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EXTINCTION AND QUASI-STATIONARITY FOR DISCRETE-TIME,
ENDEMIC SIS AND SIR MODELS\ast 

SEBASTIAN J. SCHREIBER\dagger , SHUO HUANG\ddagger , JIFA JIANG\ddagger , AND HAO WANG\S 

Abstract. Stochastic discrete-time susceptible--infected--susceptible (SIS) and susceptible--
infected--recovered (SIR) models of endemic diseases are introduced and analyzed. For the deter-
ministic, mean-field model, the basic reproductive number R0 determines their global dynamics. If
R0 \leq 1, then the frequency of infected individuals asymptotically converges to zero. If R0 > 1,
then the infectious class uniformly persists for all time; conditions for a globally stable, endemic
equilibrium are given. In contrast, the infection goes extinct in finite time with a probability of 1 in
the stochastic models for all R0 values. To understand the length of the transient prior to extinction
as well as the behavior of the transients, the quasi-stationary distributions and the associated mean
time to extinction are analyzed using large deviation methods. When R0 > 1, these mean times
to extinction are shown to increase exponentially with the population size N . Moreover, as N ap-
proaches \infty , the quasi-stationary distributions are supported by a compact set bounded away from
extinction; sufficient conditions for convergence to a Dirac measure at the endemic equilibrium of
the deterministic model are also given. In contrast, when R0 < 1, the mean times to extinction are
bounded above 1/(1 - \alpha ), where \alpha < 1 is the geometric rate of decrease of the infection when rare; as
N approaches \infty , the quasi-stationary distributions converge to a Dirac measure at the disease-free
equilibrium for the deterministic model. For several special cases, explicit formulas for approximat-
ing the quasi-stationary distribution and the associated mean extinction are given. These formulas
illustrate how for arbitrarily small R0 values, the mean time to extinction can be arbitrarily large,
and how for arbitrarily large R0 values, the mean time to extinction can be arbitrarily large.

Key words. infectious diseases, discrete-time SIS model, discrete-time SIR model, quasi-
stationary distributions, large deviations, times to extinction
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1. Introduction. Infectious disease modeling has been one of the most impor-
tant topics in mathematical biology (Keeling and Rohani, 2011). A recent Google
scholar search1 reveals over a million and a half studies referencing SIS (susceptible-
infected-susceptible) and SIR (susceptible-infected-recovered) models. Most of these
studies use deterministic, continuous-time equations. However, discrete-time models
may be more appropriate when epidemiological events have a characteristic time scale
or when the model is calibrated by epidemiological measurements taken at regular
time intervals (Anderson and May, 1991; Allen, 1994; Finkenst\"adt and Grenfell, 2000;
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Allen and Burgin, 2000; Salomon et al., 2006; Klepac et al., 2009; Keeling and Rohani,
2011; Baker et al., 2020; Prem et al., 2020; Karatayev, Anand, and Bauch, 2020). For
example, Finkenst\"adt and Grenfell (2000) introduced a discrete-time model, the time
series SIR (TSIR) model, to account for the biweekly time scale of infection to re-
covery and lifelong immunity in measles. Similarly, Baker et al. (2020) used a TSIR
model whose weekly time interval corresponds to the generation time of respiratory
syncytial virus. During the current coronavirus disease 2019 pandemic, daily counts
of cases, recoveries, and deaths are used to parameterize discrete-time models with
a daily time step (Prem et al., 2020; Karatayev et al., 2020). Discrete-time models
also prove a simple way to carefully prescribe the durations of individuals in differ-
ent epidemiological states. For example, Salomon et al. (2006) used discrete-time
models to evaluate the potential epidemiological effects of reducing the duration of
anti-tuberculosis drug treatments. For both continuous-time and discrete-time deter-
ministic models, the basic reproductive number, R0, often determines the fate of the
modeled disease. If R0 > 1, persistence often occurs. While if R0 < 1, the disease-free
state (i.e., extinction) often is globally stable, and the infection is lost asymptotically
as time marches to infinity.

When considering finite populations without external sources of infection, Markov
chain models typically predict that the disease goes extinct in finite time whether R0 >
1 or < 1. To understand this puzzling difference between the asymptotic behaviors
of the deterministic and stochastic models (Bartlett, 1966; Keeling and Rohani, 2011;
Diekmann et al., 2012), one can use the concept of quasi-stationarity that describes
the long-term behavior of the stochastic model conditioned on nonextinction (Darroch
and Seneta, 1965, 1967). For finite-state models, the quasi-stationary distribution
corresponds to a normalized left eigenvector \pi of the transition matrix of the Markov
chain restricted to the transient states, i.e., the states where the infection persists. In
discrete-time models, if the disease dynamics follow the quasi-stationary distribution,
then the eigenvalue \lambda associated with this eigenvector corresponds to the probability of
disease persistence over the next time step (respectively, a time interval of length one).
Thus, when the stochastic model follows the quasi-stationary distribution, the time
to extinction is exponentially distributed with a mean time of extinction 1/(1  - \lambda ).
Grimm and Wissel (2004) call 1/(1  - \lambda ) the intrinsic mean time to extinction. To
understand the link between the stochastic and deterministic models, it is natural to
ask: How does the intrinsic mean time to extinction increase as the population size gets
larger? How is the quasi-stationary distribution related to the asymptotic dynamics
of the deterministic model as the population size gets larger? More generally, how do
these quantities depend on the parameters such as R0?

For continuous-time, stochastic SIS models, there exists a dichotomy in the mean
time to extinction when a fixed, positive fraction of the population is infected (Weiss
and Dishon, 1971; Barbour, 1975; Kryscio and Lef\`evre, 1989; Foxall, 2020). When
R0 > 1, this time increases exponentially with the population size N in the limit
of large population sizes. When R0 < 1, these extinction times remain bounded in
the limit of large population size. However, to the best of our knowledge, similar
statements for the intrinsic mean extinction times have not been rigorously proven
for these continuous-time SIR models. However, in a series of papers, N\r asell (1996,
1999, 2001, 2002) provided methods to approximate the intrinsic mean extinction
times as well as the quasi-stationary distributions. His approximations support the
existence of a similar dichotomy for intrinsic mean times to extinction. Moreover,
they highlight a remarkable dichotomy about the qualitative behavior of the quasi-
stationary distributions. When R0 > 1, these distributions are well approximated by a
normal distribution centered near the endemic equilibrium. When R0 < 1, the quasi-
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stationary distribution is best approximated by a discrete, geometric distribution.
Despite these advances, mathematically rigorous results for discrete-time, stochastic
SIS and SIR models are lacking.

In this paper, we introduce a new class of discrete-time SIS and SIR deterministic
and stochastic models that have several desirable properties including (i) they are
derived with individual-based rules and, consequently, preserve nonnegativity of all
populations, (ii) the deterministic models are the mean-field model of the stochastic
models, and (iii) the deterministic models converge to the classical continuous-time
models in an appropriate limit. For these models, we analyze the global dynamics of
deterministic models and then use this analysis in conjunction with large deviation
results from Faure and Schreiber (2014) to rigorously characterize the behavior of the
intrinsic mean times to extinction and quasi-stationary distributions in the limit of
large population sizes. Moreover, for some special cases, we derive explicit approxi-
mations for the quasi-stationary distributions and extinction times that apply for all
population sizes.

Our paper is structured as follows. Section 2 introduces and analyzes the discrete-
time, deterministic SIS model. Section 3 presents mathematical and numerical find-
ings on quasi-stationary distributions and intrinsic mean extinction times for the
stochastic SIS model. Section 4 introduces the discrete-time SIR model and proves
results about its global attractors. Section 5 presents mathematical and numerical
findings on quasi-stationary distributions and intrinsic mean extinction times for the
stochastic SIR model. Section 6 discusses our main findings and future challenges.
The mathematical proofs are given in sections 7 through 10.

2. The dynamics of a deterministic SIS model. We begin with a discrete-
time version of the classical SIS model where individuals are either susceptible or
infected. Let In denote the fraction of individuals that are infected at time step
n, in which case the fraction of susceptible individuals equals 1  - In. Individuals
escape natural mortality with the probability e - \mu while infected individuals escape
recovery with the probability e - \gamma , where \mu > 0 and \gamma > 0. Susceptible individuals
from the previous time step who have not died escape infection with the probability
e - \beta In , where \beta > 0 is the contact and transmission rate. To keep the population size
constant, dying individuals are replaced via birth or immigration with new susceptible
individuals. The disease dynamics are given by

(2.1) In+1 = F (In) := e - \mu (1 - In)
\bigl( 
1 - e - \beta In

\bigr) 
+ e - \mu  - \gamma In, 0 \leq In \leq 1.

This discrete-time formulation of the SIS model has several advantages. First, it is
straightforward to verify that the dynamics of In remain in the interval [0, 1] provided
the initial value I0 lies in this interval. Second, these dynamics, as described in the
next section, correspond to the mean-field dynamics of an individual-based model.
Finally, if \Delta t is the length of a time step, and \beta = \~\beta \Delta t, \gamma = \~\gamma \Delta t, and \mu = \~\mu \Delta t, then

I(t+\Delta t) := In+1 = (1 - I(t)) \~\beta I(t)\Delta t+I(t) - (\~\mu +\~\gamma )\Delta tI(t)+O(\Delta t2), where I(t) := In.

Hence, in the limit \Delta t\rightarrow 0, we get the classical SIS ordinary differential equation:

dI

dt
= lim

\Delta t\rightarrow 0

I(t+\Delta t) - I(t)

\Delta t
= (1 - I) \~\beta I  - (\~\mu + \~\gamma )I.

To understand the dynamics of (2.1), we can linearize at the origin to obtain the
per-capita growth rate of the infection at the disease-free equilibrium

(2.2) \alpha = \alpha (\mu , \beta , \gamma ) := \beta e - \mu + e - \mu  - \gamma .
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The basic reproduction, alternatively, is given by

(2.3) R0 = \beta e - \mu /(1 - e - \mu  - \gamma ).

As \alpha > 1 if and only if R0 > 1, we can use the basic reproductive number to charac-
terize the global dynamics as the following theorem shows.

Theorem 2.1. (i) If R0 \leq 1, then the origin is globally asymptotically stable.
(ii) If R0 > 1, then there is a unique positive equilibrium in (0, 1] such that it is

globally asymptotically stable in (0, 1].

3. Metastability and extinction in a stochastic SIS model. For the
individual-based stochastic model, we require the additional parameter of the to-
tal population size N . Given this population size, the state space corresponds to the
possible fractions of infected individuals in the population:

\scrS =

\biggl\{ 
0,

1

N
,
2

N
, . . . ,

N  - 1

N
, 1

\biggr\} 
.

Let In \in \scrS be the fraction of individuals infected at time step n. To determine the
fraction infected in the next time step, we assume that each infected individual re-
mains infected with probability e - \mu  - \gamma independent of each other, and each susceptible
individual lives and becomes infected with the probability e - \mu (1 - e - \beta In) independent
of each other. Hence,

(3.1)

In+1 =
Xn+1 + Yn+1

N
, where

Xn+1 \sim Binom(NIn, e
 - \mu  - \gamma ) and

Yn+1 \sim Binom
\Bigl( 
N(1 - In), e

 - \mu \bigl( 1 - e - \beta In
\bigr) \Bigr) 
.

Taking the expectation of In+1 of (3.1) conditioned on its value at time n gives

\BbbE [In+1| In = I] = e - \mu (1 - I)(1 - e - \beta I) + e - \mu  - \gamma I,

which corresponds to the update rule F (I) of the deterministic model (2.1). Despite
this connection with the deterministic model, the disease goes extinct in finite time
with a probability of 1 for the stochastic model. The following proposition follows
from standard results in stochastic processes (see e.g., Harier, 2018, Theorem 3.20).

Proposition 3.1. Assume that \mu + \gamma and \beta are positive. With a probability of
1, In = 0 for some n \geq 1.

Even though extinction is inevitable, it may be preceded by long-term transients.
To characterize these transients, we use quasi-stationary distributions introduced by
Darroch and Seneta (1965). For all 1 \leq i and j \leq N , let Qij = \BbbP [In+1 = j/N | In =
i/N ] be the transition probabilities restricted to the transient states \scrS \setminus \{ 0\} and
Q = (Qij) be the associated N \times N matrix. As Q is a substochastic, positive matrix,
there exists a dominant eigenvalue \lambda \in (0, 1) and associated dominant eigenvector
\pi = (\pi 1, . . . , \pi N ) (depending on N) such that

\sum 
i \pi i = 1, \pi i > 0 for all i, and

\pi Q = \lambda \pi . \pi is the quasi-stationary distribution which satisfies (Darroch and Seneta,
1965)

lim
n\rightarrow \infty 

\BbbP [In = j/N | In > 0] = \pi j ;

i.e., the probability of having j individuals in the long term given the disease hasn't
gone extinct equals \pi j . Furthermore,

N\sum 
i=1

\BbbP [In+1 > 0| In = i/N ]\pi i = \lambda ;
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i.e., \lambda is the probability the disease persists to the next time step given the process is
following the quasi-stationary distribution. Hence, the mean time to extinction when
following the quasi-stationary distribution is 1

1 - \lambda , which is what Grimm and Wissel
(2004) call the intrinsic mean time to extinction.

Our main result for the stochastic SIS model concerns the behavior of the quasi-
stationary distribution and the intrinsic mean time to extinction for large population
size N .

Theorem 3.2. Assume \mu + \gamma > 0, \beta > 0. For each N \geq 1, let \pi N be the quasi-
stationary distribution and \lambda N the corresponding eigenvalue. Let \alpha = \beta e - \mu + e - \mu  - \gamma .
Then

(i) If \alpha \leq 1 (equivalently R0 \leq 1), then \lambda N \leq \alpha for all N \geq 1 and limN\rightarrow \infty \pi N =
\delta 0, where \delta 0 is a Dirac measure at 0 and convergence is in the weak* topology
for the probability measures on [0, 1].

(ii) If \alpha > 1 (equivalently R0 > 1), then limN\rightarrow \infty \pi N = \delta I\ast , where \delta I\ast is the Dirac
measure at the unique positive equilibrium I\ast of (2.1) and lim supN\rightarrow \infty 

1
N log

(1 - \lambda N ) < 0.

The first assertion of Theorem 3.2 concerns the case (\alpha < 1) when the disease
approaches extinction at an exponential rate for the deterministic model. In this
case, when the population size is large for the stochastic model, then any long-term
transients mostly involve low frequencies of infected individuals, and the mean time
to extinction after these transients is less than 1

1 - \alpha .We conjecture that in the limit of

large population size, N \rightarrow \infty , the intrinsic mean time to extinction equals 1
1 - \alpha . The

second assertion of Theorem 3.2 concerns the case (\alpha > 1) when the deterministic
model has a positive stable equilibrium. In this case, the stochastic model exhibits
transient fluctuations around this equilibrium and only escapes its basin of attrac-
tion via large fluctuations in frequencies. The likelihood of these large fluctuations
decreases, exponentially with the population size. Consequently, the mean time to
extinction increases exponentially with population size; i.e., there exist c1, c2 > 0
such that 1

1 - \lambda N \geq c1e
c2N for all N \geq 1. Figure 3.1 illustrates these conclusions

numerically.
Given that Theorem 3.2 describes the effect on increasing population size on

the intrinsic mean time to extinction for a fixed value of \alpha , it is natural to ask
what effect increasing \alpha has on these extinction times for a fixed population size.
In general, this is a challenging question. However, we can answer this question for
two special cases. First, we consider the case of low recovery rates \gamma = 0 and the
very high \beta \gg 1 contact rates. In the limit of \beta \rightarrow \infty , the update rule for In
for In > 0 is approximately In+1 \sim 1

NBinom(N, e - \mu ). Namely, provided there is
at least one infected individual at time step n, all individuals that have not died
get infected. In this case, the quasi-stationary distribution is approximately \pi i =\bigl( 
N
i

\bigr) 
e - \mu i(1  - e - \mu )N - i/\lambda N for i = 1, 2, . . . , N with the persistence eigenvalue \lambda N =

1 - (1 - e - \mu )N . In particular, in this case, the mean intrinsic extinction time is bounded
despite \alpha \rightarrow \infty and R0 \rightarrow \infty as \beta \rightarrow \infty . The accuracy of this approximation is
illustrated in Figure 3.2. Second, in the limit of no recovery and no mortality (i.e.,
\mu = \gamma = 0), the disease (not surprisingly!) never goes extinct whenever I0 > 0.
Indeed, in this case, In \rightarrow 1 as n \rightarrow \infty with the probability of 1 provided \beta > 0 and
I0 > 0. These two special cases highlight that the magnitude of increasing \alpha on the
increase of the intrinsic mean time to extinction depends in a subtle way on how \alpha 
increases.
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Fig. 3.1. Quasi-stationary distributions and intrinsic mean extinction times for the stochastic
SIS model for R0 > 1 (A,B) and R0 < 1 (C,D). In (A) and (C), the quasi-stationary distributions
approach a Dirac distribution at the equilibrium density (dashed line). In (B), the intrinsic mean
time to extinction increases exponentially with a population size for R0 > 1. In (D), the intrin-
sic mean time to extinction saturates at 1/(1  - \alpha ) (dashed line) as the population size increases.
Parameter values: \gamma = 0.1, \mu = 0.01, and \beta = 0.15 for (A, B) and \beta = 0.09 for (C, D).
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Fig. 3.2. Quasi-stationary distributions and intrinsic mean extinction times for the sto-
chastic SIS model for high contact rates and low recovery rates. In (A), the numerically com-
puted quasi-stationary distribution (solid blue curve) and the analytical approximation (X marks)

\pi i =
\bigl( N
i

\bigr) 
e - \mu i(1 - e - \mu )N - i/(1 - e - \mu )N . In (B), the numerically computed intrinsic mean time to ex-

tinction (solid blue curve) and the analytical approximation (X marks) is 1/(1 - e - \mu )N . Parameter
values: \gamma = 0, \mu = 1.5, \beta = 100, and N = 20 for (A).

4. The dynamics of a deterministic SIR model. As the discrete-time model
counterpart to the classical SIR model, we assume all individuals escape natural mor-
tality with a probability e - \mu , infected individuals escape recovery with a probability
e - \gamma , and susceptible individuals escape infection with a probability e - \beta I , where I is
the frequency of infected individuals and \beta > 0 is the contact and transmission rate.
If the population size is constant, then the discrete-time dynamics are given by
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(4.1)

\Biggl\{ 
Sn+1 = 1 - e - \mu + Sne

 - \mu  - \beta In ,

In+1 = e - \mu Sn
\bigl( 
1 - e - \beta In

\bigr) 
+ e - \mu  - \gamma In.

Like the discrete-time SIS model, this discrete-time formulation of the SIR model has
several advantages. First, by adding the two equations of (4.1) together, we obtain
that the trajectories of (4.1) remain in the domain

X := \{ (S, I) : S \geq 0, I \geq 0, S + I \leq 1\} ,

provided the initial value (S0, I0) lies in this domain. Furthermore, if we define \partial X0 :=
\{ (S, 0) : 0 \leq S \leq 1\} and X0 := X \setminus \partial X0, then X0 and \partial X0 are positively invariant.
Second, these dynamics, as described in the next section, correspond to the mean-field
dynamics of an individual-based model. Finally, if \Delta t is the length of a time step,
and \beta = \~\beta \Delta t, \gamma = \~\gamma \Delta t, and \mu = \~\mu \Delta t, then

S(t+\Delta t) :=Sn+1 = \~\mu \Delta t+ S(t) - (\~\mu + \~\beta I(t))\Delta tS(t) +O(\Delta t2), where S(t) := Sn,

I(t+\Delta t) :=In+1 = S(t)I(t) \~\beta \Delta t+ I(t) - (\~\mu + \~\gamma )I(t)\Delta t+O(\Delta t2), where I(t) := In.

Hence, in the limit \Delta t \rightarrow 0, we get the classical SIR system of ordinary differential
equations:

dS

dt
= lim

\Delta t\rightarrow 0

S(t+\Delta t) - S(t)

\Delta t
= \~\mu  - (\~\mu + \~\beta I)S,

dI

dt
= lim

\Delta t\rightarrow 0

I(t+\Delta t) - I(t)

\Delta t
= \~\beta IS  - (\~\mu + \~\gamma )I.

For our discrete-time SIR model, the disease-free equilibrium is (1, 0). At this
equilibrium, the per-capita growth rate of the disease still equals \alpha = \beta e - \mu + e - \mu  - \gamma ,
and the reproductive number still equals R0 = \beta e - \mu /(1 - e - \mu  - \gamma ). We will show that
if R0 > 1, the disease persists, and if R0 < 1, the disease-free equilibrium is globally
stable. Furthermore, we will show that when the recovery rate \gamma is sufficiently small,
there is a globally stable endemic equilibrium. To state these results precisely, we
define the parameter space as P := \{ \lambda := (\mu , \beta , \gamma ) : \mu > 0, \beta > 0, \gamma \geq 0\} . Let
C0
P := \{ \lambda = (\mu , \beta , 0) \in P : \alpha (\lambda ) > 1\} be the parameters corresponding to no recovery

(\gamma = 0) and \alpha > 1. Finally, define

CP := \{ \lambda \in P : \alpha (\lambda ) > 1, (4.1) admits a globally stable equilibrium inX0\} .

Using these definitions, we have the following theorem.

Theorem 4.1. (i) If \alpha < 1, then the disease-free equilibrium (1, 0) is globally
asymptotically stable.

(ii) If \alpha > 1, then F : X0 \rightarrow X0 admits a global and compact attractor K contained
in the interior of X0.

(iii) CP \supset C0
P is a nonempty open subset in P .

In addition we conjecture that there is a globally stable endemic equilibrium when
\mu = \~\mu \Delta t, \beta = \~\beta \Delta t, \gamma = \~\gamma \Delta t, \Delta t > 0 is sufficiently small, and \alpha > 1 (equivalently,
R0 > 1).

5. Metastability and extinction in a stochastic SIR model. As with the
stochastic SIS model, the stochastic SIR model requires the additional parameter of
the total population size N . For a given population size, the state space \scrS corresponds
to the possible fraction of susceptible and infected individuals in the population; i.e.,

\scrS = \{ (i/N, j/N) : i, j \in \{ 0, 1, . . . , N\} , i+ j \leq N\} \subset X.
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Let (Sn, In) \in \scrS be the fractions of susceptible and infected individuals at the time
step n. The fraction of removed individuals at the time step n equals Rn = 1 - Sn - In.
Consistent with the deterministic SIR model, we assume (i) each susceptible individual
lives and becomes infected with a probability e - \mu (1 - e - \beta In) independent of each other,
(ii) each infected individual either remains infected, dies and gets replaced with a
susceptible individual, or enters the removed class with probabilities e - \mu  - \gamma , 1 - e - \mu ,
or e - \mu (1 - e - \gamma ) independent of each other, and (iii) each removed individual dies and
creates a new susceptible individual with a probability 1 - e - \mu . To account for these
transitions, letWn+1 be a binomial random variable with NSn trials and a probability
of success e - \mu (1 - e - \beta In) (i.e., susceptible individuals that will become infected), Xn+1

be a binomial random variable with NIn trails and a probability of success 1  - e - \mu 

(i.e., infected individuals that die and get replaced by a susceptible individual), Yn+1

be a binomial random variable with NIn  - Xn+1 trials with a probability of success
e - \gamma (i.e., nondying infected individuals that will not enter the removed class), and
Zn+1 be a binomial random variable with N(1 - In  - Sn) trials with a probability of
success 1 - e - \mu (i.e., removed individuals that die and get replaced with a susceptible
individual). Under these assumptions, the stochastic SIR model is

(5.1)

Sn+1 =
1

N
(NSn  - Wn+1 +Xn+1 + Zn+1) ,

In+1 =
1

N
(Wn+1 + Yn+1) , where

Wn+1 \sim Binom(NSn, e
 - \mu \bigl( 1 - e - \beta In

\bigr) 
),

Xn+1 \sim Binom(NIn, 1 - e - \mu ),

Yn+1 \sim Binom(NIn  - Xn+1, e
 - \gamma ), and

Zn+1 \sim Binom(N(1 - In  - Sn), 1 - e - \mu ).

Taking the expectations of Sn+1 and In+1 conditioned on the values of Sn and
In gives

\BbbE [Sn+1| Sn = S, In = I] =1 - e - \mu + Se - \mu  - \beta I ,

\BbbE [In+1| Sn = S, In = I] =e - \mu S
\bigl( 
1 - e - \beta I

\bigr) 
+ e - \mu  - \gamma I,

which corresponds to the update rule for the deterministic model (4.1). Despite this
relationship, the disease always goes extinct in finite time with a probability of 1
for the stochastic model. The following proposition follows from standard results in
stochastic processes (see, e.g., Harier, 2018, Theorem 3.20).

Proposition 5.1. Assume that \mu + \gamma and \beta are positive. With probability one,
In = 0 for some n \geq 1.

To characterize metastability and extinction times, define \scrS + = \{ (x1, x2) \in \scrS :
x2 > 0\} to be all the states where the disease persists. For all pairs of states x, y \in \scrS +,
let Qxy = \BbbP [(Sn+1, In+1) = y| (Sn, In) = x] be the transition probabilities restricted to
the transient states and Q = (Qxy)x,y\in \scrS +

be the associated matrix. Let \pi = (\pi x)x\in \scrS +

be the quasi-stationary distribution with an associated persistence probability \lambda , i.e.,\sum 
x\in \scrS +

\pi x = 1, \pi x > 0 for all x \in \scrS + and \pi Q = \lambda \pi . Our main result for the stochastic
SIR model concerns the behavior of the quasi-stationary distribution and the intrinsic
mean time to extinction for large population size N .

Theorem 5.2. Assume \mu + \gamma > 0, \beta > 0. For each N \geq 1, let \pi N be the quasi-
stationary distribution and \lambda N the corresponding eigenvalue for (5.1). Let \alpha = \beta e - \mu +
e - \mu  - \gamma . Then
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(i) If \alpha < 1, then \lambda N \leq \alpha for all N \geq 1 and limN\rightarrow \infty \pi N = \delta (1,0), where \delta (1,0)
is a Dirac measure at the disease-free equilibrium (1, 0) and convergence is in
the weak* topology.

(ii) If \alpha > 1, then lim supN\rightarrow \infty 
1
N log(1  - \lambda N ) < 0, and there exists a compact

set K \subset (0, 1)2 such that \pi \ast (K) = 1 for every weak* limit point \pi \ast of \pi N

as N \rightarrow \infty and where \pi \ast is invariant for the deterministic model (4.1).
Moreover, if (\mu , \beta , \gamma ) \in CP , then limN\rightarrow \infty \pi N = \delta (S\ast ,I\ast ), where \delta (S\ast ,I\ast ) is the
Dirac measure at the unique positive equilibrium (S\ast , I\ast ) of (4.1).

The first assertion of Theorem 5.2 implies that if \alpha < 1 and the population size
is large, then any long-term transient mostly involves low frequencies of infected indi-
viduals, and the mean time to extinction after these transients is less than 1

1 - \alpha . Fur-
thermore, whenever permanence of the deterministic model corresponds to a globally
stable equilibrium (see Theorem 4.1), the quasi-stationary distributions concentrate
on a Dirac measure at this equilibrium; i.e., it supports the only invariant measure in
K for the deterministic dynamics. The second assertion of Theorem 5.2 implies that
if \alpha > 1 and the population size is large, then the long-term transients fluctuate away
from the disease-free equilibrium and the mean time to extinction following these
transients increases exponentially with population size; i.e., there exist c1, c2 > 0 such
that 1

1 - \lambda N \geq c1e
c2N for all N \geq 1. Figure 5.1 illustrates these conclusions.

susceptible frequency

in
fe

ct
ed

 fr
eq

ue
nc

y

0.2 0.4 0.6 0.8

0.
05

0.
15

0.
25

A

●

●

●

●

●

●

0 500 1000 1500

50
50

0
50

00
0

population size N

m
ea

n 
ex

tin
ct

io
n 

tim
e

B

●

●

●

●

●
●

0 500 1000 1500

20
30

40

population size N

m
ea

n 
ex

tin
ct

io
n 

tim
e

D

Fig. 5.1. Quasi-stationary distributions and mean intrinsic extinction times for the stochastic
SIR model. For parameters with \alpha > 1, the quasi-stationary distributions, estimated numerically
using the method of Aldous, Flannery, and Palacios (1988), concentrate on the stable equilibrium as
the population size goes from N = 100 (A) to N = 10, 000 (C). For this \alpha > 1, the associated intrinsic
mean extinction times increase exponentially with the population size in (B). For parameters with
\alpha < 1, the mean extinction times are bounded by 1/(1  - \alpha ) in (D). Parameter values: \mu = 0.01,
\gamma = 0.1, and \beta = 0.2 for (A)--(C) and \beta = 0.09 for (D).
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6. Discussion. This paper formulates and provides a mathematically rigorous
analysis of deterministic and stochastic, discrete-time SIS and SIR models. The sto-
chastic models are based on probabilistic, individual-based update rules. The condi-
tional expected change in the fraction of infected and susceptible individuals given
the current values of these fractions determines the update rule for the determinis-
tic model and, in this sense, the deterministic model is the mean-field model for the
stochastic models.

Many earlier discrete-time epidemic models of SIS and SIR dynamics have been
derived using numerical approximation schemes for differential equations (Allen 1994;
Finkenst\"adt and Grenfell 2000; Castillo-Chavez and Yakubu 2001, Satsuma et al.,
2004; Enatsu, Nakata, and Muroya 2010; Ma, Zhou, and Cao 2013). These models,
including the one-dimensional ones, can exhibit oscillatory dynamics. In contrast,
our models, which are based on individual-based update rules and use an exponential
escape function, are most similar to higher-dimensional, discrete-time epidemiological
models that have been used for applications to specific diseases (Emmert and Allen,
2004, 2006; Allen and van den Driessche, 2008). Consistent with Allen and van den
Driessche (2008), our analysis and numerical simulations suggests that our models
do not exhibit oscillatory behavior. This may be biologically realistic as sustainable
oscillations in infectious diseases are normally driven by periodic events such as sea-
sonality, school dates, and holidays (Keeling and Rohani, 2011; Pollicott, Wang, and
Weiss, 2012; Kong, Jin, and Wang, 2015), none of which are considered in our models.
When R0 < 1, we prove that all trajectories asymptotically approach the disease-free
equilibrium for both the SIS and SIR models. When R0 > 1, we prove the disease
persists for both models, approaches a globally stable, endemic equilibrium for the
SIS model, and provides sufficient conditions for global stability of the endemic equi-
librium for the SIR model. Based on extensive numerical simulations, we conjecture
that R0 > 1 always implies global stability of the endemic equilibrium for the SIR
model.

Unlike the deterministic model for which the disease persists indefinitely when
R0 > 1 and only goes asymptotically extinct over an infinite time horizon when R0<1,
the fraction of infected in the stochastic model becomes zero in finite time for all
values of R0. To understand this well-know discrepancy (Bartlett, 1966; Keeling and
Rohani, 2011; Diekmann et al., 2012) for our model, we characterized the long-term
transients using quasi-stationary distributions for finite-state, discrete-time Markov
chains (Darroch and Seneta, 1965). For these characterizations, we used the per-
capita growth rate \alpha = \beta e - \mu + e - \mu  - \gamma of the infection at the disease-free equilibrium.
When \alpha < 1 (equivalently, R0 < 1), the mean time to extinction, when following the
quasi-stationary distribution, is less than or equal to 1/(1 - \alpha ) for all population sizes
and for both the SIS and SIR models. Indeed, we conjecture that as N \rightarrow \infty , this
mean time to extinction converges to 1/(1  - \alpha ). While R0 < 1 if and only if \alpha < 1,
we have \alpha = (1  - e - \mu  - \gamma )R0 + e - \mu  - \gamma > R0 whenever R0 < 1. Hence, even if R0 is
very small, the mean times to extinction can be arbitrarily long. For example, given
any 0 < x < y < 1, we can make R0 = x and \alpha = y by choosing \gamma = 0, e - \mu = y - x

1 - x ,
and \beta = x(e\mu  - 1).

When R0 > 1 (equivalently \alpha > 1), we show that the mean extinction times
increase exponentially with the population size N , and the quasi-stationary distribu-
tions concentrate on positive invariant sets for the deterministic model for large N . In
particular, coupled with our analysis of the deterministic dynamics, our results imply
that the quasi-stationary behavior for large N always concentrates near the globally
stable, endemic equilibrium of the SIS model. We provide sufficient conditions for
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the same conclusion for the SIR model and conjecture that this always occurs for the
SIR model. These conclusions are consistent with earlier studies of continuous-time
Markov models where the analysis was done using diffusion approximations (Bar-
bour, 1975; Kryscio and Lef\`evre, 1989; N\r asell, 1996, 1999; Andersson and Britton,
2000; N\r asell, 2002; Lindholm and Britton, 2007; Andersson and Lindenstrand, 2011;
Clancy and Tjia, 2018) or using large deviation estimates of extinction times for fixed
initial frequencies (Kratz and Pardoux, 2018). In contrast, our results apply large de-
viation methods from Faure and Schreiber (2014) to understand the quasi-stationary
distributions and the mean time to extinction from these distributions. An open
question for the stochastic model with R0 > 1 concerns the asymptotic rate at which
the extinction times increase exponentially with N . Specifically, what is the value of
c > 0 such that the mean time to extinction grows like exp(cN) for large N? The
diffusion approximations provide one approach to find potential candidates for c.

When R0 > 1, we found that the mean time to extinction can be arbitrarily
large even for a fixed population size. For example, this occurs when recovery and
mortality rates approach zero in which case R0 also increases without bound but \alpha 
remains bounded above by \beta +1. In contrast, increasing contact rates (which increase
\alpha and R0 without bound) leads to extinction times that are constrained by population
size, recovery rates, and mortality rates.

In addition to the open mathematical questions that we have already raised,
future challenges include analyzing extensions of our models. These extensions could
include additional compartments such as SEIR models, multi-age group epidemic
models, and SIR type models with vaccination (Anderson and May 1991; Keeling and
Rohani, 2011; Kong, Jin, and Wang, 2015). More generally, when the discrete-time
system is autonomous, the mathematical approaches used here should be applicable
to study quasi-stationary distributions and the intrinsic extinction times. However,
when population sizes or transmission rate change stochastically over time (Anderson
and May 1979; Pollicott, Wang, and Weiss, 2012), new mathematical approaches are
required for studying the impact of these environmentally driven random fluctuations
on intrinsic extinction times.

7. Proof of Theorem 2.1. (i) First, we shall prove that

(7.1) F (I) := e - \mu (1 - I)
\bigl( 
1 - e - \beta I

\bigr) 
+ e - \mu  - \gamma I <

\bigl( 
\beta e - \mu + e - \mu  - \gamma 

\bigr) 
I =: L(I), I \in (0, 1]

is equivalent to

(7.2) (1 - I)
\bigl( 
1 - e - \beta I

\bigr) 
< \beta I, I \in (0, 1].

In fact, 1 - e - x < x for all x > 0. This implies that

(1 - I)
\bigl( 
1 - e - \beta I

\bigr) 
\leq (1 - I)\beta I < \beta I for all I \in (0, 1].

This shows that (7.2) holds.
Fix I0 \in (0, 1], and set In := Fn(I0), n = 1, 2, . . . . Suppose that \alpha \leq 1. Then we

claim that

(7.3) In+1 < In, n = 0, 1, 2, . . . .

For n = 0, I1 = F (I0) < L(I0) = \alpha I0 \leq I0; that is, (7.3) is true for n = 0. Suppose
that (7.3) holds for n. Then by (7.1), we have that

In+2 = F (In+1) < L(In+1) = \alpha In+1 \leq In+1.
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By mathematical induction, (7.3) is valid for all positive integers. Combining \alpha \leq 1
with (7.1), we get that F has no positive equilibrium in (0, 1]. Therefore, (7.3) implies
that limn\rightarrow \infty In = 0; that is, 0 is globally asymptotically stable.

(ii) Suppose that \alpha > 1. Then we claim that F (I) has a unique positive equi-
librium denoted by I\ast . In fact, define G(I) := F (I)  - I. Then G(0) = 0, G(1) =
e - \mu  - \gamma  - 1 < 0, G\prime (0) = \alpha  - 1 > 0, G\prime (1) =  - e - \mu (1  - e - \beta ) + e - \mu  - \gamma  - 1 < 0, and
G\prime \prime (I) =  - 2\beta e - \mu e - \beta I  - \beta 2e - \mu (1  - I)e - \beta I < 0. This implies the claim. If F has no
critical point in the interval (0, 1), then F \prime (I) > 0 on [0, 1], which implies that F is
a strongly monotone map on (0, 1] with every orbit closure being compact. By The-
orem 3 of Jiang and Yu (1996), I\ast is globally asymptotically stable on (0, 1]. In the
following, we assume that F (I) has a positive critical point I\ast c . The similar proof to
the uniqueness of I\ast shows that I\ast c must be unique if it exists. Therefore, F possesses
the following properties:

(7.4)

\Biggl\{ 
F (I) > I if 0 < I < I\ast ,

F (I) < I if I\ast < I \leq 1, and

(7.5)

\Biggl\{ 
F (I) is strictly increasing on [0, I\ast c ],

F (I) is strictly decreasing on [I\ast c , 1].

Now we will divide (ii) into two cases:

(iia) I\ast \leq I\ast c , and (iib) I\ast > I\ast c .

Let I0 \in (0, 1]. Then we denote Fn(I0) by In.
(iia) Take I0 \in (0, I\ast ). Then we claim that

(7.6) I0 < I1 < I2 < \cdot \cdot \cdot < In < I\ast , for n = 1, 2, . . . .

By (7.4), the assumption of (iia), and (7.5), I0 < F (I0) = I1 < F (I\ast ) = I\ast ; this
means that (7.6) is true for n = 1. Suppose that (7.6) holds for n. Then again using
(7.4), the assumption of (iia), and (7.5), we get that

I0 < F (I0) < F (I1) < F (I2) < \cdot \cdot \cdot < F (In) < F (I\ast ),

which implies that (7.6) holds for n + 1. By induction, the claim holds. Thus as
n\rightarrow \infty , In increasingly tends to the unique equilibrium I\ast .

If I0 \in (I\ast , I\ast c ] with I
\ast < I\ast c , then we can inductively prove

I\ast < In < In - 1 < \cdot \cdot \cdot < I1 < I0 for n = 1, 2, . . .

by the assumption of (iia), (7.5), and (7.4). This deduces that In decreasingly tends
to the unique equilibrium I\ast as n\rightarrow \infty .

Assume that I0 \in (I\ast c , 1]. Then by (7.4), the assumption of (iia), and (7.5),
I\ast c \geq F (I\ast c ) > F (I0) = I1; that is, I1 \in (0, I\ast c ]. By the two cases discussed above, we
conclude that limn\rightarrow \infty In = I\ast .

The above analytic proof can be achieved by Feigenbaum's graphical analysis (see
page 106 of Feigenbaum (1983)) performed in the following steps: To iterate an initial
I0 successively,
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(1) move vertically to the graph of S = F (I);
(2) move horizontally to the graph of S = I; and
(3) repeat steps 1 and 2, etc.
Figure 7.1(a)--(c) depicts these processes corresponding to the three cases of (iia)
discussed above.

(iib) By (7.5), F (I) is strictly decreasing when I > I\ast c ; that is, F \prime (I) < 0, I \in 
(I\ast c , 1]. The computation shows that

F \prime (I) \geq e - \mu 
\bigl( 
 - 1 + e - \beta I + e - \gamma 

\bigr) 
>  - 1.

Therefore,

(7.7)  - 1 < F \prime (I) < 0, I \in (I\ast c , 1], \kappa = sup
I\in [I\ast c ,1]

| F \prime (I)| \in (0, 1),

whose graph is shown in Figure 7.2(a). This means that the mapping is contractive
from the equilibrium on the interval [I\ast c , 1], but its orientation is reversing. Using
(7.7), we can prove that

(7.8) I1 > I\ast and I0 < I2 < I\ast if I\ast c \leq I0 < I\ast .

In fact, for any I0 \in [I\ast c , I
\ast ), we have

I1  - I\ast = F (I0) - F (I\ast ) = F \prime (\xi )(I0  - I\ast ) with \xi \in (I0, I
\ast ).

Equation (7.7) implies that I1 > I\ast and I1  - I\ast < I\ast  - I0. Similarly,

I2  - I\ast = F (I1) - F (I\ast ) = F \prime (\eta )(I1  - I\ast ) with \eta \in (I\ast , I1).

Again, by (7.7), I2 < I\ast and I\ast  - I2 < I1  - I\ast . This proves (7.8) as shown in Figure
7.2(b).

As a summary, we conclude that if I0 \in [I\ast c , I
\ast ], then

| F 2n(I0) - I\ast | \leq \kappa 2n| I0  - I\ast | .

This shows limn\rightarrow \infty F 2n(I0) = I\ast and limn\rightarrow \infty F 2n+1(I0) = F (I\ast ) = I\ast for any
I0 \in [I\ast c , I

\ast ]. We conclude that In oscillates around I\ast and converges to I\ast in this
case.

Let Fl denote the restriction of F on [0, I\ast c ]. Then Fl : [0, I
\ast 
c ] \rightarrow [0, F (I\ast c )] is a

homeomorphism. Denote F - n
l (I\ast c ) by I - nc with I0c = I\ast c . Then \{ I - nc : n \geq 0\} \subset 

[0, I\ast c ] is strictly decreasing with respect to n. Therefore, limn\rightarrow \infty I - nc = \~I exists,
and \~I \in [0, I\ast c ] is an equilibrium of F . This proves \{ I - nc : n \geq 0\} decreasingly

tends to the origin. Let Jn denote the interval [I - nc , I
 - (n - 1)
c ), n = 1, 2, . . .. Then

(0, I\ast c ) =
\bigcup \infty 
n=1 Jn. We shall prove that for each positive integer n and I0 \in Jn, In

will eventually oscillate around the equilibrium I\ast and tend to I\ast , as shown in Figure
7.2(c).

We first prove the result holds for J1. Let I\ast 0 \in (0, I\ast c ) such that F (I\ast 0 ) = I\ast .
Then J1 = [I\ast 0 , I

\ast 
c ) \cup [I - 1

c , I\ast 0 ]. If I0 \in [I\ast 0 , I
\ast 
c ), then I1 = F (I0) \in [I\ast , F (I\ast c )), and

there exists I+0 \in (I\ast c , I
\ast ] such that I1 = F (I+0 ). Thus, In(n \geq 0) will oscillate around

the equilibrium I\ast and tend to it as n \rightarrow \infty as proved above. By the definition of
I - 1
c and I\ast 0 , F ([I

 - 1
c , I\ast 0 ]) = [I\ast c , I

\ast ]. This implies that I1 \in [I\ast c , I
\ast ] if I0 \in [I - 1

c , I\ast 0 ].
Therefore, In(n \geq 1) will oscillate around the equilibrium I\ast and converge to it as
n\rightarrow \infty as proved above.

D
ow

nl
oa

de
d 

10
/3

0/
21

 to
 2

3.
17

.2
10

.2
2 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2208 S. J. SCHREIBER, S. HUANG, J. JIANG, AND H. WANG

Now we prove the result holds for Jm(m > 1). Since Fm - 1(Jm) = J1, using the
result proved in the previous paragraph, we conclude that In(n \geq m) will oscillate
around the equilibrium I\ast and approach it. This proves the result for I0 \in (0, I\ast c ).

It remains to consider the case I0 \in (I\ast , 1]. We can see that I1 = F (I0) \in (0, I\ast )
in this case. The above arguments have shown that as n\rightarrow \infty , In tends to I\ast through
such an I1. This completes the proof.

Fig. 7.1. I\ast \leq I\ast c .

Fig. 7.2. I\ast > I\ast c .

8. Proof of Theorem 3.2. We use results from Faure and Schreiber (2014) to
prove Theorem 3.2. We begin by verifying that Standing Hypothesis 1.1 of Faure and
Schreiber (2014) holds. In their notation, ``\varepsilon "" corresponds to 1

N in our models; i.e.,
small demographic noise corresponds to large population size N . For all \delta > 0 and
N \geq 1, define

\beta \delta (N) = sup
x\in [0,1]

\BbbP [| In+1  - F (x)| \geq \delta | In = x] ,

where F (x) = e - \gamma  - \mu x+e - \mu (1 - e - \beta x)(1 - x) corresponds to the right-hand side of the
deterministic model in (2.1). Standing Hypothesis 1.1 of Faure and Schreiber (2014)
requires that limN\rightarrow \infty \beta \delta (N) = 0 for all \delta > 0. The following proposition proves
something stronger using large deviation estimates.

Proposition 8.1. There exists a function \rho : (0,\infty ) \rightarrow (0,\infty ) such that

\beta \delta (N) \leq exp( - N\rho (\delta ))

for all N \geq 1 and \delta > 0.
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Proof. While we use standard large deviation estimates, we go through the details
to ensure that the estimates can be taken uniformly in x \in [0, 1]. Define a = e - \mu  - \gamma 

and b(x) = e - \mu (1 - e - \beta x). By the exponential Markov inequality, we have for all t

(8.1)
\BbbP [N(In+1  - F (x))\geq N\delta | In = x] \leq e - tN\delta \BbbE [et(N(In+1 - F (x)))| In = x]

= e - tF (x)N - t\delta N \bigl( 
1 - a+ aet

\bigr) Nx \bigl( 
1 - b(x) + b(x)et

\bigr) N(1 - x)
.

Define

\psi (t, x) =  - tF (x) + x log(1 - a+ aet) + (1 - x) log(1 - b(x) + b(x)et).

As a, b(x) \in [0, 1] for all x, \psi (t, x) is a smooth function of (t, x); i.e., partial derivatives
of all orders exist and are continuous in ( - \infty ,\infty ) \times [0, 1]. Taking log of (8.1) and
dividing by N yields

(8.2)
1

N
log\BbbP [N(In+1  - F (x)) \geq N\delta | In = x] \leq  - \delta t+ \psi (t, x)

for all t \not = 0, x \in [0, 1], and \delta > 0. Similarly, one can show that

(8.3)
1

N
log\BbbP [N(F (x) - In+1) \geq N\delta | In = x] \leq  - \delta t+ \psi ( - t, x)

for all t \not = 0, x \in [0, 1], and \delta > 0. Taking the first- and second-order derivatives of \psi 
with respect to t, we get

\partial \psi 

\partial t
(t, x) =  - F (x) + xaet

1 - a+ aet
+

(1 - x)b(x)et

1 - b(x) + b(x)et

and
\partial 2\psi 

\partial t2
(t, x) = ax

et(1 - a)

(1 - a+ aet)2
+ (1 - x)b(x)

et(1 - b(x))

(1 - b(x) + b(x)et)2
\geq 0.

As \psi (0, x) = \partial \psi 
\partial t (0, x) = 0 and \partial 2\psi 

\partial t2 (0, x) \geq 0 for x \in [0, 1], continuity of the partial
derivatives of \psi and the compactness of \{ 0\} \times [0, 1] implies that for any \delta > 0 there

is t\ast (\delta ) > 0 such that | \partial \psi \partial t (t, x)| \leq \delta /2 and t\partial \psi (t,x)\partial t \geq 0 for all (t, x) \in [ - t\ast (\delta ), t\ast (\delta )]\times 
[0, 1]. Thus, for any (t, x) \in [0, t\ast (\delta )] \times [0, 1], the fundamental theorem of calculus
implies

\psi (t, x) =

\int t

0

\partial \psi 

\partial t
(s, x)ds \leq t\delta /2

and

\psi ( - t, x) =
\int t

0

 - \partial \psi 
\partial t

( - s, x)ds \leq t\delta /2.

Define

\rho (\delta ) = \delta t\ast (\delta ) - max
x\in [0,1]

\psi (t\ast (\delta ), x).

Our estimates imply that \rho (\delta ) \geq \delta t\ast (\delta )/2 > 0. Furthermore, (8.2) and (8.3) imply
that

\BbbP [| In+1  - F (x)| \geq \delta | In = x] \leq exp( - N\rho (\delta ))

for all x \in [0, 1] and \delta > 0.
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To prove the first result of Theorem 3.2, assume that \alpha \leq 1. Theorem 2.1 implies
that 0 is globally stable for the deterministic model I \mapsto \rightarrow F (I). Theorem 3.12 of
Faure and Schreiber (2014), which only requires Standing Hypothesis 1.1, implies
that limN\rightarrow \infty \pi N = \delta 0. Define R(x) = F (x)/x for x \in (0, 1]. Equation (7.1) in the
proof of Theorem 2.1 implies that R(x) \leq \alpha for x \in (0, 1]. For N \geq 1, the quasi-
stationarity of \pi N implies

\lambda N
N\sum 
i=1

i

N
\pi Ni =

N\sum 
i=1

\BbbE 
\biggl[ 
In+1

\bigm| \bigm| \bigm| In =
i

N

\biggr] 
\pi Ni

=

N\sum 
i=1

F

\biggl( 
i

N

\biggr) 
\pi Ni

=

N\sum 
i=1

i

N
R

\biggl( 
i

N

\biggr) 
\pi Ni

\leq \alpha 
N\sum 
i=1

i

N
\pi Ni .

Since
\sum N
i=1

i
N \pi 

N
i > 0, \lambda N \leq \alpha for all N \geq 1 as claimed.

To prove the second result of Theorem 3.2, assume \alpha > 1, in which case Theo-
rem 2.1 implies that there exists a unique positive globally stable equilibrium I\ast for
the map I \mapsto \rightarrow F (I). Assertion (b) of Lemma 3.9 of Faure and Schreiber (2014) implies
that there exists \delta > 0 such that 1  - \lambda N \leq \beta \delta (N) for all N \geq 1. Proposition 8.1
implies that

lim sup
N\rightarrow \infty 

1

N
log(1 - \lambda N ) \leq  - \rho (\delta ).

To complete the proof of the second assertion, we need to verify the assumption in
assertion (b\prime ) of Lemma 3.9 of Faure and Schreiber (2014). Choose \eta > 0 sufficiently
small so that

min
x\in [0,\eta ]

(1 - e - \mu  - \gamma )x \geq exp( - \rho (\delta )/3) and min
x\in [0,\eta ]

(1 - e - \mu (1 - e - \beta x))1 - x \geq exp( - \rho (\delta )/3).

Then
min
x\in [0,\eta ]

\BbbP [In+1 = 0| In = x] \geq exp( - 2N\rho (\delta )/3)

and

lim
N\rightarrow \infty 

\beta \delta (N)

minx\in [0,\eta ] \BbbP [In+1 = 0| In = x]
\leq lim
N\rightarrow \infty 

exp( - N\rho (\delta ))
exp( - 2N\rho (\delta )/3)

= 0,

which verifies the assumption of (b\prime ) of Lemma 3.9 of Faure and Schreiber (2014) and
implies that

lim
N\rightarrow \infty 

\sum 
i/N\leq \eta 

\pi Ni = 0;

i.e., for any weak* limit point \pi \ast of \pi N , \pi \ast ([0, \eta ]) = 0. As \lambda N \rightarrow 1, Proposition 3.11
of Faure and Schreiber (2014) implies that any weak* limit point of \pi N is invariant
for the dynamics x \mapsto \rightarrow F (x). As these weak* limit points are supported on [\eta , 1] and
the only invariant measure for x \mapsto \rightarrow F (x) on this interval is the Dirac measure \delta I\ast and
the unique positive equilibrium, it follows that \pi N converges in the weak* topology
to \delta I\ast as claimed.
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9. Proof of Theorem 4.1. Let Ef = (1, 0). Denote by

F (S, I) :=

\biggl( 
1 - e - \mu + Se - \mu  - \beta I

e - \mu S
\bigl( 
1 - e - \beta I

\bigr) 
+ e - \mu  - \gamma I

\biggr) 
.

Then

DF (Ef ) :=

\biggl( 
e - \mu  - \beta e - \mu 
0 \beta e - \mu + e - \mu  - \gamma 

\biggr) 
.

It follows that the per-capita growth rate of the disease is still given by (2.2), and
the basic reproduction number of (4.1) is still the expression in (2.3). Define the
competitive cone:

K := \{ (u, v) : u \leq 0, v \geq 0\} .

Then the competitive order is defined by

(u1, v1) \leq K (u2, v2) \Leftarrow \Rightarrow (u2  - u1, v2  - v1) \in K \Leftarrow \Rightarrow u2 \leq u1, v1 \leq v2.

It is easy to check that DF (Ef ) keeps K invariant (see Wang and Jiang (2001)). The
competitive models describe systems between two competitors in which an increase
of one competitor's density has a negative effect on the other. Their solutions will
preserve the order \leq K .

Define

L(S, I) :=

\biggl( 
1
0

\biggr) 
+

\biggl( 
e - \mu  - \beta e - \mu 
0 \beta e - \mu + e - \mu  - \gamma 

\biggr) \biggl( 
S  - 1
I

\biggr) 
.

We shall verify that

(9.1) F (S, I) \leq K L(S, I), (S, I) \in X.

By definition, (9.1) is equivalent to

(9.2)

\Biggl\{ 
1 - e - \mu + Se - \mu  - \beta I \geq 1 + e - \mu (S  - 1) - \beta Ie - \mu ,

e - \mu S
\bigl( 
1 - e - \beta I

\bigr) 
+ e - \mu  - \gamma I \leq 

\bigl( 
\beta e - \mu + e - \mu  - \gamma 

\bigr) 
I

on X. By simple computation, (9.2) is equivalent to S(1  - e - \beta I) \leq \beta I, (S, I) \in X,
which is obviously true. This shows the competitive ordering relation (9.1) holds.

Let P0 := (S0, I0) \in X, Pn := Fn(P0) = (Sn(P0), In(P0)), and Qn := Ln(P0).
We shall show that

(9.3) (1, 0) \leq K Pn \leq K Qn, n = 1, 2, . . . .

The left inequality is obvious by the definition of competitive order and X. So we will
prove the right one. Equation (9.1) deduces that (9.3) holds for n = 1. Suppose that
(9.3) holds for n. Then using (9.1) and the order preserving for DF (Ef ), we obtain

Pn+1 = F (Pn) \leq K L(Pn) \leq K L(Qn) = Qn+1.

By mathematical induction, (9.3) holds.
Let \alpha < 1. Then Qn \rightarrow (1, 0) as n\rightarrow \infty . Therefore, (i) is proved by (9.3).
Suppose \alpha > 1. Then we shall prove that the system (4.1) is uniformly persistent

with respect to (X0, \partial X0); that is, there exists \eta > 0 such that

(9.4) lim inf
n\rightarrow \infty 

In(P0) \geq \eta for all P0 = (S0, I0) \in X0.
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We can see that Ef is the maximal compact invariant set in \partial X0, which is positively
invariant with respect to F and lies on the stable manifold of Ef . Recalling the
Hofbauer and So uniform persistence theorem (see Theorem 4.1 of Hofbauer and So
(1989)), the system (4.1) is uniformly persistent if and only if

(a) Ef is isolated in X in the sense that there exists a closed neighborhood U of
Ef such that Ef is the largest invariant set in U , and

(b) W s(Ef ) \subset \partial X0, where

W s(Ef ) = \{ P0 := (S0, I0) \in X : lim
n\rightarrow \infty 

(Sn(P0), In(P0)) = (1, 0)\} .

Since DF (Ef ) has the eigenvalues e - \mu < 1 and \alpha > 1, the stable (unstable) manifold
of Ef is one-dimensional; see Theorem 1.4.2 of Guckenheimer and Holmes (1983). This
means that Ef is a hyperbolic equilibrium and a saddle. Thus, (a) follows immediately
from the Hartman and Grobman theorem (see Theorem 1.4.1 of Guckenheimer and
Holmes (1983)) because F is conjugate to the hyperbolic linear map DF (Ef ) on a
neighborhood of Ef . Besides, we have that \partial X0 := \{ (S, 0) : 0 \leq S \leq 1\} is positively
invariant and W s(Ef ) = \{ (S, 0) : 0 < S \leq 1\} \subset \partial X0; that is, (b) holds. This verifies
the uniform persistence, and hence the system (4.1) admits an attractor in X0.

It follows from (9.4) that (4.1) contains a compact attractor K \subset \{ (S, I) \in X :
I \geq \eta \} . Besides, by the first equality of (4.1), we have Sn(P0) \geq 1  - e - \mu for n \geq 1
and P0 \in X. This implies that K \subset \{ (S, I) \in X : S \geq 1 - e - \mu \} . As a result,

K \subset \{ (S, I) \in X : S \geq 1 - e - \mu , I \geq \eta , S + I \leq 1\} .

This proves (ii).
It remains to prove (iii). First, we consider the system (4.1) with \lambda 0 = (\mu 0, \beta 0, 0)

and \alpha (\mu 0, \beta 0, 0) > 1. We shall prove that it admits a globally stable equilibrium
(1 - I\ast , I\ast ) in X, where F (I\ast ) = I\ast with 0 < I\ast < 1; that is, K = \{ (1 - I\ast , I\ast )\} .

Let \Delta n := Sn + In. Then from (4.1) it follows that

(9.5) \Delta n+1 = 1 - e - \mu 0 + e - \mu 0\Delta n.

It is easy to see that (9.5) has the positive equilibrium 1 and all positive orbits tend
to 1 as n \rightarrow +\infty . Therefore, the system (4.1) is reduced to the system (2.1) with
\mu = \mu 0, \beta = \beta 0, \gamma = 0. Applying Theorem 2.1(ii), we get that the system (2.1) has a
globally stable equilibrium I\ast in (0, 1). Thus the system (4.1) admits a globally stable
equilibrium (1 - I\ast , I\ast ) in X, where F (I\ast ) = I\ast with 0 < I\ast < 1. Recalling the proof
of Theorem 2.1(ii) (see Figure 7.1 and Figure 7.2(a)), we have

(9.6) | F \prime (I\ast )| =
\bigm| \bigm| e - \mu 0 - \beta 0I

\ast \bigl( 
1 + \beta 0(1 - I\ast )

\bigr) \bigm| \bigm| < 1.

Next, we will prove that the spectral radius of the Jacobian matrix for F (S, I) at
the positive equilibrium E\ast (S\ast , I\ast ) := (1 - I\ast , I\ast ) is strictly less than 1.

An easy calculation yields that

DF (E\ast ) :=

\biggl( 
e - \mu 0 - \beta 0I

\ast  - \beta 0S\ast e - \mu 0 - \beta 0I
\ast 

e - \mu 0(1 - e - \beta 0I
\ast 
) \beta 0S

\ast e - \mu 0 - \beta 0I
\ast 
+ e - \mu 0

\biggr) 
,

\biggl( 
e - \mu 0 - \beta 0I

\ast  - \beta 0S\ast e - \mu 0 - \beta 0I
\ast 

e - \mu 0(1 - e - \beta 0I
\ast 
) \beta 0S

\ast e - \mu 0 - \beta 0I
\ast 
+ e - \mu 0

\biggr) \biggl( 
1
 - 1

\biggr) 
= F \prime (I\ast )

\biggl( 
1
 - 1

\biggr) 
,
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and detDF (E\ast ) = e - \mu 0F \prime (I\ast ). This proves that F \prime (I\ast ) and e - \mu 0 are two eigenvalues
of DF (E\ast ); the spectral radius of DF (E\ast ) is strictly less than 1.

In what follows, we shall use Theorem 2.1 of Smith and Waltman (1999) to prove
that CP is open in the parameter space P .

For this purpose, denote by \| \cdot \| the Euclidean norm of \BbbR 3 and BC(\lambda 0, s) the open
ball in P of radius s about the point \lambda 0. We fix a \lambda 0 \in CP and an s0 \in (0, \mu 0) such
that \alpha (\lambda ) > 1 for any \lambda \in BC(\lambda 0, s0). In order to consider the perturbed systems for
parameters, we set F\lambda 0

(S, I) the given mapping and F\lambda (S, I) = (S\lambda (S, I), I\lambda (S, I))
the mappings for \lambda \in BC(\lambda 0, s0). Define

R\lambda (S, I) =

\Biggl\{ 
I\lambda (S,I)

I if I > 0,

\beta e - \mu S + e - \mu  - \gamma if I = 0.

Then R\lambda (S, I) is continuous on X. By induction, it is not difficult to prove that

(9.7)
Fn\lambda (S, 0) =

\bigl( 
1 - e - n\mu + e - n\mu S, 0

\bigr) 
,

R\lambda (F
n
\lambda (S, 0)) =\beta e

 - \mu \bigl( 1 - e - n\mu + e - n\mu S
\bigr) 
+ e - \mu  - \gamma 

for n = 1, 2, . . .. We claim that there exist an s1 \in (0, s0], an integer N > 0, \delta > 0,
and \rho > 1, all only depending on \lambda 0, such that

(9.8) IN\lambda (S, I) \geq \rho I for all \lambda \in BC(\lambda 0, s1) and I \in [0, \delta ],

where Fn\lambda (S, I) = (Sn\lambda (S, I), I
n
\lambda (S, I)).

From (9.7) it follows that

R\lambda (F
n
\lambda (S, 0)) \geq \alpha (\lambda ) - \beta e - (n+1)\mu .

By the continuity of \alpha (\lambda ), there exists an s1 \in (0, s0] such that \alpha (\lambda ) > \alpha (\lambda 0)+1
2 for all

\lambda \in BC(\lambda 0, s1), and hence

R\lambda (F
n
\lambda (S, 0)) \geq 

\alpha (\lambda 0) + 1

2
 - (\beta 0 + s0)e

 - (n+1)(\mu 0 - s0) for all \lambda \in BC(\lambda 0, s1).

This implies that there is an integer N > 0, only depending on \lambda 0, such that

(9.9) R\lambda (F
N
\lambda (S, 0)) >

\alpha (\lambda 0) + 3

4
for all \lambda \in BC(\lambda 0, s1).

Using (9.9) and the uniform continuity of R\lambda (F
N
\lambda (S, I)) on BC(\lambda 0, s1)\times X, we obtain

that there is a \delta > 0, only depending on \lambda 0, such that

R\lambda (F
N
\lambda (S, I)) >

\alpha (\lambda 0) + 7

8
:= \rho for all \lambda \in BC(\lambda 0, s1) and 0 \leq I \leq \delta ,

which implies that (9.8) holds; thus the claim is proved.
By (9.8), we get that for each \lambda \in BC(\lambda 0, s1),

ImN\lambda (S, I) \geq \rho mI if F kN\lambda (S, I) \in [0, 1]\times (0, \delta ] for k = 0, 1, . . . ,m - 1.

This shows that there exists at least a positive integer m with the property

FmN\lambda (S, I) \in [0, 1]\times (\delta , 1] if (S, I) \in [0, 1]\times (0, \delta ].
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Let U = X0, \Lambda = BC(\lambda 0, s1), and B\lambda \equiv B = X0 \cap ([0, 1]\times [\delta , 1]), and take

N ((S, I), \lambda ) =

\Biggl\{ 
mN if (S, I) \in B,

0 if X0\setminus B.

Then the assumption (H1) of Theorem 2.1 of Smith and Waltman (1999) holds. Set

C =
\bigcup 
\lambda \in \Lambda F\lambda (B). It follows from the compactness of \Lambda \times B \subset P \times X0 and the

continuity of F\lambda (S, I) that
\bigcup 
\lambda \in \Lambda F\lambda (B) is compact in X0. This implies that the

assumption (H2) of Theorem 2.1 of Smith and Waltman (1999) still holds. Applying
Theorem 2.1 of Smith and Waltman (1999), we conclude that BC(\lambda 0, s1) \subset CP . The
proof is complete.

10. Proof of Theorem 5.2. As in the proof of Theorem 3.2, we use results
from Faure and Schreiber (2014) to prove Theorem 5.2. We begin by verifying that
Standing Hypothesis 1.1 of Faure and Schreiber (2014) holds. For all \delta > 0 and
N \geq 1, define

\beta \delta (N) = sup
x,y\geq 0,x+y\leq 1

\BbbP [\| (Sn+1, In+1) - F (x, y)\| \infty \geq \delta | (Sn, In) = (x, y)] ,

where F (x, y) = (1  - e - \mu + e - \mu  - \beta yx, xe - \mu (1  - e - \beta y) + ye - \mu  - \gamma ) corresponds to the
right-hand side of the deterministic model in (4.1) and \| (x, y)\| \infty = max\{ | x| , | y| \} 
corresponds to the sup norm. Standing Hypothesis 1.1 of (Faure and Schreiber, 2014)
requires that limN\rightarrow \infty \beta \delta (N) = 0 for all \delta > 0. Like Proposition 8.1 for the stochastic
SIS model, the following proposition proves something stronger using large deviation
estimates.

Proposition 10.1. There exists a function \rho : (0,\infty ) \rightarrow (0,\infty ) such that

\beta \delta (N) \leq exp( - N\rho (\delta ))

for all N \geq 1 and \delta > 0.

Proof. We begin by observing that NSn  - Wn+1 and Xn+1 + Zn+1 in (5.1) con-
ditioned on (Sn, In) = (x, y) are independent binomials where NSn  - Wn+1 has Nx
trials with a probability of success a1(y) = 1  - e - \mu (1 - e - \beta y) and Xn+1 + Zn+1 has
N(1  - x) trials with a probability of success b1 = 1  - e - \mu . Let F1 and F2 denote
the first and second coordinates of the function F . Using the exponential Markov
inequality as in the proof of Proposition 8.1, we get

(10.1)

1

N
log\BbbP [N(Sn+1  - F1(x, y)) \geq N\delta | (Sn, In) = (x, y)] \leq  - \delta t+ \psi 1(t, x, y),

1

N
log\BbbP [N(F1(x, y) - Sn+1) \geq N\delta | (Sn, In) = (x, y)] \leq  - \delta t+ \psi 1( - t, x, y)

for all t, \delta and where

\psi 1(t, x, y) =  - tF1(x, y) + x log(1 - a1(y) + a1(y)e
t) + (1 - x) log(1 - b1 + b1e

t).

As a1(y), b1 \in [0, 1] for all y \geq 0, \psi 1(t, x, y) is a smooth function, i.e., has continuous

derivatives of all orders. We have \psi 1(0, x, y) =
\partial \psi 1

\partial t (0, x, y) = 0, and \partial 2\psi 1

\partial t2 (t, x, y) \geq 0
for all t, x, y \in X where one recalls that X = \{ (x, y)| x \geq 0, y \geq 0, x + y \leq 1\} .
Given \delta > 0, the compactness of \{ 0\} \times X implies there exists t\ast (\delta ) > 0 such that
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| \partial \psi 1

\partial t (t, x, y)| \leq \delta /2 and t\partial \psi 1

\partial t (t, x, y) \geq 0 for all (t, x, y) \in [ - t\ast (\delta ), t\ast (\delta )] \times X. Thus,
for any (t, x, y) \in [0, t\ast (\delta )]\times X, the fundamental theorem of calculus implies

0 \leq \psi 1(t, x, y) =

\int t

0

\partial \psi 1

\partial t
(s, x, y)ds \leq t\delta 

2

and

0 \leq \psi 1( - t, x, y) =  - 
\int t

0

\partial \psi 1

\partial t
( - s, x, y)ds \leq t\delta 

2
.

Define
\rho 1(\delta ) = \delta t\ast (\delta ) - max

x,y\in [0,1],x+y\leq 1
\psi 1(t

\ast (\delta ), x, y) > 0.

Our estimates about \psi 1 imply that \rho 1(\delta ) \geq \delta t\ast (\delta )/2 > 0. Furthermore, (10.1) implies
that

\BbbP [| Sn+1  - F1(x, y)| \geq \delta | (Sn, In) = (x, y)] \leq exp( - N\rho 1(\delta ))
for all x, y \in [0, 1] with x+ y \leq 1 and \delta > 0.

Wn+1 and Yn+1 conditioned on (Sn, In) = (x, y) in (5.1) are also independent
binomial random variables where Wn+1 has Nx trials with a probability of success
e - \mu (1  - e - \beta y) and Yn+1 has Ny trials with a probability of success e - \gamma . Therefore
using the exponential Markov inequality and similar estimates used for \psi 1(t, x, y), one
can show there exists a function \rho 2 : (0,\infty ) \rightarrow (0,\infty ) such that

\BbbP [| In+1  - F2(x, y)| \geq \delta | (Sn, In) = (x, y)] \leq exp( - N\rho 2(\delta ))

for all x, y \in [0, 1] with x + y \leq 1 and \delta > 0. Setting \rho (\delta ) = min\{ \rho 1(\delta ), \rho 2(\delta )\} 
completes the proof of the proposition.

To prove the first result of Theorem 5.2, assume that \alpha \leq 1. Theorem 4.1 implies
that (1, 0) is globally stable for the deterministic model (S, I) \mapsto \rightarrow F (S, I). Theorem
3.12 of Faure and Schreiber (2014), which only requires Standing Hypothesis 1.1,
implies that limN\rightarrow \infty \pi N = \delta (1,0) in the weak* topology. Define R(x, y) = F2(x, y)/y
for y \in (0, 1], x \in [0, 1], and x + y \leq 1. Equation (9.2) in the proof of Theorem 4.1
implies that R(x, y) \leq \alpha . For N \geq 1, the quasi-stationarity of \pi N implies

\lambda N
\sum 

x,y\in \scrS +

y\pi Nx,y =
\sum 

x,y\in \scrS +

\BbbE 
\Bigl[ 
In+1

\bigm| \bigm| \bigm| (Sn, In) = (x, y)
\Bigr] 
\pi Nx,y

=
\sum 

x,y\in \scrS +

F2 (x, y)\pi 
N
x,y

=
\sum 

x,y\in \scrS +

yR (x, y)\pi Nx,y

\leq \alpha 
\sum 

x,y\in \scrS +

y\pi Nx,y.

Since
\sum 
x,y\in \scrS +

y\pi Nx,y > 0, \lambda N \leq \alpha for all N \geq 1 as claimed.
To prove the second result of Theorem 5.2, assume \alpha > 1, in which case Theo-

rem 4.1 implies that there exists a global, compact attractor K \subset (0, 1) \times (0, 1) for
(S, I) \mapsto \rightarrow F (S, I). Assertion (b) of Lemma 3.9 of Faure and Schreiber (2014) implies
that there exists \delta > 0 such that 1  - \lambda N \leq \beta \delta (N) for all N \geq 1. Proposition 10.1
implies that

lim sup
N\rightarrow \infty 

1

N
log(1 - \lambda N ) \leq  - \rho (\delta ).
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The assumption in assertion (b\prime ) of Lemma 3.9 of Faure and Schreiber (2014) holds
for an argument similar to the proof of Theorem 3.2, and consequently any weak*
limit point \pi \ast of \pi N satisfies \pi \ast (K) = 1. As \lambda N \rightarrow 1, Proposition 3.11 of Faure
and Schreiber (2014) implies that any weak* limit point of \pi N is invariant for the
dynamics (x, y) \mapsto \rightarrow F (x, y).
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