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A B S T R A C T

Coexistence and seasonal fluctuations of predator and prey populations are common and well documented in
ecology. Under what conditions can predators coexist with prey in a seasonally changing environment? What
factors drive long-term population cycles of some predator and prey species? To answer these questions, we
investigate an improved predator-prey model based on the Rosenzweig–MacArthur [1] model. Our model in-
corporates seasonality and a predator maturation delay, leading to a system of periodic differential equations
with a time delay. We define the basic reproduction ratio R0 and show that it is a threshold parameter de-
termining whether the predators can coexist with the prey. We show that if R0< 1, then the prey population has
seasonal variations and the predator population goes extinct. If R0> 1, then the prey and the predators coexist
and fluctuate seasonally. As an example, we study a Daphnia-algae system and explore possible mechanisms for
seasonal population cycles. Our numerical simulations indicate that seasonal Daphnia-algae cycles are attributed
to seasonality rather than Daphniamaturation delay or Daphnia-algae interaction. The Daphniamaturation delay,
the amplitude of algae growth rate and the amplitude of the carrying capacity are found to affect the amplitude
of cycles and average population levels. Our sensitivity analysis shows that R0 is most sensitive to Daphnia death
rate.

1. Introduction

The phenomena of coexistence and seasonal oscillations in predator
and prey populations are ubiquitous in nature. For instance, monthly
sampling from 2004 to 2008 shows that planktons, macrozoobenthos,
shrimps and fish populations in the Gironde estuary exhibit marked
seasonal variations [2]. Esturine areas provide these species with ha-
bitats for reproduction, nursery, feeding, residence and migration [3],
and provide human societies with valuable resources and services [4].
Human activities such as fishing, pumping and harbouring have in-
creasing negative effects on water quality, and better managements are
urgently needed to protect estuaries. To design effective protection
measures, an improved understanding of the population dynamics of
biological species under the effect of seasonal variations is essential.
Understanding of seasonal fluctuations of prey and predator species is
also important for biocontrol of some pest populations. In Benin, West
Africa, a natural enemy Typhlodromalus aripo were introduced to con-
trol the pest mite Mononychellus tanajoa population, and studies found
that the period of the pest-enemy fluctuations coincide with the rainfall
pattern and start of dry season annually [5]. Ecologists are monitoring
the long-term dynamics of the ecosystem, in an effort to identify key

factors that promote the persistence of predators so that the pest po-
pulation can be effectively controled [6].

Many seasonal factors such as temperature, sunlight, rainfall, hu-
midity, wind and salinity can impact the dynamics of predator-prey
systems. Mathematical models have been proposed to study long-term
dynamics of predator-prey systems subject to seasonal changes (see,
e.g., [7–10] and the references therein). Many epidemic models of in-
fectious diseases that include seasonality have also been studied (see,
e.g., [11–13] and the references therein). In epidemiology, the basic
reproduction number R0 is defined as the number of new infections
produced by a typical infectious agent during its infectious period in a
totally susceptible community. It is known that R0 is a threshold
parameter in the sense that the disease can be eliminated if R0< 1 and
will persist if R0> 1 (see, e.g., [14–17]). In ecology, a similar threshold
parameter has also been used to study biological invasion or coex-
istence of predator and prey populations. However, there are quite a
few papers that employ the approach from epidemiology to define the
threshold parameter for ecological models (see [18] and the references
therein). Recently, Zhao [19] established the theory of basic re-
production ratio R0 for periodic and time-delayed compartmental epi-
demic models. We will use the method in [19] to define R0 and then
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explore whether R0 is the threshold parameter that determines persis-
tence or extinction of predators in the presence of prey under a sea-
sonally changing environment. It is of great interest to see how R0
depends on seasonal factors and how R0 is sensitive to each parameter.

In addition to the conditions for coexistence, mechanisms that induce
population cycles have also been studied in the literature. Since the pio-
neering work on Lotka-Volterra predator-prey model [20,21] and Ro-
senzweig–MacArthur model [1], various models have been proposed to
explore the mechanisms behind the observed population cycles. Turchin
and Batzli [22] revealed that the driver of oscillations was the interplay
between lemmings and food supply. Hanski et al. [23] attributed the
reason for cycles to the interaction between lemmings and their pre-
dators. Wang and Kuang [10] found that neither seasonal factors nor the
lemming mortality rate and the moss growth rate could result in multi-
year cycles. Some recent works highlighted the potential roles of predator
maturation delay in causing multi-year population cycles among small
mammals. May [24,25] concluded that time delay was correlated with
cycle period and cycle amplitude by studying general predator-prey
models. Gourley and Kuang [26] showed that predator maturation delays
can generate population cycles. Wang et al. [27] constructed a series of
predator-prey models with time delays to investigate multi-year popula-
tion cycles including a 4-year lemming cycle, a 10-year snowshoe hare
cycle and a 38-year moose cycle. They showed that the cycle period was
almost completely determined by the predator maturation delay, whereas
its amplitude was greatly affected by the functional response. In our
study, we investigate if the predator maturation delay can be the causal
mechanism of other predator-prey population cycles such as zooplankton-
phytoplankton and fish-zooplankton.

In this paper, we develop a general predator-prey interaction model
which takes into account seasonality and predator maturation delay.
Mathematically, the model is a periodic system of delay differential
equations. We derive the basic reproduction ratio R0 and prove that R0
is a threshold parameter determining whether the predators coexist and
fluctuate seasonally with the prey. We also use the interaction of
Daphnia and algae as an example to investigate the roles of seasonality
and predator maturation delay in determining population cycles.

The paper is organized as follows. In the next section, we present the
model. In Section 3, we establish the threshold dynamics of the model
in terms of the basic reproduction ratio. In Section 4, we carry out
numerical simulations for the Daphnia-algae interaction. In Section 5,
we discuss our results and their biological implications, and propose
some future research directions.

2. Model formulation

The Rosenzweig–MacArthur model [1] is one of the most frequently
used predator-prey models in the literature and it is given by the fol-
lowing system:
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Here B(t) and P(t) are the densities of prey and predator populations at
time t, respectively. We assume that the prey population grows ac-
cording to the logistic law with the maximum per capita prey growth
rate r and the carrying capacity K. The functional response is of Holling
type II, with the per capita predation rate γ and the half-saturation
predation constant K1. The parameter β is the conversion rate of prey
biomass to predator biomass. The death rate of predators is δ.

Wrzosek [28] showed that the Rosenzweig–MacArthur model admits
a unique and globally stable attractor which is either a limit cycle or an
equilibrium. Gourley and Kuang [26] and Li et al. [29] improved the
Rosenzweig–MacArthur model by incorporating a constant predator ma-
turation delay and a general functional response with Holling type II

being a special case. Gourley and Kuang showed that, if the death rate of
immatured predators is nonzero, then the system has a globally attractive
equilibrium for small and large values of predator maturation delays.
Their linear stability analysis showed that sustainable oscillations can be
generated by a window of values in the predator maturation delay if the
resource is dynamic [26]. Li et al. [29] demonstrated that stability
switches by varying the time delay are accompanied by bounded global
Hopf branches. They also showed that multiple Hopf branches are nested
when they exist and that coexistence of two or more stable limit cycles
can be produced by the overlap. Feng et al. [30] extended the Ro-
senzweig–MacArthur model to an intraguild predation model in which
both the predator and the prey can be consumed by the super-predator.
They investigated the stability of the coexistence equilibrium. Banerjee
and Volpert [31] developed a Rosenzweig–MacArthur type reaction-dif-
fusion predator-prey model with non-local resource consumption. They
constructed global bifurcation diagrams to describe the pattern transitions.

We develop our model by considering predator maturation delay
and seasonality in the Rosenzweig–MacArthur model (1). We assume
that the time delay associated with predator maturation is τ, and that
the death rates for matured and immatured predators are given by
functions δ(t) and δj(t), respectively. Thus, the probability that pre-
dators survive the maturation period is given by the exponential term
e s ds( )t

t
j . We assume that the conversion rate β and the delay τ are

positive constants. We incorporate seasonality in our model by as-
suming that all the other parameters r(t), K(t), γ(t), K1(t), δ(t) and δj(t)
are positive, continuous and ω-periodic functions. This leads to the
following model system:
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It can be verified that function e s ds( )t
t

j is also ω-periodic. Thus,
model (2) is an ω-periodic system of functional differential equations.
The biological interpretations for all the variables and parameters are
given in Table 1.

3. Threshold dynamics

In this section, we study the dynamics of system (2). Let
=C C ([ , 0], ),2 =+

+C C ([ , 0], )2 . Then C is an ordered Banach
space equipped with the maximum norm and the positive cone +C . For
any given continuous function v: [ , ) 2 with σ>0, we define
vt ∈ C by

= + +v v t v t( ) ( ( ), ( )), [ , 0],t 1 2

for any t∈ [0, σ).

Lemma 1. For any +C , system (2) has a unique nonnegative solution
through φ, and solutions are ultimately bounded.

Table 1
Biological interpretations for variables and parameters of model (2).

Variable and Parameter Description

B(t) Prey population density
P(t) Predator population density
r(t) Maximal per capita growth rate of prey
K(t) Prey carrying capacity
γ(t) Maximal per capita predation rate
K1(t) Half-saturation constant of predators’ functional

response
β Conversion rate of prey to predator
τ Predator maturation delay
δ(t) Matured predator death rate
δj(t) Immatured predator death rate
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Linearizing system (2) at the predator-free solution x t( * ( ), 0), we
obtain a linear equation for the predator population:
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Define a map F C: ( ([ , 0], )) and a continuous function V(t)
by
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Then the internal evolution of the predator population is given by the
equation:

=dv t
dt

V t v t( ) ( ) ( ).

Let Φ(t, s), t≥ s, be the evolution operator of the above linear
system. That is, Φ(t, s) satisfies

=
t

t s V t t s t s( , ) ( ) ( , ), ,

and

=s s s( , ) 1, .

It then easily follows that
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s

t
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t
j

Let Cω be the ordered Banach space of all continuous and ω-periodic
functions from to , equipped with the maximum norm, and its
positive cone =+C v C v t: { : ( ) 0 for all t }.

Suppose that v∈ Cω is the initial distribution of mature predators.
Then for any given s≥0, F t s v( ) t s is the distribution of newly ma-
tured predators at time t s, which are produced by the predators who
were introduced over the time interval t s t s[ , ]. Then

t t s F t s v( , ) ( ) t s is the distribution of those predators who newly
matured at time t s and remain alive at time t. It follows that

= +t t s F t s v ds t t s F t s v t s ds( , ) ( ) (·) ( , ) ( ) ( ·)t s0 0

is the distribution of cumulative new mature predators at time t pro-
duced by all those mature predators introduced at a time previous to t.

Define a linear operator L: Cω→ Cω by

= +Lv t t t s F t s v t s ds t v C[ ]( ) ( , ) ( ) ( ·) , , .
0

Following [19], we define =R L( ),0 the spectral radius of L. The so-
lution map S(t) of system (3) is defined by =S t u t( ) ( ), 0,t where

=u u t( ) ( , )t is the unique solution of (3) with
=u C ([ , 0], )0 . Then S≔ S(ω) is the Poincaré map associated

with linear system (3). Let ρ(S) be the spectral radius of S. By Theorem
2.1 of [19], we have the following result.

Lemma 2. R 10 has the same sign as S( ) 1.

Let

= = = >+X C X X([ , 0], ) and { ( , ) : (0) 0}.2
0 1 2 2

Theorem 1. The following statements hold:

(i) If R0< 1, then the predator-free periodic solution x t( * ( ), 0) is globally
attractive for system (2) in X {(0, 0)};

(ii) If R0> 1, then system (2) admits a positive ω-periodic solution, and
there exists η>0 such that any solution (B(t, φ), P(t, φ)) of system (2)
with φ∈ X0 satisfies

B t P tlim inf ( ( , ), ( , )) ( , ).
t

Proof. Since >+e 0,s ds t x t
K t x t

( ) ( ) * ( )
( ) * ( )t

t
j

1
it follows from Theorem

3.6.1 of [32] and Lemma 5.3.2 of [33] that, for each t≥2τ, linear
operator S(t) is compact and strongly positive on C ([ , 0], ). Choose
an integer n0> 0 such that n0ω≥2τ. Since =S S n( ),n

00 Lemma 3.1 of
[34] implies that ρ(S) is a simple eigenvalue of S with a strongly
positive eigenvector, and the modulus of any other eigenvalue is less
than ρ(S). Let =µ Sln ( ) . Using the same proof of Proposition 2.1 of
[35], we can show that there is a positive ω-periodic function v(t) such
that =u t e v t( ) ( )µt is a positive solution of system (4).

In the case R0< 1, we have ρ(S)< 1. Let Sϵ ≔ Sϵ(ω) be the Poincaré
map associated with the following perturbed linear ω-periodic system:

= +
+ +
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Since = <S Slim ( ) ( ) 1,0 for sufficiently small ϵ>0 we have
ρ(Sϵ)< 1. As discussed above, there exists ϵ>0 and a positive ω-per-
iodic function v t( ) such that =u t e v t( ) ( )µ t is a positive solution of
system (4), where = <µ 0r Sln ( ) . Clearly, =u tlim ( ) 0t .

For any given X {(0, 0)}, let =u t B t P t( , ) ( ( ), ( )). From the
proof of Lemma 1, there exists a sufficiently large integer n1> 0 such
that n1ω≥ τ and < +B t x t( ) * ( ) for all t n1 . We then have

+
+ +

dP t
dt

e t x t
K t x t

P t t P t( ) ( )( * ( ) )
( ) ( * ( ) )

( ) ( ) ( )s ds( )

1
t

t
j

for all t≥ n1ω. Choose a sufficiently large number N>0 such that P
(t)≤Nuϵ(t) for all t n n[ , ]1 1 . Then the comparison theorem for
delay differential equations ([33, Theorem 5.1.1]) implies that P
(t)≤Nuϵ(t) for all t≥ n1ω. Hence, =P tlim ( ) 0t . Using the chain
transitive sets arguments (see Theorem 3.6 of [13]), it follows that

=B t x tlim ( ( ) * ( )) 0t . This proves statement (i).
In the case R0> 1, we have ρ(S)> 1. Let

= = =X X X X: { : (0) 0}0 0 2 . Let Q(t) be the solution map of
system (2) on X defined by =Q t u t( ) ( ), 0,t where =u u t( ) ( , )t
is the unique solution of system (2) satisfying =u X0 . Then Q≔Q
(ω) is the Poincaré map associated with system (2). It is easy to see that
Q(t)X0⊆X0 for all t≥0. Lemma 1 implies that the discrete-time system
{Qn: X→ X}n≥0 is point dissipative and Qn is compact for sufficiently
large n (see [32, Theorem 3.6.1]). It then follows from [36,
Theorem 2.9] that Q admits a global attractor in X.

Let = =M M x(0, 0), ( *, 0),1 2 0 where =x x* ( ) * ( )0 for all
[ , 0]. Since =Q t Mlim ( ( ) ) 0M 11 uniformly for t∈ [0, ω], for

any given δ0> 0, there exists δ1> 0 such that for any ϕ ∈ X0 with
<M ,1 1 we have <Q t M( ) 1 0 for all t∈ [0, ω].

Claim 1. Q n Mlim sup ( )n 1 1 for all ϕ ∈ X0.
Suppose that <Q n Mlim sup ( )n 1 1 for some ψ ∈ X0. Then

there exists N1> 0 such that <Q n M( ) 1 1 for all n≥N1. For
t≥N1ω, we have = +t t n , with n≥N1 and t′∈ [0, ω], and hence,

= <Q t M Q t Q n M( ) ( ) ( )1 1 0. It follows that B(t, ψ)< δ0
and P(t, ψ)< δ0 for all t≥N1ω. Since ψ ∈ X0 and Q(t)X0⊆X0, we have P
(t, ψ)> 0 for all t>0. Let = + P tmin ( , ),t N N0 [ ,( 1) ]1 1 then P(t,
ψ)≥ δ0 for +t N N[ , ( 1) ],1 1 which contradicts the fact that P(t,
ψ)< δ0 for all t≥N1ω. This proves Claim 1.

Since =Q t Q t Mlim ( ) ( ) 0M 22 uniformly for t∈ [0, ω], given
ϵ>0, there exists η1> 0 such that, for ϕ ∈ X0 with <M ,2 1 we
have <Q t Q t M( ) ( ) 2 for all t∈ [0, ω].

Claim 2. Q n Mlim sup ( )n 2 1 for all ϕ ∈ X0.
Suppose that <Q n Mlim sup ( )n 2 1 for some ψ ∈ X0. Then

there exists N2> 0 such that <Q n M( ) 2 1 for all n≥N2. For any
t≥N2ω, we have = +t t n with n≥N2, t′∈ [0, ω], and hence,

=
=

<

Q t Q t M Q t Q n
Q t Q n M Q t Q n
Q t M

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2

2

2

for all

t≥N2ω. Therefore, >B t x t( ) * ( ) for all +t N2 . Let ρϵ
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be the spectral radius of the Poincaré map associated with the following
system:

=
+

dy t
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Then = >+ Slim ( ) 10 . Fix a sufficiently small ϵ such that ρϵ>1
and >x t* ( ) 0. By similar arguments as those in the case R0< 1,
system (5) has a solution =w t e z t( ) ( ),t where zϵ(t) is positive and ω-
periodic, = > 0rln . Clearly, =w tlim ( )t . For +t N ,2 we
have
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Since Q(t)X0⊆X0 for t≥0, we have P(t, ϕ)> 0 for t≥0. Then we
can choose a sufficiently small k>0 such that

+ +P t kw t t N N( , ) ( ) for all [ , 2 ].2 2

By Theorem 5.1.1 of [33], it follows that

+P t kw t t N( , ) ( ) for all 2 .2

Hence, =P tlim ( , ) ,t which contradicts the ultimate boundedness
of the solution. This proves Claim 2.

Define M∂ ≔ {ϕ ∈ ∂X0: Q(t)(ϕ)∈ ∂X0, ∀t≥0}. For any given ϕ ∈M∂,
we have =P t( , ) 0 for all t≥0. From the first equation of system (2),
it is easy to see that if =(0) 0,1 then =B tlim ( , ) 0t ; if ϕ1(0)> 0,
then =B t x tlim ( ( , ) * ( )) 0t . Thus, M M( ) { , }M 1 2 and no
subset of {M1, M2} forms a cycle in ∂X0. With the above two claims, we
see that M1 and M2 are isolated invariant sets for Q in X, and

= =W M X i( ) , 1, 2,s
i 0 where Ws(Mi) is the stable set of Mi for Q,

=i 1, 2. By the acyclicity theorem on uniform persistence for maps (see
Theorem 1.3.1 and Remark 1.3.1 of [37]), it follows that Q: X→ X is
uniformly persistent with respect to X0.

Note that there exists an equivalent norm for C ([ , 0], )2 such
that for each t>0, the solution map Q(t) of system (2) is a κ-contraction
on +C ([ , 0], ),2 where κ is the Kuratowski measure of non com-
pactness (see Theorem 3.6.1 of [32]). It then follows from Theorem 4.5
of [36] that system (2) admits an ω-periodic solution Q(t) * with

* ∈ X0. Then B(t, *)≥ 0, P(t, *)> 0 for all t≥0. We claim that there
exists some t̄ [0, ] such that >B t(¯, *) 0. Assuming otherwise, then
B(t, *)≡ 0 for all t≥0, due to the periodicity of B(t, *). From the
second equation of system (2), we get

=dP t
dt

t P t t( , *) ( ) ( , *) for all .

It follows that P(t, *)→ 0 as t→∞, which contradicts P(t,
*)≥min t ∈ [0,ω]P(t, *)> 0 for all t≥0, validating the claim.
Since
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it follows that B(t, *)> 0 for all t t̄ . The periodicity of B(t, *) im-
plies that B(t, *)> 0 for all t≥0. Therefore, (B(t, *), P(t, *)) is a
positive ω-periodic solution of system (2).

By Theorem 4.5 of [36] with =x d x X( ) ( , ),0 it then follows that
Q: X0→ X0 has a compact global attractor A0. For any = A( , ) ,1 2 0
we have ϕ2(0)> 0. Let =B Q t A: ( )t0 [0, ] 0. Then ψ2(0)> 0 for all

= B( , )1 2 0. Moreover, B0⊆X0 and =d Q t Blim ( ( ) , ) 0t 0 for all
ϕ ∈ X0. Define a continuous function +p X¯ : by

=p X¯ ( ) (0), .2

Since B0 is a compact subset of X0, we have
= >p pinf ¯ ( ) min ¯ ( ) 0B B0 0 . Consequently, there exists >¯ 0 such

that

=P t p Q tlim inf ( , ) lim inf ¯ ( ( ) ) ¯.
t t

From the proof of Lemma 1, we see that there exists T1> 0 such
that B(t)< x* for all t≥ T1, and that there exists T2> 0 such that
P t K( ) ^ for all t≥ T2 (see (8) for the expression of K̂ ). Let

=T T Tmax{ , }1 2 . It then follows that
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For any ϕ ∈ X0, we claim that there exists t0≥ T such that B(t0,
ϕ)> 0. Otherwise, B(t, ϕ)≡ 0 for all t≥ T. Then from the second
equation of system (2), we have =P tlim ( , ) 0,t which contradicts

P tlim inf ( , ) ¯t .
From (6) we get

+ >B t r s x
K s

s K
K s

ds B t( , ) exp ( ) *
( )

( ) ^

( )
( , ) 0

t

t

1
0

0

for all t≥ t0.
Fix n such that nω> t0. Then for ψ ∈ A0, we have B(nω, ψ)> 0. By

the invariance of A0, we have = =A Q A Q n A( ) ( )n
0 0 0. It follows that

for ϕ ∈A0, there exists ψ ∈A0 such that = Q n( ) . Thus,
= >B n(0) ( , ) 01 . Then we can define a continuous function

+p X: by

=p X( ) min{ (0), (0)}, .1 2

Since B0 is a compact subset of X0, we have
= >p pinf ( ) min ( ) 0B B0 0 . Consequently, there exists η>0 such

that

=B t P t p Q tlim inf min{ ( , ), ( , )} lim inf ( ( ) ) .
t t

This completes the proof of Theorem 1. □

4. Numerical experiments

In this section, we use the Daphnia-algae interaction as an example
to numerically verify the obtained analytic result and explore the me-
chanisms for seasonal population cycles. One of the most distinctive
phenomena in plankton communities is an early spring bloom of algae
followed by a peak of zooplankton grazing down algal biomass re-
sulting in the spring clear-water phase around early June [38]. The
algal bloom can be caused in part by depletion of the available nutrients
[39,40], but heavy grazing on algae by zooplankton species that peak
after the spring algal bloom is usually the main mechanism causing the
clear-water phase [41,42].

4.1. Model validation

In this section, we fit our model to the monthly mean algae data
from 1998 to 2008 in Bohai Sea by using the least squares method.
Fig. 3 of [43] shows obvious seasonal fluctuations of Chlorophyll a
density in Bohai Sea from 1998 to 2008. Since Chlorophyll a constitutes
about 1% to 2% of the dry weight of planktonic algae [44], we estimate
the algae density in Bohai Sea by dividing the Chlorophyll a density by
1.5%. The estimated algae density in Bohai Sea are displayed by the red
stars in Fig. 1. The eggs produced by female Daphnia usually hatch after
a day, and remain in the female’s brood pouch for around three days (at
20 ∘C). They are then released into the water, and go through 4 to 6
instars over 5 to 10 days (longer in poor conditions) before reaching an
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age at which they are able to reproduce [45]. Thus, it is reasonable to
assume that τ is around 0.5 month in our model. Considering that
seasonality has a strong effect on the growth rate and the carrying ca-
pacity of the algae population, we assume that r(t) and K(t) are periodic
functions given by = +r t r( ) cos( ),r t

4
2
12 = +K t K( ) cos( ),K t

4
2
12 and

keep all the other parameters constant. For simplicity, we assume that
= =t t( ) ( )j in our simulation. The estimated parameter values are

given in Table 2 and the fitting result is shown in Fig. 1. Note that our
estimation is based on algae data only. The algae data together with
different data of Daphnia would probably return different parameter
values. To give a more accurate estimation of the parameters we need
time series data of both algae and Daphnia from field ecologists. In the
following simulation, we will use parameter values close to the esti-
mated values in Table 2.

4.2. Long-term dynamics

To numerically calculate R0, we use Theorem 2.2 of [19], Lemma
2.5 of [46] and the bisection method. Using the parameter values in
Table 2 and setting = 0.06 and = 0.4, we obtain =R 1.07110 . In this
case, both algae and Daphnia densities have seasonal fluctuations as
shown in Fig. 2 (a). In Fig. 2 (b), we decrease the value of γ to 0.02 and
increase the value of τ to 0.5. We observe that the algae density fluc-
tuates seasonally and the Daphnia density approaches 0 eventually. In
this case, =R 0.32510 .

4.3. The role of seasonality

To determine whether it is seasonality that produces the seasonal
fluctuation of algae and daphnia densities, we discard seasonality in our
model by setting =r t( ) 0.9996 and =K t( ) 351.6521 and keep the values
of other parameters the same as those in Fig. 2 (a). We obtain

=R 1.06460 and we observe that the solution approaches a positive
coexistence equilibrium in Fig. 3 (a). After we decrease the value of γ to
0.02 and increase the value of τ to 0.5, we got =R 0.32320 and the

solution approaches a Daphnia-free equilibrium in Fig. 3 (b). Fig. 3
indicates that seasonal fluctuations cannot be observed for the Daphnia-
algae system if we do not incorporate seasonality in the model. Thus,
the seasonal cycles of the Daphnia-algae system is caused by seasonality
rather than Daphnia maturation delay or Daphnia-algae interaction.

Next we explore how the amplitudes of the periodic parameters r(t)
and K(t) affect the amplitude of the solutions. Since = +r t r( ) cos( )r t

4
2
12

and = +K t K( ) cos( ),K t
4

2
12 the amplitudes of r(t) and K(t) are r

2
and ,K

2
respectively. Thus, we can investigate the role of the amplitudes of r(t)
and K(t) by varying the values of r and K. From Fig. 4 we see that the
amplitudes of the Daphnia-algae fluctuations increase as the amplitude
of r(t) increases. Besides, the average Daphnia density level obviously
increases as the amplitude of r(t) increases. Similarly, Fig. 5 shows that
the amplitudes of the Daphnia-algae fluctuations also increase as the
amplitude of K(t) increases.

4.4. The role of maturation delay

The duration of the Daphnia maturation delay is greatly affected by
environmental factors. In this section we study the role of Daphnia
maturation delay in determining R0 and the amplitude of fluctuations.
Fig. 6 shows that R0 is a decreasing function of τ. This implies that
shortening maturation delay is a favoured strategy for the Daphnia
population to persist. In Fig. 7, we plot long-term dynamics of algae and
Daphnia densities using several different values of τ. In Fig. 7 (a) and (b)
where R0> 1 for all the cases, we see that the amplitude of the algae
fluctuation decreases and the average algae density level increases as τ
increases. Both the amplitude of the Daphnia fluctuation and the
average Daphnia density level decrease as τ increases. In Fig. 7 (c) and
(d) where R0< 1, the algae and Daphnia densities approach the
Daphnia-free periodic fluctuation state. In addition, the algae popula-
tion approaches the periodic cycle faster and the Daphnia population
goes extinct faster if τ is larger.

Fig. 1. Comparison of the fitted curve and the monthly mean algae data from 1998 to 2008 in Bohai Sea.

Table 2
Parameter values estimated from Tan et al. [43].

Parameter Values Description Units

r 0.9996 Time-averaged maximum per capita growth rate of algae month 1

K 351.6521 Time-averaged carrying capacity for algae mg/m3

γ 0.0391 Maximum per capita predation rate of Daphnia month 1

K1 505.6108 Half-saturation constant of Daphnia’s functional response
β 58.8442 Conversion rate from algae biomass to Daphnia biomass
δ 0.9357 Daphnia death rate month 1

τ 0.5 Daphnia maturation delay month
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4.5. Sensitivity analysis

The objective of this section is to discuss the sensitivity of the basic
reproduction ratio to model parameters. To do this, we use the nor-
malized forward sensitivity index (see [47]):

= R
R

Sensitivity index (S.I.)
(parameter)

· parameter .0

0 (7)

Since R0 cannot be written as an explicit function of parameters, we
use the central difference approximation to evaluate the derivatives
(see [48]):

= + +R R R O
(parameter)

(parameter h) (parameter h)
2h

(h ).0 0 0 2

Letting h= 1% of the parameter value (P), Eq. (7) becomes

= R R
R

S.I. (1.01P) (0.99P)
0.02 (P)

.0 0

0

Using this formula we obtain that the sensitivity indices of R0 to
parameters τ, γ, β, K1, δ, r and K are 0.4678, 0.9973, 0.9973, 0.5912,

1.4651, 0 and 0.5963, respectively (see Fig. 8).
In Fig. 8, we fixed the parameter values when we calculated the

sensitivity indices. However, the sensitivity indices may vary as some of
the parameters vary. Next, we investigate the sensitivity indices of R0 to
some important parameters in different parameter domains. In Fig. 9
(a), we see that the sensitivity index of R0 to K is positive and increases
as K decreases. It almost has no response to the variation in τ. However,
the sensitivity of R0 to τ is greatly influenced by the value of τ instead of
K. As can be seen from Fig. 9 (b), the sensitivity index of R0 to τ is
negative and decreases as τ increases, which means that R0 is more
sensitive to τ for larger values of τ. The sensitivity index of R0 to γ
approximately equals one for all positive values of γ∈ (0, 0.2] and

Fig. 2. Long-term behavior of the solutions. (a) = 0.06, = 0.4, =R 1.07110 . (b) = 0.02, = 0.5, =R 0.32510 . The other parameter values are
= +r t( ) 0.9996 cos( ),t0.9996

4
2
12 = +K t( ) 351.6521 cos( ),t351.6521

4
2
12 =K 505.6108,1 = 58.8442, = 0.9357.

Fig. 3. Long-term behavior of the solutions. (a) = 0.06, = 0.4, =R 1.06460 . (b) = 0.02, = 0.5, =R 0.32320 . The other parameter values are =r t( ) 0.9996,
=K t( ) 351.6521, =K 505.6108,1 = 58.8442, = 0.9357.
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K∈ [150, 800] as shown in Fig. 9 (c). Fig. 9 (d) shows that the sensi-
tivity index of R0 to δ is negative and decreases as δ and τ increase. The
sensitivity result is summarized in Table 3.

5. Discussion

The stimulus for our work is the coexistence and seasonal fluctua-
tions of some predator and prey species in nature. Multi-year oscilla-
tions in small mammal populations such as lemmings and snowshoe
hares have been a constant attraction and inspiration for ecologists.
However, the study of coexistence and seasonal oscillations in other
species seems to have received much less attention in predator-prey
models. We addressed this issue by developing and analyzing a pre-
dator-prey model that incorporates seasonality and predator matura-
tion delay simultaneously. By using the comparison method and the
theory of uniform persistence, we obtained the threshold dynamics of
the model in terms of the basic reproduction ratio R0, which is defined
as the spectral radius of a linear operator. From the formulation of the
linear operator, it is clear to see that R0 depends on all parameters. The

role of R0 in our model is similar to that of the basic reproduction
number in infectious disease models if we treat prey as susceptibles and
predators as infectives. According to our result, whether predators can
coexist with prey exclusively depends on whether R0 is greater than
one. The prey have seasonal oscillations whereas the predators become
extinct when R0< 1. The predators can coexist with prey and both prey
and predators fluctuate seasonally when R0> 1. The method presented
in this paper can be employed to prove the uniform persistence of some
other systems of periodic delay differential equations. As a case study,
we applied our model to the Daphnia-algae interaction in a natural
environment. The simulated long-term dynamics of the Daphnia-algae
system verified the analytic result. Seasonal dynamics of the Daphnia-
algae system is found to be governed by seasonality rather than other
factors in the model. The Daphnia maturation delay only affects the
amplitude of cycles and average population levels. Sensitivity analysis
identified the key parameters that could possibly determine the basic
reproduction ratio. Although the simulations in this paper are based on
Daphnia-algae system, the model and the analytic approach are general
and apply to other predator-prey, consumer-resource and host-parasite

Fig. 4. The role of the amplitude of r(t) in determining the amplitude of the fluctuations. (a) Algae dynamics. (b) Daphnia dynamics. Here = +r t r( ) cos( )r t
4

2
12 with

=r 0.5, 1, 1.5, 2. Other parameter values are = +K t( ) 351.6521 cos( ),t351.6521
4

2
12 = 0.06, =K 505.6108,1 = 58.8442, = 0.9357, = 0.4.

Fig. 5. The role of the amplitude of K(t) in determining the amplitude of the fluctuations. (a) Algae dynamics. (b) Daphnia dynamics. Here = +K t K( ) cos( )K t
4

2
12 with

=K 150, 250, 350, 450, 550. Other parameter values are = +r t( ) 0.9996 cos( ),t0.9996
4

2
12 = 0.06, =K 505.6108,1 = 58.8442, = 0.9357, = 0.4.
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Fig. 6. R0 as a function of τ. Here = 0.06, =K 505.6108,1 = 58.8442,
= 0.9357, = +r t( ) 0.9996 cos( ),t0.9996

4
2
12 = +K t( ) 351.6521 cos( )t351.6521

4
2
12 .

Fig. 7. The role of maturation delay in population cycles. All parameter values are the same as those in Fig. 6 except τ. (a) Algae dynamics. τ varies from 0 to 0.4. (b)
Daphnia dynamics. τ varies from 0 to 0.4. (c) Algae dynamics. τ varies from 0.5 to 1. (d) Daphnia dynamics. τ varies from 0.5 to 1.

Fig. 8. Sensitivity of R0 to parameters. The parameter values used in the
computation of sensitivity indices are = 0.06, =K 505.6108,1 = 58.8442,

= 0.9357, = +r t r( ) cos( ),r t
4

2
12 = +K t K( ) cos( ),K t

4
2
12 where =r 0.9996,

=K 351.6521.
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systems in which life-history parameters change seasonally and delay
matters.

Several previous studies of predator-prey models indicated that
predator maturation delay was a potential mechanism that generated
multi-year population cycles in some mammalian species [27], but left
unknown whether it was also the maturation delay that caused seasonal
fluctuations in some other species. By investigating the autonomous
system which is derived by discarding seasonality in our model, we
found that seasonal cycles of Daphnia and algae populations are caused
by seasonality. Our observations suggest that, at least for Daphnia-algae
interaction, predator maturation delay only affects the amplitude and

average population levels. The delay could not determine the period of
seasonal population cycles as it did for the multi-year cycles of mam-
malian predator-prey systems. Thus, our work indicates that seasonality
should not be ignored when we develop models for predator-prey in-
teractions that are strongly affected by seasonal factors and exhibit
obvious seasonal fluctuations in nature.

It is important to study the impact of climate factors on the dy-
namics of predator-prey systems with the advance of global warming.
In the numerical simulations, we simply take the growth rate and car-
rying capacity of algae population as sinusoidal functions. More com-
plicated functions may be needed to represent the periodic parameters
in some cases. Currently, for some predator-prey systems, data are
available only for prey but not for predators or conversely. On the other
hand, most data are collected in a particular season not for consecutive
years. For a more in-depth understanding of the effects of seasonal
factors on the dynamics of predator-prey systems, more complete re-
gion-specific data about different predator and prey species from field
ecology is of paramount importance.

The predator maturation delay in our model is a constant para-
meter. Indeed, the delay can depend on prey availability or some other

Fig. 9. (a) Sensitivity of R0 to K as K varies from 150 to 800 and τ varies from 0 to 1. (b) Sensitivity of R0 to τ as K varies from 150 to 800 and τ varies from 0 to 1. (c)
Sensitivity of R0 to γ as K varies from 150–800 and γ varies from 0 to 0.2. (d) Sensitivity of R0 to δ as δ varies from 0 to 2 and τ varies from 0 to 1. Other parameter
values are the same as those in Fig. 8.

Table 3
Sensitivity of R0 to parameters in different parameter domains.

Sensitivity of R0 to Parameter domain Sensitivity Sensitive region

K (K, τ) positive K small
τ (K, τ) negative τ large
γ (K, γ) positive γ positive
δ (δ, τ) negative δ large, τ large
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external environmental factors. We can modify our model such that the
delay is a function of prey density or seasonal factors. With the para-
meter values used in this paper, seasonal cycles are not observed for the
model without seasonality. It is of interest to investigate whether the
autonomous model can have ω-periodic cycles with other sets of vali-
dated parameter values. For the case R0> 1, we only proved the ex-
istence of an ω-periodic solution. It is interesting to study whether the
ω-periodic solution is unique and whether there are other periodic so-
lutions whose periods are not the same as the period of the parameters.
We leave this for future investigation.
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Appendix

Proof of Lemma 1.

Proof. For any +C , define

= +

+

( )
f t

r t t

t e t
( , )

( ) (0) 1 ( ) (0)

( ) ( ) ( ) (0)
.K t K t

s ds
K t

1
(0)
( )

(0)
( ) (0) 2

( ) ( )
( ) ( ) 2 2t

t
j

1 1
1 1

1
1 1

Then f is continuous in ×+
+t C( , ) , and f is Lipschitz in φ on each compact subset of +C . It follows that system (2) has a unique solution

=u u t( ) ( , )t with =u0 on its maximal interval [0, σφ) of existence (see Theorems 2.2.1 and 2.2.3 of [32]).
Let = +C( , )1 2 be given. If =(0) 0,i then =f t i( , ) 0, 1, 2i . By Theorem 5.2.1 of [33], it follows that the unique solution u(t, φ) of

system (2) with = +u C0 satisfies +u C( )t for all t∈ [0, σφ).
The first equation of system (2) implies that ( )r t B t( ) ( ) 1dB t

dt
B t
K t

( ) ( )
( ) . Since the equation = ( )r t x t( ) ( ) 1dx t

dt
x t
K t

( ) ( )
( ) has a globally attractive

positive ω-periodic solution x t* ( ), by the comparison principle, there exists T1> 0 such that

< + =B t x t x t T( ) max *( ) 1: * for all .
t [0, ]

1

Let = + +
+

z t e B t P t( ) ( ) ( )s ds( )t
t

j and =K K t x* max{max ( ), *}t [0, ] . Then

=
+

+ +

+
+

+ +

+

+ +

+ +

+

+

+

+ +

+

dz t
dt
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for all t≥ T1. It follows that

+
+

+{ }z t
K e r t t
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lim sup ( )

max * ( ( ) ( ))
min { ( ), ( )}

,
t

t
s ds
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and hence,
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