxicant on algae growth,
consider the threshold body burden at which algae is no longer
capable of growth. Following Huang et al. (2015), this threshold
body burden can be described with the following equation,

α σ
=

( )
a

T
1

B.12

1

1
0

where T0 is the concentration of toxicant that inhibits algal growth
100%. Vocke (1978) compiled data of growth responses reported
for freshwater algae exposed to Hg. Relevant data from Vocke
(1978) on threshold Hg concentrations that resulted in 100%
growth inhibition for various algal species is shown in Appendix C.
The average Hg concentration threshold for complete inhibited
growth across these species is T0¼0.7843 mg/L. Using this T0 along
with the above parameters for a1 and s1 and Eq. (B.1), we estimate
α = μ0.0051 mg C/ g2 toxicant.
Fig. B2. Experimental data from Biesinger et al. (1982) of Daphnia magna exposed
to MeHg for 21 days and the reproduction efficiency function (B.4) with the ob-
tained parameter values using MATLAB's LSQCURVEFIT to fit the data.
B.3. Predator toxicant-related parameters

Tsui and Wang (2004) examined the assimilation, dissolved
uptake, and efflux of Hg and MeHg in Daphnia magna. They report
the Daphnia uptake coefficient for dissolved MeHg in the water is
a2¼0.011 L/mg C/day. The Daphnia efflux rate for MeHg is
σ = 0.04/day2 and the assimilation efficiency is 0.97. Karimi et al.
(2007) reported similar values for a2 and s2.

B.3.1. Toxicant-dependent predator mortality rate
Here we use the power law to represent the relationship be-

tween toxicant concentrations and predator mortality rate, as re-
commended by the committee on toxicology of the National Re-
search Council in 1992 and tested in Miller et al. (2000). Predator
mortality rate as a function of v, the concentration of the toxicant
in the predator (body burden), takes the following form:

( ) = + ( )d v h v m B.2I
2 2 2

where h2 and I are positive constants for the coefficient and ex-
ponent of the power function and m2 is the natural loss rate, in-
cluding both natural mortality and respiration. The natural loss
rate for Daphnia is known to be m2¼0.25/day (Andersen, 1997). To
parameterize this mortality function we used data presented by
Tsui and Wang (2006) on the percent survival of juvenile Daphnia
magna after 24 h of exposure to treatments of 1.5–7 μg Hg/L.
Huang et al. (2013) described the relationship between the prob-
ability of mortality after t days ( ( )p t0 ) and body burden (v) as

( )( ) = − − ( )p t h v t1 exp . B.3I
0 2

Following Huang et al. (2013), we took the above mortality func-
tion (B.3) and used MATLAB's LSQCURVEFIT to fit the data pre-
sented by Tsui and Wang (2006). We obtained parameter values

= μh 0.347 mg C/ g2 toxicant/day and I¼1.685. Fig. B1 shows the
experimental data from Tsui and Wang (2006) and the mortality
function (B.3) with the obtained parameter values. It is convenient
to assume I¼1 for the analytical analysis presented in Section 4.
Using this simplifying assumption, the mortality function (B.3)
becomes ( )( ) = − −p t h vt1 exp0 2 where = μh 0.0949 mg C/ g2 tox-
icant/day when fit to the data. Fig. B1 shows this simplified mor-
tality function with the assumption that I¼1 is comparable to the
mortality function (B.3). In this paper, numerical simulations use
the empirical mortality function parameter fits
( = μh 0.347 mg C/ g2 toxicant/day, I¼1.685) and the analytical
analysis assumes the simplified parameter values
( = μh 0.0949 mg C/ g2 toxicant/day, I¼1).

B.3.2. Toxicant-dependent predator reproduction efficiency
We use the following linear dose response to represent the

effect of the toxicant on the reproduction of the predator

{ }β− ( )vmax 0, 1 B.42

which represents a linear dose response for the reproduction ef-
ficiency (Huang et al., 2013, 2014). Here we are making a simpli-
fying assumption and only consider the effect of the toxicant on
the reproduction and not on individual growth. If the predator
body burden, v, reaches the threshold

β
1

2
the reproduction effi-

ciency is zero and reproduction ceases. To parameterize this re-
production function we used MATLAB's LSQCURVEFIT to fit the
data presented by Biesinger et al. (1982) on the average number of
neonates produced by Daphnia magna throughout 21 days of ex-
posure to MeHg. We assumed the number of neonates produced
by Daphnia magna in the control conditions with ≈v 0
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represented a reproduction efficiency of 1. The reproduction effi-
ciency for the Daphnia magna exposed to MeHg ( >v 0) was cal-
culated as the fraction of the number of neonates produced in the
exposed conditions compared to the control conditions. We ob-
tained parameter value β = μ10.13 mg C/ g2 toxicant. Fig. B2 shows
the experimental data from Biesinger et al. (1982) and the re-
production efficiency function (B.4) with the fitted parameter
value.
Appendix C. Algae toxicant-inhibited growth data

See Table C1.
Table C1
Relevant data from Vocke (1978) compilation of growth responses reported for
freshwater algae exposed to mercury. T0 is the reported threshold mercury
concentrations that resulted in 100% growth inhibition for the various algal species.
This data was used to estimate parameter α2 using Eq. (B.1).

Algae T0 (mg/L) Source

Chlamydomonas reinhardi 2 Ben-Bassat et al. (1972)
Chlorella vulgaris 0.037 de Jong and Roman (1965)
Chlorella pyrenoidosa 1 Hannan and Patouillet (1972)
Fragilaria crotonensis 1 Tompkins and Blinn (1976)
Appendix D. Proof of Theorem 4.1
Proof. First we show the solutions remain in the rectangle R de-

fined by ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦×
θ

k0, 0, P , then we show solutions are also bounded

by the inequality θ+ <qx y P . Let ( ) = ( ( ) ( ))S t x t y t, be a solution of

System (11) with ( ) ∈S R0 . Assume there exists a time >t 01 such
that ( )S t1 touches or crosses a boundary of R for the first time. The
following cases prove solutions remain in R by contradiction.
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This implies that ( ) ≥ ( ) >αx t x e0 0t
1 1 , where α is a constant. This

contradicts ( ) =x t 01 and proves that ( )S t1 does not reach this
boundary.

Case 2: { }( ) = =x t Kk min , P
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Then ( ) <x t k by a standard comparison argument. This contra-
dicts ( ) =x t k1 and proves that the trajectory does not cross this
boundary.

Case 3: ( ) =y t 01 . Then for every ∈ [ ]t t0, 1 ,
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This implies that ( ) ≥ ( ) >αy t y e0 0t
1 1 , where α is a constant. This

contradicts ( ) =y t 01 and proves that ( )S t1 does not reach this
boundary.

Case 4: ( ) =
θ

y t P
1 . Then for every ∈ [ ]t t0, 1 ,
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Then ( ) <
θ

y t P by a standard comparison argument. This contra-

dicts ( ) =
θ

y t P
1 and proves that the trajectory does not cross this

boundary. The above cases prove the trajectories are bounded in R.
Now assume Ω( ) ∈S 0 and there exists a time >t 01 such that ( )S t1
touches or crosses a boundary ofΩ for the first time. The final case
proves solutions remain in Ω by contradiction.

Case 5: θ( ) + ( ) =qx t y t P1 1 . Then θ( ) + ( ) <qx t y t P1 1 for every
∈ [ )t t0, 1 and θ′( ) + ′( ) ≥qx t y t 01 1
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contradiction. □
Appendix E. Proof of Theorem 4.2
Proof. The local stability of = ( )E 0, 00 is determined by the Ja-
cobian in the following form,
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The eigenvalues have different signs, thus E0 is a saddle point. The
local stability of = ( )E k, 01 is determined by the Jacobian in the
following form,
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The local stability of E1 depends on the sign of ( )G k, 0 . If ( )G k, 0 is
positive, then E1 is an unstable saddle. If ( )G k, 0 is negative, then
E1 is a locally asymptotically stable node. □
References

Alexander, A.C., Luis, A.T., Culp, J.M., Baird, D.J., Cessna, A.J., 2013. Can nutrients
mask community responses to insecticide mixtures? Ecotoxicology 22,
1085–1100.

Andersen, T., 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks.
Springer-Verlag, NY.

Andersen, T., Elser, J.J., Hessen, D.O., 2004. Stoichiometry and population dynamics.
Ecol. Lett. 7, 884–900.

Ankley, G.T., Erickson, R.J., Phipps, G.L., Mattson, V.R., Kosian, P.A., Sheedy, B.R., Cox,
J.S., 1995. Effects of light intensity on the phototoxicity of fluoranthene to a
benthic macroinvertebrate. Environ. Sci. Technol. 29, 2828–2833.

Ashauer, R., Boxall, A.B., Brown, C.D., 2007. New ecotoxicological model to simulate
survival of aquatic invertebrates after exposure to fluctuating and sequential
pulses of pesticides. Environ. Sci. Technol. 41, 1480–1486.

Ashauer, R., Brown, C.D., 2008. Toxicodynamic assumptions in ecotoxicological
hazard models. Environ. Toxicol. Chem. 27, 1817–1821.

Ben-Bassat, D., Shelef, G., Gruner, N., Shuval, H.I., 1972. Growth of chlamydomonas
in a medium containing mercury. Nature 240, 43–44.

Biesinger, K.E., Anderson, L.E., Eaton, J.G., 1982. Chronic effects of inorganic and
organic mercury on Daphnia magna: toxicity, accumulation, and loss. Arch.
Environ. Contam. Toxicol. 11, 769–774.

Bontje, D., Kooi, B., Liebig, M., Kooijman, S., 2009. Modelling long-term ecotox-
icological effects on an algal population under dynamic nutrient stress. Water
Res. 43, 3292–3300.

Danger, M., Maunoury-Danger, F., 2013. Ecological stoichiometry. In: Encyclopedia
of Aquatic Ecotoxicology. Springer, New York, pp. 317–326.

Diehl, S., 2007. Paradoxes of enrichment: effects of increased light versus nutrient
supply on pelagic producer–grazer systems. Am. Nat. 169, E173–E191.

Elser, J.J., Dobberfuhl, D.R., MacKay, N.A., Schampel, J.H., 1996. Organism size, life
history, and N:P stoichiometry. BioScience 46, 674–684.

Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., Inter-
landi, S., Kilham, S.S., McCauley, E., Schulz, K.L., et al., 2000. Nutritional con-
straints in terrestrial and freshwater food webs. Nature 408, 578–580.
Elser, J.J., Hayakawa, K., Urabe, J., 2001. Nutrient limitation reduces food quality for
zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82,
898–903.

Elser, J.J., Urabe, J., 1999. The stoichiometry of consumer-driven nutrient recycling:
theory, observations, and consequences. Ecology 80, 735–751.

Grover, J.P., 2004. Predation, competition, and nutrient recycling: a stoichiometric
approach with multiple nutrients. J. Theor. Biol. 229, 31–43.

Hall, S.R., 2004. Stoichiometrically explicit competition between grazers: species
replacement, coexistence, and priority effects along resource supply gradients.
Am. Nat. 164, 157–172.

Hall, S.R., 2009. Stoichiometrically explicit food webs: feedbacks between resource
supply, elemental constraints, and species diversity. Annu. Rev. Ecol. Evol. Syst.
40, 503–528.

Hallam, T., De Luna, J., 1984. Effects of toxicants on populations: a qualitative: ap-
proach iii. Environmental and food chain pathways. J. Theor. Biol. 109, 411–429.

Hannan, P.J., Patouillet, C., 1972. Effect of mercury on algal growth rates. Biotechnol.
Bioeng. 14, 93–101.

Hansen, L.K., Frost, P.C., Larson, J.H., Metcalfe, C.D., 2008. Poor elemental food
quality reduces the toxicity of fluoxetine on Daphnia magna. Aquat. Toxicol. 86,
99–103.

Hessen, D.O., Elser, J.J., Sterner, R.W., Urabe, J., 2013. Ecological stoichiometry: an
elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236.

Hill, W.R., Larsen, I.L., 2005. Growth dilution of metals in microalgal biofilms. En-
viron. Sci. Technol. 39, 1513–1518.

Huang, Q., Parshotam, L., Wang, H., Bampfylde, C., Lewis, M.A., 2013. A model for
the impact of contaminants on fish population dynamics. J. Theor. Biol. 334,
71–79.

Huang, Q., Wang, H., Lewis, M., 2014. Development of a Toxin-Mediated Predator–
Prey Model Applicable to Aquatic Environments in the Athabasca Oil Sands
Region. OSRIN Report No. Technical Report TR-59. 59 p. 〈http://hdl.handle.net/
10402/era.40140〉.

Huang, Q., Wang, H., Lewis, M.A., 2015. The impact of environmental toxins on
predator–prey dynamics. J. Theor. Biol. 378, 12–30.

Ieromina, O., Peijnenburg, W.J., de Snoo, G., Müller, J., Knepper, T.P., Vijver, M.G.,
2014. Impact of imidacloprid on Daphnia magna under different food quality
regimes. Environ. Toxicol. Chem. 33, 621–631.

de Jong, L.d.D., Roman, W., 1965. Tolerance of Chlorella vulgaris for metallic and
non-metallic ions. Antonie van Leeuwenhoek 31, 301–313.

Karimi, R., Chen, C.Y., Pickhardt, P.C., Fisher, N.S., Folt, C.L., 2007. Stoichiometric
controls of mercury dilution by growth. Proc. Natl. Acad. Sci. 104, 7477–7482.

Kooijman, S., Bedaux, J., 1996. Analysis of toxicity tests on Daphnia survival and
reproduction. Water Res. 30, 1711–1723.

Lessard, C.R., Frost, P.C., 2012. Phosphorus nutrition alters herbicide toxicity on
Daphnia magna. Sci. Total Environ. 421, 124–128.

Li, X., Wang, H., Kuang, Y., 2011. Global analysis of a stoichiometric producer–grazer
model with Holling type functional responses. J. Math. Biol. 63, 901–932.

Loladze, I., Kuang, Y., Elser, J., 2000. Stoichiometry in producer–grazer systems:
linking energy flow with element cycling. Bull. Math. Biol. 62, 1137–1162.

Mackay, D., Puig, H., McCarty, L., 1992. An equation describing the time course and
variability in uptake and toxicity of narcotic chemicals to fish. Environ. Toxicol.
Chem. 11, 941–951.

McCauley, E., Nelson, W.A., Nisbet, R.M., 2008. Small-amplitude cycles emerge from
stage-structured interactions in Daphnia–Algal systems. Nature 455,
1240–1243.

Mergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., Murray, M., Sakamoto, M.,
Stern, A.H., 2007. Methylmercury exposure and health effects in humans: a
worldwide concern. AMBIO: J. Hum. Environ. 36, 3–11.

Miller, F.J., Schlosser, P.M., Janszen, D.B., 2000. Habers rule: a special case in a family
of curves relating concentration and duration of exposure to a fixed level of
response for a given endpoint. Toxicology 149, 21–34.

Peace, A., 2015. Effects of light, nutrients, and food chain length on trophic effi-
ciencies in simple stoichiometric aquatic food chain models. Ecol. Model. 312,
125–135.

Peace, A., Wang, H., Kuang, Y., 2014. Dynamics of a producer–grazer model in-
corporating the effects of excess food nutrient content on grazers growth. Bull.
Math. Biol. 76, 2175–2197.

Peace, A., Zhao, Y., Loladze, I., Elser, J.J., Kuang, Y., 2013. A stoichiometric producer–
grazer model incorporating the effects of excess food-nutrient content on
consumer dynamics. Math. Biosci. 244, 107–115.

Pieters, B.J., Jager, T., Kraak, M.H., Admiraal, W., 2006. Modeling responses of
Daphnia magna to pesticide pulse exposure under varying food conditions:
intrinsic versus apparent sensitivity. Ecotoxicology 15, 601–608.

Rosenzweig, M.L., et al., 1971. Paradox of enrichment: destabilization of exploita-
tion ecosystems in ecological time. Science 171, 385–387.

Sarwar, N., Malhi, S.S., Zia, M.H., Naeem, A., Bibi, S., Farid, G., et al., 2010. Role of
mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food
Agric. 90, 925–937.

Sterner, R.W., Elser, J.J., 2002. Ecological Stoichiometry: The Biology of Elements
from Molecules to the Biosphere. Princeton University Press, Princeton.

Tompkins, T., Blinn, D.W., 1976. The effect of mercury on the growth rate of Fra-
gilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49,
111–116.

Tsui, M.T., Wang, W.-X., 2004. Uptake and elimination routes of inorganic mercury
and methylmercury in Daphnia magna. Environ. Sci. Technol. 38, 808–816.

Tsui, M.T., Wang, W.-X., 2006. Acute toxicity of mercury to Daphnia magna under
different conditions. Environ. Sci. Technol. 40, 4025–4030.

http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref1
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref1
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref1
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref1
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref2
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref2
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref3
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref3
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref3
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref4
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref4
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref4
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref4
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref5
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref5
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref5
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref5
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref6
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref6
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref6
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20001
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20001
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20001
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref8
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref8
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref8
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref8
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref9
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref9
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref9
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref9
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref11
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref11
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref11
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref12
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref12
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref12
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref13
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref13
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref13
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref13
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref14
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref14
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref14
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref14
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref15
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref15
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref15
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref16
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref16
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref16
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref17
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref17
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref17
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref17
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref18
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref18
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref18
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref18
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref19
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref19
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref19
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref20
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref21
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref21
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref21
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref21
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref22
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref22
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref22
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref23
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref23
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref23
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref24
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref24
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref24
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref24
http://hdl.handle.net/10402/era.40140
http://hdl.handle.net/10402/era.40140
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref26
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref26
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref26
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref27
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref27
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref27
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref27
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref28
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref28
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref28
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref29
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref29
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref29
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref30
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref30
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref30
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref31
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref31
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref31
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref32
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref32
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref32
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref33
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref33
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref33
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref34
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref34
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref34
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref34
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref35
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref35
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref35
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref35
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref36
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref36
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref36
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref36
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref37
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref37
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref37
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref37
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref38
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref38
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref38
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref38
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref39
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref39
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref39
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref39
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref40
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref40
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref40
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref40
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref41
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref41
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref41
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref41
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref42
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref42
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref42
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref43
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref43
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref43
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref43
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref44
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref44
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref45
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref45
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref45
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref45
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref46
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref46
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref46
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref47
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref47
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref47


A. Peace et al. / Journal of Theoretical Biology 407 (2016) 198–211 211
Urabe, J., Elser, J.J., Kyle, M., Yoshida, T., Sekino, T., Kawabata, Z., 2002. Herbivorous
animals can mitigate unfavourable ratios of energy and material supplies by
enhancing nutrient recycling. Ecol. Lett. 5, 177–185.

Urabe, J., Sterner, R.W., 1996. Regulation of herbivore growth by the balance of light
and nutrients. Proc. Natl. Acad. Sci. 93, 8465–8469.

Van Voorn, G.A., Kooi, B.W., Boer, M.P., 2010. Ecological consequences of global
bifurcations in some food chain models. Math. Biosci. 226, 120–133.

Vocke, R.W., 1978. Growth responses of selected freshwater algae to trace elements
and scrubber ash slurry generated by coal-fired power plants. Retrospective
Theses and Dissertations, Paper 6523.

Walker, C.H., Sibly, R., Hopkin, S., Peakall, D.B., 2012. Principles of Ecotoxicology.
CRC Press, Boca Raton.

Wang, H., Kuang, Y., Loladze, I., 2008a. Dynamics of a mechanistically derived
stoichiometric producer–grazer model. J. Biol. Dyn. 2, 286–296.

Wang, H., Sterner, R.W., Elser, J.J., 2012. On the strict homeostasis? Assumption in
ecological stoichiometry. Ecol. Model. 243, 81–88.
Wang, L., Zhou, Q., Ding, L., Sun, Y., 2008b. Effect of cadmium toxicity on nitrogen

metabolism in leaves of Solanum nigrum L. as a newly found cadmium hy-
peraccumulator. J. Hazard. Mater. 154, 818–825.

Wang, W.-X., 2012. Biodynamic understanding of mercury accumulation in marine
and freshwater fish. Adv. Environ. Res. 1, 15–35.

Wang, W.-X., Fisher, N., Luoma, S., 1996. Kinetic determinations of trace element
bioaccumulation in the mussel Mytilus edulis. Oceanogr. Lit. Rev. 3, 273.

Wang, W.-X., Rainbow, P.S., 2008. Comparative approaches to understand metal
bioaccumulation in aquatic animals. Comp. Biochem. Physiol. Part C: Toxicol.
Pharmacol. 148, 315–323.

Xie, T., Yang, X., Li, X., Wang, H., 2016. Complete global and bifurcation analysis of a
stoichiometric predator–prey model. Submitted for publication.

Xing, W., Huang, W., Liu, G., 2010. Effect of excess iron and copper on physiology of
aquatic plant Spirodela polyrrhiza (L.) Schleid. Environ. Toxicol. 25, 103–112.

http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref48
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref48
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref48
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref48
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref49
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref49
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref49
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref50
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref50
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref50
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref52
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref52
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref53
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref53
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref53
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref54
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref54
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref54
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref55
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref55
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref55
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref55
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref56
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref56
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref56
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref57
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref57
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref58
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref58
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref58
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref58
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref60
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref60
http://refhub.elsevier.com/S0022-5193(16)30219-3/sbref60

	Somatic Growth Dilution of a toxicant in a predator–prey model under stoichiometric constraints
	Introduction
	Model formulation
	Model parameterization
	Model analysis
	Nondimensionalization and quasi-steady-state approximation
	Positive invariance
	Asymptotic dynamics

	Numerical analysis
	Numerical simulations
	Bifurcation analysis

	Discussion
	Acknowledgements
	LKE model with slight modification
	Parameterization
	Nontoxicant-related parameters
	Prey toxicant-related parameters
	Predator toxicant-related parameters
	Toxicant-dependent predator mortality rate
	Toxicant-dependent predator reproduction efficiency


	Algae toxicant-inhibited growth data
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	References




