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TRANSIENT DYNAMICS OF A STOICHIOMETRIC
CYANOBACTERIA MODEL VIA MULTIPLE-SCALE ANALYSIS\ast 
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Abstract. Cyanobacterial (CB) blooms are becoming a global concern due to the increasing
prevalence of eutrophication. The dependence of CB dynamics on phosphorus and light inputs is
modeled via a stoichiometric approach. The dynamics occur in distinct phases that allow us to make
use of multiple timescale analysis to uncover the driving mechanisms of each phase. As a result,
we are able to approximate the length of time a bloom persists. This framework helps to establish
the use of multiscale methods in stoichiometric models and provides deeper understanding of CB
dynamics.
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1. Introduction. Ecological systems are intricate and require key molecules and
elements to function in an integrative nonlinear way. We can attempt to mechanisti-
cally model ecological systems in terms of these key molecules and elements. Ecolog-
ical stoichiometry, the study of the balance of energy (such as light and carbon) and
elemental resources (such as phosphorus and nitrogen) in ecological interactions and
processes [32], is a powerful tool for studying and interpreting macroscopic phenomena
via microscopic building blocks associated with nutrients and energy in an ecological
system. Ecological stoichiometry has become increasingly popular in theoretical ecol-
ogy [32, 11], and its predictions have been supported by an array of empirical studies
[32, 6, 28, 2, 34]. While classical mathematical models cannot explain many observed
ecological phenomena due to the lack of mechanistic modeling of limiting nutrients
or energy, ecological stoichiometry allows us to mechanistically model the effects of
limiting resources on ecological dynamics and trophic interactions [37, 1, 32, 2, 8, 22].
Some such models include producer-grazer interactions [36, 22], algae-bacteria inter-
actions [37], organic matter decomposition [19], and toxin stress on various trophic
interactions [13, 14, 29]. These studies show the crucial role that ecological stoichiom-
etry has to play in the mechanistic modeling of biological dynamics and the successful
interpretation of many existing paradoxes.

Harmful algal blooms (HABs) have become an issue of global concern in aquatic
ecosystems [28]. HABs occur for a variety of reasons but most commonly are the
result of eutrophication [27]. Eutrophication is described as an excess of nutrients re-
quired for organismal growth in a body of water. In North America, eutrophication is
commonly caused by industrial, agricultural, and urban nutrient runoff [27]. In tem-
perate regions these anthropogenic sources of nutrient promote the growth of algae
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and, perhaps more important, the growth of cyanobacteria (CB) [28]. Many genera
of CB produce toxins, called cyanotoxins, which are harmful to humans, agriculture,
and the aquatic dynamics within lakes and water bodies. A CB bloom can be detri-
mental to the aquatic ecosystem, causing toxification and anoxia. This results in low
productivity of the ecosystem [28]. For these reasons it is important to understand
how anthropogenic nutrient inputs and eutrophication influence HAB longevity and
severity.

The majority of temperate lakes are stratified, meaning they are separated into
two distinct thermal layers by a thermocline. The hypolimnion is the cold and stag-
nant layer, with little to no solar energy, which lies underneath the thermocline.
Above the thermocline is the warmer, well-mixed, and more active layer called the
epilimnion. Availability of sunlight in the epilimnion allows phytoplankton to grow
provided there are sufficient nutrients available. Phosphorus is the most common
limiting nutrient in temperate lakes, followed by nitrogen. Nutrients can be added
to the water column through several distinct mechanisms, such as a slow mixing be-
tween stratified layers, inputs from rivers, rain or snowmelt runoff, and industrial
or agricultural runoff [27]. Since phytoplankton growth depends on both light and
available nutrients, we must also consider the stoichiometry of the phytoplankton
when formulating models. Furthermore, the transient dynamics of the phytoplankton
depend heavily on the initial nutrient concentration. Several models only consider
the stratified water column when investigating phytoplankton dynamics [15, 24, 39].
Other models consider light limitation [23, 15]. Few have considered stratification,
light limitation, and the stoichiometry of phytoplankton [37, 2].

Often, asymptotic dynamics, such as stability of equilibria or limit cycles, are
the main focus of mathematical model analysis. However, the asymptotic dynamics
can be misleading or uninformative when asking management questions pertaining
to shorter timescales. For this reason transient dynamics, dynamics that occur on a
smaller timescale, should not be overlooked [9]. A slight change in initial conditions
or a perturbation can drastically alter the transient dynamics of an ecosystem. Un-
derstanding the transient dynamics and their sensitivity to changes may be crucial to
management strategies aimed at short-term predictions of ecosystem behavior [9].

The dynamics of CB occur on multiple timescales. It is not uncommon for CB to
persist at a low concentration of biomass for long periods. Once conditions are right,
a fast increase in CB biomass occurs, often resulting in HABs. The blooms can persist
for varied periods of time but often senesce quickly. Furthermore, CB have very small
although varying nutrient-to-carbon ratios. Hence, the measures of internal nutrient
and biomass are different orders of magnitude [38]. All of these factors inspire a
multiple timescale analysis. Fortunately, the multiple timescale analysis allows us to
study the driving mechanisms behind the transient dynamics of CB.

Singular perturbation theory boasts a broad range of biological applications. This
theory is based on the limiting behavior of multiscale dynamics, a common biological
feature. The theory from singular perturbations used for multiple timescales typi-
cally employs asymptotic techniques, such as matching and series expansions [20].
Perhaps most relevant to our study is the theory developed by Neil Fenichel that
gives a geometric interpretation of phase spaces of perturbed systems with relation
to the simpler unperturbed system [7]. This theory allows applied mathematicians
to perform analysis on simplified versions of complex systems and draw conclusions
about the complex system. Furthermore, this theory allows the in-depth study of
the transient dynamics of a system, which is of great importance to ecosystem man-
agement and ecological predictions [9]. Singular perturbation theory is by no means
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new and has been utilized in several milestone models in biology, such as the Van der
Pol oscillator [35, 3], the Hodgkin--Huxley model [12, 31], Michaelis--Menton enzyme
kinetics [17], and, more recently, predator-prey dynamics [30, 10] as well as in nu-
merous applications outside biology. To our best knowledge, no rigorous application
of the theory has yet been applied to stoichiometric models in ecology. In this paper
we provide a rigorous application of multiscale methods to understand the transient
dynamics of a stoichiometric CB model. The mathematical analysis also yields an in-
teresting type of dynamics at the fold curve [10, 20]. That is, the transient dynamics
transition from one slow submanifold to another, as discussed in section 5.

We extend the stoichiometric model of Wang et al. [37] to consider the dynamics
under various initial levels of dissolved mineral phosphorus. The various levels of
dissolved mineral phosphorous are representative of the level of eutrophication. We
notice from the numerical simulation, shown in section 3, that interesting transient
dynamics arise, inspiring a multiple timescale analysis. In section 4 we perform the
multiple timescale analysis and mathematically describe the dynamics presented in
section 3. In section 4 we show that, for certain initial conditions, a ``switch"" in
the dynamics from being light limited to phosphorus limited must occur. In section
6 we approximate the longevity of blooms with regard to the initial eutrophication
level, initial conditions, and model parameters. Finally, we discuss how these results
create a deeper biological understanding of transient CB dynamics and discuss the
mathematical implications in section 7. The results presented in this paper show the
unique application of multiscale methods to stoichiometric models and how useful
they can be in applying the results to real-world systems.

2. Model formulation. In this section we discuss the biological background,
mechanisms, and assumptions used to construct our model. The model consists of
three interconnected variables, B,Q, and P , that represent the concentration of car-
bon biomass of CB, phosphorus cell quota, and concentration of mineral phosphorus,
respectively. To track the rates of change of each variable, we use a system of three
interconnected nonlinear differential equations. The derivation of the model follows
that of Berger et al. [2] and Wang et al. [37].

We assume the dynamics occur in a well-mixed epilimnion with depth zm. We
assume that water exchange with respect to the epilimnion occurs via two mecha-
nisms. First, we assume that water is exchanged between the epilimnion and the
hypolimnion. Second, we assume that water is exchanged between the epilimnion and
the inflow/outflow of rivers, rain runoff, and springs. We assume that both water ex-
change mechanisms occur at rate D. Furthermore, we assume that the concentration
of phosphorus is constant and equal in both the hypolimnion and the inflow, denoted
with pin. The rate of concentration change of CB and phosphorus due to the water
exchange is proportional to the volume of the epilimnion. That is, the amount of
particulates exchanged is related to the proportion of particulates located near the
boundaries. In a larger volume, a smaller proportion of total substrate lies near the
epilimnion boundaries. On the other hand, in a smaller volume, a larger proportion
of substrates in the epilimnion will be exchanged. Hence, the particulate exchange
rate, in and out, is inversely proportional to the depth of the well-mixed epilimnion.

CB lose carbon through respiration, resulting in a decrease of carbon biomass
[38]. Assuming sufficient nutrients, CB photosynthesis and thereby growth depend
on light availability throughout the epilimnion. The light intensity along the water
column is attenuated by cyanobacteria and other suspended particles. Following the
Lambert--Beer law [15], we model the light intensity at a given water depth, s, and
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Table 1
Definitions and values for parameters of system (2.4).

Parameter Meaning Value
for sim-
ulation

Biological values Reference

r Maximum CB-specific
production rate

1 1/day [4]

Qm CB cell quota at which
growth ceases (minimum)

0.004 0.004 gP/gC [4]

QM CB cell quota at which nutrient
uptake ceases (maximum)

0.04 0.04 gP/gC [4]

zm Depth of epilimnion 7 >0 - 10m [16]
\nu r CB respiration loss rate 0.35 0.05 - 0.6/day [38, 2]
D Water exchange rate 0.02 m/day [2]
H Half-saturation coeffi-

cient of light-dependent
CB production

120 120 \mu mol/(m2\cdot s) [4]

\rho m Maximum CB phospho-
rus uptake rate

1 0.2--1 gP/gC/day [2, 4]

M Half-saturation coefficient
for CB nutrient uptake

1.5 1.5 mgP/m3 [4]

Pin

pin Concentration of dissolved
inorganic phosphorus in the
hypolimnion and inflow

5 0 - 150 mgP/m3 [2]

Kbg Background light attenuation 0.3 0.3 - 0.9/m [2, 4]
k Algal-specific light attenuation 0.0004 0.0003 - 0.0004 m2/mg C [2, 4]
Iin Light intensity at water surface 300 300 \mu mol/(m2\cdot s) [4]

CB biomass concentration, B, by

(2.1) L(s,B) = Iin exp [ - (Kbg + kB)s].

The parameters Iin, Kbg, and kb are described in Table 1. The light-dependent CB

growth is modeled with the Monod equation, L(s,B)
L(s,B)+H , which is empirically supported

[18]. However, this function is depth dependent. Thus, applying the well-mixed
assumption, we average the carbon/energy production function over the depth of the
epilimnion. The light-dependent CB growth function is

(2.2) h(B) \equiv 1

zm

\int zm

0

L(s,B)

L(s,B) +H
ds.

This integral is easily evaluated and used in later analysis. The internal phosphorus-
dependent growth function follows the empirically well-tested Droop form, 1  - Qm

Q ,
where Qm is the minimum cell quota. The product of the light and phosphorus-
dependent CB growth functions scales the maximum CB reproduction rate, r, as
rB(1 - Qm

Q )h(B).
Nutrient uptake is a decreasing function of CB cell quota. Uptake is maximal

when the cell quota is at its minimum, Qm, but should cease when the cell quota
is at its maximum, QM . Nutrient uptake follows the empirically supported Monod
form [26], which is a saturating function of dissolved mineral phosphorous. These
assumptions yield the nutrient uptake function

(2.3) \rho (Q,P ) = \rho m

\Bigl( QM  - Q

QM  - Qm

\Bigr) P

P +M
,
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where \rho m and M are the maximum phosphorus uptake rate and the half-saturation
coefficient for CB phosphorus uptake, respectively.

The combination of the above assumptions yields the following stoichiometric CB
model:

(2.4)

\left\{                               

dB

dt
= rB

\Bigl( 
1 - Qm

Q

\Bigr) 
h(B)\underbrace{}  \underbrace{}  

growth limited by P and light

 - \nu rB\underbrace{}  \underbrace{}  
respiration

 - D

zm
B,\underbrace{}  \underbrace{}  

exchange

dQ

dt
= \rho (Q,P )\underbrace{}  \underbrace{}  

replenishment

 - rQ
\Bigl( 
1 - Qm

Q

\Bigr) 
h(B),\underbrace{}  \underbrace{}  

cell quota dilution due to cell division

dP

dt
=

D

zm
(pin  - P )\underbrace{}  \underbrace{}  

P input and exchange

 - B\rho (P,Q).\underbrace{}  \underbrace{}  
P consumption

We also denote the total phosphorus concentration in the system by R = BQ+P .
All parameter definitions and values used throughout this paper are found in Table
1. The parameter values listed are representative of realistic phytoplankton traits.
Global qualitative analysis and bifurcation plots of model (2.4) were discussed by
Wang et al. [37] and will not be restated here. For the purpose of this paper, we are
interested in the transient dynamics for various initial conditions. In particular, we
study how the dynamics depend on the initial phosphorus concentration, as it is a
descriptor of how eutrophic the environment is initially.

3. Model simulation. In this section we simulate model (2.4) for one year to
illustrate the unique qualitative nature of the dynamics. To motivate the analysis of
future sections, we notice abrupt transition layers in B and Q, as seen in Figure 1, that
are now understood to be triggered by a slow change in phosphorus concentration. We
seek to compute the times at which the abrupt transitions will occur. This provides
important insight into understanding bloom longevity. One could easily compute this
time duration numerically, but we show in section 6 that we can approximate the
longevity of the bloom as a function of model parameters and initial conditions.

Figure 1 illustrates the model dynamics simulated over one year. The dynamics
can be described as four separate phases. First is the sudden growth, or onset, of the
CB bloom. This phase is encouraged by rapid uptake of phosphorus, as we discuss
in section 4.2, allowing the CB to grow at a rate near its maximum. Second is the
extended period of time where the bloom is not growing but remains at a high level.
Here, the CB phosphorus uptake is constant, resulting in a slow decrease in available
phosphorus. Also, the CB reach a biomass level where self-shading occurs, causing
their growth to be light limited [38]. The third phase involves the abrupt decrease
in both cell quota and CB. In this phase, the phosphorus concentration has become
essentially depleted. This results in the fourth phase, where all variables tend to a
low equilibrium. We discuss each phase in greater detail in the following sections.

4. Multiple timescale dynamics. In this section we explain mathematically
the mechanisms responsible for the phases and for the transitions between them dis-
cussed in section 3. We begin with a nondimensionalization of model (2.4) given by
(4.1) and determine that the system contains small perturbation parameters. We
proceed by deriving fast and slow subsystems of (4.1). The fast subsystem explains
the abrupt uptake of phosphorus. The slow subsystem allows us to understand the
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Fig. 1. Dynamics of model (2.4) with parameter values listed in Table 1. The dynamics involve
four main phases; (1) the abrupt increase of cell quota and CB biomass, (2) the apparent bloom
phase, (3) the sudden crash of the cell quota and CB biomass, and (4) the low constant phase.
ty = 365 days, and the solid blue portions of the curves represent when light is limiting growth. The
red dotted portions represent when phosphorous is limiting.

transition layers by looking at the unique characteristics of the critical manifold. This
analysis finally allows us to approximate the longevity of the bloom.

4.1. Nondimensionalization. We rescale system (2.4) to achieve dimensionless
variables and parameters. The dimensionless system is given below:

du

d\tau 
= u

\Bigl( 
1 - 1

\gamma v

\Bigr) 1

u+ k1
log

\Bigl( 1 + I

1 + I exp( - u - k1)

\Bigr) 
 - (\alpha + \beta )u(4.1a)

= ug(u, v;\beta ),

\delta 
dv

d\tau 
= (1 - v)

w  - \sigma uv

w  - \sigma uv + \mu 
+ \delta 

\Bigl( 1

\gamma 
 - v

\Bigr) 1

u+ k1
log

\Bigl( 1 + I

1 + I exp( - u - k1)

\Bigr) 
(4.1b)

= f(u, v, w; \delta ),

dw

d\tau 
=  - \alpha \sigma uv  - \beta (w  - 1) = h(u, v, w;\beta ),(4.1c)

with u = kzmB, v = Q
QM

, w = R
pin

= P+BQ
pin

, and \tau = rt. The parameters and their
respective dimensionless quantities are given in Table 2.

This scaling allows all state variables to be of order one. However, \beta and \delta are
smaller than other parameters and will be treated as small independent perturbation
parameters each of which is biologically motivated. The parameter \beta is directly
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Table 2
Dimensionless parameters for system (4.1).

Parameter Definition Value

\alpha \nu r/r 0.35

\beta 
D

rzm
0.0029

\delta 
r(QM  - Qm)

\rho m
0.036

\mu M/pin 0.3

\gamma QM
Qm

10

\sigma 
QM

pinzmk
2.9

k1 zmKbg 2.1

I Iin/H 2.5

proportional to the exchange rate between the hypolimnion, or inflows and outflows,
and the epilimnion. In stagnant or deep stratified lakes, \beta is small. The parameter
\delta is proportional to QM  - Qm, the difference between maximum and minimum cell
quota. The cell quotas are considered small, as the phosphorus-to-carbon ratio of a
single cell is naturally small, even at the maximum [4, 38]. Note that when \beta = 0, the
structure of the system is qualitatively the same as when \beta is nonzero; thus, \beta acts as
a regular perturbation. When \delta = 0, the system is reduced to an algebraic-differential
system; for this reason, we say \delta causes a singular perturbation.

4.2. Fast timescale dynamics. In this section we study the fast system. We
show that the abrupt uptake of phosphorus that motivates the bloom occurs on the
fast timescale and use this to understand the first phase of the dynamics shown in
Figure 1. Furthermore, we obtain the first-order approximation of the system on the
fast timescale, which will then be used to form the uniform first-order approximation.

We introduce the intermediate variable \xi (\beta , \delta ) so that the fast timescale is t1 =
\tau /\xi (\beta , \delta ), where \xi is to be determined. Let U(t1) = u(\xi t1), V (t1) = v(\xi t1), and
W (t1) = w(\xi t1). Then U, V , and W are functions of the fast time variable and are
referred to as the fast variables. The fast system dynamics are then given by the
following system of equations:

(4.2)

1

\xi (\beta , \delta )

dU

dt1
= U

\Bigl( 
1 - 1

\gamma V

\Bigr) 1

U + k1
log

\Bigl( 1 + I

1 + I exp( - U  - k1)

\Bigr) 
 - (\alpha + \beta )U,

1

\xi (\beta , \delta )
\delta 
dV

dt1
= (1 - V )

W  - \sigma UV

W  - \sigma UV + \mu 

+ \delta (1/\gamma  - V )
1

U + k1
log

\Bigl( 1 + I

1 + I exp( - U  - k1)

\Bigr) 
,

1

\xi (\beta , \delta )

dW

dt1
=  - \alpha \sigma UV  - \beta (W  - 1).

We choose \xi (\beta , \delta ) = \delta in order to retain the term involving dV
dt . After applying the

two-parameter asymptotic expansion in \beta and \delta (see Appendix A) for each of the fast
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variables and letting \beta , \delta \rightarrow 0, we obtain the subsystem that describes the first-order
approximation of the fast time variables:

(4.3)

dU0,0

dt1
= 0,

dV0,0

dt1
= (1 - V0,0)

W0,0  - \sigma U0,0V0,0

W0,0  - \sigma U0,0V0,0 + \mu 
,

dW0,0

dt1
= 0.

We let U00(t1) = u(0) and W00(t1) = w(0) in order to satisfy the initial conditions.
There are two possible equilibrium values, V0,0 = 1 and V0,0 = W00/\sigma U00. Note that

(4.4) w(\tau ) - \sigma u(\tau )v(\tau ) \geq 0

and

(4.5) 1/\gamma \leq v(\tau ) \leq 1

are biological restrictions representing the dissolved mineral phosphorus and the cell
quota restrictions, respectively. Of course, these biological restrictions apply to the
fast variables as well. Thus, depending on the initial conditions, at least one of the
equilibria is biologically unfeasible.

Since U00 and W00 are constant, the differential equation for V00 in (4.3) is sepa-
rable and easily solved. The implicit solution is given by

b - 1

1 - a
log(1 - V ) - a - b

1 - a
log(a - V ) = t+ C,(4.6)

where a = W
\sigma U , b = \mu 

\sigma U +a, and C is determined by the initial conditions. Note that the
biological restrictions on the initial conditions and flow ensure that (1 - V ), (a - V ) \geq 0.
The solution to the fast system can only be given implicitly; however, we are still able
to determine several more characteristics of the solution.

If we assume that a > 1, then as t \rightarrow \infty , the left-hand side of (4.6) tends to \infty .
Since V (0) < 1 and dV

dt1
is positive, it is clear that V (t1) is monotone increasing with

a horizontal asymptote V = 1.
We now assume that a < 1. Then as t \rightarrow \infty , the left-hand side of (4.6) tends to

\infty . Since V (0) < a and dV
dt1

is positive, it is clear that V (t1) is monotone increasing
with a horizontal asymptote V = a.

We now conclude that

(4.7) lim
t1\rightarrow \infty 

V00 = min\{ 1, a\} = min

\biggl\{ 
1,

w(0)

\sigma u(0)

\biggr\} 
,

which satisfies the biological restriction (4.4).
To determine concavity, we compute

d2V

dt2
=  - dV

dt
(b - V ) - 2[V 2  - 2bV + ab+ b - a].(4.8)

By Descartes' rule of sign, the quadratic term has either two or zero positive roots.

Hence, d2V
dt2 can change signs either twice or never; this number depends on the dis-

criminant 4b2  - 4(ab+ b - a). The zeros occur at

V = b\pm 
\sqrt{} 
b2  - ab - b+ a(4.9)

= b\pm 
\sqrt{} 
(b - a)(b - 1)(4.10)
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Fig. 2. First-order approximation of cell quota (V00) dynamics on the fast timescale for two
different sets of initial conditions with parameter values given in Table 2. The dotted curve shows

the dynamics for
w(0)
\sigma u(0)

< 1 and the solid curve for
w(0)
\sigma u(0)

> 1. On the fast timescale, the CB

biomass (U00) and total phosphorus (W00) remain constant at their initial values.

and at equilibria. Thus, if b < 1, then there are no real roots. Furthermore, if b \geq 1,
then two positive roots appear. However, it is easily verified that b\pm 

\sqrt{} 
(b - a)(b - 1) >

min\{ 1, a\} , and recalling that 1/\gamma \leq V \leq min\{ 1, a\} , we conclude that there are no

inflection points in the domain. Furthermore, it is easy to see that d2V
dt2 < 0 for

1/\gamma < V < min\{ 1, a\} . Hence, V (t) is concave down in its domain. The dynamics of
V00 for each case are shown in Figure 2.

4.3. Slow timescale dynamics. In this section we study the slow system. We
show that the growth of CB is motivated by its fast P uptake and is dependent on the
available P to sustain its growth. We show that once the P concentration becomes
too low, the bloom can no longer be sustained. This is mathematically described as
a transition from one submanifold of the critical manifold to another. Furthermore,
we obtain the first-order approximation of the system on the slow timescale and will
later use this to obtain a uniform first-order approximation.

We assume that the slow timescale is given by t2 = \tau . Again, applying the
asymptotic expansion (see Appendix A) to the slow variables and letting \beta , \delta \rightarrow 0,
we arrive at the following slow system:

(4.11)

du00

dt2
= u00

\Bigl( 
1 - 1

\gamma v00

\Bigr) 1

u00 + k1
log

\Bigl( 1 + I

1 + I exp( - u00  - k1)

\Bigr) 
 - \alpha u00

0 = (1 - v00)
w00  - \sigma u00v00

w00  - \sigma u00v00 + \mu 
,

dw00

dt2
=  - \alpha \sigma u00v00.

The slow system becomes an algebraic-differential system constrained by the set sat-
isfying

(4.12) 0 = (1 - v00)
w00  - \sigma u00v00

w00  - \sigma u00v00 + \mu 
.
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Fig. 3. Slow scale dynamics of (4.15) with parameter values given in Table 2 and initial
conditions such that w00/\sigma u00 > 1. In this case, v00 = 1, and the dynamics occur on M0

0 .

The critical manifold, M0, is a subset of the set given by (4.12). The set (4.12) can be
divided into two submanifolds. Furthermore, the variables are only defined within the
biological domain \scrD = \{ (u, v, w)| w  - \sigma uv \geq 0, 1

\gamma \leq v \leq 1, u, w \geq 0\} . Thus, relevant
manifolds and submanifolds are within \scrD . We define the submanifolds as

M0
0 = \{ (u, v, w) : v00 = 1\} \cap \scrD ,(4.13)

M1
0 = \{ (u, v, w) : w00  - \sigma u00v00 = 0\} \cap \scrD .(4.14)

Furthermore, let \scrC = M0
0 \cap M1

0 = \{ (u, v, w) : w = \sigma u, v = 1\} . Note that M0
0 \cup M1

0 =
\{ (u, v, w) : 0 = (1  - v00)

w00 - \sigma u00v00

w00 - \sigma u00v00+\mu \} \cap \scrD . Also, on M0
0 , the restriction (4.4)

is equivalent to w00

\sigma u00
\geq 1. We initially study the dynamics on each submanifold

separately.

4.3.1. Dynamics on \bfitM \bfzero 
\bfzero . Here, we examine the dynamics of system (4.11)

restricted to the submanifold M0
0 . On M0

0 , v00 = 1, and we write system (4.11) as

(4.15)

du00

dt2
= u00

\Bigl( 
1 - 1

\gamma 

\Bigr) 1

u00 + k1
log

\Bigl( 1 + I

1 + I exp( - u00  - k1)

\Bigr) 
 - \alpha u00,

dw00

dt2
=  - \alpha \sigma u00.

The trivial equilibrium, u00 = 0, is unstable when (1  - 1
\gamma )

1
k1

log 1+I
1+I exp ( - k1)

> \alpha ,

which is true for the parameter values considered. That is, u00 will remain positive
for all time, forcing w00 to diverge to negative infinity. Figure 3 shows the dynamics
of this case for appropriate initial conditions. For appropriate initial conditions, these
dynamics will eventually violate the biological restriction (4.4). However, we show in
later sections how this violation is avoided by allowing the dynamics to switch to the
submanifold M1

0 .

4.3.2. Dynamics on \bfitM \bfone 
\bfzero . Here, we examine the dynamics of system (4.11)

restricted to the submanifold M1
0 . On M1

0 , w00 = \sigma u00v00, and we write system



TRANSIENT DYNAMICS OF A CYANOBACTERIA MODEL 1233

0 10 20 30 40

0

0.1

0.2

0 10 20 30 40

0.1

0.15

0 10 20 30 40

0

0.05

0.1

Fig. 4. Slow scale dynamics given by system (4.16) with parameter values given by Table 2 and
initial conditions such that w00/\sigma u00 < 1. Here, v00 = w00/\sigma u00, and the dynamics occur on M1

0 .

(4.11) as

(4.16)

du00

dt2
= u00

\Bigl( 
1 - 1

\gamma w00/\sigma u00

\Bigr) 1

u00 + k1
log

\Bigl( 1 + I

1 + I exp( - u00  - k1)

\Bigr) 
 - \alpha u00,

dw00

dt2
=  - \alpha w00.

In this case, w00 will decay to zero. The term (1  - 1
\gamma w00/\sigma u00

) is always positive;

however, as w00 decays, (1  - 1
\gamma w00/\sigma u00

) will become increasingly small. Eventually,

 - \alpha u00 will dominate, forcing u00 to also tend to zero. Note that we are not concerned
with any singularity, as we focus on M1

0 with the restriction (4.5). Numerically, this
can be seen in Figure 4.

4.4. Asymptotic matching. We now satisfy the asymptotic matching condi-
tions that are required to ``glue"" the fast and slow dynamics together. By satisfying
the matching conditions, we generate the first-order uniform approximation of sys-
tem (4.1). We additionally show that for a given initial condition, only one of the
cases discussed in section 4.3 can satisfy the matching conditions. To obtain a first-
order uniform approximation, the following asymptotic matching conditions must be
satisfied [20]:

lim
t1\rightarrow \infty 

U00(t1) = lim
t2\rightarrow 0

u00(t2) = um,(4.17a)

lim
t1\rightarrow \infty 

V00(t1) = lim
t2\rightarrow 0

v00(t2) = vm,(4.17b)

lim
t1\rightarrow \infty 

W00(t1) = lim
t2\rightarrow 0

w00(t2) = wm.(4.17c)
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The uniform approximations are then given by

u
(u)
00 (t2) = U00(t2/\delta ) + u00(t2) - um,(4.18a)

v
(u)
00 (t2) = V00(t2/\delta ) + v00(t2) - vm,(4.18b)

w
(u)
00 (t2) = W00(t2/\delta ) + w00(t2) - um.(4.18c)

In section 4.2 we show that limt1\rightarrow \infty V00(t1) = min\{ 1, w(0)
\sigma u(0)\} . Also, since U00 and V00

are constant, limt1\rightarrow \infty U00(t1) = u(0) and limt1\rightarrow \infty W00(t1) = w(0). Thus, in order
to satisfy the matching conditions (4.17), we require limt2\rightarrow 0 u00(t2) = u(0) = um,

limt2\rightarrow 0 w00(t2) = w(0) = wm, and limt2\rightarrow 0 v00(t2) = min\{ 1, w(0)
\sigma u(0)\} = vm. It is clear

that conditions (4.17a) and (4.17c) can be easily satisfied by adjusting the initial
conditions of the slow system.

Now, if w(0)
\sigma u(0) > 1, then vm = 1. This means that as t2 tends to zero, v00 must

tend to one. Hence, for small t2, the dynamics must be restricted to M0
0 . However,

eventually condition (4.4) will be violated. We address this issue in the next section.

Alternatively, if w(0)
\sigma u(0) \leq 1, then vm = w(0)

\sigma u(0) . Thus, for small t2, the dynamics must be

restricted to M1
0 to avoid violating (4.4). Unfortunately, the solution for u00 can only

be given implicitly. However, we can still apply the matching conditions to obtain the
first-order approximation numerically.

4.5. The ``switch"" from \bfitM \bfzero 
\bfzero to \bfitM \bfone 

\bfzero . In this section we address the issue that
if the slow system dynamics are restricted to M0

0 , then eventually the condition (4.4)
is violated. To maintain the inequality (4.4), we allow the dynamics to switch from
M0

0 to M1
0 at some point in time. The dynamics are shown in Figure 5.

We assume that w(0)
\sigma u(0) > 1; then the solution to system (4.11) is restricted to M0

0

to match with the inner solution. However, it is clear that u00 will tend to the stable
positive equilibrium, resulting in w00 decreasing and eventually violating condition
(4.4). Since w00 is decreasing to zero, v00 is held constant at one, and u00 tends
toward a positive equilibrium, there must exist a time, ts, when w00 = \sigma u00v00. If the
slow dynamics, governed by system (4.11), remain on M0

0 for t > ts, then condition
(4.4) is violated for all t > ts.

However, at time ts, w00 = \sigma u00v00, and this point is on the curve \scrC = M0
0 \cup M1

0 .
Thus, to ensure that the biological conditions remain satisfied for all time, we require
the slow system to undergo a switch. In other words, the dynamics of the slow
timescale are governed by system (4.11) restricted to M0

0 for time t \leq ts and restricted
to M1

0 for time t > ts. For t > ts, v00 is no longer restricted to be equal to one, and

the equilibrium equation for u00 changes. If w(0)
\sigma u(0) \leq 1, then the slow dynamics are

restricted to M1
0 , and no conditions will be violated; hence, no switch is necessary.

The approximation is now able to capture the sudden decrease found in the dy-
namics. We explain this biologically as a switch that occurs. The switch happens
once the nutrient uptake is limited by the cell quota or by the available nutrient. The
case in section 4.3.1 assumes that the available nutrient is ample; thus, the cell quota
will be high. The case in section 4.3.2 assumes that the available nutrient is limited;
thus, the cell quota and CB biomass will be low.

When allowing the switch, we are able to define u00, v00, and w00 such that no
biological restrictions are broken. If the slow dynamics are restricted to M0

0 for t2 \leq ts
and restricted to M1

0 for t2 > ts, then (4.4) is not breached, and we are able to form



TRANSIENT DYNAMICS OF A CYANOBACTERIA MODEL 1235

0

0.05

0.1

0

0.5

1

5 10 t
s

20 25 30

0

0.5

1

Fig. 5. Dynamics of the uniform approximation and simulation of the full system for initial

conditions such that
w(0)
\sigma u

> 1. The dotted line shows the first-order uniform approximation of
system (4.1) given by (4.18). Recall that the dynamics undergo a ``switch"" at time ts. The solid
line shows the dynamics of the full system (4.1).

the uniform approximation discussed in section 4.4. Figure 5 shows the first-order
approximation compared to the numerical solution.

If the initial conditions are such that w(0)/\sigma u(0) \leq 1, then by restricting the
dynamics to M0

0 on the slow timescale, we cannot satisfy the matching conditions.
Hence, the slow dynamics are governed by (4.16), and the system does not switch.
Figure 6 shows the approximation in this case.

5. Geometry of the critical manifold. In this section we combine the above
sections to understand analytically and visually the mechanisms that drive the dy-
namics discussed in Figure 1. We show that the ``switch"" discussed in section 4.5
is motivated by a loss of hyperbolicity of M0

0 and M1
0 , both of which are subsets

of the critical manifold M0. Biologically, this is related to the gradual depletion
of available phosphorus. Recall that the system (4.1) is defined on the domain
\scrD = \{ (u, v, w)| u,w \geq 0, w  - \sigma uv \geq 0, 1

\gamma \leq v \leq 1\} and that functions g, f and h

are defined in (4.1a), (4.1b), and (4.1c), respectively.

5.1. Characteristics of the submanifolds. Here, we look at the reduced sys-
tem given by (4.11). The variables u, v, w are confined by the equation
(1  - v) w - \sigma uv

w - \sigma uv+\mu = 0 as they flow on the slow timescale. We show the hyperbolic-

ity criterion of the two sets M0
0 and M1

0 . The critical manifold, M0, is contained in
the set f(u, v, w; 0) = 0.
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Fig. 6. Dynamics of the first-order uniform approximation and simulation of the full system for

initial conditions such that
w(0)
\sigma u

\leq 1. The dotted line shows the first-order uniform approximation
of system (4.1) given by (4.18). Recall that the dynamics do not undergo a ``switch"" in this case.
The solid line shows the dynamics of the full system (4.1).

5.1.1. Hyperbolicity of \bfitM \bfzero 
\bfzero . To determine the hyperbolicity of M0

0 in the
system's domain, we examine the eigenvalues of

\partial f

\partial v
(u, v, w; 0)| M0

0
=

\partial 

\partial v
(1 - v)

w  - \sigma uv

w  - \sigma uv + \mu 

\bigm| \bigm| \bigm| 
M0

0

(5.1)

=
(\sigma u - w)

(w  - \sigma u+ \mu )
.(5.2)

It is convenient that the manifold M0
0 is normally hyperbolic in the entire domain,

except along the curve described by \scrC . Furthermore, we notice that the eigenvalues of
\partial f
\partial v (u, v, w; 0)| M0

0\cap \scrD have negative real parts everywhere except on the curve \scrC . This

implies that M0
0 has a three-dimensional stable manifold W s(M0

0 ) [10] and a two-
dimensional unstable manifold Wu(M0

0 ) that we conjecture to be M0
0 itself given the

dynamics of the fast system.

5.1.2. Hyperbolicity of \bfitM \bfone 
\bfzero . Likewise, we examine the hyperbolicity of the

submanifold M1
0 on \scrD by determining the eigenvalues of \partial f

\partial v (u, v, w; 0)| M1
0
. From

previous calculations,

\partial f

\partial v
(u, v, w; 0)| M1

0
=

\partial 

\partial v
(1 - v)

w  - \sigma uv

w  - \sigma uv + \mu 

\bigm| \bigm| \bigm| 
M1

0

(5.3)

=
(\sigma uv  - w)(w  - \sigma uv + \mu ) + \sigma \mu u(v  - 1)

(w  - \sigma uv + \mu )2

\bigm| \bigm| \bigm| 
M1

0

=
\sigma \mu u(v  - 1)

\mu 2
.(5.4)
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Fig. 7. Geometric orientation of M0
0 in burgundy and M1

0 in pink. Trajectories for various

initial conditions are shown. Trajectories with initial conditions such that
w(0)
\sigma u(0)

> 1 are in black

and in blue (dashed) otherwise. All trajectories start away from M0
0 and M1

0 . The double arrow
indicates the fast dynamics (away from M0

0 and M1
0 ) and the single arrow the slow dynamics (on

or near M0
0 or M1

0 ). The curve \scrC indicated in dark red (dotted) is the curve where hyperbolicity is
lost on each manifold. When the trajectories approach \scrC , the dynamics switch from M0

0 to M1
0 as

discussed in section 4.5.

Thus, it is clear that the manifold M1
0 is hyperbolic on the set defined by \scrD \setminus (\{ v =

1\} \cup \{ u = 0\} ). Again the eigenvalues have negative real parts where M1
0 is hyper-

bolic, implying that M1
0 has a three-dimensional stable manifold W s(M1

0 ) and a
two-dimensional unstable manifold Wu(M1

0 ) [10] that we conjecture to be M1
0 itself.

Figure 7 shows the visual representation of the manifolds and corresponding dy-
namics. First, we note that the dynamics initially tend toward M0

0 . This is the fast
timescale dynamics discussed in section 4.2. If the initial conditions are such that no
switch needs to occur, the fast dynamics are ``cut off"" by M1

0 and approach M1
0 in-

stead. Finally, we can see that the dynamics on M0
0 transition to M1

0 as it approaches
the curve \scrC . This figure illustrates where the ``switch"" occurs geometrically and the
role of the fast timescale.

6. Approximation of the switching time. Here, we reexamine the slow sys-
tem (4.1). In particular we study the dynamics restricted to M0

0 to better study
the switching time, ts. That is, we are interested in approximating the time it takes
for the dynamics to intersect the curve \scrC . We can numerically compute ts from the
numerical solutions of system (4.15). Unfortunately, it is impossible to write ts as an
explicit function of model parameters without making certain approximations.

By graphical inspection, we observe that the function ug(u, 1; 0) resembles a qua-
dratic polynomial. In the region we are concerned with, v00 = 1. Hence, we can



1238 HEGGERUD, WANG, AND LEWIS

0 0.2 0.4 0.6 0.8

-2

0

2

4

6

8

10

12

10
-3

Fig. 8. Comparison of the curves ug(u, 1; 0) (dotted line) and its approximation au(u  - u\ast )
(solid line) given by (6.1).

postulate that the approximation is of the form au2 + bu+ c. We further know that
u = 0 satisfies ug(u, 1, 0) = 0 [37]. Hence, in our approximation, c = 0. Furthermore,
as shown by Wang et al. [37], g(u, 1, 0) = 0 has a positive unique solution. Thus, we
can rewrite the approximation in the form

(6.1) ug(u, 1; 0, 0) \approx au(u\ast  - u),

where u\ast is the mentioned positive solution, which also represents the biomass during
a bloom, and a is to be determined. We determine a by equating the derivatives at
u = 0. In other words, au(u\ast  - u)\prime | u=0 = ((ug)\prime | u=0. Then we obtain

a =
\Bigl[ \Bigl( 

1 - 1

\gamma 

\Bigr) 1

k1
log

\Bigl( 1 + I

1 + I exp( - k1)

\Bigr) 
 - \alpha 

\Bigr] 1

u\ast .

Figure 8 shows the comparison between ug(u, 1; 0) and the approximation.
Now we can form an approximation of system (4.15) where v00 = 1. We denote

with a tilde the approximation of the first-order solution (i.e., \~u \approx u00):

(6.2)

d\~u

dt2
= a\~u(u\ast  - \~u),

d \~w

dt2
=  - \alpha \sigma \~u.

We solve the first differential equation for \~u as

(6.3) \~u =
Cu\ast eau

\ast t2

1 + Ceau\ast t2
,

where C = u(0)/(u\ast  - u(0)). Then, solving for \~w from the second differential equation,
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we obtain

d \~w

dt
=  - \alpha \sigma 

Cu\ast eau
\ast t

1 + Ceau\ast t
,(6.4)

\~w +B =

\int 
 - \alpha \sigma 

Cu\ast eau
\ast t

1 + Ceau\ast t
dt,(6.5)

\~w +B =
 - \alpha \sigma 

a
log(1 + Ceau

\ast t),(6.6)

where B =  - \alpha \sigma 
a log(1 + C) - w(0) in order to satisfy initial conditions; ts is the time

that satisfies the equation \~w = \sigma \~u, or

(6.7)
 - \alpha \sigma 

a
log(1 + Ceau

\ast t) - B = \sigma 
Cu\ast eau

\ast t

1 + Ceau\ast t
.

Now, recall that C = u(0)
u\ast  - u(0) . Hence, if our initial condition for CB is such that

the ratio between u\ast and u(0) is small, which is generally true when the CB biomass
does not start in a bloom state, we can approximate log(1+Ceu

\ast at) with Ceu
\ast at. Of

course, this is only valid if eu
\ast at does not become large. However, the right-hand side

of (6.7) is bounded and positive. The left-hand side of (6.7) is monotone decreasing
with respect to t and for large values of t is negative. Hence, the solution of (6.7), if
it exists, remains bounded. Thus, the approximation remains valid. We approximate
the time ts by solving (6.7). For simplicity, let x = Ceau

\ast t; then (6.7) becomes

 - \alpha \sigma 

a
x - B = \sigma 

u\ast x

1 + x

\Leftarrow \Rightarrow 0 = x2 +
\Bigl( 
1 +B

a

\alpha \sigma 
+

au\ast 

\sigma 

\Bigr) 
x+B

a

\alpha \sigma 
.

It is easily verified that B a
\alpha \sigma < 0; thus, following Descartes' rule of sign, there is one

positive and one negative solution to the above equation. We are only interested in
the positive solution expressed as

xs =  - 1

2

\Bigl( 
1 +B

a

\alpha \sigma 
+

au\ast 

\sigma 

\Bigr) 
+

\sqrt{} 
1

4

\Bigl( 
1 +B

a

\alpha \sigma 
+

au\ast 

\sigma 

\Bigr) 2

 - B
a

\alpha \sigma 
> 0.

Thus,

ts = log(xs/C)/au\ast .(6.8)

Figure 9 shows the value of ts as a function of the initial condition for w. In this
situation, w(0) is easily related to the level of eutrophication. We further note that ts
is nonnegative for reasonable values of w(0), mainly those satisfying condition (4.4).
Furthermore, the values of ts computed are reasonable when compared to real-life
HAB times [33, 38].

7. Biological interpretation. We now discuss how the analysis allows us to
understand the biological mechanisms on a deeper level. In fact, we extend the results
regarding the dynamics on the critical manifold to relate them back to the singularly
perturbed system (4.1) with \beta = 0. In doing this, we show that the flow of our singu-
larly perturbed system, restricted to the slow manifold, is a small perturbation of the
dynamics covered in the subsystem analysis. Also, the stable and unstable manifolds
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Fig. 9. Switching time ts as a function of w(0). The initial condition w(0) serves as a proxy
for initial level of eutrophication. The solid curve gives ts computed using the approximation given
in (6.8). The dashed and dotted curves give ts as the implicit solution of (6.7) and numerical value
from simulations of system (4.1) for given values of w(0), respectively.

of the reduced system and the full system can be related by a small perturbation. We
refer the reader to Appendix B.1 for the details. As discussed in Appendix B.1, we
conclude that the biological interpretation of the reduced system is also applicable to
the full system.

First, we assume w(0)
\sigma u(0) > 1, which implies that phosphorus is not limiting. The

fast system (4.3) has V00 approaching 1. To satisfy the matching conditions, we require
the slow dynamics to be restricted to M0

0 initially. M0
0 is described as the surface

where cell quota is maximal, which is biologically consistent with the assumption of
sufficient phosphorus. Now, the slow scale dynamics are governed by (4.11) restricted
toM0

0 . We have shown that u00 approaches a positive equilibrium while w00 decreases.
Biologically, since there is sufficient phosphorus, it is clear that CB will grow until
growth is limited by light. Also, we expect the total phosphorus to decline as it is being
exchanged. Eventually, at time ts, w00 will have decreased such that w00 = \sigma u00v00.
This is also the point in time where the flow on M0

0 intersects M1
0 . Biologically,

we describe this as the point where phosphorus becomes limiting. At ts, the slow
dynamics switch and are now governed by (4.11) restricted to M1

0 . We describe
manifold M1

0 as being phosphorus limited; thus, we expect and observe CB collapse.
Figure 7 shows these dynamics with respect to the manifolds. Figure 5 shows these
dynamics with respect to time. In other words, Figure 5 shows the complete uniform
approximation and its relation to the dynamics of the full system (4.1).

Now, if w(0)
\sigma u(0) < 1, the dynamics are simpler. This initial condition implies, bio-

logically, that phosphorus will be limited. On the fast timescale, we see V00 approach
w(0)
\sigma u(0) , which is less than the maximal cell quota. This implies that nutrient is limit-

ing. However CB can still grow, depending on the nutrient limitation compared to the
initial condition. To satisfy the matching condition, the slow dynamics are restricted
to M1

0 , the limited nutrient manifold. There is no switch on the slow timescale, and
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the CB simply decline along with the total phosphorus. Figure 7 shows this dynamic
with respect to the manifolds, and Figure 6 compares the uniform approximation to
the full system (4.1).

The details in Appendix B.1 allow us to draw the conclusion that the dynamics
of the reduced system are a small perturbation of the dynamics of the full system
with \beta = 0. Hence, we conclude that the biological interpretation of the reduced
system dynamics, described above, is also valid for the dynamics of the full system.
Furthermore, we are able to interpret the geometry of the system biologically, leading
to a deeper knowledge of CB systems.

8. Discussion. CB are incredibly common in freshwater ecosystems. In fact, it
is rare to encounter a freshwater environment where CB are absent. The prevalence
of CB often has a negative impact on water treatment costs, recreation, and aquatic
health. The potential socioeconomic impact of CB motivates the complete under-
standing of their dynamics, in particular their short-term dynamics. Several papers
have successfully gained further insight into algae and CB dynamics [24, 37, 15, 2, 4],
but there is still much more that can be understood. In this paper we attempt to
understand the transient CB dynamics for various eutrophic initial states.

We study the previously established and well-studied stoichiometric models of
Wang et al. [37] and Berger et al. [2]. The mechanistic structure of the model,
as well as the dynamics, lead to a multiple timescale analysis. We find that \delta 
is a small parameter that acts as a singular perturbation. This is not surpris-
ing, as \delta is proportional to the difference between the maximum and minimum
cell quota. The cell quota, Q, measures the phosphorus-to-carbon ratio inside of
a single cell. This ratio is naturally small for almost all living organisms but varies
significantly for CB [38]. The other two variables, B and R, measure concentra-
tions of CB carbon biomass and total phosphorus respectively, which are large com-
pared to the phosphorus-to-carbon ratio of a single cell. Due to the difference of
magnitude between our state variables, it is intuitive that the system yields a mul-
tiscale dynamic. Also, we observe in Figure 1 abrupt transition layers that were
not fully understood. For these reasons, an analysis of multiple timescales is per-
formed.

We have shown that the fast system behaves as follows: Both the CB biomass and
the dissolved phosphorus concentrations are constant, and the cell quota will increase

monotonically toward min\{ 1, w(0)
\sigma u(0)\} . This implies that the P uptake occurs on the

fast timescale, whereas CB growth and nutrient depletion are slower processes.
The slow scale analysis yields an interesting structure of the critical manifolds for

system (4.11). The critical manifold can be broken down into two submanifolds, M0
0

and M1
0 . We interpret M0

0 as representing the dynamics when nutrient is sufficient;
alternatively, M1

0 describes the dynamics when nutrient is insufficient. The two sub-
manifolds are hyperbolic everywhere except near their intersection, which is denoted
as the curve \scrC . If the initial condition has sufficient nutrient, the dynamics will quickly
approach M0

0 . On the other hand, when the initial condition has insufficient available
phosphorus, the dynamics quickly approach M1

0 . When nutrient is sufficient, the cell
quota is maximal, the CB biomass is high, and the CB can grow until phosphorus
is depleted or when the dynamics leave M0

0 by approaching \scrC . When the dynamics,
initially with sufficient nutrient, approach \scrC , an abrupt transition must occur to avoid
biological violations. This transition is described as a switch in the dynamics from
sufficient nutrient to insufficient. This switch is analogous to jump points, or fold
points described in the literature [20, 10]. On M1

0 , available phosphorus is insufficient
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to support a high CB biomass, forcing a crash of the bloom. This insight is consistent
with what is believed to drive CB dynamics. That is, it is commonly believed that a
more eutrophic state will yield larger CB biomass. Furthermore, light is also crucial in
bloom formation but often not the limiting resource [28, 38, 25]. Biologically, the con-
cept of ``sufficient"" nutrient for a population has not yet been adequately described.
This work can help suggest what ``sufficient"" nutrient means from a mathematical
perspective.

Furthermore, the analysis described in sections 4 and 5 makes it possible to com-
pute an approximation for the biologically relevant switching time discussed in section
6. We describe the switching time, ts, approximated by (6.8), as the time it takes
for the flow to transition from the sufficient phosphorus manifold (M0

0 ) to the insuf-
ficient phosphorus manifold (M1

0 ). Given the interpretation of the submanifolds, the
computation of ts allows us to approximate the longevity of a bloom with respect to
reasonable model parameter values. In particular, ts depends on the initial condition
for total phosphorus (Figure 9), which serves as a proxy for the eutrophic state. Our
approximation of bloom longevity is of similar scale to what is observed in real aquatic
ecosystems [33].

Finally, we applied the classical results of Neil Fenichel to relate the dynamics of
the reduced system (4.11) to the dynamics of the full model (4.1) (see Appendix B.1)
[10, 7]. The reduced system allows us to provide a meaningful biological interpretation
of the driving mechanisms, and Fenichel's theorems show that the interpretation is
applicable to the full system.

Our model assumes that the input nutrient from the hypolimnion, rivers, and
runoff is constant. Realistically, the concentrations of inputs are varying, and large
amounts of phosphorus are suddenly added after rainfall events or spring runoff
[28, 33]. Interestingly, our model can easily be extended to account for impulsively
added phosphorus. Figure 10 shows the three-year dynamics when considering large
but varying annual inputs of phosphorus. The impulsive model can make for a more
realistic long-term understanding of the dynamics with respect to the within-year
transient dynamics. Also, it has been shown that for large values of zm, CB will not
persist [37]. This illustrates the importance of epilimnion depth in CB dynamics; how-
ever, we do not consider variations of zm in this analysis. While our model assumes
a stratified lake, many temperate lakes are dimictic or polymictic, meaning stratifica-
tion is broken occasionally throughout the year [16], causing complex changes in the
CB density and nutrient distribution [5]. The factors listed above are important to
CB dynamics and should be considered in future work. Although slight changes of our
results will occur upon consideration of these factors, we expect that the main driving
mechanisms shown here are robust. That is, additional mechanisms will enhance the
reality of our model but would still likely act as perturbations of the reduced models
(4.3) and (4.11), in which the driving mechanisms were established.

Our analysis has shed light on the mechanisms driving certain aspects of CB
dynamics. However, certain aspects are still left to be mathematically explained,
namely, the nonzero low CB biomass phase seen in Figure 1. Our analysis suggests
that the CB biomass will tend to zero, which is not true of the full model and generally
not true biologically. We suspect that considering the perturbation parameter, \beta , to
be nonzero will allow us to understand this phase of the dynamics. However, analysis
of the higher-order approximations is not considered here and should be considered
in the future.

CB are considered primary producers; thus, organisms in higher trophic levels
depend directly on CB dynamics. This study helps build a framework to study tran-
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Fig. 10. Three-year dynamics of system (2.4) with varying phosphorus impulses each year (ty).

sient aquatic dynamics in eutrophic conditions. Future work could include the study
of symbiotic, predator-prey, and competitive interactions that depend on the CB
transient dynamics. Furthermore, cyanotoxins are a large global concern that affect
agriculture, recreation, water treatment, and aquatic organisms. This model can be
extended to consider cyanotoxin production and its influences on aquatic interactions.

To our knowledge, analysis of the form in this paper has not been performed
on any stoichiometric model in ecology. These results are important for future work
in studying the transient dynamics of CB as well as building a framework to study
transient dynamics in other ecological stoichiometry models. Specifically, they are
useful in determining the mechanisms that motivate each aspect of the transient
dynamics.

Appendix A. Two-parameter asymptotic expansion. For a given func-
tion, f(t), we define its two-parameter asymptotic expansion, in beta and \delta , as follows:

(A.1) f(t) =
\sum 
i,j\geq 0

\beta i\delta jfi,j(\tau ) = f0,0 + \beta f1,0 + \delta f0,1 + \beta \delta f1,1 + \cdot \cdot \cdot .

Appendix B. Fenichel's theorems. We begin by constructing a general
singular perturbed system

du

dt
= f(u, v; \epsilon ),(B.1a)

dv

dt
= \epsilon g(u, v; \epsilon ),(B.1b)

where \epsilon is a small parameter and the variable u is considered the fast variable and v
the slow variable. Assume u \in Rk. We denote the critical manifold as \scrM 0, where \scrM 0

is a subset of fixed points of (B.1a), and naturally assume it to be a k-dimensional
manifold. The results of Fenichel can be applied to system (B.1).
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Theorem B.1 (Fenichel's first theorem [10]). Suppose \scrM 0 \subset \{ f(u, v; 0) = 0\} 
is compact, possibly with boundary, and normally hyperbolic. Suppose f and g are
smooth. Then for \epsilon > 0 and sufficiently small, there exists a manifold \scrM \epsilon , \scrO (\epsilon ) close
and diffeomorphic to \scrM 0 that is locally invariant under the flow of the full problem
(B.1).

Theorem B.2 (Fenichel's first theorem [10]). Suppose \scrM 0 \subset \{ f(u, v; 0) = 0\} is
compact, possibly with boundary, and normally hyperbolic. Suppose f and g are smooth.
Then for \epsilon > 0 and sufficiently small, there exist manifolds W s(\scrM \epsilon ) and Wu(\scrM \epsilon )
that are \scrO (\epsilon ) close and diffeomorphic to W s(\scrM 0) and W s(\scrM 0), respectively, and
that are locally invariant under the flow of (B.1)

Note that in the context of system (4.1) the manifolds M0
0 and M1

0 are not
normally hyperbolic. However, by removing a neighborhood of the curve \scrC ,\scrN (\scrC ; \epsilon )
from M0

0 and M1
0 , we create normally hyperbolic manifolds. That is, the manifolds

M0h
0 and M1h

0 defined in section B.1 are normally hyperbolic. Theorems B.3 and B.4
are then direct results of Fenichel's first and second theorems, respectively.

B.1. Fenichel's theorems applied. Here, we apply Fenichel's theorems to
show that the flow of our singularly perturbed system, restricted to the slow manifold,
is a small perturbation of the dynamics covered in the subsystem analysis. Further-
more, the stable and unstable manifolds of the reduced system and the full system
can be related by a small perturbation.

Recall that \beta acts as a regular perturbation parameter of system (4.1). Since
the theory presented in this section is relevant to singular perturbations, we set, for
simplicity, \beta = 0.

Consider the critical manifold M0 \subset M0
0 \cup M1

0 = \{ f(u, v, w; 0, 0) = 0\} \cap \scrD . We
introduce an open epsilon neighborhood of the curve \scrC by \scrN (\scrC ; \epsilon ) = \{ x = (u, v, w) \in 
\scrD | d(x; \scrC ) < \epsilon \} , where 0 < \epsilon \ll 1 and d(x;A) is the least distance from a point x to a
set A. We further denote the manifolds M0h

0 = M0
0 \setminus \scrN (\scrC ; \epsilon ) and M1h

0 = M1
0 \setminus \scrN (\scrC ; \epsilon ).

Now, our critical manifold consists of two hyperbolic sets and a small set near the
nonhyperbolic set.

We can apply the results of Fenichel to obtain the following results.

Theorem B.3 (see [10, 7]). For \delta > 0 and sufficiently small, there exist man-
ifolds M0

\delta and M1
\delta , \scrO (\delta ) that are close and diffeomorphic to M0h

0 and M1h
0 , respec-

tively, that are locally invariant under the flow of the system (4.1) with \beta = 0.

In essence, Theorem B.3 implies that the flow of system (4.1) with \beta = 0, when
restricted M0

\delta or M1
\delta , is an order \delta perturbation of the flow of system (4.11) on the

respective submanifolds M0h
0 or M1h

0 . Furthermore, we can say that the dynamics
on M\delta will remain on M\delta , except perhaps at the boundary of M\delta . We note that the
sets M0

\delta and M1
\delta are, in general, not sets of fixed points, and hence stability of these

manifolds is thought of in a different manner. The following theorem alludes to the
the ``stability"" of our system.

Theorem B.4 (see [10, 7]). For \delta > 0 and sufficiently small, there exist man-
ifolds W s(M0

\delta ) (W s(M1
\delta )) and Wu(M0

\delta ) (Wu(M1
\delta )) that are \scrO (\delta ) close and diffeo-

morphic to W s(M0h
0 ) (W s(M1h

0 )) and Wu(M0h
0 ) (Wu(M1h

0 )), respectively, and that
are locally invariant under the flow of the system (4.1) with \beta = 0.

Since M0
\delta and M1

\delta are not sets of fixed points (unlike M0h
0 and M1h

0 ), we discuss
what the notation of stability means with respect to M0

\delta and M1
\delta . The manifold

W s(M0,1
\delta ) (Wu(M0,1

\delta )) is still referred to as the stable (unstable) manifold. Stability
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(or instability) here means that the flow in W s(M0,1
\delta ) (Wu(M0,1

\delta )) decays to M0,1
\delta in

forward time (backward time) [20, 10]. The details of the these results are shown in
Appendix B.

Theorems and B.3 and B.4 are direct results of Fenichel's first and second theorem,
respectively. The details of Fenichel's theorems are covered in Appendix B.

The above theorems allow us to draw the conclusion that the dynamics of the
reduced system are a small perturbation of the dynamics of the full system with
\beta = 0. Hence, we conclude that the biological interpretation of the reduced system
dynamics is also valid of the dynamics of the full system.
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