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Abstract
Vegetation patterns with a variety of structures is amazing phenomena in arid or semi-
arid areas, which can identify the evolution law of vegetation and are typical signals
of ecosystem functions. Many achievements have been made in this respect, yet the
mechanisms of uptake–diffusion feedback on the pattern structures of vegetation is
not fully understood. To well reveal the influences of parameters perturbation on the
pattern formation of vegetation, we give a comprehensive analysis on a vegetation–
water model in the forms of reaction–diffusion equation which is posed by Zelnik
et al. (Proc Natl Acad Sci 112:12,327–12,331, 2015). We obtain the exact parameters
range for stationary patterns and show the dynamical behaviors near the bifurcation
point based on nonlinear analysis. It is found that the model has the properties of
spot, labyrinth and gap patterns. Moreover, water diffusion rate prohibits the growth
of vegetation while shading parameter promotes the increase of vegetation biomass.
Our results show that gradual transitions from uniform state to gap pattern can occur
for suitable value of parameters which may induce the emergence of desertification.
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1 Introduction

Vegetation is the foundation for the existence and development of the ecosystem, and
determines the structure and function of ecosystem to a great extent, which is thus
considered as the engineers of ecosystem (Jones et al. 1994; Gilad et al. 2004). In
addition, vegetation can absorb carbon dioxide and produce oxygen through photo-
synthesis, thereby purifying the air and improving the environment (Lemordant et al.
2018; Gallagher et al. 2019). The roots of vegetation can protect slope land and con-
serve water. The leaves of vegetation can perform transpiration, reduce land drought
and prevent land desertification.

Desertification has always been the focus of people’s attention, especially in the arid
and semi-arid areas where the ecological environment is very fragile, and desertifica-
tion phenomenon is particularly serious. At present, we have observed various pattern
structures in arid and semi-arid regions all over the world, such as spot pattern, strip
(labyrinth) pattern and gap pattern (von Hardenberg et al. 2001; Rietkerk et al. 2002,
2004; Garfinkel et al. 2004; Rietkerk and Van de Koppel 2008; Borgogno et al. 2009).
Many experts and scholars have also established a series of mathematical models to
study them (Gilad et al. 2004, 2007; Klausmeier 1999; HilleRisLambers et al. 2001;
Meron et al. 2004; Sherratt and Synodinos 2012; Sun et al. 2018, 2022). Typically
in 1999, Klausmeier constructed a mathematical model with vegetation biomass and
water density as variables based on the assumptions of ecological reality, which was
the earlier model to study the dynamical relationship between vegetation and water. It
captures regular and irregular patterns in semi-arid areas and explains the importance
of nonlinear mechanisms in determining the spatial structure of plant communities
(Klausmeier 1999). In 2002, Rietkerk et al. divided water into soil water and surface
water, and posed a spatial model to study the positive feedback between plant density
and water infiltration, as well as the influence of spatial distribution of runoff water
on the formation of vegetation pattern (HilleRisLambers et al. 2001). In 2007, Gilad
et al. proposed a mathematical model to study dryland ecosystem engineering. The
model captures various feedback mechanisms between biomass and water, studied
biomass patterns along drought gradients, and found that there is a trade-off between
the engineering ability of plant species and their ability to recover from disturbances
(Gilad et al. 2007). In 2015, Zelnik et al. simplified the model proposed by Gilad
et al., and used such model and empirical data to study the dynamics of the fairy circle
ecosystem in Zelnik et al. (2015).

It is well known that precipitation is the main source of water needed for vegetation
growth, and vegetation can absorb this water through two ways. Firstly, it is directly
absorbed by the leaves. Secondly, the vegetation absorbs the water that penetrates into
the soil through the roots. Obviously, the water absorbed by the vegetation through the
leaves has little effect on the growth of the vegetation, and the growth of vegetation
depends mainly on the absorption of water by the roots. In this process, there is a
positive feedback between vegetation growth and water transport to growing vegeta-
tion, and the pattern formation is driven by this positive feedback mechanism (Meron
2012). At present, the water transport mechanism can be divided into at leastthree
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types (Kinast et al. 2014): Infiltration feedback, and the infiltration ability of water is
stronger in the area with higher vegetation biomass. The root-augmentation feedback,
with the growth of plants, the root zone of vegetation extends to a new area, where
the roots can continue to absorb water and further promote the growth of vegetation
(Gilad et al. 2007; Meron 2011). The uptake–diffusion feedback, the higher biomass
vegetation can increase the water absorption rate and reduce the soil water density
nearby, which leads to the rapid transportation of soil water from the sparse vegetation
area to the densely vegetated area, that is to say, the area with high soil water den-
sity is transported to the area with low soil water density (Kinast et al. 2014; Zelnik
et al. 2016). This mechanism requires a large soil water diffusivity in dryland ecosys-
tems, and a non-linear relationship between plant water absorption rate and biomass.
Previous studies have shown that the ecosystem of Namibian fairy circle is a good
embodiment of this mechanism (Zelnik et al. 2015).

Vegetation pattern is a kind of spatial self-organizing phenomenon (Rietkerk et al.
2002, 2004; Barbier et al. 2006; Li et al. 2022a, b), which can be explained by three
deterministic models: Turing model, kernel based model, and differential flow model.
Although these models are different in mathematical descriptions, the pattern forma-
tionmechanisms behind them are similar, that is, the instability of symmetry breaking.
In the first two models, this symmetry breaking is caused by the interaction between
short-range facilitation and long-range inhibition. In the differential flow model, the
symmetry breaking is caused by the velocity difference between different species
(Borgogno et al. 2009; Turing 1952; Cross and Greenside 2009).

It should be noted that model parameters play important role on pattern dynamics
of vegetation (Kéfi et al. 2007; Sherratt 2005; Sherratt and Lord 2007; Sherratt 2015).
As a result, we give a rounded analysis on the effects of the uptake–diffusion feedback
and shading on vegetation patterns in a vegetation model posed by Zelnik et al. (2015).
The rest of this work is as follows. In Sect. 2, we study the existence and stability on
equilibrium points of a vegetation-water model, and derive the conditions for produc-
ing Turing patterns. In Sect. 3, we use the multi-scale analysis method to derive the
amplitude equation based on nonlinear analysis. In Sect. 4, we show the influences of
water diffusion and shading on vegetation growth from the aspect of pattern structures
and biomass change. Conclusions and discussions are given in the last section.

2 Mathematical model and analysis

2.1 Model formulation

In arid and semi-arid areas, rainfall is the main water source for vegetation growth.
After the rainfall reaches the ground, one part of the rainfall penetrates into the soil and
becomes groundwater or surface runoff, and the other part is lost to the atmosphere
through transpiration of vegetation and evaporation of the ground. As we all know, the
root system is the main organ of terrestrial vegetation absorbing water, it will absorb
a lot of water from the soil to supply the growth and development of vegetation. Due
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to the large amount of water absorbed by the roots of the vegetation, the soil water
concentration at this location decreases, resulting in a concentration difference with
the surrounding soil water concentration, which in turn causes the soil water diffusion
(Fig. 1).

The interaction between vegetation and water is carried out through various feed-
backmechanisms. In 2007,Gilad et al. proposed a single plant speciesmodel in limited
water resources,which captures three kinds of feedback of pattern formation, including
infiltration feedback, root augmentation feedback and uptake–diffusion feedback. The
model consists of three variables: vegetation biomass B(X , T ), soil–water W (X , T )

and surface water H(X , T ), as follows (Gilad et al. 2007):

⎧
⎪⎨

⎪⎩

BT = GBB(1 − B/K ) − MB + DB∇2B,

WT = I H − N (1 − RB/K )W − GWW + DW∇2W ,

HT = P − I H + DH∇2(H2),

(2.1)

where GB is the growth rate of biomass and GW is the water absorption rate, with the
following forms:

GB(X , T ) = �

∫

�

G(X , X ′, T )W (X ′, T )dX ′,

GW (X , T ) = �

∫

�

G(X ′, X , T )B(X ′, T )dX ′,

G(X , X ′, T ) = 1

2π S20
exp[− |X − X ′|2

2S20 (1 + EB(X , T ))2
],

and

I = A
B(X , T ) + Q f

B(X , T ) + Q
.

To simplify the model, we make the following assumptions. Firstly, we assume that
the distribution of kernel function G(X , X ′, T ) is very narrow (i.e. S0 −→ 0), then
one can use Dirac delta function approximation (Zelnik et al. 2015; Meron 2018), i.e.

lim
S0→0

G(X , X ′, T )

= (1 + EB(X , T ))2 lim
S0→0

1

2π S20 (1 + EB(X , T ))2
exp

[

− |X − X ′|2
2S20 (1 + EB(X , T ))2

]

= (1 + EB(X , T ))2δ(X − X ′).
(2.2)
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Fig. 1 Schematic diagram of soil–water diffusion feedback. Soil–water is absorbed by the roots of vegeta-
tion, resulting in the concentration difference, which leads to the directional flow of water

Taking (2.2) into the expressions ofGB andGW , and then according to the “screen-
ing" nature of the δ function, one can have:

GB(X , T ) = �(1 + EB(X , T ))2
∫

�

δ(X − X ′)W (X ′, T )dX ′

= �(1 + EB(X , T ))2
∫

�

δ(X ′ − X)W (X ′, T )dX ′

= �(1 + EB(X , T ))2W (X , T ).

(2.3)

In the same way, we can get:

GW = �B(1 + EB)2. (2.4)

Secondly, we assume that the infiltration rate I of bare land is the same as that of
vegetation covered area (i.e. f = 1), then I = A is constant, and thus the surface water
(H) equation is independent, which has a linear stable uniform solution, H0 = P/I .
Obviously, H is a fast variable, while B and W are slow variables. Therefore, we can
assume that H has reached the stable state H0 in the change of B andW (i.e. H = H0)
and combining with formula (2.3) and (2.4), we can get the following two variables
model:

⎧
⎪⎪⎨

⎪⎪⎩

∂T B = �WB

(

1 − B

K

)

(1 + EB)2 − MB + DB∇2B,

∂T W = P − N

(

1 − RB

K

)

W − �WB(1 + EB)2 + DW∇2W ,

(2.5)
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where ∇2 = ∂2X + ∂2Y . B(X,T) is vegetation biomass and W(X,T) is soil–water
density. In the first equation, � is conversion coefficient of vegetation growth from
water absorption, K describes the maximum standing biomass, E provides a measure
for the root-to-shoot ratio, M is the rate of plant loss due to mortality or grazing. In
the second equation, P is precipitation rate, N represents water evaporation rate, R
represents the decrease in soil water evaporation rate due to shading, and � represents
the water consumption rate due to water absorption by vegetation (see Table 1). We
can find that only one feedback mechanism is captured in model (2.5), that is, the
uptake–diffusion feedback. The uptake–diffusion feedback can be reflected by the
soil–water loss term −�WB(1+ EB)2 and the diffusion term DW∇2W (Kinast et al.
2014; Zelnik et al. 2016; Meron 2018).

For the convenience of later analysis, we need to make the model dimensionless,
so we make the following variable substitution (Zelnik et al. 2015):

b = B

K
;w = W�

K�
; t = MT ; x = X

√
M

DB
.

Then the model (2.5) becomes:

{
∂t b = λwb(1 − b)(1 + ηb)2 − b + ∇2b,

∂tw = p − νw(1 − ρb) − λwb(1 + ηb)2 + δw∇2w,
(2.6)

where

λ = K�

M
; η = EK ; p = �P

K�M
; ν = N

M
; ρ = R; δw = DW

DB
.

In the abovemodel, all parameters are positive and have biological significance, and
the parameter η and soil–water diffusivity δw determine the strength of the uptake–
diffusion feedback. Next, we analyze the stability of equilibrium points of the model
(2.6) and the conditions of producing Turing pattern.

2.2 Mathematical analysis of themodel

2.2.1 Equilibrium points

When there is no diffusion term, our model (2.6) becomes:

{
dtb = λwb(1 − b)(1 + ηb)2 − b,

dtw = p − νw(1 − ρb) − λwb(1 + ηb)2.
(2.7)

The equilibrium point can be calculated by making the right end of Eq. (2.7) equal
to zero (i.e. ∂b

∂t = 0, ∂w
∂t = 0). The model has two types of equilibria: (I) desert state

E0(0,
p
ν
); (II) vegetation steady state E∗(b∗, w∗).
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Table 1 Description of the parameters in the model (2.5)

Parameter Units Description

� (kg/m2)−1 year−1 Conversion coefficient of plant water absorption into biomass

K kg/m2 Maximum standing biomass

E (kg/m2)−1 The root-to-shoot ratio

M year−1 Mortality rate

P kg/m2 year−1 Precipitation rate

N year−1 Soil–water evaporation rate

R – Evaporation decreases due to shading (dimensionless)

� (kg/m2)−1 year−1 Soil–water consumption rate

DB m2/year−1 Diffusion coefficient of seed

DW m2/year−1 Diffusion coefficient of soil–water

For vegetation steady state E∗(b∗, w∗), wherew∗ = 1
λ(1+ηb)2(1−b)

, and b∗ satisfies
the following equation:

λη2(p + 1)b3 + λη(2p + 2 − ηp)b2 + (λp + λ − 2ληp − νρ)b + ν − λp = 0

(2.8)

and 0 < b < 1 (to ensure that the equilibrium point has biological significance).
Denote

c1 = λη2(p + 1), c2 = λη(2p + 2 − ηp), c3 = λp + λ − 2ληp − νρ, c4 = ν − λp,

A = c22 − 3c1c3 = λ2η2(p + 1 + ηp)2 + 3νρλη2(p + 1) > 0,

B = c2c3 − 9c1c4 = λη(2p + 2 − ηp)(λp + λ − 2ληp − νρ) − 9λη2(p + 1)(ν − λp).

Marking the left end of Eq. (2.8) as f (b), and considering f (0) = ν − λp2,

f (1) = λη2 + 2λη + λ − νρ + ν = 0, we have p = ν
λ
, ρ = 1 + λ(1+η)2

ν
, which

divides the two-dimensional plane into four regions (see Fig. 2). Next, we study the
equilibrium points of each region:

(i) f (0) > 0, f (1) > 0.
Case 1. Equations (2.8) only one positive roots if f (bmin) = 0, and (see
Fig. 3(a1))

b∗ = bmin = λ(ηp − 2p − 2) + √
λ2(ηp + p + 1)2 + 3λνρ(p + 1)

3λη(p + 1)
.

Case 2. Equation (2.8) has two positive roots if f (bmin) < 0, and (see Fig. 3(a2))

b∗
1 = λ(ηp − 2p − 2) + 2

√
λ2(ηp + p + 1)2 + 3λνρ(p + 1)cos

(
θ+π
3

)

3λη(p + 1)
,
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Fig. 2 Distribution of equilibrium points. The figure on the left shows the four areas where the equilibrium
points are distributed, and the table on the right shows the details of each area

Fig. 3 Graph of the unary cubic function f (b). a1, a2 f (0) > 0, f (1) > 0; b f (0) > 0, f (1) < 0; c
f (0) < 0, f (1) > 0; d f (0) < 0, f (1) < 0

b∗
2 = λ(ηp − 2p − 2) + 2

√
λ2(ηp + p + 1)2 + 3λνρ(p + 1)cos

(
θ−π
3

)

3λη(p + 1)
,

where θ = arccos(T ), T = 2Ac2 − 3c1B

2
√
A3

.

(ii) f (0) > 0, f (1) < 0, Eq. (2.8) only one positive root b∗
1 (see Fig. 3b).

(iii) f (0) < 0, f (1) > 0, Eq. (2.8) only one positive root b∗
2 (see Fig. 3c).

(iv) f (0) < 0, f (1) < 0, Eq. (2.8) has no positive root (see Fig. 3d).

In summary, there are three forms of expression of the non-trivial equilibrium
points: E∗(b∗, w∗), E∗

1 (b
∗
1, w

∗
1) and E∗

2 (b
∗
2, w

∗
2). For E

∗(b∗, w∗), it’s very difficult
for us to calculate the existence condition f (bmin) = 0, Therefore we only list this
possible case here and will not discuss it further. For E∗

1 (b
∗
1, w

∗
1), it is always unstable,

so in the following discussion, we will only analyze the equilibrium point E∗
2 (b

∗
2, w

∗
2).
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2.2.2 Linear stability analysis

For model (2.7), the Jacobian matrix at the equilibrium point E∗
2 is

J =

⎛

⎜
⎜
⎜
⎝

b∗
2(3ηb

∗
2 − 2η + 1)

(1 + ηb∗
2)(b

∗
2 − 1)

λb∗
2(1 − b∗

2)(1 + ηb∗
2)

2

3λη2b2 + 4ληb∗
2 + λ − νρ

λ(1 + ηb∗
2)

2(b∗
2 − 1)

ν(ρb∗
2 − 1) − λb∗

2(1 + ηb∗
2)

2

⎞

⎟
⎟
⎟
⎠

=
(
a11 a12
a21 a22

)

.

(2.9)

Thus, the eigenvalues λ ∈ C satisfy

λ2 − tr(J )λ + (J ) = 0, (2.10)

where

tr(J ) = a11 + a22 = b∗
2(3ηb

∗
2 − 2η + 1)

(1 + ηb∗
2)(b

∗
2 − 1)

+ ν(ρb∗
2 − 1) − λb∗

2(1 + ηb∗
2)

2,

(J ) = a11a22 − a12a21,

= (b∗3
2 η3λ + 3b∗2

2 η2λ − 2b∗2
2 ηνρ + b∗

2ηνρ + 3b∗
2ηλ + 3b∗

2ην − 2ην − νρ + λ + ν)b∗
2

(b∗
2η + 1)(1 − b∗

2)
.

All eigenvalues λ ∈ C have negative real parts (i.e. �(λ) < 0) if 2η < 3ηb∗
2 + 1

and νρ < 3λη2b∗2
2 +4ληb∗

2 +λ. Then E∗
2 is locally stable in the absence of diffusion.

If diffusion term is considered, then the Jacobian matrix for the equilibrium point
E∗
2 (b

∗
2, w

∗
2) is given by

J =
(
a11 − k2 a12

a21 a22 − k2δw

)

. (2.11)

Thus, the characteristic equation can be obtained as follows:

λ2k − trk(J )λ + k(J ) = 0, (2.12)

where

trk(J ) = a11 + a22 − k2(1 + δw),

k(J ) = a11a22 − a12a21 − k2(δwa11 + a22) + k4δw.

Turing bifurcation will occur if

δwa11 + a22 > 2
√

δwdet(J ).

Next, we select ρ as the control variable. Due to the algebraic complexity of the
equilibrium point and the eigenvalue, we cannot directly display the critical value of
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Fig. 4 Bifurcation diagram of system (2.6). It shows the Turing area that can produce patterns on the ρOδw
plane. The parameter values are p = 1.5179, η = 2.8, λ = 0.4571, ν = 1.4286

the Hopf branch and Turing branch. Therefore, we use numerical methods to solve
the Turing region (see Fig. 4). We can find that under this set of parameter values, the
equilibrium point remains stable under uniform disturbances in space. Consequently,
we only need to ensure that the equilibrium point is unstable under non-uniform spatial
disturbances. At the same time, we can get the dispersion diagram of model (2.6) (see
Fig. 5). Obviously, Fig. 5 shows that within an appropriate parameter range, as the
parameter ρ decreases, the real part of the eigenvalue gradually increases, and the
Turing patterns appear.

3 Amplitude equations

The amplitude equation is a kind of equation which can describe the dynamical behav-
ior of the system near the most unstable mode. Therefore, the amplitude equation is a
good tool when we want to study the dynamic behavior of the system near the Turing
bifurcation point (i.e. themost unstablemode) (Sun et al. 2018; Ouyang 2000; Lejeune
et al. 2004; Zhang et al. 2012; Sun 2016). The pattern of the system can be described
by three pairs of wave vectors k1, k2, k3, and they are 120◦ angle with each other. The
expression of amplitude equation is as follows:
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Fig. 5 Dispersion diagram visualization of dispersion relation for different values of parameter ρ. (I)
ρ = 0.6, (II) ρ = 0.7, (III) ρ = 0.9372, (IV) ρ = 1.2. The other parameter values are η = 2.8, λ = 0.4571,
ν = 1.4286, p = 1.5179, δw = 125

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ0
∂A1

∂t
= μA1 + h Ā2 Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

τ0
∂A2

∂t
= μA2 + h Ā1 Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A2,

τ0
∂A3

∂t
= μA3 + h Ā1 Ā2 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A3.

(3.1)

Next, themost important thing is to calculate the coefficients of the amplitude equation,
which we can do through multi-scale analysis. Here, we choose ρ as the control
parameter.

Firstly, rewrite the model (2.6) at the equilibrium point E∗
2 (b

∗
2, w

∗
2) as follows:

{
∂t x = a11x + a12y + N1(x, y) + ∇2x,

∂t y = a21x + a22y + N2(x, y) + δw∇2y,
(3.2)

where x, y are simple substitutions for b and w in system (2.6).
The solution of system (3.2) at the critical point ρ = ρT can be expressed as:

c =
(
x
y

)

=
3∑

i=1

(
Ax
i

Ay
i

)

eiki r + c.c., (3.3)
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Table 2 The expansion of ρ, N, L and c

The expanded quantity The expand mode

ρ ρT − ρ = ερ1 + ε2ρ2 + · · ·
N N = ε2h2 + ε3h3 + o(ε4)

L L = LT + (ρT − ρ)M

c c =
(
x
y

)

= ε

(
x1
y1

)

+ ε2
(
x2
y2

)

+ · · · .

ε is a small parameter

then the system (3.2) can be written as:

∂c

∂t
= Lc + N (c, c), (3.4)

where L is a linear operator and N is a nonlinear operator, and

L =
(
a11 +  a12

a21 a22 + δw

)

, N =
(
N1(x, y)
N2(x, y)

)

.

For our system, we only study the dynamical behavior of the system near the critical
point ρT . Therefore, we expand the control parameters ρ, linear operators L, nonlinear
operators N, and variable c. For the specific expansion form, see Table 2, and

LT =
(
a∗
11 +  a∗

12
a∗
21 a∗

22 + δw

)

, M =
(
b11 b12
b21 b22

)

.

The core of multi-scale analysis method is to study the dynamic behavior of the
system according to different time or space scales. Here, we separate the time scales
of the system (3.4), let

∂

∂t
= ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · · . (3.5)

Since the amplitude A is a slow variable, and the time derivative ∂
∂T0

is a fast

variable, so ∂
∂T0

has no effect on the amplitude A, so we can get:

∂A

∂t
= ε

∂A

∂T1
+ ε2

∂A

∂T2
+ · · · . (3.6)

Substituting the expansion formula in Table 2 and (3.6) into (3.4), we can get the
equations of different order of ε (see Table 3).

For the order of ε

LT

(
x1
y1

)

= 0, (3.7)
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Table 3 The corresponding equations of different orders of ε

The order The corresponding equation

ε LT

(
x1
y1

)

= 0

ε2 LT

(
x2
y2

)

= ∂
∂T1

(
x1
y1

)

− ρ1M

(
x1
y1

)

− h2

ε3 LT

(
x3
y3

)

= ∂
∂T1

(
x2
y2

)

+ ∂
∂T2

(
x1
y1

)

− ρ1M

(
x2
y2

)

− ρ2M

(
x1
y1

)

− h3

where LT is the linear operator of the system at the critical point, and

(
x1
y1

)

is a linear

combination of the eigenvectors corresponding to the zero eigenvalues of the linear
operator LT . By solving the above equations, we can gain:

(
x1
y1

)

= l(W1e
ik1r + W2e

ik2r + W3e
ik3r ) + c.c., (3.8)

where l =
⎛

⎝
δwa∗

11 − a∗
22

2a∗
21
1

⎞

⎠, and |ki | = kT (i=1,2,3), c.c. represents the conjugate

of the right term, and Wi is the amplitude corresponding to the mode eiki r of the
system under the first-order perturbation, and its form is determined by the higher-
order perturbation term.

For the order of ε2

LT

(
x2
y2

)

= ∂

∂T1

(
x1
y1

)

− ρ1M

(
x1
y1

)

− h2 =
(
Fx
Fy

)

. (3.9)

According to the Fredholm solvability condition, in order to ensure the existence of
non-trivial solutions of Eq. (3.9), the vector function at the right end of Eq. (3.9)
must be orthogonal to the zero eigenvector of operator L+

T . Where L+
T represents the

conjugate operator of LT , i.e

L+
T =

(
a∗
11 − k2T a∗

21
a∗
12 a∗

22 − δwk2T

)

.

Then, the zero eigenvector of L+
T is

⎛

⎝
1

−δwa∗
11 − a∗

22

2δwa∗
21

⎞

⎠ e−iki r + c.c. (3.10)
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Let Fi
x and Fi

y denote the coefficients corresponding to eiki r in Fx and Fy respec-
tively, so we can get the following equation:

(
F1
x

F1
y

)

=

⎛

⎜
⎜
⎝

l
∂W1

∂T1
∂W1

∂T1

⎞

⎟
⎟
⎠ − ρ1

(
lb11 + b12
lb21 + b22

)

W1 −
(
h1
h2

)

W̄2W̄3, (3.11)

We can get the remaining two equations by changing the subscript.

According to the conjugate condition

(

1 − l

δw

) (
Fi
x

Fi
y

)

= 0 (i=1,2,3), we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δw − 1)l

δw

∂W1

∂T1
= E1W1 +

(

h1 − l

δw

h2

)

W̄2W̄3,

(δw − 1)l

δw

∂W2

∂T1
= E1W2 +

(

h1 − l

δw

h2

)

W̄1W̄3,

(δw − 1)l

δw

∂W3

∂T1
= E1W3 +

(

h1 − l

δw

h2

)

W̄1W̄2.

(3.12)

The above Eq. (3.12) is an amplitude equations under with first-order perturbation.
We can find that the coefficient of the second order term of the amplitude equation is
greater than zero, so the amplitude Wi (i = 1, 2, 3) diverges. In this case, we need to
introduce higher-order terms to make it saturated. Therefore, the solution of Eq. (3.9)
is written as follows:

(
x2
y2

)

=
(
X0
Y0

)

+
3∑

i=1

(
Xi

Yi

)

eiki r +
3∑

i=1

(
Xii

Yii

)

e2iki r +
(
X12
Y12

)

ei(k1−k2)r

+
(
X23
Y23

)

ei(k2−k3)r +
(
X31
Y31

)

ei(k3−k1)r + c.c.,

(3.13)

where,

(
X0
Y0

)

=
(
x0
y0

)

(|W1|2 + |W2|2 + |W2|2), Xi = lYi ,

(
Xii

Yii

)

=
(
x11
y11

)

W 2
j ,

(
Xik

Yik

)

=
(
x∗
y∗

)

Wi W̄k,

For the order of ε3

LT

(
x3
y3

)

= ∂

∂T1

(
x2
y2

)

+ ∂

∂T2

(
x1
y1

)

− ρ1M

(
x2
y2

)

− ρ2M

(
x1
y1

)

− h3 =
(
Hx

Hy

)

.

(3.14)
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The method is similar to the calculation process of Eq. (3.9), and we can obtain:

(δw − 1)l

δw

(
∂Y1
∂T1

+ ∂W1

∂T2

)

= (ρ1Y1 + ρ2W1)

[

lb11 + b12 − l

δw

(lb21 + b22)

]

W1

−
[(

M11 − l

δw

M21

)

|W1|2

+
(

M12 − l

δw

M22

)

(|W2|2 + |W2|2)
]

W1

+
(

h1 − l

δw

h2

)

(W̄2Ȳ3 + W̄3Ȳ2). (3.15)

Similarly, the other two equations can be obtained by changing the subscript.
The amplitude Ai can be expanded as:

Ai = εWi + ε2Yi + o(ε3). (3.16)

Combining Eqs. (3.12), (3.15) and (3.16), we can obtain the amplitude equation as
follows:

τ0
∂A1

∂t
= μA1 + h Ā2 Ā3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1, (3.17)

where the specific expression of each coefficient is shown in Table 4. Expressions for
parameters not given in this section are in the “Appendix A”.

Each amplitude can be decomposed into the product of its mode κi = |Ai | and
the corresponding phase angle ϕi , i.e. Ai = κi eiϕi . Substituting it into the amplitude
equation (3.1) above and separating the real part and the imaginary part, we can get
the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0
∂ϕ

∂t
= −h

κ2
1κ2

2 + κ2
1κ2

3 + κ2
2κ2

3

κ1κ2κ3
sinϕ,

τ0
∂ϕ

∂t
= μκ1 + hκ2κ3cosϕ − g1κ

3
1 − g2(κ

2
2 + κ2

3 )κ1,

τ0
∂ϕ

∂t
= μκ2 + hκ1κ3cosϕ − g1κ

3
2 − g2(κ

2
1 + κ2

3 )κ2,

τ0
∂ϕ

∂t
= μκ3 + hκ1κ2cosϕ − g1κ

3
3 − g2(κ

2
1 + κ2

2 )κ3,

(3.18)

where ϕ = ϕ1 + ϕ2 + ϕ3. This system (3.1) has four different types of solutions,
corresponding to four different pattern structures, see Table 5 for details.
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Table 4 The corresponding expression of each coefficient in Eq. (3.17)

The coefficient The corresponding expression

τ0
l(δw − 1)

δwρT

[

lb11 + b12 − l

δw
(lb21 + b22)

]

μ
ρT − ρ

ρT

h

−2m12w
∗
2 l

2 + 2(a11 + 1)l

w∗
2

+ l

δw

(

2m21w
∗
2 l

2 − 2a21l

w∗
2

)

ρT

[

lb11 + b12 − l

δw
(lb21 + b22)

]

g1

(

M11 − l

δw
M21

)

ρT

[

lb11 + b12 − l

δw
(lb21 + b22)

]

g2

(

M12 − l

δw
M22

)

ρT

[

lb11 + b12 − l

δw
(lb21 + b22)

]

4 Main results

4.1 Pattern structures of vegetation

For the spatial model, we can not use the analysis method to study its spatial dynamics.
Therefore, in this section, we use the computer to carry out the numerical simulation.
We choose a region of size 200 × 200 whose boundary satisfies Neumann boundary
conditions. We set the time region as [0,10,000], the time step as t = 0.1, and the
space step as h = 2. The initial value is the random perturbation at the equilibrium
point E∗

2 .
We use numerical simulation to verify the above theoretical analysis. Selecting the

values of different parameters λ, η, ν, δ and p, we can calculate the values of h, g1, g2,
μ1, μ2, μ3 and μ4 according to the expression of the amplitude equation coefficients
in Sect. 3. In order to observe the pattern structure of vegetation, we selected three
sets of parameter values in Table 5, and the corresponding results are shown in Fig. 6.
We can find that when the first set of parameter values are taken, μ is between μ2
and μ3, and the system (2.6) presents a spot pattern (see Fig. 6a); when the second
set of parameter values is taken, μ is between Between μ3 and μ4, the spot pattern
loses its stability, and the strip pattern begins to appear, showing a mixed pattern (see
Fig. 6b); when the third set of parameter values is taken, μ is greater than μ4, and the
spot pattern disappears. It becomes a striped pattern (see Fig. 6c).
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Fig. 6 The pattern structure corresponding to different values of parameter ρ.The values of each parameter
are shown in Table 6

Fig. 7 The pattern structure corresponding to different values of parameter δw . a δw = 125; b δw = 160;
c δw = 200; d δw = 250. The other parameter values are η = 2.8, λ = 0.4571, ν = 1.4286, p = 1.6247,
ρ = 0.7

4.2 Influence of water diffusion and shading on vegetation patterns

Next, we study the influence of some parameters on vegetation patterns. In our model,
only a single feedback of soil–water diffusion is captured. The feedback of soil–water
diffusion is not only related to the soil–water diffusion coefficient, but also to the root
and shoot characteristics of vegetation. It is reflected in the parameters δw and η in
our dimensionless model. Therefore, we studied the influence of parameters δw and
η on vegetation patterns. Figure7 shows the change of the corresponding vegetation
pattern with the change of parameter δw. We can find that with the gradual increase of
parameter δw, the gap size is also increasing, while the average biomass of vegetation
is gradually decreasing (see Fig. 8). This is negatively related to parameter δw.
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Fig. 8 When the parameter δw takes different values, the average biomass of vegetation changes with time
t. (I) δw = 125, (II) δw = 160, (III) δw = 200, (IV) δw = 250. The values of other parameters see Fig. 7

In Fig. 9, we consider the effect of parameter η on the vegetation pattern. When the
parameter η is small, the spot pattern appears (Fig. 9a); when the parameter η increases
slightly, the spot pattern begins to disappear, the strip pattern appears, showing the
spot strip mixed pattern (Fig. 9b); as the parameter η continues to increase, the spot
pattern completely disappears, and the strip pattern appears (Fig. 9c, d); when the
parameter η further increases, the gap pattern appears (Fig. 9e, f). To sum up, with
the increase of parameter η, the vegetation pattern changes in the following sequence:
spot pattern, mixed pattern, labyrinth pattern and gap pattern. Figure10 shows the
relationship between parameter η and the average biomass of vegetation. Obviously,
with the increase of parameter η, the average biomass of vegetation increased, which
was positively correlated.

Shading affects the growth of vegetation and regulates themetabolism of vegetation
(Gommers et al. 2013). The effect of shading is also considered in system 2.6, which
refers to the reduction of water evaporation due to shading. That is to say, the available
water of vegetation increases. We use numerical simulation to study the effect of shad-
ing parameters on vegetation pattern structure. The results show that the enhancement
of shading effect is beneficial to the growth of vegetation, and with the increase of
shading parameters, spot pattern, strip pattern and gap pattern appear in turn (Fig. 11).

4.3 Gradual transitions from uniform state to gap pattern

Through numerical simulation, we show that there is a gradual transition in the bistable
range of uniform vegetation and gap pattern state, as shown in Fig. 12. This localized
state expands and merges until it reaches an almost periodic gap pattern, that is, a
gradual regime shifts occurs (Bel et al. 2012; Zelnik et al. 2013, 2017), which is
consistent with the conclusion of Zelnik et al. (2015). Ecosystem state transitions
are considered to be abrupt global transitions from a stable state to an alternative
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Fig. 9 The pattern structure corresponding to different values of parameter η. a η = 2.65; b η = 2.8; c
η = 2.9; d η = 3.1; e η = 3.3; f η = 3.4. The other parameter values are p = 1.5179, λ = 0.4571,
ν = 1.4286, ρ = 0.7, δw = 125
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Fig. 10 When the parameter η takes different values, the average biomass of vegetation changes with time
t. (I) η = 2.65, (II) η = 2.8, (III) η = 2.9, (IV) η = 3.1, (V) η = 3.3, (VI) η = 3.4. The values of other
parameters see Fig. 9

stable state caused by small environmental changes. In general, this sudden response is
unfavorable to the ecosystem, because it will lead to the loss of biological productivity
and biodiversity, and then affect the function and stability of the ecosystem (Bel et al.
2012; Yachi and Loreau 1999; Loreau et al. 2001). However, in a spatially expanding
ecosystem, the transition can also be gradual (see Fig. 12). A water-limited vegetation
dynamic model shows that when the rainfall rate is high, the system may be in the
bistable range of uniform vegetation and pattern state, and there is a localized state in
this range. Therefore, the desertification process may be gradual, but with the decrease
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Fig. 11 Effects of shading parameters ρ on vegetation pattern structure. a ρ = 0.6; b ρ = 0.7; c ρ = 0.8;
d ρ = 0.94. The other parameter values are η = 2.8, λ = 0.4571, ν = 1.4286, p = 1.5179, δw = 125

of rainfall rate, the system is close to the bare soil state, and the desertification process
tends to be more abrupt. Because there is no localized state in the bistable range of
bare soil state and pattern state (Zelnik et al. 2016).

4.4 Comparison between Giladmodel (2.1) and simplifiedmodel (2.5)

This section mainly compares Gilad model with its simplified model from three
aspects: pattern structure, the average vegetation biomass and the spatial distribu-
tion. For numerical simulation, the forward difference method is used to discretize the
model. The initial condition is set as random disturbance near the equilibrium point,
and the boundary condition is periodic boundary. Meanwhile, in order to make the
comparison results of the two models more convincing, the same parameter value is
selected in the numerical simulation (see Table 7).

Firstly, the pattern structure of Gilad model and its simplified model is compared in
Fig. 13. For the Gilad model, vegetation rapidly evolves from the initial uniform state,
gradually emerges a spot structure and ultimately forms a very periodic spot pattern.
For the simplified model, the initial state of vegetation is uniform, and the spot patch
progressively appears with the increase of time, and eventually these patches exhibit a
certain regular distribution. Consequently, from the perspective of their structure, they
are both spot patterns with comparatively consistent structures. Nonetheless, there are
some subtle differences in their evolution process, that is, the evolution process of
Gilad model is more periodic, and it takes less time to form the pattern structure.
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Fig. 12 A gradual regime shifts. The values of relevant parameters are η = 4.5, λ = 1.357, ν = 1.4286,
p = 1.045, ρ = 0.7, δw = 250. The simulated domains are 150 × 150

Table 7 Values of relevant parameters in Gilad and simplified model

Parameter Value Parameter Value Parameter Value

E 3.5 � 0.032 Q 0.05

K 1 R 0.95 f 0.1

M 1.2 P 146.25 DB 6.25 × 10−4

N 4 � 20 DW 6.25 × 10−2

Secondly, the average vegetation biomass of Gilad is compared with that of its
simplified model. In Fig. 14, a schematic diagram of the average vegetation biomass
of the twoover time is given,whichmainly reflects the three totally differences between
Gilad and its simplifiedmodel. The first point is theway inwhich the vegetation pattern
reaches the steady state. The Gilad model tends to the steady state in an oscillatory
manner with the passage of time, while the simplifiedmodel tends to the steady state in
a monotonic manner. The second point is the average vegetation biomass after tending
to steady state. Evidently, the final average biomass of the simplified model is higher
than that of the Gilad model. The third point is the time spend for vegetation pattern
to reach steady state. Compared with the simplified model, the Gilad model achieves
steady state more swiftly and in less time.

Lastly, the spatial distribution of Gilad and its simplified model is compared and
a sketch map of their spatial distribution is given in Fig. 15. This figure indicates that
the periodicity of the spatial distribution of vegetation in the Gilad model is more
regular compared with the simplified model (blue solid line in the figure). At the
same time, we discover that the soil water content of the simplified model does not
fluctuate significantly at different locations in space (Fig. 15b, orange dash line), which

123



   50 Page 24 of 30 G.-Q. Sun et al.

(a) t=1 (b) t=30 (c) t=50 (d) t=200

(a1) t=1 (b1) t=200 (c1) t=300 (d1) t=600

Fig. 13 Snapshot of spatial distribution of vegetation at different times, in which the first row is Gilad
model and the second row is simplified model. With the evolution of time, the vegetation distribution of
both of them presents a spot pattern structure. The red spots in the figure represent the vegetation with high
biomass and the blue ones represent the vegetation with low biomass. Relevant parameter values involved
can be obtained from Table 7
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Fig. 14 Diagram of average vegetation biomass change over time, where (a) corresponds to Gilad model
and (b) corresponds to simplified model. Over time, the average vegetation biomass tends to be stable and
remains constant

is consistent with the assumptions we made when simplifying the model, that is, the
areas with vegetation coverage (or high vegetation biomass) and without vegetation
coverage (or low vegetation biomass) have the same soil water infiltration rates.

To summary, the comparative study between the Gilad model and its simplified
model shows that the pattern structure of the two models are very similar. However,
due to the difference between the two models, that is, the Gilad model considers the
non-local effects of roots while the simplified model considers the local effects, which
leads to the essential difference in the average biomass and spatial distribution of
vegetation between the two models.
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Fig. 15 Spatial distribution of Gilad model (a) and simplified model (b) after reaching steady state (t =
1000) in one-dimensional domain. The solid blue line represents the biomass of vegetation at different spatial
locations x , the orange dash line represents the soil water content, and the yellow dotted line represents the
surface water content

5 Discussion

In this paper, we mainly analyze the spatial dynamics based on the vegetation-water
model proposed by Zelnik et al. (2015). Firstly, the existence and stability of the
equilibrium points are analyzed, and the conditions of producing Turing pattern are
studied according to Turing instability theory. Secondly, we derive the amplitude
equation by using the method of multi-scale analysis, study the dynamical behavior of
the system near the Turing bifurcation point by using the amplitude equation, and find
out the accurate parameter range of the spatial model which can produce the pattern.
Lastly, we reveal the influences of model parameters including water diffusion and
shading effects on the pattern structures and biomass change of vegetation. Our results
demonstrate that model parameters play a significant role in the spatial dynamics of
vegetation growth.

The main principle of uptake–diffusion feedback is to use the root of vegetation
to absorb water, resulting in concentration difference. In our system, the strength of
uptake–diffusion feedback is reflected in parameter η (water absorption capacity of
vegetation roots) and parameter δw (soil water diffusivity). The results show that the
averagebiomass of vegetationgradually increaseswith the increase ofwater absorption
capacity of vegetation roots, and tends to be stable with the passage of time (Fig. 10).
At the same time, the pattern structure of vegetation also changed: spot pattern →
labyrinth pattern → gap pattern (Fig. 9). We can find that the stronger the uptake–
diffusion feedback, to a certain extent, can promote the growth of vegetation. However,
with the increase of soil water diffusivity, the gap between patches becomes larger and
larger (Fig. 7), that is, the distance between vegetation becomes larger and larger,
which may lead to desertification.

In this work, we find the gradual regime shifts from The regime shifts refers to the
uniform state to gap pattern. abrupt global transitions from one stable state to another
alternative stable state due to small environmental changes or disturbances. Many
studies have shown that this transition may also be gradual in a spatially expanding
ecosystem. In a bistable range, there may be multiple stable hybrid states. Under small
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disturbances, these stable hybrid states can be extended andmerged to alternative stable
states, which leads to this gradual regime shifts (Bel et al. 2012). In 2015, Zelnik et al.
showed this kind of gradual regime shifts by studying the dynamics of Namibian fairy
circle (Zelnik et al. 2015). In 2017, Zelnik et al. studied the existence and structure of
the localized states in the model and the dynamical behavior nearby, and showed that
the last step of desertification, that is, the transition from spot vegetation to bare soil,
can only occur in a abrupt transition (Zelnik et al. 2017).

The pattern structure of vegetation is always a subject worthy of our study, which
can reflect the elasticity and stability of ecosystem under external disturbance and
environmental pressure. By studying the internal mechanism of vegetation pattern
formation, which can help us protect vegetation and prevent land desertification to a
certain extent. We all know that there are many factors affecting the pattern structure
of vegetation, including natural factors (such as rainfall, temperature, light and other
climatic factors) and human factors (such as deforestation, grazing and so on) (Yu et al.
2006; Wang et al. 2017; Baldi et al. 2013; Giesecke et al. 2017; Dumont et al. 2012;
Raharimalala et al. 2010). At present, most of our models are based on the influence of
rainfall on vegetation pattern. Research on the influence of other factors on vegetation
pattern is relatively scarce (Kefi et al. 2008; Chen et al. 2021). Therefore, in order to
better protect our ecological environment, it is still worth exploring how to establish
a model that considers various influencing factors.
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Appendix A

In this section, we give the specific expressions of some parameter values involved in
the process of deriving the amplitude equation.

N1(x, y) = −λη2w∗
2x

4 − ληx4y − m11x
3y − m11w

∗
2x

3

−m12x
2y − m12w

∗
2x

2 + a11 + 1

w∗
2

xy,

N2(x, y) = −λη2w∗
2x

3 − ληx3y − m21x
2y − m21w

∗
2x

2 + a21
w∗
2
xy,

m11 = λη(4ηb∗
2 − η + 2),

m12 = λ(6η2b∗2
2 − 3η2b∗

2 + 6ηb∗
2 − 2η + 1),
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m21 = λη(3ηb∗
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(
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