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Abstract Cells, the basic units of organisms, consist of multiple essential elements
such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can
strongly restrict cellular and organismal growth. During recent years, ecological mod-
els incorporating multiple elements have been rapidly developed in many studies,
which form a new research field of mathematical and theoretical biology. Among
these models, the one proposed by Loladze et al. (Bull Math Biol 62:1137–1162,
2000) is prominent and has been highly cited. However, the global analysis of this
nonsmooth model has never been done. The aim of this paper is to provide the com-
plete global analysis for the model with Holling type I functional response and perform
a bifurcation analysis for the model with Holling type II functional response.
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1 Introduction

Ecological stoichiometry is the study of the balance of energy (carbon) and multiple
nutrients (such as phosphorus and nitrogen) in ecological interactions (Sterner and
Elser 2002). All organisms are composed of these fundamental elements. The scarcity
of any of these elements can severely restrict organismal growth. Empirical studies
show that plants can be easily limited by nutrient availability, and herbivores are
more nutrient-rich organisms than plants (Elser et al. 2000). The plant nutrient quality
can dramatically affect the growth of herbivorous grazers and may even lead to their
extinction (Urabe et al. 2002). However, historic predator–prey interaction models
only consider energy/carbon flow, usually quantified by population or density. To be
realistic, both food quantity and food quality need to be incorporated in modeling
producer–grazer interactions.

The growing empirical studies of ecological stoichiometry facilitate a series of
newly emerged stoichiometric population models (Andersen 1997; Grover 2002; Hes-
sen and Bjerkeng 1997; Kuang et al. 2004; Loladze et al. 2000; Wang et al. 2007, 2008).
One of the most popular stoichiometric producer–grazer models is the one proposed
by Loladze et al. (2000):

dx

dt
= bx

(
1 − x

min{K , (P − θy)/q}
)

− f (x)y, (1)

dy

dt
= e min

{
1,

(P − θy)/x

θ

}
f (x)y − dy, (2)

where

x is the density of producer (mg C/l),
y is the density of grazer (mg C/l),
b is the intrinsic growth rate of producer (/day),
K is the carrying capacity of producer, which is positively related to light

intensity,
e is the maximal production efficiency of grazer (no unit),
d is the specific loss rate of grazer that includes metabolic losses and

death (/day),
q is the minimal phosphorus:carbon ratio in producer (mg P/mg C),
θ is the constant phosphorus:carbon ratio in grazer (mg P/mg C),
P the total mass of phosphorus in the entire system (mg P/l),
f (x) is the consumption rate of grazer (/day), which is usually one of Holling type

functional responses

In this model, the ratio of two essential chemical elements, phosphorus to carbon,
represents producer quality.

123



Global analysis of a stoichiometric producer–grazer model 903

The model in Loladze et al. (2000) is nonsmooth and has complex dynamics
with multiple internal equilibria, limit cycles, and bistability. Saddle-node bifurcation,
transcritical bifurcation, supercritical and subcritical Hopf bifurcations appear in this
model, especially, at one bifurcation point of light intensity (i.e., K ) both subcritical
Hopf bifurcation and saddle-node bifurcation occur. Loladze et al. (2000) presented
graphical tests for the local stability of all equilibria and plotted a bifurcation diagram
showing how dynamics change as light intensity varies. In this paper, we provide a rig-
orous mathematical analysis for local and global stability results of all equilibria and
the existence of limit cycles. For the model with Holling type I functional response,
we present complete analytical results. For the model with Holling type II functional
response, we provide a rigorous bifurcation analysis for the parameter K .

2 Global analysis of the model with Holling type I functional response

Basic assumptions for the type I model are the following:

(i) f (x) = αx (Holling type I functional response);
(ii) q < θ (biologically reasonable for most plants and their corresponding herbi-

vores);
(iii) e < 1 (due to thermodynamic limitations).

For simplicity, we scale the system by

P/θ → P, q/θ → q, αdt → dt, b/α → b, d/α → d

to obtain the new system

dx

dt
= bx

(
1 − x

min{K , (P − y)/q}
)

− xy � x F(x, y), (3)

dy

dt
= e min {x, P − y} y − dy � yG(x, y). (4)

Here,

F(x, y) = b

(
1 − x

min{K , (P − y)/q}
)

− y =
{

b − bx
K − y, y ≤ P − q K ;

b − bqx
P−y − y, y > P − q K .

G(x, y) = e min{x, P − y} − d =
{

ex − d, x + y ≤ P;
eP − d − ey, x + y > P.

Let

k = min{K , P/q} =
{

K , K < P/q;
P/q, K ≥ P/q,

� = {(x, y) : 0 < x < k, 0 < y < P, qx + y < P}.
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(a) (b)

Fig. 1 When k = K , � is an open trapezoid, while when k = P/q, � is an open triangle

When k = K , � is an open trapezoid (see Fig. 1a). In this case, we define

D1 = {(x, y) ∈ � : y > P − q K , x + y < P},
D2 = {(x, y) ∈ � : y > P − q K , x + y > P},
D3 = {(x, y) ∈ � : y < P − q K , x + y < P},
D4 = {(x, y) ∈ � : y < P − q K , x + y > P}.

When k = P/q, � is an open triangle (see Fig. 1b).

2.1 Basic results

In this section, we prove the dissipativity and the nonexistence of limit cycles.

Theorem 1 (Dissipativity) � is positively invariant for the semiflow generated by
system (3)–(4).

Proof We only prove the invariance for the case k = K since the other case k = P/q
is simpler to prove.

The positive x-axis and the positive y-axis are both invariant. On the right boundary
of �, x = k, 0 ≤ y ≤ P − qk, we have dx/dt = −ky < 0. Therefore, all orbits
starting from � cannot escape � from these three boundaries. To show that solutions
starting from � cannot escape � from the upper boundary, we define

z = qx + y.

Then on the upper boundary, qx + y = P, 0 ≤ x ≤ k, we have

dz/dt = qdx/dt + dy/dt = −(1 − e)qxy − edy,

where we use the assumption (ii), i.e. q < 1 after scaling, which guarantees that all
points (x, y) on the upper boundary satisfy x + y > P and thus G(x, y) = eP −d−ey
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Global analysis of a stoichiometric producer–grazer model 905

on the upper boundary. According to the assumption (iii), e < 1, we have dz/dt < 0
on the upper boundary. Hence, all orbits starting from � will stay in � for all forward
times. ��

Theorem 2 System (3)–(4) has no nontrivial periodic solutions in �.

Proof The vector field defined by system (3)–(4) is locally Lipschitz-continuous in �,
which guarantees the existence and uniqueness of solutions of system (3)–(4). How-
ever, this vector field is not C1, so the classical Dulac’s criterion cannot be applied.
Fortunately, there is a generalized Dulac’s criterion for locally Lipschitz-continuous
planar systems

dx
dt

= f (x), x ∈ D ⊂ R
2. (5)

If D is a simply connected, bounded, open subset of R
2, and there exist a C1 function

χ : D → R and a constant c > 0 such that

div(χ(x) f (x)) ≤ −c, a.e. in D,

then every compact limit set of (5) in D consists of equilibria and every compact
invariant set of (5) in D is a set of equilibria and heteroclinic orbits containing no
heteroclinic cycles, for instance, see Theorem 9 in Sanchez (2005); here a heteroclinic
cycle is a Jordan curve that consists of equilibria and heteroclinic (or homoclinic)
orbits of (5).

Similar to Theorem 1, we only consider the case: � is an open trapezoid. Choose

χ(x, y) = 1

xy
.

Simple computations yield that

div(χ(x, y) f (x, y)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−qb
y(P−y)

, in region D1,

−qb
y(P−y)

− e
x , in region D2,

− b
K , in region D3,

− b
K − e

x , in region D4,

where the regions D1, D2, D3, D4 are defined in Fig. 1a. Define c = min{c1, c2, c3,

c4}, where

c1 = min
(x,y)∈D1

(
qb

y(P − y)

)
,

c2 = min
(x,y)∈D2

(
qb

y(P − y)
+ e

x

)
,

c3 = b

K
,

c4 = min
(x,y)∈D4

(
b

K
+ e

x

)
.
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906 X. Li et al.

Fig. 2 The nullclines and
equilibria for K ≥ P/q and
b < P

It is easy to see that c > 0. Hence, the generalized Dulac’s criterion can be applied to
system (3)–(4) in � and thus the proof is completed. ��

2.2 The case K ≥ P/q

Basic facts in this case are as follows:

1. k = min{K , P/q} = P/q (so � is an open triangle).

2. F(x, y) = b − bqx
P−y − y.

3. G(x, y) =
{

ex − d, x + y ≤ P;
(eP − d) − ey, x + y > P.

4. Fx = − bq
P−y < 0, Fy = − bqx

(P−y)2 − 1 < 0.

5. Gx =
{

e, x + y ≤ P;
0, x + y > P.

G y =
{

0, x + y ≤ P;
−e, x + y > P.

We first examine the nullclines of the system.
x-nullcline: x = 0 and F(x, y) = 0, where F(x, y) = 0 implies

y = (1/2)

[
b + P −

√
(b − P)2 + 4bqx

]
� g(x).

If b < P , we have g(0) = b, g(k) = 0. That is, x-nullcline is the positive y-axis
and a monotone decreasing smooth curve connecting the starting point (0, b) and the
ending point (k, 0) (see Fig. 2).

If b ≥ P , then g(0) = P, g(k) = 0, and x-nullcline is the positive y-axis and
a monotone decreasing smooth curve connecting (0, P) and (k, 0) with the excep-
tion of a biologically insignificant point (0, P) (at this point the grazer contains all
phosphorus and thus the producer is absent from the system) (see Fig. 3).
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Global analysis of a stoichiometric producer–grazer model 907

Fig. 3 The nullclines and
equilibria for K ≥ P/q and
P ≤ b < P/(1 − q)

Denote by A the intersection point of the curve: y = g(x) and the line x + y = P ,
then the coordinate of A is

xA = P − b + bq, yA = b − bq.

If b < P
1−q , then xA > 0; if b ≥ P

1−q , then xA ≤ 0.
y-nullcline: y = 0 and G(x, y) = 0.

If d
e < P, G(x, y) = 0 ⇒

{
x = d

e , 0 < y ≤ P − d
e ;

y = P − d
e , d

e ≤ x ≤ d
qe .

That is, in this case

y-nullcline is the positive x-axis and a right-angle line (see Figs. 2, 3).
If d

e = P, G(x, y) = 0 ⇒ y = 0, d
e = P ≤ x ≤ k.

If d
e > P , then for any (x, y) ∈ �, G(x, y) < 0.

Next, we examine the stability of equilibria on the boundary.
To find equilibria, we solve

x F(x, y) = 0,

yG(x, y) = 0.

The boundary equilibria are E0 = (0, 0) and E1 = (k, 0).
To determine the local stability of these equilibria, we consider the Jacobian matrix

of system (3)–(4):

J (x, y) =
(

F(x, y) + x Fx (x, y) x Fy(x, y)

yGx (x, y) G(x, y) + yG y(x, y)

)
.

At the origin, it takes the form J (E0) =
(

b 0
0 −d

)
. Since the determinant is negative,

the eigenvalues have different signs. Thus, the origin E0 is always unstable in the form
of a saddle, whose stable manifold is y-axis and unstable manifold is x-axis.
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908 X. Li et al.

At E1, the Jacobian matrix is

J (E1) =
(

F(k, 0) + k Fx (k, 0) k Fy(k, 0)

0 G(k, 0)

)
=
(−b − b+P

q
0 eP − d

)
.

If eP − d > 0, i.e., d/e < P , then the eigenvalues of J (E1) have different signs.
Thus, E1 is always unstable in the form of a saddle, whose stable manifold is x-axis
and unstable manifold direction is

y = −q(eP − d + b)

b + P
(x − k).

Note that

−q(eP − d + b)

b + P
> −q.

Therefore, the slope of the unstable manifold direction is larger than that of the line
qx + y = P , which is the upper boundary of �, and this implies the unstable manifold
lies inside �. In this case, we can deduce that there are internal equilibria in �.

If eP −d < 0, i.e., d/e > P , then the eigenvalues of J (E1) are both negative, thus
E1 is always a stable node. Moreover, E1 is globally asymptotically stable. In fact,
in this case there are only the boundary equilibria and no internal equilibria. In addi-
tion, there are no nontrivial periodic solutions (by Theorem 2), and the only direction
towards the origin is y-axis, which is invariant. Hence, all orbits will eventually tend
to the equilibrium E1, and E1 is a G.A.S node. Also we can easily deduce this fact by
dy/dt < 0 in the whole phase space �.

The neutral case d/e = P is a bit complicated. In this case, saddle-node bifurca-
tion appears. When xA < d/e < P , system (3)–(4) has only one internal equilibrium
E2 = (d/e, g(d/e)), which is a G.A.S. node (see Theorem 4 below), and we had
shown that E1 is a saddle when d/e < P . If d/e tends to P from the left side, then E2
tends to E1, and d/e = P implies that E2 collides E1; thus, E1 is a saddle-node, and
saddle-node bifurcation appears. Interestingly, all orbits in � also tends to E1 because
the unstable manifold direction does not belong to �. Also, we can obtain this result
by 1) dy/dt < 0 in �; 2) dy/dt = 0 if and only if y = 0, P ≤ x ≤ P/q.

Summarizing the above discussions, we obtain the following theorem.

Theorem 3 The origin E0 is an unstable saddle, and the only direction towards E0
is y-axis. For the stability of the equilibrium E1, there are three cases:

If d/e < P, the equilibrium E1 is an unstable saddle, and the only direction
towards E1 is x-axis;

If d/e > P, the equilibrium E1 is a G.A.S. node;
If d/e = P, the equilibrium E1 is a saddle-node, saddle-node bifurcation appears,

and all orbits in � will eventually tend to the equilibrium E1.

As mentioned before, system (3)–(4) has only one internal equilibrium E2 =
(d/e, g(d/e)) if and only if d/e < P . If d/e < xA = P − b + bq, then E2 lies
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Global analysis of a stoichiometric producer–grazer model 909

below the line x + y = P; if xA < d/e < P , then E2 lies above the line x + y = P;
if d/e = xA, then E2 lies on the line x + y = P (see Figs. 2, 3). Also, the fact that the
intersection point A belongs to the phase space � or not is very important to discuss
the stability of E2. First we will consider the case: xA > 0.

2.2.1 (i) b < P
1−q

Theorem 4 The internal equilibrium E2 is G.A.S. whenever it exists.

1. If 0 < d/e < xA = P − b(1 − q), then E2 is a G.A.S. equilibrium. Define

λ � (1/4)

⎡
⎣b + P + bq

4e
−
√(

b + P + bq

4e

)2

− 2b2q

e

⎤
⎦ (6)

and
μ � g−1(λ) (7)

whenever λ is a real number. Then if d
e < μ, E2 is a G.A.S. focus. If λ is not a

real number, or d
e ≥ μ, E2 is a G.A.S. node;

2. If xA < d/e < P, then E2 is a G.A.S. node, and there exists a heteroclinic orbit
connecting E2 and E1.

3. If d/e = xA, then E2 is a G.A.S. node, and there also exists a heteroclinic orbit
connecting E2 and E1.

Proof For the case 1: d/e < xA, at the equilibrium E2 the Jacobian matrix takes the
form

J (E2) =
(

x Fx x Fy

yGx yG y

)
=
(

− bqx
P−y − bqx2

(P−y)2 − x

ey 0

)

with x = xE2 = d/e, y = yE2 = g(d/e). Its determinant and trace are respectively

DetJ (E2) = ey

[
x + bqx2

(P − y)2

]
> 0, TrJ (E2) = − bqx

P − y
< 0.

Therefore, all eigenvalues of J (E2) have negative real parts, and by Theorems 2 and
3, the equilibrium E2 is G.A.S. To determine E2 is a focus or a node, we need to
determine the sign of the discriminant

�(E2) = b2q2x2

(P − y)2 − 4ey

[
x + bqx2

(P − y)2

]

with x = xE2 = d/e, y = yE2 = g(d/e). In fact,

�(E2) = (b − y)2 − 4ey
[

(b−y)2

bq + (b−y)(P−y)
bq

]

= 4e(b−y)
bq

[
2y2 − (b + P + bq

4e )y + b2q
4e

]
.
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910 X. Li et al.

Define

h(y) = 2y2 −
(

b + P + bq

4e

)
y + b2q

4e

for y ∈ [0, P].
First we consider the case: b < P . Let λ be the smaller root of h(y), i.e.,

λ = (1/4)

⎡
⎣b + P + bq

4e
−
√(

b + P + bq

4e

)2

− 2b2q

e

⎤
⎦

and

μ = g−1(λ).

Note that h(0) > 0, h(b) < 0, thus λ is a real number and λ < b. If λ < yE2 , i.e.
d
e < μ, then h(yE2) < 0 which implies that �(E2) < 0. Thus, E2 is a focus. Con-
versely, if λ ≥ yE2 , i.e. d

e ≥ μ, then h(yE2) ≥ 0 which implies that �(E2) ≥ 0. Thus,
E2 is a node.

For the second case: P ≤ b < P
1−q , we also have that h(0) > 0 and h(b) = b(b −

P) ≥ 0. However since h(P) = (P − bq
4e )(P − b), therefore if b < 4eP

q , h(P) < 0;

if b ≥ 4eP
q , h(P) ≥ 0. Thus, the case h(P) < 0 (or h(y∗) < 0 for some y∗ ∈ (0, P))

is completely same as the first case: b < P, λ is a real number and we can obtain the
same conclusion. If h(P) ≥ 0 and for any y ∈ (0, P), h(y) > 0, then �(E2) ≥ 0
and E2 is a node. Note that in this case λ is not a real number.

For the case 2: P − b(1 − q) < d/e < P, E2 lies above the line x + y = P , and
the Jacobian matrix J (E2) takes the form

J (E2) =
(

− bqx
P−y − bqx2

(P−y)2 − x

0 −ey

)
.

Its eigenvalues are −bqx/(P − y) and −ey, and by Theorems 2 and 3, E2 is a G.A.S.
node. Note that, by Theorem 3, the unstable manifold direction of E1 directs inward.
Thus, there exists a heteroclinic orbit connecting E2 and E1.

For the case 3: d/e = xA = P − b(1 − q), E2 is the same as A and lies on the line
x + y = P . Since Gx and G y are not continuous on this line, we cannot compute the
Jacobian matrix of E2. Also, as in case 2, there exists a heteroclinic orbit connecting
E2 and E1. In addition, the line: xA ≤ x ≤ (P − yA)/q, y = yA is also an orbit that
directs to E2. Therefore, by Theorems 2 and 3, E2 is a G.A.S. node. ��

Let us discuss the case 1 in Theorem 4 more precisely to end this section. First we
consider the second case: P ≤ b < P

1−q . From the proof, we know that h(P) < 0 is

equivalent to b < 4eP
q . Since b < P

1−q , we have a sufficient condition q < 4e/(1+4e)
for h(P) < 0. That is, if q < 4e/(1 + 4e), then h(P) < 0, and λ is a real number.
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Global analysis of a stoichiometric producer–grazer model 911

Fig. 4 The nullclines and
equilibria for K ≥ P/q and
b ≥ P/(1 − q)

Secondly, we show that if q < 4e/(1 + 4e), then λ ≤ yA = b − bq < yE2 , i.e.
μ ≥ xA > d

e . In fact, the smaller root λ of h(y) is less than or equal to b − bq, which
is equivalent to h(b − bq) ≤ 0, i.e.,

�(b − bq) = b2q2 − 4e(b − bq)[P − b + 2bq] ≤ 0,

which implies that q2 − 4e(1 − q)( P
b − 1 + 2q) ≤ 0. Since P

b − 1 > −q (by the con-
dition b < P

1−q ), we have a sufficient condition q2 < 4e(1 − q)q for h(b − bq) ≤ 0,
i.e., q < 4e/(1 + 4e). Therefore, if the condition q < 4e/(1 + 4e) holds, then E2 in
case 1 is a G.A.S. focus. In biology, e is in the scale 0.1 and q is in the scale 0.001,
thus the sufficient condition q < 4e/(1 + 4e) is always valid in reality.

2.2.2 (ii) b ≥ P

1 − q

In this subcase, the intersection point A does not belong to � since xA = P−b(1−q)≤0.
the equilibrium E2 lies above the line x + y = P (see Fig. 4). We obtain the conclusion
by replacing xA with xA = P − b + bq < 0 in Theorem 4:

Theorem 5 If 0 <
d

e
< P, then E2 is a G.A.S. node, and there exists a heteroclinic

orbit connecting E2 and E1.

2.3 The case P ≤ K < P/q

Basic facts in this case are as follows:

1. k = min{K , P/q} = K .
2. � = {(x, y) : 0 < x < k, 0 < y < P, 0 < qx + y < P} is an open trapezoid.
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912 X. Li et al.

Fig. 5 The nullclines and
equilibria for P ≤ K < P/q
and P − q K < b <

(P − q K )/(1 − q)

3. dx/dt = x F(x, y), dy/dt = yG(x, y), where

F(x, y) =
{

b(1 − x
K ) − y, 0 ≤ y ≤ P − q K ,

b(1 − qx
P−y ) − y, P − q K < y < P;

G(x, y) =
{

ex − d, 0 ≤ x + y ≤ P,

(eP − d) − ey, x + y > P.

y-nullcline in this case is completely same as that in Sect. 2.2, which is the positive
x-axis and a right-angle line, and x-nullcline is different from that in Sect. 2.2 accord-
ing to the value of b. When 0 < b ≤ P − q K , x-nullcline is the positive y-axis and
a line segment connecting the starting point (0, b) and the ending point (k, 0). When
b > P − q K , besides the positive y-axis, x-nullcline consists of two parts, one is the
parabola y = g(x), the other is a line y = b(1 − x

K ) (see Fig. 5). In this case, when
P − q K < b < P , the starting point is (0, b); when b ≥ P , the starting point is
(0, P).

Denote by A1 the intersection point of x-nullcline and the line y = P − q K (if it
exists). That is,

A1(x1, y1) :
{

b(1 − x
K ) − y = 0,

y = P − q K .
⇒
{

x1 = K [1 − (P − q K )/b],
y1 = P − q K .

Denote by B the intersection point of the line x + y = P and the line y = P −q K .
That is,

(xB, yB) = (q K , P − q K ).

Denote by A the intersection point of x-nullcline and the line x + y = P in the
domain {(x, y) ∈ � : y ≥ P − q K }. That is,

A(xA, yA) :
{

b(1 − qx
P−y ) − y = 0,

x + y = P.
⇒
{

xA = P − b[1 − q],
yA = b − bq.
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Global analysis of a stoichiometric producer–grazer model 913

Denote by A2 the intersection point of x-nullcline and the line x + y = P in the
domain {(x, y) ∈ � : y < P − q K }. That is,

A2(x2, y2) :
{

x + y = P,

b(1 − x
K ) − y = 0.

⇒
{

x2 = K P−b
K−b ,

y2 = b K−P
K−b .

For the stability of the boundary equilibria, since

J (E0) =
(

b 0
0 −d

)

and

J (E1) =
(−b −K

0 eP − d

)
,

the stability of E0 and E1 are completely same as in Sect. 2.2. We omit the details.
In order to discuss the stability of the internal equilibrium E2, we need to know the

relative position relationship about these intersection points A, A1, A2, B. This case
is divided into four subcases by different ranges of b:

(i) P − q K < b <
P − q K

1 − q
;

(ii) 0 < b ≤ P − q K ;

(iii)
P − q K

1 − q
≤ b <

P

1 − q
;

(iv) b ≥ P

1 − q
.

Note that P−q K
1−q ≤ P in this case, since P ≤ K . In the subcases (i)&(ii), the intersec-

tion A1 is on the left side of B. In the subcases (iii) & (iv), the intersection A1 is on
the right side of the intersection B.

2.3.1 (i) P − q K < b <
P − q K

1 − q

In this subcase, 0 < x1 < xB < x2, and A does not exist (see Fig. 5). For the stability
of the internal equilibrium E2, we have the following theorem:

Theorem 6 1. If 0 < d/e < x1, then E2 is a G.A.S. equilibrium. Moreover, if
d/e < μ (see Theorem 4 for the definition of μ), then E2 is a G.A.S. focus; if λ is
not a real number (see Theorem 4 for the definition of λ), or d/e ≥ μ, then E2 is
a G.A.S. node.

2. If d/e = x1, then E2 is a G.A.S. equilibrium and there exists a heteroclinic orbit
connecting E2 and E1.

3. If x1 < d/e < x2, then E2 is a G.A.S equilibrium. Moreover, if d/e < 4eK 2

b+4eK ,

then E2 is a G.A.S. focus; if d/e ≥ 4eK 2

b+4eK , then E2 is a G.A.S. node.

123



914 X. Li et al.

4. If d/e = x2, then E2 is a G.A.S. node, and there exists a heteroclinic orbit con-
necting E2 and E1.

5. If x2 < d/e < P, then E2 is a G.A.S. node, and there exists a heteroclinic orbit
connecting E2 and E1.

Proof The idea is completely same as that in Theorem 4. In fact, we only need to
prove the case 3, since the others had been proven in Theorem 4. In the case 3, the
Jacobian matrix at E2 has the form:

J (E2) =
(− bx

K −x
ey 0

)
.

Its determinant and trace are DetJ (E2) = exy > 0, TrJ (E2) = − bx
K < 0 respec-

tively. Thus, E2 is a G.A.S. equilibrium. To determine E2 is a focus or a node, we
need to compute the sign of the discriminant

� = b2x2

K 2 − 4exy = b2x2

K 2 − 4bex
(

1 − x

K

)

= x

[
b2x

K 2 + 4be

K
x − 4be

]
= x

[(
b2

K 2 + 4be

K

)
x − 4be

]
.

From this, one can easily obtain the results in the case 3. ��

2.3.2 (ii) 0 < b ≤ P − q K

In this subcase, x1 = K [1 − (P − q K )/b] < 0 (see Fig. 6), then we obtain the result
by allowing x1 < 0 in Theorem 6:

Theorem 7 1. If 0 < d/e < x2, then E2 is a G.A.S equilibrium. Moreover, if

d/e < 4eK 2

b+4eK , then E2 is a G.A.S. focus; if d/e ≥ 4eK 2

b+4eK , then E2 is a G.A.S.
node;

2. If d/e = x2, then E2 is a G.A.S. node.
3. If x2 < d/e < P, then E2 is a G.A.S. node.

2.3.3 (iii)
P − q K

1 − q
≤ b <

P

1 − q

In this subcase, the intersection point A1 is on the right side of the intersection point B.
The intersection point A2 disappears. Furthermore, the intersection A satisfies xA > 0.
When d/e < xA, E2 lies below the straight line x + y = P; when d/e > xA, E2 lies
above the straight line x + y = P (see Fig. 7).

Therefore, we have the following theorem:

Theorem 8 1. If 0 < d/e < xA, then E2 is a G.A.S. equilibrium. Moreover, if
d/e < μ (see Theorem 4 for the definition of μ), then E2 is a G.A.S. focus; if λ is
not a real number, or d/e ≥ μ, then E2 is a G.A.S. node.
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Global analysis of a stoichiometric producer–grazer model 915

Fig. 6 The nullclines and
equilibria for P ≤ K < P/q
and 0 < b ≤ P − q K

Fig. 7 The nullclines and
equilibria for P ≤ K < P/q
and (P − q K )/(1 − q) ≤ b <

P/(1 − q)

2. If d/e = xA, then E2 is a G.A.S. node.
3. If xA < d/e < P, then E2 is a G.A.S. node.

2.3.4 (iv) b ≥ P

1 − q

In this subcase, the intersection point A has negative or zero x-coordinate, that is,
xA ≤ 0 (see Fig. 8). We have the following theorem by discussing the cases 0 <

d/e < xB, xB < d/e < P , and d/e = xB :

Theorem 9 E2 is a G.A.S node.

2.4 The case K < P

This section is completely similar to the previous section, thus we only list the results
without providing details. First, we analyze the stability of the boundary equilibria

E0, E1. At E0, J (E0) =
(

b 0
0 −d

)
, and thus E0 is always a saddle. At E1, J (E1) =
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916 X. Li et al.

Fig. 8 The nullclines and
equilibria for P ≤ K < P/q
and b ≥ P/(1 − q)

(−b −K
0 eK − d

)
. Therefore, if d/e > K , E1 is a G.A.S. node; if d/e < K , E1 is a

saddle; if d/e = K , E1 is a saddle-node.
In order to discuss the stability of the internal equilibrium E2, we need to know the

relative position relationship among these intersection points A, A1, A2, B which are
defined in Section 2.3. This case is also divided into four subcases by different ranges
of b:

(i) 0 < b ≤ P − q K ;

(ii) P − q K < b <
P − q K

1 − q
;

(iii)
P − q K

1 − q
≤ b <

P

1 − q
;

(iv) b ≥ P

1 − q
.

2.4.1 (i) 0 < b ≤ P − q K

In this subcase, all the intersection points do not exist, the x-nullcline y = b(1 − x
K )

lies below the line x + y = P , and E2 also lies below the lines x + y = P and
y = P − q K . Therefore, we have

Theorem 10 If 0 < d/e < 4eK 2

b+4eK , E2 is a G.A.S. focus.

If 4eK 2

b+4eK ≤ d/e < K , E2 is a G.A.S. node.

2.4.2 (ii) P − q K < b <
P − q K

1 − q

In this subcase, the intersection point A1 exists, the x-nullcline y = b(1 − x
K ) lies

below the line x + y = P , and E2 also lies below the line x + y = P . Whether E2 is
above the line y = P −q K depends on if d/e is smaller than x1 = K [1−(P −q K )/b]
or not. Therefore, we have
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Global analysis of a stoichiometric producer–grazer model 917

Theorem 11 1. If 0 < d/e < x1, then E2 is a G.A.S. equilibrium. Moreover, if
d/e < μ (see Theorem 4 for the definition of μ), then E2 is a G.A.S. focus; if λ is
not a real number, or d/e ≥ μ, then E2 is a G.A.S. node.

2. If d/e = x1, then E2 is a G.A.S. equilibrium and there exists a heteroclinic orbit
connecting E2 and E1.

3. If x1 < d/e < K , then E2 is a G.A.S equilibrium. Moreover, if d/e < 4eK 2

b+4eK ,

then E2 is a G.A.S. focus; if d/e ≥ 4eK 2

b+4eK , then E2 is a G.A.S. node;

2.4.3 (iii)
P − q K

1 − q
≤ b <

P

1 − q

We have the following theorem for this subcase:

Theorem 12 1. If 0 < d/e < xA, then E2 is a G.A.S. equilibrium. Moreover, if
d/e < μ (see Theorem 4 for the definition of μ), then E2 is a G.A.S. focus; if λ is
not a real number, or d/e ≥ μ, then E2 is a G.A.S. node.

2. If d/e = xA, then E2 is a G.A.S. node.
3. If xA < d/e < x2, then E2 is a G.A.S. node.
4. If d/e = x2,then E2 is a G.A.S. node.

5. If x2 < d/e < K , then E2 is a G.A.S equilibrium. Moreover, if d/e < 4eK 2

b+4eK ,

then E2 is a G.A.S. focus; if d/e ≥ 4eK 2

b+4eK , then E2 is a G.A.S. node.

2.4.4 (iv) b ≥ P

1 − q

We have the following theorem for this subcase:

Theorem 13 1. If 0 < d/e ≤ x2, then E2 is a G.A.S. node.

2. If x2 < d/e < K , then E2 is a G.A.S equilibrium. Moreover, if d/e < 4eK 2

b+4eK ,

then E2 is a G.A.S. focus; if d/e ≥ 4eK 2

b+4eK , then E2 is a G.A.S. node.

2.5 Summary of results of type I model

It is easy to analyze boundary equilibria. We have many subcases due to the internal
equilibrium E2. As a summary, the stability results of E2 are the following:

When E2 ∈ D1, it is a G.A.S focus or node by the case 1 of Theorem 4.
When E2 ∈ D2, it is a G.A.S node by the case 2 of Theorem 4.
When E2 ∈ D3, it is a G.A.S focus or node by the case 3 of Theorem 6.
When E2 ∈ D4, it is a G.A.S node by the case 5 of Theorem 6.

3 Global analysis of the model with Holling type II functional response

In this section, the consumption rate function f (x) = cx

a + x
follows the Holling type

II functional response. The complexity of the type II model leads to enormously many
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918 X. Li et al.

cases for rigorous analysis, thus it is almost impossible to analyze this model with so
many free parameters. Here we only analyze this model with one varying parameter
K (i.e. light intensity). No rigorous bifurcation analysis has been done for this model.
Our bifurcation analysis provides a rigorous mathematical proof for the numerical
bifurcation diagram of light intensity. Many interesting dynamical phenomena appear
in our bifurcation analysis. For instance, almost all types of bifurcation occur, and
bistability of an internal equilibrium and a limit cycle occurs. We fix all parameters
(except K ) with realistic values: P = 0.025, e = 0.8, b = 1.2, d = 0.25, θ =
0.04, q = 0.004, c = 0.8, a = 0.25; K has the range: 0−2.0. Units can be found in
Loladze et al. (2000) and Wang et al. (2008).

With the above parameter values, we have

f (x) = cx

a + x
= 0.8x

0.25 + x
= 16x

5 + 20x
,

min

{
K ,

P − θy

q

}
= min

{
K ,

25

4
− 10y

}
,

min

{
1,

(P − θy)/x

θ

}
= min

{
1,

5
8 − y

x

}
.

The model becomes

dx

dt
= 6

5
x

(
1 − x

min{K , 25
4 − 10y}

)
− 16xy

5 + 20x
, (8)

dy

dt
= 4

5
min

{
x,

5

8
− y

}
16y

5 + 20x
− 1

4
y. (9)

The phase space � = {(x, y) : 0 < x < K , 0 < y < 5/8, x + 10y < 25/4} is an
open trapezoid. Similar to Theorem 1, one can easily obtain the following result.

Theorem 14 � is a positively invariant set for the flow generated by system (8)–(9).

We first examine the nullclines of the system. To simplify the analysis, we rewrite
system (8)–(9) in the following form:

dx

dt
= x F(x, y),

dy

dt
= yG(x, y),

where

F(x, y) = 6

5

(
1 − x

min{K , 25
4 − 10y}

)
− 16y

5 + 20x

=
⎧⎨
⎩

6
5

(
1 − x

K

)− 16y
5+20x , y ≤ 5

8 − K
10 ,

6
5

(
1 − x

25
4 −10y

)
− 16y

5+20x , y > 5
8 − K

10 ,
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and

G(x, y) = 4

5
min

{
x,

5

8
− y

}
16

5 + 20x
− 1

4

=
{ 64x

25+100x − 1
4 , x + y ≤ 5

8 ,

40−64y
25+100x − 1

4 , x + y > 5
8 .

The partial derivatives of F and G exist almost everywhere on �:

Fx =
⎧⎨
⎩

− 6
5K + 320y

(5+20x)2 , y ≤ 5
8 − K

10 ,

− 24
125−200y + 320y

(5+20x)2 , y > 5
8 − K

10 ;

Fy =
⎧⎨
⎩

− 16
5+20x , y < 5

8 − K
10 ,

192x
(25−40y)2 − 16

5+20x , y > 5
8 − K

10 ;

Gx =
⎧⎨
⎩

64
(5+20x)2 , x + y < 5

8 ,

64y−40
(25+100x)2 , x + y > 5

8 ;

G y =
{

0, x + y < 5
8 ,

− 64
25+100x , x + y > 5

8 .

The x-nullcline is x = 0 and F(x, y) = 0. If y ≤ 5
8 − K

10 , F(x, y) = 0 determines
a parabola

y = g(x) � 3

8
(1 + 4x)

(
1 − x

K

)
.

The maximum of the function g is

ymax = g (K/2 − 1/8) = 3

16
+ 3

8
K + 3

128

1

K
.

If K ≥ 35+2
√

235
76 ≈ 0.863940, then

ymax ≥ 5

8
− K

10
.

That is, if K > 35+2
√

235
76 , the parabola y = g(x) will enter the domain {(x, y) ∈ � :

y > 5
8 − K

10 }. In this case, the x-nullcline is joint with two parts, one is the parabola
y = g(x), the other is a hyperbola:

8y

3 + 12x
+ 4x

25 − 40y
= 1.
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More precisely, if K > 35+2
√

235
76 , the x-nullcline is a piecewise smooth curve

̂ABC DE1 (see Fig. 14), where the coordinate of A is (0, 3/8), the coordinates of B
and D are determined by the equations:

y = 3

8
(1 + 4x)

(
1 − x

K

)
,

y = 5

8
− K

10
,

i.e., the coordinate of B is

(
1

120

[
(60K − 15) −

√
4560K 2 − 4200K + 225

]
,

5

8
− K

10

)

and the coordinate of D is
(

1

120

[
(60K − 15) +

√
4560K 2 − 4200K + 225

]
,

5

8
− K

10

)
,

the coordinate of C is determined by the equations:

F(x, y) = 8y

3 + 12x
+ 4x

25 − 40y
− 1 = 0,

Fx (x, y) = −96y

(3 + 12x)2 + 4

25 − 40y
= 0,

i.e., the coordinate of C is

xc = 2

19
+ 5

√
47

28880
≈ 0.306968,

yc = 11

19
−
√

47

28880
≈ 0.535514,

the coordinate of E1 is (K , 0).
The y-nullcline is simpler, which is the x-axis and a piecewise linear segment

x = 25/156, 0 < y < 145/312,

100x + 256y − 135 = 0, x > 25/156,

determined by G(x, y) = 0 (see Figs. 10, 14).
Now we start to analyze the system according to the parameter K .

• Case 1. 0 < K ≤ 25/156.
• Case 2. 25/156 < K ≤ 89/156.
• Case 3. 89/156 < K < 0.585185.
• Case 4. 0.585185 ≤ K ≤ 0.654664.
• Case 5. 0.654664 < K < 2.
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Fig. 9 The nullclines and equilibria for 0 < K ≤ 25/156

3.1 Case 1. 0 < K ≤ 25/156

The system has only the boundary equilibria E0 = (0, 0), E1 = (K , 0). No internal
equilibria exist in this case (see Fig. 9). E0 is a saddle, E1 is G.A.S. If 0 < K <

25/156, E1 is a G.A.S. node; if K = 25/156, E1 is a saddle-node, transcritical
bifurcation appears, and all orbits in � tend to E1.

3.2 Case 2. 25/156 < K ≤ 89/156

When K = 89/156, the straight line x = 25/156 is exactly the symmetric axis of the
x-nullcline y = g(x). The coordinate of the intersection point F of two straight lines
y = 5/8 − K/10 and x + y = 5/8 is (K/10, 5/8 − K/10) (see Fig. 10).

Since 89/156 < 35+2
√

235
76 , then the x-nullcline is the parabola y = g(x), which

does not enter the domain {(x, y) ∈ � : y > 5
8 − K

10 }. In order to determine the relative
position relationship between the x-nullcline and the straight line 100x+256y−135 =
0, we need to compute the corresponding values of K such that the equations

y = 3/8(1 + 4x)(1 − x/K ),

0 = 100x + 256y − 135

have a unique solution. Only if

K = 24

(121)2 (199 + 8
√

390) ≈ 0.585185,
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Fig. 10 The nullclines and equilibria for 25/156 < K < 89/156

the above equations have the unique solution x = 0.243671 and y = 0.432160.
Since 89/156 < 0.585185, the x-nullcline y = g(x) only intersects the

y-nullcline once, and the system has a unique internal equilibrium E2(xE2 , yE2) =
(25/156, g(25/156)).

Now we analyze the stability of E0, E1, and E2. The boundary equilibria E0 and
E1 are saddles. At the internal equilibrium E2, the Jacobian matrix takes the form

J (E2) =
⎛
⎝− 6x

5K + 320xy
(5+20x)2 − 16x

5+20x

64y
25(1+4x)2 0

⎞
⎠

with x = xE2 = 25/156, y = yE2 = g(25/156). Therefore the determinant and trace
of the matrix J (E2) are respectively

DetJ (E2) = 384

125

1 − x
K

(1 + 4x)2 , (10)

TrJ (E2) = −6

5
x

8x + 1 − 4x

K (1 + 4x)
. (11)

When 25/156 < K < 89/156, then K/2 − 1/8 < xE2 < K . From this, it is easy
to show that DetJ (E2) > 0, TrJ (E2) < 0. Thus, E2 is a L.A.S. equilibrium. In order
to prove that E2 is G.A.S., we consider the orbit starting from the intersection point A
of the line x = 25/156 and the line x + y = 5/8 (see Fig. 10). From the property of

123



Global analysis of a stoichiometric producer–grazer model 923

the vector field, we know that the domain bounded by the orbit arc ÂBC and the line
segment C A is an attracting neighborhood of the equilibrium E2. According to the
theory of a classical predator–prey system, we know that the classical predator–prey
system

dx

dt
= bx

(
1 − x

K

)
− cxy

a + x
(12)

dy

dt
= e

cxy

a + x
− dy (13)

has the only internal equilibrium E2, which is G.A.S., if a
ce/d−1 < K ≤ a + 2a

ce/d−1 ,
for example, see Lemma 4.5 in Hsu et al. (1978). Here in our case,

a

ce/d − 1
= 25/156, a + 2a

ce/d − 1
= 89/156,

since

a = 0.25, c = 0.8, e = 0.8, d = 0.25.

In addition, since

min

{
1,

(P − θy)/x

θ

}
≤ 1,

by the standard comparison argument, any orbit of the original system (8)–(9) starting
from the line x = 25/156 returns to some point of this line whose y-coordinate is less
than that of the orbit of the classical predator–prey system (12)–(13) with the same
initial point. Hence, the equilibrium E2 is G.A.S.

When K = 89/156, then K/2 − 1/8 = xE2 < K . Therefore DetJ (E2) >

0, TrJ (E2) = 0. That is, the Jacobian matrix J (E2) has a pair of pure imaginary
eigenvalues and the internal equilibrium E2 is a center-type equilibrium. Fortunately,
when K = 89/156, the equilibrium E2 is G.A.S. for the classical predator–prey
system (12)–(13) (see Lemma 4.5 in Hsu et al. 1978). As above, using the standard
comparison argument, we know that the internal equilibrium E2 is also G.A.S. for the
original system (8)–(9). In fact, when K = 89/156, Hopf bifurcation occurs.

As a summary, we arrive at the following result.

Theorem 15 When 25/156 < K ≤ 89/156, the system has two boundary equilibria
E0, E1, which are unstable saddles, and one internal equilibrium E2, which is G.A.S.
When K = 89/156, Hopf bifurcation occurs.

3.3 Case 3. 89/156 < K < 0.585185

Theorem 16 When 89/156 < K < 0.585185, the system has two boundary equi-
libria E0, E1, which are unstable saddles, and one internal equilibrium E2, which is
unstable, and has at least one limit cycle (see Fig. 11).
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Fig. 11 The nullclines and equilibria for 89/156 < K < 0.585185

Proof The proof of the first part is similar to Case 2. Since in this case, xE2 <

K/2 − 1/8 < K , from (10)–(11) we know that DetJ (E2) > 0, TrJ (E2) > 0, and
thus all eigenvalues of the Jacobian matrix J (E2) have positive real parts. Hence, E2
is an unstable equilibrium. The existence of the limit cycle is guaranteed by Poincaré–
Bendixson theorem. ��

We note that the uniqueness of the limit cycle has not been established here. The
uniqueness of the limit cycle seems valid in this theorem, but a rigorous proof is needed
to confirm this conjecture.

3.4 Case 4. 0.585185 ≤ K ≤ 0.654664

We first compute the y-coordinate of the equilibrium E2:

yE2 = 3

8

(
1 + 100

156

)(
1 − 25

156

1

K

)
= 8

13
− 50

507

1

K
.

Next the y-coordinate of M (see Fig. 12) is

yM = 5

8
− 25

156
= 145

312
.
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If the y-coordinate of E2 is larger than the y-coordinate of M , that is,

8

13
− 50

507

1

K
>

145

312
,

which is equivalent to

K >
5200

7943
≈ 0.654664,

then the original system has no internal equilibria in the domain {(x, y) ∈ � : x + y <

5/8}. In other words, when 0.585185 < K < 0.654664, the system has three internal
equilibria E2, E3, E4, and the equilibrium E2 lies below the line x + y = 5/8, the
other equilibria E3, E4 lie above this line (see Fig. 12). By simple calculation, we
know that the coordinates of these equilibria are

E2 =
(

25

156
,

8

13
− 50

507K

)
,

E3 =
⎛
⎝xE3 = 1

8

⎡
⎣121

24
K − 1 −

√(
121

24
K − 1

)2

− 13

2
K

⎤
⎦ ,−25

64
xE3 + 135

256

⎞
⎠ ,

E4 =
⎛
⎝xE4 = 1

8

⎡
⎣121

24
K − 1 +

√(
121

24
K − 1

)2

− 13

2
K

⎤
⎦ ,−25

64
xE4 + 135

256

⎞
⎠ .

We also note that when K > 0.654664, then xE3 < 25/156, and the system has at
most one internal equilibrium E4.

Now we discuss the stability of these equilibria. The boundary equilibria E0 and
E1 are unstable saddles. Same as in Case 3, E2 is an unstable equilibrium and all
eigenvalues of J (E2) have positive real parts.

In order to investigate the stability of the equilibria E3 and E4, one can apply the
criteria of local stability in Loladze et al. (2000) directly. For the reader’s convenience,
we here give the details. At E3 and E4, the Jacobian matrices are

J (Ei ) =
(

x Fx x Fy

yGx yG y

)
=
⎛
⎝− 6x

5K + 320xy
(5+20x)2 − 16x

5+20x

y(64y−40)

(25+100x)2
−64y

25+100x

⎞
⎠

with x = xEi , y = yEi , i = 3, 4.
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Fig. 12 The nullclines and equilibria for 0.585185 < K < 0.654664

At E3, since − Fx
Fy

> − Gx
G y

, then

Sign(Det(J(E3))) = Sign(Fx G y − FyGx ) = Sign

(
Fx G y − FyGx

FyG y

)
,

= Sign

(
−Gx

G y
−
(

− Fx

Fy

))

< 0.

Hence, E3 is an unstable saddle.
At E4, since − Fx

Fy
< − Gx

G y
< 0, then Fx < 0 and

DetJ(E4) > 0,

TrJ(E4) = x Fx + yG y < 0.

Hence, E4 is a L.A.S. equilibrium. In addition,

�J(E4) = (TrJ(E4))
2 − 4DetJ(E4) = (x Fx + yG y)

2 − 4xy(Fx G y − FyGx ),

= (x Fx − yG y)
2 + 4xyFy Gx

> 0,

which shows that E4 is a L.A.S. node.
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Same as in Case 3, the system has at least one limit cycle since E2 is unstable.
Further, from the property of the vector field, the equilibrium E2 lies inside the limit
cycle, and the equilibria E3, E4 lie outside the limit cycle.

When K = 0.585185, the x-nullcline y = g(x) and the y-nullcline 100x +256y−
135 = 0 have a unique intersection point E3,4, whose coordinates are (0.243671,

0.432160) (see Case 2). In this case, the system has two internal equilibria E2, E3,4.
E2 lying in the domain {(x, y) ∈ � : x + y < 5/8} is an unstable equilibrium and all
eigenvalues of J (E2) have positive real parts as above. When K tends to 0.585185
from the right, E3 and E4 collide and become the equilibrium E3,4 which lies on the
line x + y = 5/8. Since E3 is an unstable saddle and E4 is a L.A.S. node, then E3,4
is an unstable saddle-node, and saddle-node bifurcation occurs. Here we note that the
node E4 is stable. Moreover, the system has at least one limit cycle surrounding the
equilibrium E2.

When K = 0.654664, the system has two internal equilibria E2,3, E4. When K
tends to 0.654664 from the left, E2 and E3 collide and become the equilibrium E2,3
which lies on the line x + y = 5/8. Since E2 is an unstable equilibrium and all eigen-
values of J (E2) have positive real parts, then E2 is an unstable node or focus. Also,
we note that node and focus with same stability are topologically equivalent. Thus,
from the topological point of view, we can treat the equilibrium E2 as an unstable
node. On the other hand, E3 is an unstable saddle. Therefore, the equilibrium E2,3 is
an unstable saddle-node, which is different from the saddle-node E3,4 since the node
E2 is unstable. E4 lying in the domain {(x, y) ∈ � : x + y > 5/8} is a L.A.S. node.

Next, we show that in this case the system in � has no limit cycles. Suppose that
the system has a nontrivial periodic solution � : (x(t), y(t)) in �. Since the system
has two internal equilibria E2,3 and E4, at least one of them lies inside the domain
bounded by the closed orbit �. We only consider the equilibrium E2,3 lying inside this
domain (see Fig. 13) since the other two cases can be proven similarly. Therefore, �

must intersect the x-nullcline and y-nullcline. Denote the intersections of � and the
x-nullcline as D3 (left) and D2 (right); denote the intersections of � and y-nullcline as
D4 (left) and D1 (right) (see Fig. 13). Since dx

dt > 0 below the x-nullcline y = g(x),

then the orbit � has the counter clockwise direction. On the other hand, since dy
dt < 0

above the y-nullcline 100x + 256y − 135 = 0, we deduce that the y-coordinate of
the point D2 is smaller than that of the point D1, which is a contradiction. Hence, in
this case, there exists a heteroclinic orbit connecting the equilibria E2,3, E4, and E4
is a G.A.S. node. Note that when K > 0.654664, the system in � also has no limit
cycles.

As a summary, we obtain the following theorem.

Theorem 17 When 0.585185 ≤ K ≤ 0.654664, the system has two boundary equi-
libria E0, E1, which are unstable saddles.

When 0.585185 < K < 0.654664, the system has three internal equilibria E2, E3,

E4. E2 lying in the domain {(x, y) ∈ � : x + y < 5/8} is unstable. E3, E4 lying in
the domain {(x, y)� : x + y > 5/8} are an unstable saddle and a stable node, respec-
tively. Moreover, the system has at least one limit cycle surrounding the equilibrium
E2.
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Fig. 13 The nullclines and equilibria for K = 0.654664

When K = 0.585185, the system has two internal equilibria E2, E3,4. E2 lying in
the domain {(x, y) ∈ � : x+y < 5/8} is unstable. E3,4 lying on the line x+y = 5/8 is
an unstable saddle-node. Moreover, the system has at least one limit cycle surrounding
the equilibrium E2.

When K = 0.654664, the system has two internal equilibria E2,3, E4. E2,3 lying
on the line x + y = 5/8 is an unstable saddle-node. E4 lying in the domain {(x, y) ∈
� : x + y > 5/8} is a G.A.S. node. Moreover, the system has no limit cycles.

3.5 Case 5. 0.65466 < K < 2

Theorem 18 When 0.654664 < K < 1.35, the system has two boundary equilibria
E0, E1 which are unstable saddles and one internal equilibrium E4 which is a G.A.S.
node, and the system has no limit cycles. Moreover, there exists a heteroclinic orbit
connecting E1 and E4.

When K = 1.35, E0 is an unstable saddle, E4 and E1 collide and become a G.A.S.
saddle-node E1 (for the studied trapping region), and all orbits of the system in �

tend to E1.
When K > 1.35, the system has only the boundary equilibria E0, E1 but no internal

equilibria. E0 is an unstable saddle, and E1 is a G.A.S. node.

For the case 5, both subcases are plotted in Figs. 14 and 15, respectively.
Note that Figs. 9–15 are for illustration purpose. They are not accurately computed

by a numerical program.
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Fig. 14 The nullclines and equilibria for 0.654664 < K < 1.35

Fig. 15 The nullclines and equilibria for 1.35 < K < 2
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Fig. 16 The bifurcation diagram for the model with Holling type II functional response. In the bistability
region, solutions tend to either the limit cycle or the internal equilibrium E4

3.6 Bifurcation diagram

In Fig. 16, we accurately plot the bifurcation diagram with respect to the light-depen-
dent carrying capacity of producer, K , according to the results of our mathematical
analysis as follows:

• When 0 < K ≤ 25/156, there exist no internal equilibria, and the boundary
equilibrium E1 is G.A.S.

• When 25/156 < K ≤ 89/156, there exists a unique internal equilibrium E2 which
is G.A.S, and all boundary equilibria are unstable.

• When 89/156 < K < 0.585185, there exists a unique internal equilibrium E2
which is unstable, all boundary equilibria are also unstable, and there exists at
least one limit cycle.

• When K = 0.585185, there exist two internal equilibria: E2 and E3,4 are unstable,
and there exists at least one limit cycle.

• When 0.585185 < K < 0.654664, there exist three internal equilibria: E2 and
E3 are unstable, E4 stable; there exists at least one limit cycle; all solutions either
tend to the limit cycle or tend to E4 (bistability).

• When K = 0.645664, there exist two internal equilibria: E2,3 is unstable, E4 is
G.A.S.

• When 0.654664 < K < 1.35, there exists a unique internal equilibrium E4 which
is G.A.S.

123



Global analysis of a stoichiometric producer–grazer model 931

• When 1.35 ≤ K < 2, there exist no internal equilibria, and the boundary equilib-
rium E1 is G.A.S.

Supercritical Hopf bifurcation (at K = 89/156), subcritical Hopf bifurcation (at
K = 0.654664), saddle-node bifurcation (at K = 0.585185, 0.654664), and trans-
critical bifurcation (at K = 25/156, 1.35) occur in the bifurcation diagram. The
bifurcation phenomenon is more complicated at K = 0.65466. As K passes through
0.654664, the limit cycle disappears via subcritical Hopf bifurcation, the internal
unstable equilibrium disappears via saddle-node bifurcation, and all solutions tend to
a globally attracting equilibrium E4 outside the limit cycle. Hence, both subcritical
Hopf bifurcation and saddle-node bifurcation occur at the same point K = 0.654664.

4 Discussion

We analyze the stoichiometric producer–grazer model proposed by Loladze et al.
(2000) with Holling type functional responses. The model is nonsmooth, and thus it has
complicated dynamics. We provide the complete global analysis for the Holling type I
model and perform the bifurcation analysis of the light-dependent carrying capacity for
the Holling type II model. Our bifurcation analysis exhibits more complicated dynam-
ics than the one in the original paper (Loladze et al. 2000). For example, bistability of an
internal equilibrium and a limit cycle occurs in the case 0.585185 < K < 0.654664:
for a fixed light intensity with the corresponding carry capacity between 0.585185 and
0.654664, the herbivore population can either stay in a steady state with high producer
biomass or fluctuate periodically with low producer biomass.

For the type II model, it is intriguing to further examine the bifurcation point at
K = 0.65466 which is caused by the nonsmoothness of the stoichiometric model.
This type of bifurcation may widely exist in stoichiometric models that normally
involve minimum functions due to the Liebig’s Law of Minimum. Besides K , it is
appealing to perform bifurcation analysis for other key parameters such as the total
nutrient availability P and the nutrient:carbon ratio in grazers θ (representing their
nutrient requirement). The complete global analysis of the type II model includes
a considerable number of cases but may provide other fascinating dynamical phe-
nomena besides complex bifurcations. The bifurcation analysis in this paper provides
quite different results when compared to the bifurcation diagram in Loladze et al.
(2000), although parameter values are only slightly different. Hence, the dependence
of dynamical behaviors on parameters seems extremely high. Sensitivity analysis is
needed to evaluate the robustness of all results for this stoichiometric model. For exam-
ple, smaller maximal conversion efficiency of grazer e would move the vertical limb of
the grazer nullcline towards the right and give the declining limb a steeper slope, and
the producer nullcline always remains the same. Whether the bistability of a steady
state and a limit cycle exists for smaller e strongly depends on other parameters.

A more complicated case is the stoichiometric model with Holling type III func-
tional response. Such a model may provide more exciting dynamical behaviors. We
do not incorporate the type III model in this paper because it is not as biologically
relevant as types I and II for producer–grazer interactions.
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The conjecture for the uniqueness of limit cycle in this paper needs a rigorous proof.
The nonsmoothness of the dynamical system makes this proof much more challenging
than a smooth dynamical system.
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