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Abstract. We propose a seasonal forcing iSIR (indirectly transmitted SIR)
model with a modified incidence function, due to the fact that the seasonal
fluctuations can be the main culprit for cholera outbreaks. For this nonau-
tonomous system, we provide a sufficient condition for the persistence and the
existence of a periodic solution. Furthermore, we provide a sufficient condi-
tion for the global stability of the periodic solution. Finally, we present some
simulation examples for both autonomous and nonautonomous systems. Sim-
ulation results exhibit dynamical complexities, including the bistability of the
autonomous system, an unexpected outbreak of cholera for the nonautonomous
system, and possible outcomes induced by sudden weather events. Compar-
atively the nonautonomous system is more realistic in describing the indirect
transmission of cholera. Our study reveals that the relative difference between
the value of immunological threshold and the peak value of bacterial biomass
is critical in determining the dynamical behaviors of the system.

1. Introduction. Cholera is a severe intestinal disease caused by ingesting water
contaminated with the bacterium Vibrio cholerae. The main symptom of cholera
infection is profuse watery diarrhea that rapidly causes dehydration and can lead
to death within days if not promptly treated. Although listed as one of the oldest
known diseases, cholera remains a serious public health burden in developing coun-
tries where poverty and poor sanitation and hygiene are prevalent. Major cholera
outbreaks in recent years include those in Zimbabwe in 2008, Vietnam in 2009,
Nigeria in 2010, Ghana in 2011, as well as the one in Haiti during 2010-2012 which
is regarded as one of the largest cholera epidemics in modern history, with more
than 530,000 reported cases and over 7,000 deaths [24].
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Mathematical models for infectious disease transmission play an important role
in understanding the disease persistence (endemic) and outbreaks (epidemic, pan-
demic), and can provide useful insights toward effective prevention and control of
disease spread. In particular, a number of mathematical models for cholera have
been proposed and analyzed in recent years [4, 8, 13, 12, 18, 10, 22, 19, 1, 2, 20, 3, 11],
and several models have been driven by the Haiti cholera outbreak [1, 2, 3, 20].
These studies have certainly made significant contribution to cholera epidemiol-
ogy. Nevertheless, the persistence of cholera nowadays and its frequent outbreaks
throughout the world indicate that our current knowledge in cholera dynamics and
public health guidelines to control the disease are still inadequate.

Since cholera is a water-borne disease, recent mathematical cholera models have
extended the classical SIR (susceptible-infected-recovered) framework by adding an
environmental component, typically denoted by B, that tracks the concentration of
toxigenic vibrios in the water supply. Particularly, Codeço [4] published a cholera
model that, in the first time, explicitly incorporated the pathogen concentration,
with the infection from the aquatic environment represented by a saturation inci-
dence. Codeço’s model has since been extensively referenced, discussed, and im-
proved (see, e.g., [8, 10, 13, 22, 18, 19]). Most of these studies, however, assume a
simple linear representation of the pathogen dynamics, and the rate of change for
the bacterial concentration is typically described by two linear factors: a positive
contribution from the infected human population, and a negative contribution due
to natural death of the vibrios. Joh et al. in 2009 proposed a model [10] that took
into account the intrinsic growth of the vibrios in the aquatic environment, and a
logistic growth term was included in their model to depict the bacterial dynamics.
Meanwhile, the model of Joh et al. introduced a minimal infection dose (MID) in
the incidence term, based on clinical observations [14] that cholera infection takes
place only if the concentration of the ingested vibrios is high enough to overcome
the innate immune response of human body. Thus, an infection threshold is im-
posed by this MID and the incidence function is piecewise continuous: it is zero if
the vibrio concentration is below the threshold, and it is a Holling type functional
response if the vibrio concentration is above the threshold.

The present paper is built upon the framework of Joh et al.. As mentioned above,
the incidence in [10] is a piecewise continuous function which exhibits a discontinuity
for higher order derivatives. In this study, we will introduce a new and first-of-its-
kind representation of the incidence which is infinitely smooth, by replacing the
Holling type function with an exponential saturation form. Our proposed incidence
function matches very well in values (thus biologically mimics) the standard Holling
type II or III function, yet the new incidence form possesses better mathematical
properties that allows us to conduct a careful analysis on the rich dynamics resulting
from the MID threshold.

The main objective of this paper is to investigate the effects of seasonal forcing
on cholera epidemics and endemism. Particularly, we examine the seasonality of
bacterial growth which is subject to the annual variation of temperature, nutrients,
rainfall, etc. [6, 17]. Such periodic oscillations of bacterial growth and decay, in
turn, have strong impact on short- and long-term cholera dynamics. We extend our
autonomous cholera model into a nonautonomous system with periodic bacterial
growth rate and carrying capacity, and rigorously analyze the dynamics. In partic-
ular, we prove the persistence of the disease and the existence of periodic solutions
under mild assumptions.
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The remainder of this paper is organized as follows. In Section 2, we intro-
duce the new exponential saturation incidence and incorporate periodicity into the
iSIR model. In Section 3, we provide the forward invariance, the uniform persis-
tence, the existence and stability (local and global) of periodic solutions, for the
nonautonomous system. In Section 4, we conduct numerical simulations to validate
the analytical results and to test the impact of sudden weather events on cholera
outbreaks. Finally, we summarize and discuss our conclusions in Section 5.

2. Model derivation. The autonomous iSIR model was introduced in [10]:

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
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dS

dt
= −α(B)S − µS + µN , (1a)

dI

dt
= α(B)S − µI − δI , (1b)

dR

dt
= δI − µR , (1c)

dB

dt
= rB(1 − B

K
) + ξI , (1d)

where the saturation function α(B) takes the form as follows:

α(B) =

{

0 , B ≤ c
a(B−c)n

(B−c)n+Hn , B > c
,where n is a positive integer. (2)
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Figure 1. Satuation function α(·) of Holling-type

Although as n becomes larger, the curve will become smoother, these curves are
not sufficiently smooth, posing challenges in mathematical analysis. we thus intro-
duce the following novel exponential threshold incidence function which is infinitely
smooth:

α(B) =

{

0 , B ≤ c

a exp(− Hn ln 2
(B−c)n ), B > c

, where n is a positive number. (3)

Obviously this new function satisfies the half saturation condition (when B−c = H ,
we have α(B) = a/2).

In addition, we define the value of the i-th derivative of α(·) at c as 0 for i =
1, 2, · · · . It is easy to show that for every positive number n, the function α(·) is
infinitely smooth. The advantage of such defined functions is reflected not only in
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theoretical analysis but also in numerical simulations. We will highlight this point
throughout the paper.

To our knowledge, such an exponential threshold incidence from is first of its
kind. It is clear from Figures 1 and 2 that these exponential functions match corre-
sponding Holling type functions very well, yet with better mathematical properties
that enable us to deepen our understanding of the rich dynamics of the cholera
model. In addition, these exponential saturation functions can be potentially ap-
plied to the modeling of many other infectious diseases where the minimal infection
doses (MID) are relevant. For these reasons, we carefully analyze the exponential
incidence incorporated in system (1), under a relatively simple, autonomous setting;
the details are provided in Appendices. The global stability analysis repeats almost
the same process in Kong et al. [11], thus we do not present global results here. The
results of the autonomous system build a solid base for our mathematical analysis
of the more complex, nonautonomous system in Section 3.

c

a

B value

α

Exponential type saturation functions

n=3
n=2

n=1

Figure 2. Saturation function α(·) of exponential type

The parameters in system (1) are described in Table 1, taken from Jensen et al.
[9].

Table 1. Parameter values from Jensen et al. [9]

Parameter Values Description Units

r 0.2-14.3 Maximum per capita pathogen growth rate day −1

K 106 Pathogen carrying capacity cell liter −1

H 106 − 108 Half-saturation pathogen density cell liter −1

a 0.08 - 0.12 Maximum rate of infection day −1

δ 0.1 Recovery rate day −1

ξ 10-100 Pathengen shed rate cell liter −1day−1

µ 5 × 10−5 − 5 × 10−4 Natural human birth/death rate day −1

N 106 Total Population persons
c ≈ 106 Minimum infection dose cell liter −1

Seasonal forcing is believed to be an important culprit for cholera outbreaks
due to the indirect transmission from the reservoir that heavily depends on weather
events. Here we explicitly incorporate seasonality into the bacterial intrinsic growth
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rate and carrying capacity in our iSIR model, and obtain

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
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





dS

dt
= −α(B)S − µS + µN, (4a)

dI

dt
= α(B)S − µI − δI, (4b)

dR

dt
= δI − µR, (4c)

dB

dt
= r(t)B(1 − B

K(t)) + ξI, (4d)

where α(B) takes the exponential threshold form of (3), and S, I, R satisfy S + I +
R = N .

We assume r(t) and K(t) are all positive continuous periodic functions, i.e., there
exist ω, rm, rM ,Km, and KM such that r(t+ ω) = r(t),K(t+ ω) = K(t), and

0 < rm ≤ r(t) ≤ rM , 0 < Km ≤ K(t) ≤ KM .

For simplicity, we set s = S/N, i = I/N , and drop equation(4c). We rewrite
system (4) in an equivalent form as
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

















ds

dt
= −α(B)s− µs+ µ, (5a)

di

dt
= α(B)s − µi− δi, (5b)

dB

dt
= r(t)B(1 − B

K(t) ) + ξNi. (5c)

3. Mathematical analysis.

3.1. Forward invariance.

Proposition 3.1. There exists BM > 0, such that system (5) has a forward in-
variant set

D1 = {(s, i, B)|s ≥ ε1, i ≥ 0, ε1 ≤ s+ i ≤ 1, Km ≤ B ≤ BM}.

Proof. Taking ε1 = µ
a+µ

. The condition s ≤ ε1 implies s ≤ µ
α(B)+µ

. By (5a), if

s ≤ ε1, then ṡ ≥ 0; by (5b), if i = 0, then i̇ ≥ 0; and by (5c), if B ≤ Km then

Ḃ ≥ 0. Hence we have s(t) > ε1 and i(t) ≥ 0 and B(t) ≥ Km for t > 0 provided
(s(0), i(0), B(0)) ∈ D1.

According to (5a) and (5b), we have

d(s+ i)

dt
= −µ(s+ i) + µ− δi.

If s+ i = 1, then
d(s+ i)

dt
= −δi ≤ 0. Hence we have s(t) + i(t) ≤ 1 for t > 0.

Note that B ≥ KM+
√

K2

M
+4KMNξ/rm

2
implies B2−KMB−KMNξ/rm ≥ 0, and thus

it implies
dB

dt
= r(t)B(1− B

K(t)
) +Nξi ≤ 0. Set BM =

KM +
√

K2
M + 4KMNξ/rm

2
,

then B ≥ BM implies
dB

dt
≤ 0. Hence for any initial value (s0, i0, B0) ∈ D1, we

have (s(t), i(t), B(t)) ∈ D1 for t > 0. This completes the proof.
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3.2. Persistence. We proceed to show the uniform persistence of the system (5).
To that end, we first establish the following result.

Theorem 3.2. Suppose there exist a number L > 0, a number l, 0 < l < L , and
an ε0 > 0, such that for every t > 0, there is an interval J of length l, J ⊆ [t, t+L],
and for every τ ∈ J ,

B(τ) ≥ c+ ε0 (6)

holds. Then there exist ε1 > 0, ε2 > 0, and ε3 > 0 such that for every positive
solution (s(t), i(t), B(t)) of system (5) satisfying (6), we have

lim
t→+∞

inf s(t) ≥ ε1 > 0, (7)

lim
t→∞

inf i(t) ≥ ε2 > 0, (8)

and
lim
t→∞

sup (s(t) + i(t)) ≤ ε3 < 1. (9)

Proof. By (6), there exists an A > 0 such that
∫ t+L

t

α(B(τ))dτ ≥ A > 0, for ∀ t > 0. (10)

According to (5a) and α(B) ≤ a, we have

ds

dt
≥ −as− µs+ µ. (11)

Since the equation
du

dt
= −au− µu+ µ (12)

possesses a globally stable solution u = µ
a+µ

, comparing the two equations (11) and

(12), we have

lim
t→∞

inf s(t) ≥
µ

a+ µ
.

Set ε1 = µ
a+µ

, and we obtain (7).

Picking µ1 such that 0 < µ1 < ε1, then there exists a T1 > 0 such that

s(t) ≥ µ1, for t ≥ T1. (13)

By (5b), we have
di

dt
+ (µ+ δ)i ≥ µ1α(B), for t ≥ T1. (14)

It follows

d(i exp((µ+ δ)t))

dt
≥ µ1 exp((µ+ δ)t)α(B), for t ≥ T1. (15)

Integrating both sides over [T1, T ], we get

i(T ) exp((µ+ δ)T )− i(T1) exp((µ+ δ)T1) ≥ µ1

∫ T

T1

exp((µ+ δ)t)α(B(t))dt.

Hence we have

i(T ) ≥ i(T1) exp((µ+ δ)(T1 − T )) + µ1

∫ T

T1

exp((µ+ δ)t)α(B(t))dt

exp((µ+ δ)T )
, i1(T ) + i2(T )

(16)
Obviously

lim
T→+∞

i1(T ) = 0. (17)
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Let T = T1 + nL + ∆T , where 0 ≤ ∆T < L and n is a non-negative integer.
Considering (10), we have

i2(T ) = µ1

(
∫ T1+L
T1

+
∫ T1+2L
T1+L

+ · · ·+
∫ T1+nL
T1+(n−1)L

+
∫ T1+nL+∆T
T1+nL

) exp((µ + δ)t)α(B(t))dt

exp((µ + δ)nL) exp((µ + δ)(T1 +∆T ))

≥ µ1
exp((µ + δ)T1)(1 + exp(L(µ + δ)) + exp(2L(µ + δ)) + · · ·+ exp((n− 1)L(µ + δ)))A

exp((µ + δ)nL) exp((µ + δ)(T1 +∆T ))

≥
µ1A

exp((µ+ δ)(n+ 1)L)

exp(nL(µ+ δ))− 1

exp(L(µ+ δ)) − 1
.

Hence

lim
T→+∞

inf i2(T ) ≥ lim
n→+∞

µ1A

exp((µ + δ)(n + 1)L)

exp(nL(µ+ δ)) − 1

exp(L(µ + δ)) − 1
=

µ1A

exp(2L(µ + δ))

Taking

ε2 =
µ1A

exp(2L(µ+ δ))
, (18)

due to (16) and (17), we have

lim
T→+∞

inf i(T ) ≥ lim
T→+∞

inf (i1(T ) + i2(T )) ≥ ε2.

Now by (8), there exists a T2 > 0 such that

i(t) ≥
ε2
2
, for ∀t ≥ T2,

thus by (4c) we have
dR

dt
≥ Nδ

ε2
2

− µR, for t ≥ T2. (19)

Consider
dv

dt
= Nδ

ε2
2

− µv. (20)

It has a solution v = Nδε2
2µ which is globally stable. Based on (19) and (20), by the

comparison theorem [23], we have

lim
t→+∞

inf R(t) ≥ N
δε2
2µ

> 0,

which implies (9).

Remark 3.3. Obviously, (7),(8) and (9) imply the persistence of (4). The hypoth-
esis of this theorem has a reasonable background in reality. For example, if for
every year there is a period, even if very short, within which the bacterial density
is higher than the threshold value c, then the infection will spread and the disease
will persist.

The hypothesis can also be given in another form. Consider the equation

dB

dt
= r(t)B(1 −

B

K(t)
), (21)

where r(t), K(t) are positive continuous ω-periodic functions. It can be shown that

this equation possesses a unique periodic solution B̃, which is globally asymptoti-
cally stable. Specifically, we have the following result.



2268 JINHUO LUO, JIN WANG AND HAO WANG

Lemma 3.4. The system (21) has a positive ω-periodic solution B̃(t), given by

B̃(t) =
1− exp(−

∫ ω

0
r(θ)dθ)

∫ ω

0
r(t−θ)
k(t−θ)exp(−

∫ θ

0 r(t − τ)dτ)dθ
, (22)

where r(t), K(t) are positive ω-periodic functions.

According to (5c) and (21), by the comparison theorem [23] we know that for
any solution of system (5), (s(t), i(t), B(t)) with positive initial values, there must
exist a T > 0 such that

B(t) > B̃(t), for t > T.

Hence, we have

Theorem 3.5. Assume that c < maxt∈[0,ω] B̃, where B̃ is given by (22). Then
the system (4) is uniformly persistent, i.e., there exists a positive constant ε such
that for all initial values (S(0), I(0), R(0), B(0)) ∈ R+ × R+ × R+ × R+, we have
lim

t→+∞
inf(S(t), I(t), R(t), B(t)) ≥ (ε, ε, ε, ε).

Proof. Taking L = ω, ε = min{ε1, ε2, 1−ε3,Km}, the assumption c < maxt∈[0,ω] B̃
implies (10), and the remaining proof follows the same logic as the proof of theorem
(3.2).

Furthermore, with the same assumption as in Theorem (3.5), we can establish
the existence of positive periodic solutions.

Theorem 3.6. In case of c < maxt∈[0,ω] B̃, system (5) possesses a periodic solution
(s∗(t), i∗(t), B∗(t)) satisfying (s∗(t), i∗(t), B∗(t)) > 0, for t ≥ 0.

Proof. According to proposition (3.1),

D1 = {(s, i, B)|s ≥ ε1, i ≥ 0, ε1 ≤ s+ i ≤ 1, Km ≤ B ≤ BM}

is forward invariant. Since s, i and B are all bounded, obviously the periodic system
(5) satisfies Lipschitz condition with the Lipschitz constant independent of t and
system parameters. Hence, for every initial value z0 = (s(0), i(0), B(0)) ∈ D1, there
exists an unique solution z(t) ≡ (s(t), i(t), B(t)). Denote ϕz0(t) = (z(t); 0, z(0))
then ϕz0(t) is continuous with respect to z0 for every t > 0. Define a map T : D1 →
D1, T (z0) = z(ω), for ∀ z0 ∈ D1 (Note that D1 is invariant, which guarantees
z(ω) ∈ D1). Since D1 is a convex set and T is continuous, according to the fix point
theorem, there must be at least one point z∗0 = (s∗0, i∗0, B∗

0) ∈ D1, satisfying z∗0 =
z∗(ω). Denote ẑ(t) = z∗(t+ω). Since z∗(t) is a solution of system (5), obviously ẑ(t)
is also a solution of system (5). With z∗(0) = ẑ(0), we have z∗(t) ≡ ẑ(t) for t ≥ 0.
It means that z∗(t) ≡ z∗(t+ ω). This proves the existence of the periodic solution

for system (5). Now by the assumption c < maxt∈[0,ω] B̃, and the conclusion proved
in theorem (3.2), we have

i∗0 = i∗(0) = i∗(ω) = i∗(2ω) = · · · = lim
n−→∞

i∗(nω) ≥ ε2 > 0.

Hence the periodic solution z∗ is positive.
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3.3. Stability. Generally speaking, stability analysis of non-autonomous dynam-
ical systems is challenging. In what follows, we attempt to study the trivial and
non-trivial periodic solutions of our model (5) under some stronger conditions.

We first present a known result below that characterizes the stability relationship
between the trivial solution of a nonlinear system and that of the corresponding
linear system[7][21].

Lemma 3.7. Consider the system

dX

dt
= A(t)X + F (t,X), (23)

where F (t,X) is Lipschitzian in X for ∀ t. Assume that

lim
|X|→0

|F (t,X)|

|X |
= 0 uniformly in t.

(a) If X = 0 is uniformly asymptotically stable for

dX

dt
= A(t)X, (24)

then X = 0 is uniformly asymptotically stable for system (23).
(b) If X = 0 is unstable for system(24), then X = 0 is unstable for system (23).

We apply this lemma to system (5), and discuss two cases separately.

Case 1. Consider the disease-free and bacteria-free solution of the non-autonomous
system (5): (s, i, B) = (1, 0, 0). We transit this solution to the origin X = 0 by
introducing y = 1− s, where 0 ≤ y ≤ 1. Then we have







































dy

dt
= −µy + α(B)(1 − y) ,

di

dt
= −(µ+ δ)i+ α(B)(1 − y) ,

dB

dt
= r(t)B + ξNi− r(t)

K(t)B
2 ,

where

A(t) =





−µ 0 0
0 −(µ+ δ) 0
0 ξN r(t)



 and F (t,X) =





α(B)(1 − y)
α(B)(1 − y)

− r(t)
K(t)B

2



 .

Clearly,

|F (t,X)|∞ ≤ 2α(B)|1− y|+ r(t)
K(t)B

2

≤ rM
Km

B2, when 0 ≤ B < c, and

|X |∞ ≥ B.

Here | · |∞ represents the infinity norm.

Thus
|F (t,X)|∞

|X |∞
−→ 0, as |X |∞ −→ 0, uniformly in t.

Now, the three Floquet exponents of system (24) are given by −µ, −(µ +
δ) and 1

ω

∫ ω

0
r(t)dt > 0. Thus its trivial solution X = 0 is unstable. Based

on the above lemma, we have
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Theorem 3.8. System (5) possesses a disease-free and bacteria-free trivial periodic
solution (s, i, B) = (1, 0, 0), which is unstable.

Case 2. Consider i = 0, B 6= 0. It is stated for equation (21) that there exists an

unique solution B̃(t). Assume maxt∈[0,ω] B̃(t) ≤ c, then we have an unique solution

for system (5): (s, i, B) = (1, 0, B̃(t)). Let y = 1 − s, z = B̃ − B, then system
(5) becomes







































dy

dt
= −µy + α(B̃ − z)(1− y) ,

di

dt
= −(µ+ δ)i + α(B̃ − z)(1− y) ,

dz

dt
=

(

1− 2B̃(t)
K(t)

)

r(t)z − ξNi+ r(t)
K(t)z

2.

In this case we have

A(t) =







−µ 0 0
0 −(µ+ δ) 0

0 −ξN
(

1− 2B̃(t)
K(t)

)






.

Note that maxt∈[0,ω] B̃ ≤ c and α(B̃ − z) −→ 0 exponentially as z −→ 0, again
it can be easily shown that

|F (t,X)|∞
|X |∞

−→ 0, as |X |∞ −→ 0, uniformly in t.

Hence the stability depends on the sign of the third Floquet exponent

λ3 =
1

ω

∫ ω

0

(

1−
2B̃(t)

K(t)

)

r(t)dt.

Now we will show that λ3 < 0. By the definition of B̃(t) we simply have

dB̃

dt
= r(t)B̃(1−

B̃

K(t)
).

Obviously B̃(t) 6= 0 for t ∈ [0, ω]. Dividing both sides of the above equation by

B̃(t), we have

1

B̃

dB̃

dt
=

(

1−
B̃(t)

K(t)

)

r(t).

Integrating both sides of the above equation from 0 to ω, then we have

0 =

∫ ω

0

(

1−
B̃(t)

K(t)

)

r(t)dt,

due to the fact that B̃(t) is ω-periodic.
Hence

λ3 =
1

ω

∫ ω

0

(

1−
2B̃(t)

K(t)

)

r(t)dt <
1

ω

∫ ω

0

(

1−
B̃(t)

K(t)

)

r(t)dt = 0.

Now we have

Theorem 3.9. In case of maxt∈[0,ω] B̃(t) ≤ c system (5) has a disease-free periodic

solution (s, i, B) = (1, 0, B̃), which is locally asymptotically stable.
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Now we consider the stability of a general positive ω-periodic solution of system
(5). We prove the following theorem first.

Theorem 3.10. Suppose that c < maxt∈[0,ω] B̃(t). Then there exist an ε > 0 and
a constant T > 0 such that, for every solution (s(t), i(t), B(t)) of system (5) with
positive initial condition, we have

B(t)

K(t)
> 1 + ε, for t ≥ T. (25)

Proof. By the assumption c < maxt∈[0,ω] B̃(t) and theorem (3.5), there exist an
ε1 > 0 and a T1 > 0 such that i(t) ≥ ε1 for t ≥ T1. Consider equation (5c) and let

r(t)B(t)(1 −
B(t)

K(t)
) +

Nξi(t)

2
≥ 0.

this inequality hold provided

B(t) ≤
K(t) +

√

K2(t) + NξK(t)i(t)
r(t)

2
.

Hence
dB

dt
= rB(1 −

B

K
) +Nξi(t) ≥

Nξε1
2

> 0 provided

B(t) ≤ K(t)
1 +

√

1 + Nξε1
rMKM

2
, for t ≥ T1.

It follows

B(t)

K(t)
≤

1 +
√

1 + Nξε1
rMKM

2
for t ≥ T1.

Taking

ε =
1 +

√

1 + Nξε1
rMKM

2
− 1,

we see that while B(t)
K(t) ≤ 1+ε, we have dB

dt
≥ Nξε1

2 > 0. Hence there exists a T > T1

such that
B(t)

K(t)
> 1 + ε, for t ≥ T.

Ecologically, this theorem implies that, as some individuals infected, the bacterial
density could surpass the natural carrying capacity, and it may result in more
susceptible population get infected even their threshold value c is greater than
maxt∈[0,ω] B̃(t). It could be a vicious circle if the patients could not be cured
in time. And it may cause environmental deterioration in some poor area where
medical facilities are insufficient.

Theorem 3.11. Suppose that c < maxt∈[0,ω] B̃(t). Then the ω-periodic solution
(s∗(t), i∗(t), B∗(t)) guaranteed by theorem (3.6) is globally asymptotically stable if

a(n+ 1)
n

√

n+ 1

n ln 2
exp(−

n+ 1

n
) <

rmδH

2Nξ
. (26)
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Proof. Let (s(t), i(t), B(t)) be any solution of system (5) with nonnegative initial
condition. Define the following Lyapunov function

L(t) = |s(t)− s∗(t)|+ |i(t)− i∗(t)|+
δ

Nξ
|B(t)−B∗(t)|.

We calculate the right-hand derivative of L(t) along with system (5) by using the
fact that |x|′ = sign(x)x′:

D+L(t) = sign(s− s∗)(s′− s∗′)+ sign(i− i∗)(i′− i∗′)+
δ

Nξ
sign(B−B∗)(B′−B∗′)

= sign(s− s∗) (α(B∗)s∗ − α(B)s− µ(s− s∗))
+sign(i− i∗) (α(B)s − α(B∗)s∗ − µ(i− i∗)− δ(i− i∗))

+
δ

Nξ
sign(B −B∗)

(

r(B −B∗)−
r

K
(B +B∗)(B −B∗) +Nξ(i− i∗)

)

.

In any time t, the sign of i(t) and s(t) should be included in the following three
cases, and we shall consider three cases respectively.

Case 1 : sign(s(t)− s∗(t)) = sign(i(t)− i∗(t)) 6= 0.
Case 2 : sign(s(t)− s∗(t)) = − sign(i(t)− i∗(t)) 6= 0.
Case 3 : sign(s(t)− s∗(t) = 0 or sign(i(t)− i∗(t)) = 0.

Case 1. By theorem (3.10), there exist an ε > 0 and a T > 0 such that

sign(B(t)−B∗(t))

(

r(t)(B(t) −B∗(t)) − r(t)
B(t) +B∗(t)

K(t)
(B(t)−B∗(t))

)

=

(

1−
B(t)

K(t)
−

B∗(t)

K(t)

)

r(t)|B(t) −B∗(t)|

< −rm|B(t)−B∗(t)| < 0, for t > T.

Since

sign(s− s∗) (α(B∗)s∗ − α(B)s) + sign(i− i∗) (α(B)s − α(B∗)s∗) = 0,

sign(i− i∗)(−δ(i − i∗)) + δsign(B −B∗)(i − i∗) ≤ 0,

then

D+L(t) ≤ −µ|s− s∗| − µ|i− i∗| − rm
δ

Nξ
|B −B∗|, for t > T. (27)

Case 2. We have four subcases to discuss.

Case 2.1. s(t) > s∗(t) and B(t) > B∗(t).

sign(s−s∗) (α(B∗)s∗ − α(B)s)+sign(i− i∗) (α(B)s − α(B∗)s∗) ≤ −2α(B)|s−s∗|.

Thus (27) still holds.

Case 2.2. s(t) > s∗(t) and B(t) < B∗(t).

α(B∗)s∗ − α(B)s < s (α(B∗)− α(B)) < α(B∗)− α(B)

= α′(B∗ + θ(B −B∗))(B∗ −B) ≤ α′
max(B

∗ −B) for some 0 < θ < 1,

where α′
max denotes the maximum value of α′(·).

Thus

D+L(t) ≤ −µ|s− s∗| − µ|i− i∗| − ν
δ

Nξ
|B −B∗| for t > T, (28)

where

ν = (rm − 2
Nξ

δ
α′
max). (29)
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It is easy to show that α′(·) reaches its maximum at B̂ = c+H n

√

n
n+1 ln 2, and

α′
max 6 α′(B̂) =

a(n+ 1)

H
n

√

n+ 1

n ln 2
exp(−

n+ 1

n
).

Case 2.3. s(t) < s∗(t) and B(t) < B∗(t).

sign(s−s∗) (α(B∗)s∗ − α(B)s)+sign(i−i∗) (α(B)s− α(B∗)s∗) ≤ −2α(B∗)|s−s∗|.

Case 2.4. s(t) < s∗(t) and B(t) > B∗(t). It is similar to case 2.2.
Now we assume condition (26) holds, then ν > 0. Taking ζ = min{µ, rm, ν},

and by (27) and (28), we obtain

D+L(t) ≤ −ζL(t) for t > T.

Integrating the above inequality over [T, T ′], we have

L(T ′)− L(T ) + ζ

∫ T ′

T

L(t)dt ≤ 0.

Let T ′ −→ +∞ and since L(·) is positive, continuous, and bounded, then
∫ +∞

T
L(t)dt

is finite. By the continuity of L(t), we have

lim
t−→+∞

L(t) = 0.

Namely,

lim
t→+∞

|i(t)− i∗(t)| = 0, lim
t→+∞

|s(t)− s∗(t)| = 0, and lim
t→+∞

|B(t)−B∗(t)| = 0,

or
lim
t→∞

(s(t), i(t), B(t)) = (s∗(t), i∗(t), B∗(t)). (30)

Case 3. Denote ∆s = s − s∗, ∆i = i − i∗, and ∆B = B − B∗. In this case we
need to consider two subcases: ∆s = 0 and ∆i = 0. By (5a) and (5b) we have

d(∆s+∆i)

dt
= −µ∆s− (µ+ δ)∆i. (31)

Case 3.1. s(t)− s∗(t) = 0. Under this situation we have

d∆i

dt
= −(µ+ δ)∆i. (32)

Thus
∆i(t) = ∆i0 exp(−(µ+ δ)t). (33)

By (5c) we have

d∆B

dt
= r(t)∆B − r(t)

B +B∗

K(t)
∆B +Nξ∆i.

Hence, by lemma (3.10), for ∆B > 0 we have

d∆B

dt
< −rm∆B +∆i0 exp(−(µ+ δ)) for t > T, (34)

and for ∆B < 0 we have

d∆B

dt
> −rm∆B +∆i0 exp(−(µ+ δ)) for t > T, (35)

where T is given by lemma (3.10). It is easy to show that equation

dz

dt
= −rmz +∆i0 exp(−(µ+ δ)t) (36)
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has a globally stable solution z = 0. Comparing (34), (35) with (36), by the
comparison theorem [23], we have

lim
t→∞

∆B = 0.

And by (32), obviously we have

lim
t→∞

∆i = 0.

Thus (30) holds.

Case 3.2. ∆i = i(t)− i∗(t) = 0. By (31) we have

d∆s

dt
= −µ∆s.

Thus obviously we have
lim
t→∞

∆s(t) = 0.

And in this case, by (5c) we have

d∆B

dt
= r(t)∆B − r(t)

B +B∗

K(t)
∆B

= r(t)

(

1−
B +B∗

K(t)

)

∆B.

Since

r(t)

(

1−
B +B∗

K(t)

)

< r(t)(−1 − 2ε) < −rm < 0, for t > T,

we have
lim
t→∞

∆B = 0.

Thus in this case, (3.11) still holds.

Now, after the discussion of the above three cases, we have

Corollary 3.12. Suppose that c < maxt∈[0,ω] B̃(t), then system (5) admits an
unique and globally asymptotically stable ω− periodic solution if

a(n+ 1)
n

√

n+ 1

n ln 2
exp(−

n+ 1

n
) <

rmδH

2Nξ
. (37)

Remark 3.13. When α(·) takes the form of Holling type described in equation (2),

it reaches its maximum at B̂ = c+ n

√

n−1
n+1H ,

α(B̂) =
a(n+ 1) n

√

(n+ 1)(n− 1)n−1

4nH
.

the corresponding condition for the global stability of the periodic solution is

a(n+ 1) n
√

(n+ 1)(n− 1)n−1

n
<

2rmδH

Nξ
. (38)

Remark 3.14. From the proof of the theorem, it is clear to see that the condition
(26) is equivalent to maxα′(B) < rmδ

2Nξ
. Obviously, α′(B) describes the rate that

the incidence grows when B increases. If this growth is not so fast; i.e., bounded
above by rmδ

2Nξ
, then a unique and globally asymptotically stable periodic solution

exists.

Remark 3.15. Taking c < K instead of c < maxt∈[0,ω] B̃(t), then corresponding
conclusions in this section hold for autonomous system (40).
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4. Numerical simulations.

4.1. Simulations for the autonomous system (40). As space is limited, we
omit the case when c is much less than or is much greater than the carrying ca-
pacity of bacteria, in which the corresponding system will be stable or be extinct
respectively. We only present the reader a special case, in which the system pos-
sesses a bistability, when the threshold value c is close to the carrying capacity of
bacteria.

Example 4.1. Taking N = 1 × 106;n = 2;H = 1 × 105; r = 0.25; a = 0.09; δ =
0.1; ξ = 90;µ = 1×10−4; c = 10.985×106;K = 1×106. Simulation results show that
with different initial condition, system may have different local stable states. We
found two locally stable states. State I: X1 = (s1, i1, B1) = (1.2014× 10−3, 9.978×
10−4, 1.2805 × 106). State II: X2 = (s2, i2, B2) = (1−, 3.7558 × 10−14, 1+ × 106),
here 1− and 1+ denote numbers which are very close to 1 but slightly less or
greater than 1 respectively. When B(0), the initial value of bacteria, is greater
than K, system will approach State I. When B(0) is less than K, system may
possibly approach State I or State II, depending on the initial condition x(0) =
(s(0), i(0), B(0). For example given initial condition x1(0) = (0.9 × 106, 0.005 ×
106, 0.9× 106) and x2(0) = (0.9× 106, 0.00005× 106, 0.9× 106), system will tend to
State I and State II respectively. Note that x1(0) and x2(0) have only different initial
infective population density. It means that a high level of infective population may
cause the environmental deterioration. Over all, with any positive initial condition
x(0), corresponding solution will approach one of the two states.

The reader may wonder whether X2 is essentially (1, 0, K). Here we emphasize
that X2 is not (1, 0, K). Firstly, by simulation we see that the final state X2 is
locally independent of initial conditions, which means that X2 is locally stable. This
example is a special case shown in figure 15, where X1 and X2 are corresponding to
E3 and E1, both of which are locally stable. Secondly, the result is in accordance
with the computational results given by (41). Thirdly, theoretically system should
be permanent according to remark 3.15.

Example 4.2. Take N = 1 × 106;n = 2;H = 1 × 105; r = 0.25; a = 0.09; δ =
0.1; ξ = 90;µ = 1 × 10−4;K = 1 × 106, and c = 1.08× 106 is slightly greater than
K. Taking X(0) = (0.1× 106, 0.000003× 106, 2× 106), simulation results show that
solutions approaches a final state X = (1.3185×10−3, 9.9768×10−4, 1.2805×106)
shown in figure 4.

This example shows that when c is slightly greater than K, with a high density
of bacteria in initial condition, solutions may approach a final state X = (1.3185×
10−3, 9.9768× 10−4, 1.2805× 106) which possesses a bacterial density higher than
K. This is also an example to show that (1, 0, K) is not globally stable in case of
c > K.

4.2. Simulations for the nonautonomous system. In what follows, we rewrite
the time-dependent bacterial intrinsic growth rate by r̃(t) and the carrying capacity

by K̃(t) to avoid confusion of notations. To represent seasonal fluctuation, we

consider r̃(t) and K̃(t) in a simple form as

r̃(t) = r +
r

4
sin(

2πt

365
), K̃(t) = K +

K

4
sin(

2πt

365
), (39)
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Figure 3. System (40) possesses a bistability (See column 1, column 2)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
4

1.3185

1.3185

1.3185
x 10

−3

F
ra

c
ti
o

n
 o

f 
 

 S
u

s
c
e

p
ti
b

le
 

In
d

iv
id

u
a

ls
  

Time( days )

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
4

9.9768

9.9768

9.9768
x 10

−4

F
ra

c
ti
o

n
 o

f 
 I

n
fe

c
ti
v
e

  
 I

n
d

iv
id

u
a

ls

Time( days )

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
4

1.2805

1.2805

1.2805
x 10

6

B
a

c
te

ri
a

l
 D

e
n

s
it
y
 

Time( days )

Figure 4. An example when system (40) does not approach (1, 0,K) in the case
that c is slightly greater than K

with a period ω = 365 days. Here the constants K and r (i.e., the base values of
the intrinsic growth rate and carrying capacity) take values listed in Table 1.
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Example 4.3. Let us set n = 1, a = 0.1, δ = 0.1, r = 10, ξ = 20, µ = 10−4, c =
106, N = 106,K = 106, H = 107, each of which is in the range of corresponding
parameter values listed in table 1. c is significantly less than the peak value of
K̃(t) (1.1 × 106). It’s easy to verify that condition (26) is satisfied. Simulation
results are shown in figure 5. We clearly observe a stable periodic solution. In
particular, the peak values of the susceptible and infective individuals occur peri-
odically at times when the bacterial concentration is rapidly ascending. See figure
5.
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Figure 5. Populations of system (5) approach a periodic solution

Example 4.4. When the threshold of immunity is significantly higher then the
maximum of carrying capacity of bacteria, solutions of system (5) might tend to

a disease free periodic solution (1, 0, B̃). See figure 6, where we take n = 1, a =
0.1, δ = 0.1, r = 10, ξ = 20, µ = 10−4, c = 1.5× 106, N = 106,K = 106, H = 107.

Example 4.5. When c is close to maximum of K(t), slightly less than maximum

of B̃(t), H is relatively low, ξ is relatively high, such as K = 1 × 106, N = 1 ×
106, r = 0.25, δ = 0.1, ξ = 90, µ = 1 × 10−4, H = 5 × 105, a = 0.1, n = 2, and
seasonal fluctuation is mild, say r(t) = (1 + 1/10 ∗ sin(t))r; K(t) = (1 + 1/10 ∗
sin(t))K , system (5) may have different locally stable state, depending on initial
conditions. It’s easy to verify that condition (26) is not satisfied. Presently we
have detected three kind of different final states. Taking the initial values x0(0) =
(0.2 × 106, 0.00001 × 106, 1.2 × 106)( Here B(0) is higher than the peak value of

K(t)), system will approach to a stable state X̃ = (s0(t), i0(t), B0(t)), which is
a periodic solution fluctuating around (9.99 × 10−4, 9.98 × 10−4, 1.27 × 106), (See
figure 7, right column). Taking x1(0) = (0.2 × 106, 0.00001× 106, 0.8 × 106) (Here
B(0) is less than the peak value of K(t)) system will tend to the second kind of

final state X1(t), which is mainly very close to the disease free solution (0, 0, B̃(t)) ,
and occasionally accompanied by short time eruptions of infection(See figure7, left
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Figure 6. When the threshold of immunity is significantly higher than the
maximum of bacterial capacity, populations of system (5) tend to a disease free
periodic solution
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Figure 7. Two final states of system (5) depending on different initial values

column). Taking x2(0) = (0.2×106, 0.01×106, 0.8×106) system will approach to the
third kind of final state X2(t). Noticing that while initial conditions x1(0) and x2(0)
has the same fraction of susceptible population and bacterial density, X2(0) has a
higher fraction of infective population. After having experienced a large scale of
outbreak of infection, X2(0) leads the system to a different final state X2(t), which
has a higher bacterial density and a sharp declining of the fraction of susceptible
population than X1(t). Obviously X2(t) marks a worsen environment(due to the
higher bacterial density). In the simulation from the enlarged figure of infective
population, we can detect a lot of short time eruptions with different scales. These
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Figure 8. The third final state of system (5) and the locally enlarged figure
(shown in the right column)
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Figure 9. Periodic outbreak of epidemic (ξ = 0, left column), and durative
infection (ξ = 90, right column)

eruptions are caused by the fluctuation of bacterial density. When the peak of
bacterial density comes, it surpasses the threshold value of susceptible population,
with a proper initial condition, it could result in a swift infection. But the scale
of eruption may depend on how long and how much the peak values of bacterial
density surpass the threshold value. Some times, the scale could be very large(See
the left column of figure (8), nearly 20 percent of population are infected in the
coming of the peak of bacteria fluctuation), and has a long term influence on the
system, and results in a high bacterial density environment. Sometimes the scale
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Figure 10. System encounters a sudden event. Left column: N = 1 × 106.
Right column: N = 1 × 107.

could be very small, say lower than 10−10(See the left column of figure 7), and it
could hardly be detected. In reality this might not represent an infected individual,
but still it could be treated as a very slight infection of individuals. Practically
when a person is infected in such a slight degree, he may be uninfected.

Example 4.6. In this example we consider two different situations when xi is zero
or nonzero. Taking c = 1.085 × 105, which is slightly less than the peak value of
B̃(t), the bacterial density in disease free system, and values of other parameters
are as in Example 4.5. Taking initial value x(0) = (7.5 × 106, 0.05× 106, 1 × 106).
We see that when ξ = 0, there is an outbreak of epidemic every year which is
synchronous with the peak value of B̃(t), and after this short period, the fraction of
infective population is very low(nearly zero), and the average fraction of susceptible
population is between 1 percent and 2 percent, namely there are about 1 to 2
percent of people remain uninfected. When ξ = 90, the fractions of susceptible and
infective population are both nearly 0.001, and this shows that there are only 0.1
percent of the total population are not infected. Strictly speaking, they are totally
two different models when ξ = 0 and ξ > 0. These two models are fit for different
environment. In those places, when population density is low, and public sanitation
is relatively good, and people have less contact, the model for ξ = 0 is suitable. In
places when population density is high, public sanitation is bad, and people may
have to contact frequently, the model for ξ > 0 is more suitable. In short, when
ξ > 0, infection between people are considered. See figure 9.

Example 4.7. In this example we assume the biological system encounters a sudden
event, say an abnormal reproduction of bacteria due to the major natural disasters.
Take K = 1 × 106, r = 0.25, δ = 0.1, ξ = 90, µ = 1 × 10−4, H = 8 × 105, a =
0.1, n = 2, x(0) = (0.5 × 106, 0.001 × 106, 0.8 × 106). For c = 1.2 × 106, which
is significantly higher than the peak value of K(t), normally system will tend to a
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disease free state. However, when system encounters a sudden event, it may have
a different behavior depending on system parameters. These simulations are in
connection with total populations. In the first case, taking N = 1 × 106, system
experienced a severe infection, caused a sharp declining of the fraction of susceptible
population. After that, the state of the system gradually recovers to the primary
state (See the left column of the figure 10). In the second case, taking N = 1 ×
107, we find that the sudden event brings a long term influence on the system
behavior. After a severe infection, system tend to a new stable state. The fraction
of susceptible population has a vast slash, and the fraction of infection population
has a substantial increase, and the bacterial density rises to a higher level (See the
right column of figure 10). This new state marks a worsen environment caused by
the sudden event.

Remark 4.8. From these examples, we observe that the threshold value c is critical
in determining the dynamical behaviors. In section 3, we have obtained a sufficient
condition for the stability of system (5) when c is less than the peak value of B̃.

However when c is significantly less than the peak value of B̃, the condition is not
important for the stability. This can be explained as follow. From the process of
the above proof, we see that when c < maxt∈[0,ω] B̃(t)the condition for the stability

of the periodic solution suffices to ν > 0. When c is much less then maxt∈[0,ω] B̃(t)
or the carrying capacity of bacteria, α(B) could be much greater than 0, which
implies a greater A in (10), and a greater ε2 in (18), which in turn implies a greater
i by (8). Thus by the proof of lemma (3.10), it implies a greater B. When B is

much greater then B̂, α′(B) could be much less than α′(B̂), and thus condition
ν > 0 could be much easier to be satisfied, which means the stability of the periodic
solution. When c is close to maxt∈[0,ω] B̃(t) or the carrying capacity of bacteria,
condition (26) is crucial to determine whether the periodic solution is stable or not.

Comparatively, the nonautonomous model is more realistic than the autonomous
one. As it is shown in Example 4.1, 4.3-4.7, nonautonomous model exhibits more
complexities especially when c is close to the peak value of K(t). Example 4.6
presents an interesting phenomena that an eruption of epidemic may occur unex-
pectedly. This is congruent to what we encounter in reality.

5. Discussion. Cholera remains epidemic and endemic regionally in the world,
especially in the locations lacking adequate sanitation and water infrastructure.
With the continuing outbreaks, mathematical modeling plays an important role
in deciphering its dynamics and providing suggestions for governments and health
organizations to take effective actions. Cholera is an indirectly transmitted infec-
tious disease, and recent modeling efforts have been made in this direction, such as
the addition of an environmental pool and the incorporation of an immunological
threshold for infection [4, 10, 11]. Subject to the annual variation of temperature,
nutrients, rainfall, etc. in the reservoir, seasonality is believed to be pivotal in
determining cholera epidemics and endemism [6, 17]. Seasonal drivers have been
recently incorporated in cholera transmission models [5, 15, 16]. In this paper, we
incorporate the seasonal factor explicitly in bacterial growth term and discuss its
impact on cholera dynamics. In addition, we originally introduce a new threshold
incidence function which is infinitely smooth. Our proposed incidence function bi-
ologically mimics the standard Holling type functions, and the smoothness of the
new incidence form allows us to perform rigorous and deeper mathematical analysis
for the complicated dynamics of an indirectly transmitted infectious disease.
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It is mathematically challenging to analyze a high-dimensional nonautonomous
system. In the paper, we provide the forward invariance, the uniform persistence,
the existence of periodic solutions, and their stability (local and global), for our
nonautonomous model. Forward invariance and persistence illustrate the rational-
ity of the proposed seasonal forcing model. The immunological threshold is the key
parameter in determining persistence, periodic solutions and their stability, that
is, the mean infection threshold of susceptible individuals in an epidemic region
is critical in determining cholera outbreaks and their severity. Hence in order to
prevent an outbreak of cholera, we have either to raise the immunity of susceptible
individuals or to improve the local environments, bring down the carrying capac-
ity of bacteria which determines the periodic solution B̃ in our model. To prove
the persistence and the stability of periodic solutions for a nonautonomous high-
dimensional dynamical system is of considerable challenge. Our proofs are new and
may be applicable to other models of this type. Our numerical simulations validate
our mathematical results.

Further steps to take with the seasonal forcing model would be to refine the
conditions on the global stability results of periodic solutions. The imposed con-
ditions are sufficient but not necessary for global stability. To verify and calibrate
the nonautonomous model with seasonality, we should fit our theoretical outputs
to empirical data from regional cholera outbreaks such as the reported cases in
Bangladesh and Haiti. The seasonality is clearly required to fit a multi-year data
set. In the modeling perspective, it is important to mechanistically incorporate
temperature, nutrients, and sudden events such as hurricane and eddy flow, for the
environmental reservoir.

Acknowledgments. We would like to thank the MBI (Mathematical Biosciences
Institute) at the Ohio State University for providing a platform for the communi-
cation and collaboration of the authors.

Appendix A. Equilibria of the autonomous system. We start our analysis
by examining the equilibria of the autonomous model. Since S + I +R = N where
the total population N is a constant, we will drop R from the system. Meanwhile,
introducing s = S/N, i = I/N , we obtain an equivalent form to the system (1):



























ds

dt
= −α(B)s− µs+ µ , (40a)

di

dt
= α(B)s− µi− δi , (40b)

dB

dt
= rB(1 − B

K
) +Nξi , (40c)

where the saturation function α(B) takes the exponential form of (3).
An equilibrium (s∗, i∗, B∗) of system (40) satisfies































s∗ =
µ

µ+ α(B∗)
, (41a)

i∗ =
µ

µ+ δ

α(B∗)

µ+ α(B∗)
, (41b)

rB∗(
B∗

K
− 1) = Nξi∗. (41c)
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System (40) has possibly two, three or four equilibria. The exact number of equi-
librium points not only depends on the threshold value c, but also on the values of
parameters of K, r,N, ξ, µ, δ, etc. However, in any case E0(1, 0, 0) is an equilibrium
of system (40). Combining (41b) and (41c) we form an equation

B(B −K) = ν
α(B)

µ+ α(B)
, (42)

where ν =
NKξµ

r(µ+ δ)
.

Denote

f(B) , B(B −K), g(B) , ν
α(B)

µ+ α(B)
. (43)

Thus equation (42) is equivalent to

f(B) = g(B).

Now we will work out the number of equilibrium points of equation (42) through
the functions f(B) and g(B). Though f(B) is quite simple, we still need some
analysis to get a few characteristics of g(B).

Denote hn(B) = nHn ln 2
(B−c)n . By (3), we have

α′(B) =

{

0, B ≤ c,
hn

(B−c)α(B), B > c,
(44)

g′(B) =

{

0, B ≤ c,
µνhn

(B−c)
α(B)

(µ+α(B))2 , B > c,
(45)

g′′(B) =

{

0, B ≤ c,
µνhn

(B−c)2
α(B)

(µ+α(B))2

(

−(n+ 1) + µ−α(B)
µ+α(B)hn

)

, B > c.
(46)

Now we can easily show (proof omitted) that the function g(B) satisfies

(i): g(B) = 0, as B ≤ c.
(ii): g(B) is strictly increasing as B > c.
(iii): g(B) has an unique inflection point B̄ given by

(B − c)n(n+ 1)

Hnn ln 2
=

µ− α(B)

µ+ α(B)
. (47)

(iv): g(B) is convex in [0,B̄], and is concave in [B̄,∞).
(v): g(B) is infinitely smooth.

The third property of g(B) is a direct result of the following proposition.

Proposition A.1. Equation (47) possesses a unique root B̄.

Proof. Let u(B) = (B−c)n(n+1)
Hn ln 2 ; v(B) = µ−α(B)

µ+α(B) . Obviously u(c) = 0, and u(B)

is increasing in [c,∞) satisfying u(∞) = +∞; v(c) = 1, and v(B) is decreasing in
[c,∞) satisfying v(∞) < 0. Let w(B) = v(B) − u(B), then we have w(c) = 1 > 0.
Let B0 = α−1(µ) > c, then u(B0) > 0 and v(B0) = 0, hence w(B0) < 0. Since w(·)
is continuous, by the intermediate value theorem, there exist a point B̄ such that
w(B̄) = 0. By the monotonicity of w(·), the root of equation (47) is unique.
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Figure 11. Curves of u(B) and v(B) have an unique intersection B̄

From the discussion above we can see that the shape of the curve of function g(B)
is quite similar to that of α(B). What is important is that the shape is directly
related to the number of equilibria of the system.

Let gc(B) = g(B+c). Given a number Mx that is large enough, when c increases
from 0 to Mx, the curve gc(B) has a parallel translation from passing the origin, to
crossing the curve f(B), and then to the positive direction of B axis. The influence
of the threshold value c on the equilibria of system (40) can be seen in this process
of movement.

K

0

x 10
11

B

f(x)

g
c
(x)

Figure 12. Curves of function f and g with changing threshold values c.

By the properties of function g we can see that it is at B̄ that the function g′(B)
reaches its maximum. It means that at B̄ the curve of g(B) reaches its maximal
slope. By (iii) we have a preliminary estimate of B̄.

v(B) = 0 has a root B0 = c+ H

n

√

log
a
µ
2

, and we have B̄ ∈ (c, B0). On the other

hand, if we take B− = c+ H

n

√

1+log
a
µ
2

, we have α(B−) =
µ
2 and g′′(B−) > 0 provided

values of parameters are taken in Table 1 and it means B− < B̄. Hence we have
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B̄ ∈ (B−, B
0).

H

n

√

1 + log
a
µ

2

< B̄ − c <
H

n

√

log
a
µ

2

.

Denote the point corresponding to B̄ in the curve of function g(B) as M . If the
position of M corresponding to c = 0 is on the left of the curve of function g(B),
then as c increases from 0 to large enough, M has a parallel movement from left to
right along the positive B axis and it will pass through g(B). There must be a point
c such that M is on the curve of function f(B), and we denote the corresponding
abscissa as B̄M . At B̄M we possibly have

Case i). g′(B̄M ) ≤ f ′(B̄M ), and

Case ii). g′(B̄M ) > f ′(B̄M ).
Both cases are possible depending on the parameter values we choose.
In fact, on one hand,

g′max(B) = g′(B̄M ) > g′(B0) =
nµν ln 2

(B0 − c)

Hn

(B0 − c)n
α(B0)

(µ+ α(B0))2

=
nν

4H
log(

a

µ
) n

√

log2
a

µ
, g1,

f ′(B̄M ) < f ′(B0) = 2B0 −K , f2,

On the other hand,

g′(B̄M ) =
νhn

(B̄M − c)

µ

α(B̄M )

(

α(B̄M )

µ+ α(B̄M )

)2

<
νhn

(B̄M − c)

µ

α(B̄M )

=
nνµHn ln 2

(B̄M − c)n+1

1

α(B̄M )
≤

nνµHn ln 2

(B− − c)n+1

1

α(B−)
=

2nν

H
ln(

2a

µ
)

n

√

log
2a
µ

2 , g2,

f ′(B̄M ) = 2B̄M −K > 2B− −K , f1.

Hence we have

f ′(B̄M ) ∈ (f1, f2), g′(B̄M ) ∈ (g1, g2). (48)

For illustration, let us pick the parameter values N = 106, n = 2, r = 0.3,K =
106, H = 106, a = 0.1, δ = 0.1, ξ = 90, µ = 9 × 10−5, c = 106, all within biologically
meaningful ranges (see Table 1). we have

f ′(B̄M ) ∈ (1.600× 106, 1.629× 106), g′(B̄M ) ∈ (3.009× 106, 27.726× 106),

thus we obtain

g′(B̄M ) > f ′(B̄M ).

If we change the value of H , the half saturation density, from 106 to 107 and
keep the values of other parameters unchanged, then we have

f ′(B̄M ) ∈ (6.9982× 106, 7.2876× 106), g′(B̄M ) ∈ (0.3009× 106, 2.7726× 106),

and

g′(B̄M ) < f ′(B̄M ).

When the value of the parameter H varies, the system(5) has possibly two, three
or four equilibria (including E0).

Proposition A.2. Let B̄ be the solution of equation(47), if g′(B̄) ≤ K, then system
(40) possesses two equilibria: E0(1, 0, 0) and E1(s

∗, i∗, B∗).
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Proof. we only need to prove that apart from E0, Equation (42) has only one
equilibrium E1.

In fact, for 0 < B ≤ K, f(B) ≤ 0 and g(B) > 0, equation f(B) = g(B) will
have no root apart from E0 in [0,K]. For B > K, f ′(B) = 2 ∗ B −K > K, while
g′(B) ≤ g′(B̄) ≤ K. Let U(t) = f(t) − g(t), then obviously we have U(K) < 0,
U(+∞) > 0 and U(t) is monotone in [K,+∞)( This is implied by the truth that
f ′(B) − g′(B) > 0 for B > K). Hence U(t) has an unique zero point in [K,+∞),
namely equation (42) has an unique equilibrium in [K,+∞).

For g′(B̄) > K, system (40) has possibly two, three, and four equilibria. For
example, taking N = 106, r = 0.27,K = 106, δ = 0.1, ξ = 90, µ = 10−4, H =
106, a = 0.09, and gradually increasing the value of c from approximately 6.94×105

to 9.17× 105, we obtain different numbers of equilibria (See Figures 13-15).

Appendix B. Stability of the autonomous system. We now analyze the sta-
bility of the equilibria for the autonomous model. The Jacobian of system (40)
is

J =





−α(B)− µ 0 −α′(B)s
α(B) −µ− δ α′(B)s
0 Nξ r(1 − 2B

K
)



 . (49)

In particular, the Jacobian corresponding to E0(1, 0, 0) is

J0 =





−µ 0 0
0 −µ− δ 0
0 Nξ r



 . (50)

Since J0 has three eigenvalues, −µ, −µ− δ and r, two of which are negative and
the third one is positive, we have

Theorem B.1. The disease-free equilibrium E0(1, 0, 0) for system (40) is an un-
stable saddle-node.

In case of c > K, system (40) possesses another equilibrium E1(1, 0,K), and the
corresponding Jacobian is

J1 =





−µ 0 0
0 −µ− δ 0
0 Nξ −r



 . (51)

The characteristic polynomial of J1 is

Det(λI − J1) =

∣

∣

∣

∣

∣

∣

λ+ µ 0 0
0 λ+ µ+ δ 0
0 −Nξ λ+ r

∣

∣

∣

∣

∣

∣

= (λ+ µ)(λ + µ+ δ)(λ + r)

Since all eigenvalues of J1 are negative, we have

Theorem B.2. In case of c > K, system (40) possesses an equilibrium E1(1, 0,K),
which is locally asymptotically stable.

For any other equilibrium E(s∗, i∗, B∗) besides E0(1, 0, 0) and E1(1, 0,K), we
consider the characteristic polynomial of E,

Det(λI − J) =

∣

∣

∣

∣

∣

∣

λ+ α(B∗) + µ 0 α′(B∗)s∗

−α(B∗) λ+ µ+ δ −α′(B∗)s∗

0 −Nξ λ+ r(2B
∗

K
− 1)

∣

∣

∣

∣

∣

∣
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Figure 13. System (40) has two equilibria
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Figure 14. System (40) has three equilibria
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Figure 15. System (40) has four equilibria
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= a0λ
3 + a1λ

2 + a2λ+ a3, (52)

where
a0 = 1,

a1 = α(B∗) + 2µ+ δ + r( 2B
∗

K
− 1),

a2 = (α(B∗) + µ)(µ + δ) + r( 2B
∗

K
− 1)(α(B∗) + µ) + r( 2B

∗

K
− 1)(µ + δ) −Nξα′(B∗)s∗,

a3 = r
(

2B∗

K
− 1

)

(α(B∗) + µ) (µ+ δ) − µNξα′(B∗)s∗.

To proceed, we apply the following standard result from the Routh-Hurwitz
stability criterion:

Lemma B.3. The necessary and sufficient condition for the polynomial (52) to be
stable is

a0 > 0, a1 > 0, a2 > 0, a3 > 0 and a1a2 > a0a3.

The condition a0 > 0 is trivial. Since B∗ > K, we obtain a1 > 0.
According to (42), we have

B∗(B∗ −K) < ν.

Hence,

K < B∗ <
K

2

(

1 +

√

1 +
4ν

K2

)

, (53)

and we have

2 <
2B∗

K
< 1 +

√

1 +
4ν

K2
. (54)

Denote

F (B) = rB(1 −
B

K
) +Nξi(B).

Obviously

F (B) =
r

K
(−f(B) + g(B)), (55)

F ′(B∗) = r(1 −
2B∗

K
) +Nξ

µ

µ+ δ

µ

(µ+ α(B∗))2
α′(B∗)

= −r(
2B∗

K
− 1) +Nξ

µ

(µ+ δ)(µ+ α(B∗))
α′(B∗)s∗

= −
1

(µ+ δ)(µ+ α(B∗))
a3.

If a3 ≤ 0, according to Lemma (B.3), the corresponding equilibrium is unstable.
The condition a3 ≤ 0 is equivalent to F ′(B∗) ≥ 0, and also equivalent to f ′(B∗) ≤
g′(B∗), which means the slope of the curve of g(B∗) is equal or steeper than that of
f(B∗). This result provides an intuitive way for the judgment of the instability of
the equilibrium E(s∗, i∗, B∗), which we refer to as a geometrical method. We state
the above results as follow.

Theorem B.4. Suppose

F (B) = rB(1 −
B

K
) +Nξi(B),

where i(B) is defined as in equation (41b). Then equilibrium E(s∗, i∗, B∗) of
system (40) is unstable if F ′(B∗) ≥ 0.

An equivalent statement is
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Theorem B.5. Suppose f(B) and g(B) are defined by (43), then equilibrium
E(s∗, i∗, B∗) is unstable if f ′(B∗) ≤ g′(B∗), geometrically the slope of the tangent
line of f(B) equals or is less than that of g(B) at B∗.

Now we will seek a sufficient condition for the local stability of a general equilib-
rium apart from E0(1, 0, 0) and E1(1, 0,K). Suppose

r(
2B∗

K
− 1)(µ+ δ) > Nξα′(B∗)s∗ (56)

holds, then

a3 = r(
2B∗

K
− 1)α(B∗)(µ + δ) + µ

(

r(
2B∗

K
− 1)(µ+ δ)−Nξα′(B∗)s∗

)

> r(
2B∗

K
− 1)α(B∗)(µ+ δ) > 0,

a2 = (α(B∗)+µ)(µ+ δ)+ r(
2B∗

K
− 1)(α(B∗)+µ)+ r(

2B∗

K
− 1)(µ+ δ)−Nξα′(B∗)s

> (α(B∗) + µ)(µ+ δ) + r(
2B∗

K
− 1)(α(B∗) + µ) > 0, and

a1a2 > r

(

2B∗

K
− 1

)

(α(B∗) + µ)(µ+ δ) > a0a3.

Hence, according to Lemma (B.3), condition (56) is a sufficient condition for the
stability of nontrivial equilibrium E(s∗, i∗, B∗). It is easy to show that condition
(56) is equivalent to

f ′(B∗) >

(

1 +
α(B∗)

µ

)

g′(B∗). (57)

Hence we have

Theorem B.6. Equilibrium E(s∗, i∗, B∗) is stable if condition (57) holds.

Geometrically, this theorem suggests that if the slope of the tangent line of f(B)
at B∗ is much larger than that of g(B), then the equilibrium E(s∗, i∗, B∗) is locally
asymptotically stable.
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