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Abstract
We formulate and analyze a general diffusive predator–prey system with predator maturation
delay. Global asymptotic stability of the predator-free equilibrium and uniform persistence
results are obtained under different conditions on model parameters. We then use Leray–
Schauder degree theory to establish the existence of the spatial heterogeneous steady state.
Moreover, we prove the global existence of nonconstant positive steady states bifurcated
from the positive constant steady state. Taking the time delay as the bifurcation parameter,
we conduct local and global Hopf bifurcation analysis and prove the boundedness of global
Hopf branches. Rigorous analyses for global Hopf bifurcation and branches are challenging
but important in understanding global transitions of dynamics.

Keywords Predator-prey · Reaction-diffusion equations · Maturation delay · Positive steady
states · Periodic orbits · Global bifurcation
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1 Introduction

The predator–prey system has been intensively studied since the work of Lotka [10] and
Volterra [29]. The nonlinear interaction between predators and prey can induce rich dynamics.
Most predator–prey systems possess a stable limit cyclewhich explains the sustained periodic
oscillations in observed population data of animal communities [11]. Reaction-diffusion
equations can be used tomodel aquatic ecosystems and to investigate spatiotemporal plankton
dynamics [13]. One of the widely used models was proposed by Rosenzweig andMacArthur
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[17, 18]. A more general model was investigated in [27], where global bifurcation and spatial
pattern formation were studied.

Even for a spatial homogeneous predator–prey system without diffusion, the predator
maturation delaymay induce rich dynamics [6, 12, 26]. In [8], bounded global Hopf branches
were investigated for delay differential equations with delay-dependent parameters. One of
the main tools was the geometric stability switch criteria introduced in [1, 2]. This technique
has been recently applied in the Hopf bifurcation analysis of delayed differential systems [9,
19, 21, 24].

In this paper, we will incorporate predator maturation delay into the general diffusive
Rosenzweig-MacArthur model [18, 27]. Let u(x, t) and v(x, t) be the densities of the prey
and the adult predator, respectively. We use τ to denote a cutoff age for the maturation delay
of the predator. We further assume that juvenile predators cannot catch prey [28]. Then we
obtain the following diffusive predator–prey model with predator maturation delay:

∂u(x, t)

∂t
= d1�u(x, t) + b(u(x, t)) − βg(u(x, t))v(x, t), x ∈ �, t > 0,

∂v(x, t)

∂t
= d2�v(x, t) + γβe−sτ

∫
�

K (x, y)g(u(y, t − τ))v(y, t − τ)dy

− μv(x, t), x ∈ �, t > 0,

(1.1)

where� is a bounded domain in R
n with smooth boundary ∂�, b(u) is the growth rate of the

prey in the absenceof adult predators, g(u) is the predator functional response.Theparameters
d1 and d2 represent the diffusion coefficients of prey and adult predators, respectively. K (x, y)
is a general nonnegative kernel function, which is continuous and

∫
�
K (x, y)dy = 1 for any

x ∈ �. β is the catch rate of the adult predators, γ is the energy transform rate for adult
predators, s is the death rate of juvenile predators, and μ is the nature death rate of adult
predators. The term e−sτ is the survival probability of a juvenile predator from birth to
mature. Here all parameters are positive, and we consider a closed environment in the sense
that Neumann boundary conditions are assumed.

In this paper, we consider the case that K (x, y) = δ(x − y). Note that the Dirac delta
function can be regarded as the limit of the heat kernel when the diffusion rate approaches
zero. The biological explanation of our assumption is that the spatial diffusion of immature
predators (such as birds) is much smaller than that of mature predators. Rescaling the model
(1.1) by ũ = u/β, ṽ = v/(γβ), b̃(̃u) = b(βũ)/β, g̃(̃u) = γβg(βũ) and dropping ·̃ for
convenience, model (1.1) with Dirac delta kernel function can be rewritten as

∂u(x, t)

∂t
= d1�u(x, t) + b(u(x, t)) − g(u(x, t))v(x, t), x ∈ �, t > 0,

∂v(x, t)

∂t
= d2�v(x, t) + e−sτ g(u(x, t − τ))v(x, t − τ) − μv(x, t), x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ �, θ ∈ [−τ, 0]. (1.2)

Throughout this paper, we make the following assumptions:

(H1) b ∈ C1(R+), ∃ K > 0 such that b(0) = b(K ) = 0 and b(u)(u − K ) < 0 for u �= K .
(H2) g ∈ C1(R+), g(0) = 0, g′(u) > 0 for any u ≥ 0.

Typical functions satisfying the above assumptions are b(u) = ru(1− u
K ) (logistic growth)

or b(u) = ru(1 − u
K )(u + a) (weak Allee effect), where r > 0 and K > a > 0, and
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g(u) = cu (Holling type I), g(u) = cu
u+a (Holling type II), g(u) = cuk

uk+a
(Holling type III),

g(u) = c(1 − e−au) (Ivlev type), where c, a > 0 and k > 1.
The rest of this paper is organized as follows. In Sect. 2, we present some preliminary

results on positiveness, boundedness, and uniform persistence of solutions. We also inves-
tigate the global stability of the predator-free steady state and local stability of the positive
constant steady state. In Sect. 3, we establish the existence of the positive heterogeneous
steady state via Leray–Schauder degree theory [7], and analyze the steady state bifurcation
from the positive constant steady state. In Sect. 4, we use the delay τ > 0 as the bifurcation
parameter and study the Hopf bifurcation with periodic orbits bifurcated from the positive
constant steady state. In Sect. 5, we conduct numerical simulations to illustrate our analytical
results, and compare dynamics of local and nonlocal models. Finally we summarize this
paper in Sect. 6.

2 Preliminary Results and Basic Dynamics

Denote by X = L2(�) the Hilbert space of integrable functions with usual inner product,
C := C([−τ, 0], X2) the Banach space of continuous map from [−τ, 0] to X2 with the
sup norm, and C+ the nonnegative cone of C. Given a continuous function (u(x, t), v(x, t))
on � × [−τ,∞), we define (ut , vt ) ∈ C as (ut (θ), vt (θ)) = (u(·, t + θ), v(·, t + θ)) for
θ ∈ [−τ, 0]. Let �(t) : C+ → C+ with t ≥ 0 be the solution semiflow associated with
(1.2). Our next results establish the existence, uniqueness, and boundedness of the solution
to (1.2).

Proposition 2.1 For each initial condition u0(x, θ), v0(x, θ) ≥ 0(�≡ 0), system (1.2) admits
a unique solution (u(x, t), v(x, t)) such that u(x, t), v(x, t) > 0 for all (x, t) ∈ �× (0,∞),
and lim sup

t→∞
u(x, t) ≤ K , lim sup

t→∞
v(x, t) ≤ K + max[0,K ] b(u)/μ. Moreover, the solution

semiflow �(t) admits a global compact attractor in C+.

Proof Let (u1(t), v1(t)) be the unique solution to

u′(t) = b(u(t)) − g(u(t))v(t), v′(t) = e−sτ g(u(t − τ))v(t − τ) − μv(t),

u(θ) = sup
�

u0(x, θ), v(θ) = sup
�

v0(x, θ) for θ ∈ [−τ, 0]. (2.1)

It is readily seen that lim sup
t→∞

u1(t) ≤ K . Especially, for any ε > 0, there exists t1 > 0 such

that u1(t) ≤ K + ε for t > t1. Then, from system (2.1) we get

u′
1(t − τ) + v′

1(t) ≤ b(u1(t − τ)) − μv1(t) ≤ max[0,K ] b(u) + μ(K + ε) − μ(u1(t − τ) + v1(t))

for t > t1, and thus lim sup
t→∞

v1(t) ≤ K + max[0,K ] b(u)/μ. Note that (1.2) is a mixed

quasi-monotone system [15,Definition 2.1]. It then follows from the definition of lower/upper-
solution in Definition 2.2 in [15] that (u(x, t), v(x, t)) = (u1(t), v1(t)) and
(u(x, t), v(x, t)) = (0, 0) are a pair of upper-solution and lower-solution to (1.2),
respectively. Thus, Theorem 3.1 in [15] implies that (1.2) has a unique global solu-
tion (u(x, t), v(x, t)) which satisfies 0 ≤ u(x, t) ≤ u1(t), 0 ≤ v(x, t) ≤ v1(t)
for all (x, t) ∈ � × [0,∞). Consequently, lim sup

t→∞
u(x, t) ≤ lim sup

t→∞
u1(t) ≤ K and

lim sup
t→∞

v(x, t) ≤ lim sup
t→∞

v1(t) ≤ K + max[0,K ] b(u)/μ. The strong maximum principle implies
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that u(x, t), v(x, t) > 0 for all (x, t) ∈ � × (0,∞). Especially, the semiflow �(t) is point
dissipative. It follows from [30] that �(t) is compact for all t > τ . Hence, by [4,Theorem
3.4.8], �(t) admits a nonempty global attractor in C+. This completes the proof. ��

We now carry out the stability analysis of constant steady states of (1.2). Clearly, system
(1.2) always has two constant steady states (0, 0) and (K , 0), and a positive constant steady
state (u∗, v∗) exists if g(K ) > μ and 0 ≤ τ < τ̂ := ln(g(K )/μ)

s , where

u∗ = g−1(μesτ ) < K , v∗ = b(u∗)
μ

e−sτ . (2.2)

Linearizing (1.2) at a constant steady state (û, v̂), we obtain

∂U

∂t
= d�U + L(Ut ) (2.3)

with domain Y := {(u, v)T : u, v ∈ C2(�) ∩ C1(�), uν = vν = 0 on ∂�}, where
U (x, t) = (u(x, t), v(x, t))T , d = diag(d1, d2), and L : C → X2 be a bounded linear
operator given by L(φ) = Jφ(0) + Jτ φ(−τ) for φ = (φ1, φ2)

T ∈ C with

J =
(
b′(û) − g′(û)v̂ −g(û)

0 −μ

)
, Jτ =

(
0 0

e−sτ g′(û)v̂ e−sτ g(û)

)
.

Then the characteristic equation for linear system (2.3) is

λz − d�z − L(eλ·z) = 0, for z ∈ Y\{0},
which is equivalent to det(λI + δnd − J − e−λτ Jτ ) = 0 for integer n ≥ 0, where

0 = δ0 < δ1 ≤ · · · ≤ δn ≤ δn+1 ≤ · · · and lim
n→∞ δn = ∞ (2.4)

are the eigenvalues of −� in � with Neumann boundary condition [3]. Then the stability of
constant boundary steady states can be analyzed as follows.

Theorem 2.2 (i) The trivial steady state (0, 0) of (1.2) is unstable for all τ ≥ 0.
(ii) If either g(K ) < μ or g(K ) > μ, τ > τ̂ holds, then (K , 0) of (1.2) is globally asymp-

totically stable.
(iii) If g(K ) > μ and τ ∈ [0, τ̂ ) hold, then (K , 0) is unstable, and system (1.2) has a positive

constant steady state (u∗, v∗).

Proof (i) The characteristic equation at (0, 0) is (λ + δnd1 − b′(0))(λ + δnd2 + μ) = 0 for
integer n ≥ 0. One eigenvalue is b′(0) > 0, thus (0, 0) is unstable for all τ ≥ 0.
(ii) The characteristic equation at (K , 0) is given by (λ + δnd1 − b′(K ))(λ + δnd2 + μ −
g(K )e−sτ e−λτ ) = 0 for integer n ≥ 0. Since −δnd1 + b′(K ) < 0 for all integer n ≥ 0, then
the local stability of (K , 0) is determined by the eigenvalues to

λ + δnd2 + μ − g(K )e−sτ e−λτ = 0, n = 0, 1, 2 · · · . (2.5)

Note that either g(K ) < μ or g(K ) > μ, τ > τ̂ implies that δnd2 + μ > g(K )e−sτ for
all integer n ≥ 0. It then follows from [22,Lemma 6] that all eigenvalues of (2.5) have
negative real parts. Thus, (K , 0) is locally asymptotically stable if either g(K ) < μ or
g(K ) > μ, τ > τ̂ holds. We next show that (K , 0) is globally attractive in C+. Define a
Lyapunov functional L1 : C+ → R,

L1(φ) =
∫

�

φ2(0)
2dx + g(K )e−sτ

∫
�

∫ 0

−τ

φ2(θ)2dθdx, for φ = (φ1, φ2) ∈ C+.
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Calculating the time derivative of L1(φ) along the solution of (1.2) yields

dL1

dt
≤ −2d2

∫
�

|∇v|2dx +
∫

�

(
2g(K )e−sτ v(x, t)v(x, t − τ)

−2μv(x, t)2 + g(K )e−sτ (v(x, t)2 − v(x, t − τ)2)
)
dx

= 2(g(K )e−sτ − μ)

∫
�

v(x, t)2dx ≤ 0.

Themaximal invariant subset of dL1/dt = 0 is the singleton {(K , 0)}. By LaSalle-Lyapunov
invariance principle [5], (K , 0) is globally attractive in C+. We thus conclude the global
stability of (K , 0).
(iii) If g(K ) > μ and τ ∈ [0, τ̂ ) hold, then μ < g(K )e−sτ , that is, δ0d2 + μ < g(K )e−sτ .
This, together with [22,Lemma 6], implies that there exists one positive eigenvalue of (2.5).
We thus obtain (K , 0) is unstable if g(K ) > μ and τ ∈ [0, τ̂ ) hold. ��
Theorem 2.3 If g(K ) > μ and τ = τ̂ , then (K , 0) of system (1.2) is globally asymptotically
stable.

Proof Let �̄ = {λ ∈ C, λ is an eigenvalue of (2.5) with Reλ = 0}. When g(K ) > μ and
τ = τ̂ , then the characteristic equation (2.5) at (K , 0) has an eigenvalue 0, and all other
eigenvalues have negative real parts, that is, �̄ = {0}. Thus, (1.2) satisfies the nonresonance
condition relative to �̄. We now explore the local stability of (K , 0) by calculating the normal
forms. Let w = (w1, w2)

T = (K − u, v)T . We obtain

∂tw1(x, t) = d1�w1(x, t) + b′(K )w1(x, t) + g(K )w2(x, t)

+ [−b(K − w1(x, t)) − b′(K )w1(x, t)

+ g(K − w1(x, t))w2(x, t) − g(K )w2(x, t)],
∂tw2(x, t) = d2�w1(x, t) + e−sτ g(K )w2(x, t − τ) − μw2(x, t)

+ [e−sτ g(K − w1(x, t − τ))w2(x, t − τ) − e−sτ g(K )w2(x, t − τ)].
Note that e−sτ g(K ) = μ. By using the standard notation in delay differential equations
wt (θ) = w(t+θ), the above system can bewritten as an abstract equation ẇt = Āwt+ F̄(wt )

on C = C([−τ, 0], X2), Ā is a linear operator defined as ( Āφ)(θ) = φ′(θ) for θ ∈ [−τ, 0),

( Āφ)(0) =
(
d1� 0
0 d2�

)
φ(0) +

(
b′(K ) g(K )

0 −μ

)
φ(0) +

(
0 0
0 μ

)
φ(−τ),

and F̄ is a nonlinear operator defined as [F̄(φ)](θ) = 0 for θ ∈ [−τ, 0) and

[F̄(φ)](0) =
(−b(K − φ1(0)) − b′(K )φ1(0) + g(K − φ1(0))φ2(0) − g(K )φ2(0)

e−sτ g(K − φ1(−τ))φ2(−τ) − e−sτ g(K )φ2(−τ)

)
.

For ψ ∈ C([0, τ ], X2) and φ ∈ C([−τ, 0], X2), we introduce a bilinear form

〈ψ, φ〉 =
∫

�

[
ψ(0)Tφ(0) +

∫ 0

−τ

ψ(θ + τ)T
(
0 0
0 μ

)
φ(θ)dθ

]
dx

=
∫

�

[
ψ1(0)φ1(0) + ψ2(0)φ2(0) + μ

∫ 0

−τ

ψ2(θ + τ)φ2(θ)dθ

]
dx .

Now, we choose ψ = (0, 1)T and φ = (−g(K )/b′(K ), 1) to be the left and right eigen-
functions, respectively, of the linear operator Ā with respect to the eigenvalue 0. We have the
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decomposition wt = zφ + y with 〈ψ, y〉 = 0. Hence,

〈ψ, ẇt 〉 = ż〈ψ, φ〉 + 〈ψ, ẏ〉 = ż〈ψ, φ〉.
Moreover, since Āφ = 0 and 〈ψ, Āy〉 = 0, we have

〈ψ, ẇt 〉 = 〈ψ, Āwt 〉 + 〈ψ, F̄(wt )〉 = 〈ψ, F̄(wt )〉.
Coupling the above two equations gives

ż〈ψ, φ〉 = 〈ψ, F̄(zφ + y)〉 =
∫

�

ψT [F̄(zφ + y)](0)dx =
∫

�

[F̄(zφ + y)]2(0)dx .
If the initial value is a small perturbation of the equilibrium (K , 0), then z is also small with
positive initial value z(0) and y = O(z2). By Taylor expansion, we obtain

[F̄(zφ + y)]2(0) = e−sτ [g(K − zφ1(−τ) − y1(−τ)) − g(K )][zφ2(−τ) + y2(−τ)]
= e−sτ z2g′(K )g(K )/b′(K ) + O(z3).

On the other hand, it is easy to calculate that 〈ψ, φ〉 = ∫
�
(1+μτ)dx . Finally, we derive the

following normal form

ż = e−sτ g′(K )g(K )

b′(K )(1 + μτ)
z2 + O(z3).

Since g(K ) > 0, g′(K ) > 0 and b′(K ) < 0, the zero solution of the above equation with
positive initial value is locally asymptotically stable. This proves the local asymptotic stability
of (K , 0) for the original system (1.2) on C+. On account of the global attractivity of (K , 0)
in C+ proved in Theorem 2.2(ii), this equilibrium is globally asymptotically stable in C+
when g(K ) > μ and τ = τ̂ . ��

Denote X0 := {(φ1, φ2) ∈ C+ : φ1 �≡ 0 and φ2 �≡ 0} and ∂X0 := C+\X0 = {(φ1, φ2) ∈
C+ : φ1 ≡ 0 or φ2 ≡ 0}. LetM∂ be the largest positively invariant set in ∂X0, andω(φ) be the
omega limit set of the orbit γ +(φ) := ⋃

t≥0
{�(t)φ}. Then M∂ = {(φ1, φ2) ∈ C+ : φ2 ≡ 0},

and ω(φ) = {(0, 0), (K , 0)} for all φ ∈ M∂ . Introduce a generalized distance function
p : C+ → R+ as

p(φ) = min
x∈�̄,i=1,2

φi (x, 0) for all φ = (φ1, φ2) ∈ C+.

Recall that�(t) denotes the solution semiflow of (1.2) on C+. By strong maximum principle
[30,Theorem 2.5], p(�(t)φ) > 0 for all φ ∈ X0. Since p−1(0,∞) ⊂ X0, the condition (P)

in [25,Section 3] is satisfied. We have the following uniform persistence result.

Theorem 2.4 Assume that g(K ) > μ and τ ∈ [0, τ̂ ), then there exists an η > 0 such that
for any φ ∈ X0 and (u(·, t + ·), v(·, t + ·)) = �(t)φ, we have lim inf

t→∞ u(x, t) ≥ η and

lim inf
t→∞ v(x, t) ≥ η for any x ∈ �̄.

Proof Denote Ws((û, v̂)) as the stable manifold of a constant steady state (û, v̂). We claim
that Ws((0, 0)) ∩ p−1(0,∞) = ∅. Assume to the contrary that there exists φ ∈ C+ with
p(φ) > 0 such that (u(x, t), v(x, t)) → (0, 0) as t → ∞. Hence, for any small ε1 > 0,
there exists t1 > 0 such that 0 < u(x, t), v(x, t) < ε1 for all x ∈ � and t > t1. Then the
first equation in (1.2) and Proposition 2.1 lead to there exists a constant cg > 0 such that

∂u(x, t)

∂t
> d1�u(x, t) + b(u(x, t)) − ε1cgu(x, t), x ∈ �, t > t1.
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Note that b(u)− ε1cgu exists a unique positive zero, denoted by u∗ > 0. Thus, from Lemma
2.2 in [23], the reaction-diffusion equation

∂w1(x, t)

∂t
= d1�w1(x, t) + b(w1(x, t)) − ε1cgw1(x, t), x ∈ �, t > t1

with Neumann boundary condition admits a unique positive steady state u∗, which is
globally asymptotically stable in C(�̄, R+). Then the comparison principle implies that
lim
t→∞ u(x, t) ≥ u∗ > 0. This is a contradiction. Thus, Ws((0, 0)) ∩ p−1(0,∞) = ∅.

We now verify Ws((K , 0)) ∩ p−1(0,∞) = ∅. Assume to the contrary that there exists
φ ∈ C+ with p(φ) > 0 such that lim

t→∞(u(x, t), v(x, t)) = (K , 0). Note that g(K ) > μ and

τ ∈ [0, τ̂ ) imply that we choose a small ε2 > 0 such that μ < g(K − ε2)e−sτ . And there
exists t2 > 0 such that u(x, t) > K − ε2 for all x ∈ � and t > t2 − τ . Then the second
equation in (1.2) implies that

∂v(x, t)

∂t
> d2�v(x, t) + e−sτ g(K − ε2)v(x, t − τ) − μv(x, t), x ∈ �, t > t2.

Similarly, the comparison principle, μ < g(K − ε2)e−sτ , and the above inequality lead to
lim
t→∞ v(x, t) > 0. This contradicts to the fact lim

t→∞(u(x, t), v(x, t)) = (K , 0). Therefore, we

have Ws((û, v̂)) ∩ p−1(0,∞) = ∅ with (û, v̂) = (0, 0) or (K , 0). By [25,Theorem 3], there
exists an η > 0 such that lim inf

t→∞ p(�(t)φ) ≥ η for any φ ∈ C+. ��

We now analyze the stability of the positive constant steady state (u∗, v∗). The corre-
sponding characteristic equation is

�n(λ, τ ) := λ2 + pn,1λ + pn,0 + (qn,1λ + qn,0)e
−λτ , n = 0, 1, 2 · · · , (2.6)

where

pn,1 = δn(d1 + d2) − b′(u∗) + g′(u∗)v∗ + μ, qn,1 = −μ,

pn,0 = (δnd1 − b′(u∗) + g′(u∗)v∗)(δnd2 + μ), qn,0 = μ(b′(u∗) − δnd1).
(2.7)

Let α = g′(u∗)v∗ − b′(u∗). When τ = 0, the characteristic Eq. (2.6) becomes λ2 + (pn,1 +
qn,1)λ + (pn,0 + qn,0) = 0 for integer n ≥ 0, where pn,1 + qn,1 = δn(d1 + d2) + α and
pn,0 + qn,0 = δ2nd1d2 + αδnd2 + μg′(u∗)v∗. We obtain the following results on the stability
of (u∗, v∗) when τ = 0.

Lemma 2.5 Assume that g(K ) > μ, consider system (1.2) when τ = 0. Then (u∗, v∗) is
locally asymptotically stable if (A1) : (

b(u)
g(u)

)′ |u∗< 0 holds, unstable if (A2) : (
b(u)
g(u)

)′ |u∗> 0
holds.

Remark 2.6 If there exists σ̂ ∈ (0, K ) such that ( b(u)
g(u)

)′(u − σ̂ ) < 0 for u ∈ [0, σ̂ ) ∪ (̂σ , K ],
then (A1) holds if and only if σ̂ < u∗ < K , and (A2) holds if and only if 0 < u∗ < σ̂ .

In the sequel, we assume that (A1) holds. Thus a stability change at (u∗, v∗) can only
happen when one or more eigenvalues cross the imaginary axis to the right. (A1) ensures
α > 0, which yields pn,0 + qn,0 > 0 for all n, then 0 cannot be an eigenvalue. Therefore, we
only need to look for a pair of purely imaginary eigenvalues for some τ > 0. Substituting
λ = iω (ω > 0) into (2.6) and separating the real and imaginary part, we have

qn,1ω sinωτ + qn,0 cosωτ = ω2 − pn,0, qn,1ω cosωτ − qn,0 sinωτ = −pn,1ω, (2.8)
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for n = 0, 1, 2 · · · . Squaring and adding both equations of (2.8) lead to

Fn(ω, τ) := ω4 + (p2n,1 − 2pn,0 − q2n,1)ω
2 + (p2n,0 − q2n,0) = 0, n = 0, 1, 2 · · · , (2.9)

where

p2n,1 − 2pn,0 − q2n,1 = (d21 + d22 )δ
2
n + 2α(d1 + d2)δn + α2 > 0,

pn,0 + qn,0 > 0, pn,0 − qn,0 = d1d2δ
2
n + 2d1μδn + αd2δn + (α − b′(u∗))μ.

Clearly, pn,0 − qn,0 > 0 for all nonnegative integer n if and only if

(B0) : g′(u∗)/g(u∗) ≥ 2b′(u∗)/b(u∗).

If (B0) is satisfied, then Fn(ω, τ) has no positive zeros, and (A1) holds. Thus, all eigenvalues
stay in the open left-half complex plane. Consequently, we have the following result on the
stability of (u∗, v∗)

Theorem 2.7 Assume that g(K ) > μ and τ ∈ [0, τ̂ ). Then (u∗, v∗) of (1.2) is locally
asymptotically stable if (B0) holds.

3 Heterogeneous Steady States and Steady State Bifurcations

In this section, we will establish the existence of positive heterogeneous steady state via
Leray–Schauder degree theory [7], and investigate the steady state bifurcation of (1.2) bifur-
cating from the positive constant steady state (u∗, v∗). Note that the steady state of (1.2)
satisfies the following elliptic equations:

− d1�u(x) = b(u(x)) − g(u(x))v(x), x ∈ �,

− d2�v(x) = e−sτ g(u(x))v(x) − μv(x), x ∈ �,

uν = vν = 0, x ∈ ∂�.

(3.1)

On account of Theorem 2.2(ii), a positive heterogeneous steady state exists only if g(K ) > μ

and τ ∈ [0, τ̂ ). Throughout this section, we assume these necessary conditions hold. We
claim that any nonnegative steady state (u, v) other than (K , 0) and (0, 0) should be positive;
namely, u(x) > 0 and v(x) > 0 for all x ∈ �. Assume v(x0) = 0 for some x0 ∈ �. The
strong maximum principle implies that v(x) ≡ 0, and hence

0 ≥
∫

�

(u − K )b(u)dx =
∫

�

−(u − K )d1�udx = d1

∫
�

|∇(u − K )|2dx ≥ 0.

Consequently, u(x) ≡ 0 or u(x) ≡ K . Now, we assume v(x) > 0 for all x ∈ �. It follows
from strong maximum principle that u(x) > 0 for all x ∈ �. In particular, all nonnegative
heterogeneous steady states are positive.

We next show that all positive steady states are bounded from above and below by some
positive constants independent of steady states.

Theorem 3.1 Assume that g(K ) > μ and τ ∈ [0, τ̂ ). There exist two positive constants M
and M, depending on d1, d2, μ, K , b, g,�, such that M ≤ u(x), v(x) ≤ M for all x ∈ �,
where (u(x), v(x)) is any positive solution of (3.1).

Proof Since −d1�u ≤ b(u), we obtain from [16,Lemma 2.3] that u(x) ≤ K for all x ∈ �.
Adding the two equations in (3.1) gives −�(d1u + d2v) ≤ C − (μ/d2)(d1u + d2v), where
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C = max[0,K ] b(u) + d1Kμ/d2 > 0 is a constant depending only on model parameters. It

then follows from [16,Lemma 2.3] that u and v are bounded above by a positive constant
M = C/μ + K .

Next, we want to show that ‖u‖∞ and ‖v‖∞ are bounded below by a positive constant
independent of the solution. Assume to the contrary that there exist a sequence of positive
steady states (un, vn) such that either ‖un‖∞ → 0 or ‖vn‖∞ → 0 as n → ∞. An integration
of the second equation in (3.1) yields

∫
�

vn(x)(e
−sτ g(un(x)) − μ)dx = 0. (3.2)

If ‖un‖∞ → 0 as n → ∞, then there exists a large n such that e−sτ g(un(x)) − μ < −μ/2,
and the integral on the left-hand side of the above equation is negative, a contradiction.
Thus, we have ‖vn‖∞ → 0 as n → ∞. Upon extracting a subsequence, we may assume
without loss of generality that (un, vn) converges to a nonnegative steady state (u∞, 0) as
n → ∞. According to the argument at the beginning of this section, we have either u∞ ≡ 0
or u∞ ≡ K . Since ‖un‖∞ → 0 would lead to a contradiction, we obtain u∞ ≡ K and hence
lim
n→∞ e−sτ g(un(x))−μ = e−sτ g(K )−μ > 0,which again contradicts to the equation (3.2).

Therefore, we have proved that ‖u‖∞ and ‖v‖∞ are bounded below by a positive constant
independent of the solution. Finally, we obtain from Harnack’s inequality (c.f. [16,Lemma
2.2] or [3,Corollary 3.11]) that both u(x) and v(x) are uniformly bounded below by a positive
constant M independent of the steady state. ��

3.1 Nonexistence of Positive Heterogeneous Steady States

In this subsection, we prove nonexistence of positive heterogeneous steady states of system
(1.2) when the diffusion rates d1 and d2 are sufficiently large.

Theorem 3.2 Assume that g(K ) > μ and τ ∈ [0, τ̂ ). There exists a positive constant d∗ that
depends on μ, K , b, g,� and δ1, such that if min{d1, d2} > d∗, then system (1.2) has no
positive heterogeneous steady states.

Proof Let (u, v) be a positive solution of system (3.1). Denote the averages of the solution
on � by

u = 1

|�|
∫

�

udx, v = 1

|�|
∫

�

vdx .

Recall from the proof of Theorem 2.7 that u(x) ≤ K . Integrating the equations in (3.1) gives

v = e−sτ

μ|�|
∫

�

b(u(x))dx ≤ e−sτ

μ
max

0≤u≤K
b(u) := Mv.
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Wethenobtain from (3.1) and
∫
�
[u(x)−u]dx = ∫

�
[v(x)−v]dx = 0 that allowdisplaybreaks

d1

∫
�

|∇(u − u)|2dx =
∫

�

(u − u)(b(u) − g(u)v)dx

=
∫

�

(b(u) − b(u))(u − u)dx +
∫

�

(g(u)v − g(u)v)(u − u)dx

≤
(
max[0,K ] b

′(u) + g(K )2

2

) ∫
�

(u − u)2dx + 1

2

∫
�

(v − v)2dx,

d2

∫
�

|∇(v − v)|2dx =
∫

�

(v − v)
(
e−sτ g(u)v − μv

)
dx

=
∫

�

e−sτ (v − v) (g(u)v − g(u)v) dx −
∫

�

(μv − μv)(v − v)dx

≤
(max[0,K ] g

′(u))2

2

∫
�

(u − u)2dx +
(
g(K ) + M2

v

2

) ∫
�

(v − v)2dx .

Let M1 = max[0,K ] b
′(u) + (g(K )2 + (max[0,K ] g

′(u))2)/2, and M2 = g(K ) + (M2
v + 1)/2. By

Poincaré’s inequality, we have

d1

∫
�

|∇(u − u)|2dx + d2

∫
�

|∇(v − v)|2dx ≤ d∗
∫

�

[|∇(u − u)|2 + |∇(v − v)|2]dx,

where d∗ = max{M1/δ1, M2/δ1} is a positive constant depending on μ, K , b, g,� and δ1.
If (u, v) is a positive heterogeneous steady state, then min{d1, d2} ≤ d∗. This completes the
proof. ��

3.2 Existence of Positive Heterogeneous Steady States

In this subsection, we will use Leray–Schauder degree theory to find sufficient conditions
for the existence of positive heterogeneous solutions of system (3.1). Let d∗ > 0 be given as
in Theorem 3.2. For each homotopy parameter r ∈ [0, 1], we consider the elliptic equations

− [(1 − r)d1 + 2rd∗]�u(x) = b(u(x)) − g(u(x))v(x), x ∈ �,

− [(1 − r)d2 + 2rd∗]�v(x) = e−sτ g(u(x))v(x) − μv(x), x ∈ �,

uν = vν = 0, x ∈ ∂�.

(3.3)

Using a similar argument as in the proof of Theorem 3.1, we can find two positive constants,
still denoted by M and M , which depend on d∗, d1, d2, μ, K , b, g,�, such that any positive
solution of the above equations is bounded by these two constants: M ≤ u(x), v(x) ≤ M for
all x ∈ �. It is noted that M and M are independent of the homotopy parameter r ∈ [0, 1].
Now, we can regard the solution of (3.3) as a fixed point of the map

F(r) :
(
u
v

)
�→

(
(I − �)−1{u + [b(u) − g(u)v]/[(1 − r)d1 + 2rd∗]}

(I − �)−1{v + [e−sτ g(u)v − μv]/[(1 − r)d2 + 2rd∗]}
)

,

which is compact on the function space X = {(u, v) : u, v ∈ C1(�), uν = vν = 0 on ∂�}.
Let U be an open subset of X defined as

U = {(u, v) ∈ X : M/2 < u(x), v(x) < 2M for x ∈ �},
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such that, for each r ∈ [0, 1], the map F(r) does not possess any fixed point on the boundary
∂U . In view of Theorem 3.2, the positive constant steady state (u∗, v∗) defined in (2.2) is
the unique fixed point of the map F(1) in U . It then follows from the homotopy invariance
of Leray–Schauder degree that

deg(I − F(0),U , 0) = deg(I − F(1),U , 0) = 1. (3.4)

IfF(0) does not possess any heterogeneous fixed point inU , then (u∗, v∗) is the unique fixed
point of F(0) in U . Linearizing F(0) about the fixed point (u∗, v∗) gives

L =
(

(I − �)−1 0
0 (I − �)−1

) (
1 + [b′(u∗) − g′(u∗)v∗]/d1 −g(u∗)/d1

e−sτ g′(u∗)v∗/d2 1

)
.

Recall from (2.4) that 0 = δ0 < δ1 < · · · are the eigenvalues of −� in � with Neumann
boundary condition. For each j ∈ N, we let m j be the multiplicity of δ j , and λ±

j be the
eigenvalues of the matrix

Mj =
([b′(u∗) − g′(u∗)v∗]/d1 − δ j −g(u∗)/d1

e−sτ g′(u∗)v∗/d2 −δ j

)
. (3.5)

Introduce a quadratic function

h(δ) = δ2 − b′(u∗) − g′(u∗)v∗

d1
δ + e−sτ g(u∗)g′(u∗)v∗

d1d2
. (3.6)

It is readily seen that the determinant of Mj is h(δ j ). By a simple calculation, we find that
the eigenvalues of L − I are λ±

j /(1 + δ j ) with j = 0, 1, · · · . According to [14,Theorem
2.8.1], the Leray–Schauder degree for an isolated fixed point has the following expression

deg(I − F(0),U , 0) = (−1)γ = (−1)
∑

j∈J m j , (3.7)

where γ is the number of positive eigenvalues (counting multiplicities) of L − I , and J is
collection of indices j ∈ N when the matrix Mj has exactly one simple positive eigenvalue;
or equivalently, either (i) h(δ j ) < 0 or (ii) h(δ j ) = 0 and 2δ j < [b′(u∗) − g′(u∗)v∗]/d1.
Since g′(u) > 0 for all u ≥ 0 by (H2), we have h(0) > 0. If h(δ) does not possess two
distinct positive roots, then J is empty and deg(I − F(0),U , 0) = 1. Now, we assume that

b′(u∗) − g′(u∗)v∗

2d1
>

√
e−sτ g(u∗)g′(u∗)v∗

d1d2
; (3.8)

namely, the quadratic equation h(δ) = 0 has two distinct positive roots, denoted by δ− < δ+.
We have the following result on the existence of positive heterogeneous steady state.

Theorem 3.3 Assume that g(K ) > μ and τ ∈ [0, τ̂ ). Let (u∗, v∗) be the positive constant
steady state defined in (2.2). Assume the inequality (3.8) holds, and denote by δ− < δ+ the
two distinct positive roots of the quadratic function h(δ) defined in (3.6). Let 0 = δ0 < δ1 <

· · · be the eigenvalues of −� in � with Neumann boundary condition given in (2.4). The
multiplicities of these eigenvalues are denoted by m1,m2, · · · . There exist j, k ∈ N such that
δ j < δ− ≤ δ j+1 ≤ δk < δ+ ≤ δk+1. If

∑k
l= j+1 ml is odd, then system (1.2) possesses at

least one positive heterogeneous solution.

Proof Note that h(δl) < 0 if j+1 < l ≤ k and h(δl) > 0 if l ≤ j or l > k+1. For l = k+1,
either (i) h(δl) > 0 or (ii) h(δl) = 0 and 2δl > [b′(u∗) − g′(u∗)v∗]/d1. For l = j + 1, either
(i) h(δl) < 0 or (ii) h(δl) = 0 and 2δl < [b′(u∗) − g′(u∗)v∗]/d1. Hence, the matrix Mj
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defined in (3.5) has exactly one simple positive eigenvalue if and only if j + 1 ≤ l ≤ k;
namely, the set J = { j + 1, · · · , k}.

Now we assume to the contrary that system (3.1) has no positive heterogeneous solution.
We obtain from (3.4) and (3.7) that

1 = deg(I − F(0),U , 0) = (−1)
∑k

l= j+1 ml = −1,

a contradiction. This completes the proof. ��
To conclude this subsection, we present the following corollary with intervals of d2 on

which the positive heterogeneous solutions exist.

Corollary 3.4 Assume that g(K ) > μ, τ ∈ [0, τ̂ ), and [b′(u∗) − g′(u∗)v∗]/d1 ∈ (δl , δl+1)

for some l ≥ 2. Assume further that the multiplicity m j is odd for all j ≤ l. We rearrange
the finite set

{
e−sτ g(u∗)g′(u∗)v∗

[b′(u∗) − g′(u∗)v∗]δ j − d1δ2j

}l

j=1

in increasing order and denote the elements as d2,1 < · · · < d2,l . Then system (3.1) possesses
at least one positive heterogeneous solution if d2 ∈ ⋃

1≤k≤l/2
(d2,2k−1, d2,2k).

3.3 Steady State Bifurcations

In this subsection, we choose u∗ := σ to be the bifurcation parameter and investigate the
nonconstant positive steady state bifurcating from (u∗, v∗) via the method developed in [20].
In addition to g(K ) > μ and τ ∈ [0, τ̂ ), we shall make the following assumptions:

(S0) There exists σ̂ ∈ (0, K ) such that ( b(u)
g(u)

)′(u − σ̂ ) < 0 for u ∈ [0, σ̂ ) ∪ (̂σ , K ].
(S1) All eigenvalues δi in (2.4) are simple for i ≥ 0.

Let (û, v̂)T = (u−u∗, v−v∗)T , and dropping ·̂, system (3.1) can be rewritten in the abstract
form

F(σ, u, v) :=
(
d1�u + b(u + σ) − g(u + σ)(v + b(σ )

g(σ )
)

d2�v + (
μg(u+σ)

g(σ )
− μ)(v + b(σ )

g(σ )
)

)
= 0, (σ, u, v) ∈ R

+ × X ,

where X = {(u, v) : u, v ∈ H2(�), uν = vν = 0 on ∂�}. The Fréchet derivative of F is

D(u,v)F(σ, 0, 0) = L(σ ) =
(
d1� − α(σ), −g(σ )

μb(σ )
g′(σ )

g2(σ )
, d2�

)
,

where L is the linearization operator at (u∗, v∗) for (1.2) and

α(σ) = b(σ )g′(σ )

g(σ )
− b′(σ ) = −g(σ )

(
b(σ )

g(σ )

)′
.

It follows from (S0) and (H2) that α(0) = α(̂σ ) = 0; α(σ) < 0 for σ ∈ (0, σ̂ ), α(σ) > 0
for σ > σ̂ ; α′(0) = −g′(0)( bg )′(0) < 0 and α′(̂σ ) = −g(̂σ )( bg )′′(̂σ ) > 0. The characteristic
equation of L is

λ2 + Ti (σ )λ + Di (σ ) = 0, i = 0, 1, 2, · · · , with

Ti (σ ) = (d1 + d2)δi + α(σ), Di (σ ) = d1d2δ
2
i + d2α(σ)δi + μ

b(σ )g′(σ )

g(σ )
.
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Similar to [20, 32], we define steady state bifurcation values σ0 by the condition.

(H) there exists integer i ≥ 0 such that Di (σ0) = 0, Ti (σ0) �= 0, dDi (σ0)
dσ

�= 0, and
Dj (σ0) �= 0, Tj (σ0) �= 0 for j �= i .

The steady state bifurcation curve is defined by the following equation:

{(σ, p) ∈ R
2+ : D(σ, p) := d1d2 p

2 + d2α(σ)p + μ
b(σ )g′(σ )

g(σ )
= 0};

or equivalently,

p = p±(σ ) :=
−d2α(σ) ±

√
d2(q(σ )d2 − 4d1μ)

b(σ )g′(σ )
g(σ )

2d1d2
, q(σ ) = α2(σ )g(σ )

b(σ )g′(σ )
.

(3.9)

Note that D(σ, p) has no critical points in R
2+. Thus, the steady state bifurcation curve is a

bounded connected smooth curve. Since b(0)
g(0) = lim

u→0

b(u)
g(u)

= b′(0)
g′(0) > 0, it follows from the

profile of α(σ) that

q(0) = q (̂σ ) = 0, q(σ ) > 0 in (0, σ̂ ), q ′(0) > 0, q ′ (̂σ ) < 0, ∃ σ̃ ∈ (0, σ̂ ) s.t. q (̃σ ) = max[0,̂σ ] q(σ ).

Thus, the equation q(σ )d2 −4d1μ = 0 has at least two different roots, denoted by σ− < σ+
in (0, σ̂ ). Hence, p±(σ ) > 0 only for σ ∈ �0 := {σ ∈ [σ−, σ+] : q(σ ) ≥ 4d1μ/d2}. We
summarize the result on p±(σ ) in the following lemma.

Lemma 3.5 Assume that g(K ) > μ, τ ∈ [0, τ̂ ) and (S0) hold. Denote M∗ := min
�0

p−(σ ),

M∗ := min
�0

p+(σ ). Let p±(σ ) and q(σ ) be defined as in (3.9).

(i) There exist 0 < σ− < σ+ < σ̂ such that p+(σ ) ≥ p−(σ ) > 0 for σ ∈ �0, and

lim
σ→σ− p±(σ ) = −α(σ−)

2d1
, lim
σ→σ+ p±(σ ) = −α(σ+)

2d1
. Moreover, the steady state bifurcation

occurs only for p ∈ [M∗, M∗].
(ii) If we further assume that q ′′(σ ) ≤ 0 in (0, σ̂ ), then �0 = [σ−, σ+], and the steady

state bifurcation curve {(σ, p) ∈ R
2+ : D(σ, p) = 0} is a smooth closed loop connecting

(σ−,−α(σ−)
2d1

) and (σ+,−α(σ+)
2d1

).

Since δ0 = 0, we have D0(σ ) > 0 and T0(σ ) = α(σ) < 0 for σ ∈ (0, σ̂ ). Thus we only
need to find the integer i ≥ 1 such that (H) is satisfied for σ ∈ [σ−, σ+]. Lemma 3.5 implies
that Di (σ ) �= 0 in [σ−, σ+] if δi ∈ (−∞, M∗) ∪ (M∗,∞); for any δi ∈ [M∗, M∗], there
exists at least two σ S

i,1, σ
S
i,2 such that D(σ S

i,k, δi ) = Di (σ
S
i,k) = 0 with k = 1, 2, and these

σ S
i,k are possible steady state bifurcation points.
Next, we verify the transversality condition. Substituting p±(σ ) into D(σ, p) = 0 and

taking the derivative with respect to σ , we obtain

p′±(σ S
i ) = − ∂D(σ S

i , p±(σ S
i ))/∂σ

d2(2d1 p±(σ S
i ) + α(σ S

i ))
= − dDi (σ

S
i )/dσ

d2(2d1 p±(σ S
i ) + α(σ S

i ))
.

If we further assume that q ′′(σ ) ≤ 0 in (0, σ̂ ), then p±(σ S
i ) �= −α(σ S

i )

2d1
for σ S

i ∈ (σ−, σ+).

Therefore, if p′±(σ S
i ) �= 0, then

dDi (σ
S
i )

dσ
�= 0 for σ S

i ∈ (σ−, σ+).
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Summarizing the above analysis and using local steady state bifurcation results in
[32,Theorem 3.2], we obtain the existence of the local bifurcation of steady state solutions.
For the global steady state bifurcation, we apply Theorem 4.3 in [20] and further use a similar
argument as in the proof of Theorem 4.4 in [27] to obtain the global existence of steady state
solutions.

Theorem 3.6 Assume that g(K ) > μ and τ ∈ [0, τ̂ ), q ′′(σ ) ≤ 0 in (0, σ̂ ), (S0)-(S1) and

(S2) There exist integers k > l ≥ 1 such that δl−1 < M∗ ≤ δl < · · · < δk ≤ M∗ < δk+1,
where M∗ and M∗ are defined in Lemma 3.5.

Define {σ ∈ (σ−, σ+) : p±(σ ) = δι for integer l ≤ ι ≤ k} := {σ S
i : 1 ≤ i ≤ 2(k − l + 1)}

with decreasing order: σ− < σ S
2(k−l+1) ≤ · · · ≤ σ S

2 ≤ σ S
1 < σ+. We suppose that σ S

i �= σ S
j ,

p′±(σ S
i ) �= 0, δn �= − α(σ S

i )

d1+d2
for any integers i, j ∈ [1, 2(k − l + 1)] and n ≥ 1. Then for

integer i ∈ [1, 2(k − l + 1)],
(i) there is a smooth curve �i of positive solutions of (3.1) bifurcating from (σ, u, v) =

(σ S
i , σ S

i , v(σ S
i )) with �i ⊆ Qi , where Qi is a global branch of positive solutions of

(3.1), and v(σ ) = b(σ )
g(σ )

;

(ii) near (σ, u, v) = (σ S
i , σ S

i , v(σ S
i )), �i = {(σi (w), ui (w), vi (w)) : w ∈ (−ε, ε)}, where

ui (w) = σ S
i + waiφi (x) + wψ1,i (w), vi (w) = σ S

i + wbiφi (x) + θψ2,i (w) for some
smooth functions σi , ψ1,i , ψ2,i such that σi (0) = σ S

i , ψ1,i (0) = ψ2,i (0) = 0 and
(ai , bi ) satisfies L(σ S

i )[(ai , bi )Tφi (x)] = (0, 0)T ;
(iii) eitherQi contains another (σ S

j , σ S
j , v(σ S

j )) for integer j ∈ [1, 2(k− l+1)] and j �= i ,
or Qi is not compact.

4 Hopf Bifurcation Analysis

In this section, using the delay τ > 0 as the bifurcation parameter, we analyze patterned
solutions of (1.2) bifurcating from the positive constant steady state (u∗, v∗), which include
spatially homogeneous and nonhomogeneous periodic orbits. In the sequel, we assume that
g(K ) > μ, τ ∈ [0, τ̂ ), (A1) and (S1) hold, which implies that the local stability of (u∗, v∗)
for system (1.2) without delay.

4.1 Existence of Hopf Bifurcations

To identify Hopf bifurcation value τ ∗, we study the existence of a pair of purely imaginary
eigenvalues of (2.6) for some τ ∗ > 0. Recall from Sect. 2, a pair of purely imaginary
eigenvalues exist only if Fn(ω, τ) in (2.9) has positive zeros for some integer n ≥ 0. We
know that Fn(ω, τ) = 0 has a unique positive root if and only if pn,0 < qn,0 for integer
n ≥ 0. Clearly, F0(ω, τ) has exactly one positive root ω0 if and only if

(B1) : g′(u∗)/g(u∗) < 2b′(u∗)/b(u∗).

To ensure the existence of positive zeros of Fn(ω, τ) for some integer n ≥ 0, we assume that
(B1) is satisfied in this section.
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If pn,0 < qn,0 for some integer n ≥ 0, the implicit function theorem implies that there
exists a unique C1 function

ωn(τ ) =
([

q2n,1 + 2pn,0 − p2n,1 +
√

(p2n,1 − 2pn,0 − q2n,1)
2 − 4(p2n,0 − q2n,0)

]
/2

)1/2

such that Fn(ωn(τ ), τ ) = 0 for τ ∈ [0, τ̂ ). Set

In = {τ : 0 ≤ τ < τ̂ satisfies pn,0 < qn,0}. (4.1)

It follows from (B1)-(S1) that there exists a integer N1 ≥ 0, such that IN1 �= ∅, In = ∅
for n ≥ N1 + 1, and IN1 ⊂ IN1−1 ⊂ · · · ⊂ I1 ⊂ I0. For iωn(τ ) to be a purely imaginary
eigenvalue of (2.6), ωn(τ ) needs to satisfy the system

sin(ωn(τ )τ ) = ωn(−μω2
n + pn,1qn,0 + μpn,0)

μ2ω2
n + q2n,0

:= gn,1(τ ),

cos(ωn(τ )τ ) = (qn,0 + μpn,1)ω
2
n − pn,0qn,0

μ2ω2
n + q2n,0

:= gn,2(τ ),

(4.2)

for integer n ≥ 0. For τ ∈ In , let θn(τ ) be the unique solution of sin θn(τ ) = gn,1(τ ) and
cos θn(τ ) = gn,2(τ ) in (0, 2π ], that is,

θn(τ ) =
{
arccos gn,2(τ ), if ω2

n(τ ) < pn,0 + pn,1qn,0/μ,

2π − arccos gn,2(τ ), if ω2
n(τ ) ≥ pn,0 + pn,1qn,0/μ.

According to Beretta and Kuang [2], we define

Skn (τ ) = τωn(τ ) − (θn(τ ) + 2kπ) for τ ∈ In with integer k ≥ 0. (4.3)

One can check that, for integer 0 ≤ n ≤ N1, ±iωn(τ
∗
n ) are a pair of purely imaginary

eigenvalues of �n(λ, τ ) = 0 if and only if τ ∗
n is the zero of Skn (τ ) for some integer k ≥ 0.

Obviously, for integer 0 ≤ n ≤ N1, we have Skn (τ ) > Sk+1
n (τ ) for τ ∈ In and integer k ≥ 0;

when τ = 0, the asymptotic stability of (u∗, v∗) implies that S00 (0) < 0. Denote

τ̂n = sup In := sup{τ : 0 ≤ τ < τ̂ satisfies pn,0 < qn,0} for integer 0 ≤ n ≤ N1. (4.4)

Note that lim
τ→τ̂−(p0,0(τ ) − q0,0(τ )) > 0, and pn,0 − qn,0 is increasing w.r.t n, which implies

that τ̂n < τ̂ , τ̂n is decreasing w.r.t n, and p0,0 (̂τn) − q0,0 (̂τn) = 0. Hence, ωn(τ ) → 0 as
τ → τ̂−

n . This, together with (4.2), yields lim
τ→τ̂−

n

sin θn(τ ) = 0 and lim
τ→τ̂−

n

cos θn(τ ) = −1.

Thus we have lim
τ→τ̂−

n

θn(τ ) = π , and lim
τ→τ̂−

n

Skn (τ ) = −(2k + 1)π < 0.

Note from (2.9) that Fn is an increasing function of ω and δn . Consider ωn as a function
of δn . It follows from implicit differentiation that ω′

n < 0. In particular, ω j (τ ) > ω j+1(τ )

for any 0 ≤ j ≤ N1 − 1 and τ ∈ I j+1. Next, we observe from (4.2) that

qn,0gn,2 − μωngn,1 = w2
n − pn,0, qn,0gn,1 + μωngn,2 = ωn pn,1,

where gn,1 = sin θn and gn,2 = cos θn . We regard pn,0, qn,0, wn, θn as functions of δn and
take derivative on both sides of the first equation. It follows the second equation that

θ ′
n = −2wnw

′
n + p′

n,0 + q ′
n,0 cos θn − μω′

n sin θn

qn,0 sin θn + μωn cos θn
= −2wnw

′
n + p′

n,0 + q ′
n,0 cos θn − μω′

n sin θn

ωn pn,1
.

Recall that the assumption (A1) implies pn,1 > μ and the assumption (B1) implies qn,0 >

pn,0 > 0. Hence, we have qn,0 sin θn = ωn(pn,1 − μ cos θn) > 0 and sin θn > 0. Moreover,
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we obtain from (2.7) and (A1) that p′
n,0 > |q ′

n,0| > −qn,0 cos θn . Combining these results
gives θ ′

n > 0. In particular, θ j (τ ) < θ j+1(τ ) for τ ∈ I j+1. Finally, it follows from the
definition of Skn (τ ) in (4.3) that Skn+1 < Skn for τ ∈ In+1.

From [2,Theorem 2.2], we obtain

Sign

(
dReλ(τ)

dτ
|τ=τ∗

n

)
= Sign

(
∂Fn
∂ω

(ωn(τ
∗
n ), τ ∗

n )

)
Sign

(
dSkn (τ

∗
n )

dτ

)
.

Note that ∂Fn
∂ω

> 0 for any integer n ≥ 0. To summarize, we have the following lemma about
the property of Skn (τ ) and the transversality condition.

Lemma 4.1 Assume that g(K ) > μ, τ ∈ [0, τ̂ ), (A1), (B1) and (S1) hold, let Skn (τ ), τ̂n and
�n(λ, τ ) defined in (4.3), (4.4) and (2.6), respectively.

(i) For integers 0 ≤ n ≤ N1 and k ≥ 0, S0n (0) < 0, lim
τ→τ̂−

n

Skn (τ ) < 0, Skn (τ ) > Sk+1
n (τ ) for

any τ ∈ In, and Skn+1 < Skn for τ ∈ In+1.
(ii) Suppose that for some integers 0 ≤ n ≤ N1 and k ≥ 0, Skn (τ ) has a positive root τ ∗

n ∈ In,
then a pair of simple purely imaginary roots ±iωn(τ

∗
n ) of �n(λ, τ ) = 0 exist at τ = τ ∗

n
and

Sign
(
Reλ′(τ ∗

n )
) = Sign

(
dSkn (τ

∗
n )/dτ

)
.

Moreover, this pair of purely imaginary roots ±iωn(τ
∗
n ) cross the imaginary axis from

left to right at τ = τ ∗
n if (Skn )

′(τ ∗
n ) > 0, and from right to left if (Skn )

′(τ ∗
n ) < 0.

If sup
τ∈I0

S00 (τ ) < 0, Skn (τ ) has no zeros in In for all integers n ∈ [0, N1] and k ≥ 0.

This precludes the existence of purely imaginary eigenvalues and thus yields that (u∗, v∗) is
locally asymptotically stable for all τ ∈ [0, τ̂ ).

If sup
τ∈I0

S00 (τ ) = 0, S00 (τ ) has a zero of even multiplicity in I0, denote by τ ∗, such that

dS00 (τ
∗)/dτ = 0. This, together with Lemma 4.1(ii) implies that the transversality condition

at τ ∗ is not satisfied and all eigenvalues remain to the left of the pure imaginary axis. Hence,
(u∗, v∗) is still locally asymptotically stable for τ ∈ [0, τ̂ ).

If sup
τ∈I0

S00 (τ ) > 0, it follows from Lemma 4.1(i) that S00 (τ ) has at least two zeros in I0.

For simplicity, we assume that

(B2) sup
τ∈I0

S00 (τ ) > 0 and Skn (τ ) has at most two zeros (counting multiplicity) for some

integers n ∈ [0, N1] and k ≥ 0.

Assumption (B2) ensures that there exists a integer N2 ∈ [0, N1] such that, for any integer
n ∈ [0, N2], there exists a integer Kn ≥ 1 such that each Sin(τ ) has two simple zeros
(denoted by τ in and τ

2Kn−i−1
n ) for integer 0 ≤ i ≤ Kn − 1, and has no zeros for i ≥ Kn .

Hence, Lemma 4.1(i) implies that, for integer n ∈ [0, N2], there are 2Kn simple zeros τ
j
n

of Skn (τ ) for all integer k ≥ 0 and 0 < τ 0n < τ 1n < τ 2n < · · · < τ
2Kn−1
n < τ̂n . Moreover,

Lemma4.1(ii) leads todSin(τ
i
n)/dτ > 0 anddS2Kn−i−1

n (τ in)/dτ < 0 for each0 ≤ i ≤ Kn−1.

If we further have τ in �= τ
j
m and τ

2Kn−i−1
n �= τ

j
m for all integers m ∈ [0, N2],m �= n,

j ∈ [0, 2Km − 1], then a pair of simple conjugate purely imaginary eigenvalues ±iωn(τ
i
n)

cross the imaginary axis from left to right, and a pair of simple conjugate purely imaginary
eigenvalues ±iωn(τ

2Kn−i−1
n ) cross the imaginary axis from right to left. Now, we consider
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the collection of all τ in with integers (n, i) ∈ [0, N2] × [0, Kn]. If a value appears more than
once in the collection, then there are at least two pairs of purely imaginary roots and thus
the condition of Hopf bifurcation is violated. For this reason, we only keep the values which
appear exactly once in the collection and rearrange them in increasing order. Denote the new
set by

�H = {τ H
i : 0 ≤ i ≤ 2K − 1} with a integer 0 < K ≤

N2∑
j=0

K j . (4.5)

Obviously, τ H
0 and τ H

2K−1 are the two simple zeros of S00 (τ ), system (1.2) undergoes a Hopf
bifurcation at (u∗, v∗) when τ = τ H

i for each 0 ≤ i ≤ 2K − 1. Furthermore, (u∗, v∗) is
locally asymptotically stable for τ ∈ [0, τ H

0 )∪(τ H
2K−1, τ̂ ), and unstable for τ ∈ (τ H

0 , τ H
2K−1).

To summarize, we have the following results on the stability of (u∗, v∗) and the existence of
Hopf bifurcation.

Theorem 4.2 Assume that g(K ) > μ, τ ∈ [0, τ̂ ), (A1)-(S1) hold, let In, Skn (τ ) and
τ iH defined in (4.1), (4.3) and (4.5), respectively. Denote �H

0 = {τ ∈ �H : Sk0 (τ ) =
0 for some integer k ≥ 0}.
(i) If either I0 = ∅ or sup

τ∈I0
S00 (τ ) ≤ 0, then (u∗, v∗) is locally asymptotically stable for

τ ∈ [0, τ̂ ).
(ii) If (B1)-(B2) hold, then there exist exactly 2K local Hopf bifurcation values, namely,

0 < τ H
0 < τ H

1 < · · · < τ H
2K−1 < τ̂ . (u∗, v∗) is locally asymptotically stable for

τ ∈ [0, τ H
0 ) ∪ (τ H

2K−1, τ̂ ), and unstable for τ ∈ (τ H
0 , τ H

2K−1). Moreover, the bifurcating
periodic solutions from τ ∈ �H

0 are spatially homogeneous, which coincides with the
periodic orbits of the corresponding ODE system; and the bifurcating periodic solutions
from τ ∈ �H\�H

0 are spatially nonhomogeneous.

4.2 Global Hopf Bifurcation Analysis

Theorem 4.2 states that periodic solutions can bifurcate from e∗ = (u∗, v∗)when τ is near the
local Hopf bifurcation values τ H

i ∈ �H . In this subsection, we study the global continuation
of these local bifurcating periodic solutions via the global Hopf bifurcation theorem [31].
Let z(t) = (z1(t), z2(t))T = (u(·, τ t) − u∗, v(·, τ t) − v∗)T . System (1.2) can be rewritten
as a semilinear functional differential equation

z′(t) = Ãz(t) + F̃(zt , τ, T ), (t, τ, T ) ∈ R+ × [0, τ̂ ) × R+, (4.6)

where zt ∈ Ỹ := C([−1, 0], X2) with zt (θ) = z(t + θ) for θ ∈ [−1, 0], Ã = diag(τd1� −
τμ, τd2� − τμ), and

F̃(zt ) =
(

τb(z1t (0) + u∗) − τg(z1t (0) + u∗)(z2t (0) + v∗) + τμz1t (0)
τe−sτ g(z1t (−1) + u∗)(z2t (−1) + v∗) − τμv∗

)
.

Let {T̃ (t)}t≥0 be the semigroup generated by the operator Ã with Neumann boundary con-
dition on �. Then, we have T̃ (t) → 0 as t → ∞. Furthermore, the solution of (4.6) satisfies
the integral equation

z(t) = T̃ (t)z(0) +
∫ t

0
T̃ (t − s)F̃(zs)ds. (4.7)
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Denote z(t) as a periodic solution of (4.7) with period γ , we obtain

z(t) = z(t + γ ) = T̃ (t + γ )z(0) +
∫ t+γ

0
T̃ (t + γ − s)F̃(zs)ds

= T̃ (t + γ )z(0) +
∫ t

−γ

T̃ (t − s)F̃(zs)ds.

By using the above equation repeatedly, we have

z(t) = T̃ (t + nγ )z(0) +
∫ t

−nγ

T̃ (t − s)F̃(zs)ds.

Letting n → ∞, note that T̃ (t + nγ )z(0) → 0 as n → ∞, then the above equation is
equivalent to

z(t) =
∫ t

−∞
T̃ (t − s)F̃(zs)ds. (4.8)

Thus, a periodic solution of (4.8) is also a periodic solution of (4.7). It follows from
[30,Chapter 6.5] that the integral operator on the right-hand side of (4.8) is differentiable,
completely continuous, and G-equivariant. Theorem 3.2 implies that e∗ is the unique posi-
tive steady state solution of (1.2) when min{d1, d2} > d∗. The condition(A1) ensures that
0 cannot be an eigenvalue of (2.6) for any τ ≥ 0, which implies that the assumption (H1)
in [30,Chapter 6.5] holds. It follows from Theorem 4.2 that, when τ = τ H

i for some integer
i ∈ [0, 2K − 1], the characteristic equation (2.6) has exactly one pair of purely imagi-
nary eigenvalues ±iωn(τ

H
i ) for some integer n ∈ [0, N2]. Hence, the assumption (H2) in

[30,Chapter 6.5] holds. It can be checked easily from (2.6) and (4.6) that the smoothness
condition (H3) in [30,Chapter 6.5] is also satisfied. According to the definitions in [30], we
define the local steady state manifold

M = {(e∗, τ, T ) : |τ − τ H
i | < ε1, |T − 2π/(ωn(τ

H
i )τ H

i )| < ε2} ⊂ X2 × R
2+,

for sufficiently small ε1, ε2 > 0. For (τ, ω) ∈ [τ H
i −ε1, τ

H
i +ε1]×[ωn(τ

H
i )−ε2, ωn(τ

H
i )+

ε2], ±iωn(τ
H
i ) is an eigenvalue of (2.6) if and only if τ = τ H

i and ω = ωn(τ
H
i ). Thus, we

conclude that (e∗, τ H
i , 2π/(ωn(τ

H
i )τ H

i )) is an isolated singular point in M. Furthermore, it
follows from Lemma 4.1(ii) that the crossing number ζ(e∗, τ H

i , 2π/(ωn(τ
H
i )τ H

i )) at each of
these centers is

ζ(e∗, τ H
i , 2π/(ωn(τ

H
i )τ H

i )) = −Sign
(
Reλ′(τ H

i )
)

=
{ −1, 0 ≤ i ≤ K − 1,
1, K ≤ i ≤ 2K − 1.

Thus the condition (H4) in [30] holds. Next, we define a closed subset � of X2 × R
2+ by

�̃ = Cl{(z, τ, T ) ∈ X2 × R
2+ : z is a nontrivial T -periodic solution of (4.6)}.

For each integer 0 ≤ i ≤ 2K − 1, let P(e∗, τ H
i , Ti ) be the connected component of

(e∗, τ H
i , Ti ) in �̃. Theorem 4.2(ii) gives the sufficient conditions to ensure that P(e∗, τ H

i , Ti )
is nonempty subset of �̃.

Beforewe state our results on globalHopf bifurcation branches,we shall further investigate
the properties of periodic solutions of (4.6).

Lemma 4.3 Assume that g(K ) > μ and τ ∈ [0, τ̂ ), then all nonnegative periodic solu-
tions (u(x, t), v(x, t)) of (4.6) are uniformly bounded, namely, η ≤ u(x, t) ≤ K and
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η ≤ v(x, t) ≤ K + max[0,K ] b(u)/μ for all (x, t) ∈ �̄ × R+, where η is defined in Theo-

rem 2.4.

Proof We claim u(x, t) ≤ K for all (x, t) ∈ �̄×R+. Otherwise, if there exists (x1, t1) ∈ �̄×
R+, such thatu(x1, t1) > K , then lim

n→∞ u(x1, t1+nT ) = u(x1, t1) > K ,whereT is the period

of the periodic solution (u(x, t), v(x, t)). This contradicts the fact that lim sup
t→∞

u(x, t) ≤ K

for all x ∈ �̄ in Proposition 2.1. Hence, K is a uniform upper bound of u(x, t). Similarly,
we can prove v(x, t) has a uniform upper bound K +max[0,K ] b(u)/μ from Proposition 2.1, and

u(x, t), v(x, t) have a uniform lower bound η from Theorem 2.4. This ends the proof. ��
Lemma 4.4 Assume that g(K ) > μ, τ ∈ [0, τ̂ ), and

(B3) σ0 < u∗ < K, where σ0 ∈ (̂σ , K ) is the unique positive root of b(u)/g(u) =
b′(0)/g′(0), σ̂ ∈ [0, K ] such that

(
b(u)
g(u)

)′
(u − σ̂ ) < 0 for u ∈ [0, K ] and u �= σ̂ .

Then system (1.2) has no nontrivial periodic solution of period τ . Moreover, (u∗, v∗) is
globally asymptotically stable of system (1.2) when τ = 0.

Proof Assume to the contrary, (u(x, t), v(x, t)) is a nontrivial periodic solution of (1.2) with
period τ , that is, (u(x, t −τ), v(x, t −τ)) = (u(x, t), v(x, t)). Then it satisfies the following
system

∂u/∂t = d1�u + b(u) − g(u)v, x ∈ �, t > 0,

∂v/∂t = d2�v + e−sτ g(u)v − μv, x ∈ �, t > 0,

uν = vν = 0, x ∈ ∂�, t ≥ 0,

u(x, 0) = u0(x, 0) ≥ (�≡)0, v(x, 0) = v0(x, 0) ≥ (�≡)0, x ∈ �.

(4.9)

For φ = (φ1, φ2) ∈ C(�̄, R
2+), we define a Lyapunov functional L2 : C(�̄, R

2+) → R,

L2(φ) =
∫

�

(
e−sτ

∫ φ1

u∗
g(θ) − g(u∗)

g(θ)
dθ + (φ2 − v∗ ln φ2)

)
dx .

Calculating the time derivative of L2(φ) along the solution of (4.9) leads to

dL2

dt
=

∫
�

(
e−sτ (g(u) − g(u∗))

(
b(u)

g(u)
− b(u∗)

g(u∗)

)
− d1μ

g′(u)

g2(u)
|∇u|2 − d2v

∗ |∇v|2
v2

)
dx .

Note that (B3) implies that
(
b(u)
g(u)

− b(u∗)
g(u∗)

)
(u − u∗) < 0 for u �= u∗. This, together with

g′(u) > 0 for u ≥ 0, yields that

(g(u) − g(u∗))
(
b(u)

g(u)
− b(u∗)

g(u∗)

)
< 0 for u �= u∗.

Thus, dL2/dt ≤ 0 for all (u(x, t), v(x, t)) ∈ C(�̄, R
2+). The maximal invariant subset of

dL2/dt = 0 is the singleton {(u∗, v∗)}. By LaSalle-Lyapunov invariance principle, (u∗, v∗)
attracts every positive solution of (4.9). This precludes the existence of nontrivial nonnegative
periodic solution of system (1.2) with period τ . ��
Remark 4.5 The assumption (B3) is satisfied for many commonly used functions b(u) and
g(u), for instance, when b(u) = ru(1−u/K ) is the logistic growth and g(u) = βu is a linear
function. A sufficient condition for (B3) to hold is that the ratio b(u)/g(u) is non-increasing
in [0, K ].
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Theorem 4.6 Consider model (4.6) with g(K ) > μ, τ ∈ [0, τ̂ ), and min{d1, d2} > d∗.
Assume that (S1) and (B1)-(B3) hold. For each 0 ≤ i ≤ 2K − 1, we define τ H

i ∈ �H

and d∗ as in (4.5) and Theorem 3.2, respectively. Denote �0
H := {τ ∈ �H : S0n (τ ) =

0 for integer n ∈ [0, N2]}. Then we have the following results:

(i) For each τ H
j ∈ �H\�0

H , there exist integers k j ∈ [1, K j ] and n j ∈ [0, N2] such that

S
k j
n j (τ

H
j ) = 0. Moreover, the global Hopf branch P(e∗, τ H

j , Tj ) is bounded. If m ∈
[0, 2K − 1] is another integer with km �= k j , then P(e∗, τ H

j , Tj ) ∩ P(e∗, τ H
m , Tm) = ∅.

(ii) For each τ H
j ∈ �H\�0

H with 1 ≤ j ≤ K − 1, there exists an integer l ∈ [K , 2K − 2]
such that S

k j
n j (τ ) has exactly two distinct zeros τ H

j and τ H
l . Moreover, the two global

Hopf branches P(e∗, τ H
j , Tj ) and P(e∗, τ H

l , Tl) are identical and connected by a pair

of Hopf bifurcation values τ H
j and τ H

l . For each τ ∈ (τ H
j , τ H

l ), model (4.6) has at least

one periodic solution with period in ( 1
k j+1 ,

1
k j

).

Proof Lemma 4.4 implies that system (4.6) does not have nontrivial nonnegative periodic
solutions of period 1, nor does it have nontrivial nonnegative periodic solutions of period
1/n for any integer n ≥ 1. If τ is sufficiently close to the bifurcation point τ H

j , we obtain
from local Hopf bifurcation theorem that ωn j τ ∈ (2k jπ, 2k jπ + 2π). Note that the period
Tj = 2π/(ωn j τ). Thus, we have 1/(k j +1) < Tj < 1/k j for k j ≥ 1 and Tj > 1 for k j = 0.
If k j ≥ 1, since system (4.6) has no nontrivial periodic solution of period 1/k j nor 1/(k j +
1), by continuity of Hopf bifurcation branch, the periods on P(e∗, τ H

j , Tj ) are bounded in

( 1
k j+1 ,

1
k j

). Lemma 4.3 implies that the global Hopf branch P(e∗, τ H
j , Tj ) has bounded τ -

components and bounded solutions. Thus, the global Hopf branch P(e∗, τ H
j , Tj ) is bounded

when k j ≥ 1. If k j = 0, a similar argument shows that the periods onP(e∗, τ H
j , Tj ) are always

greater than 1. Therefore, any two global Hopf branches P(e∗, τ H
j , Tj ) and P(e∗, τ H

l , Tl)
with k j �= kl do not intersect. This proves (i).

Lemma 4.3 gives the uniform lower positive bound of the nontrivial periodic solution of
(4.6). Theorem 3.2 precludes the existence of nonnegative heterogeneous steady states of
(4.6) when min{d1, d2} > d∗. Thus, we do not need to consider the boundary equilibrium.
An application of the global Hopf bifurcation theorem in [30,Chapter 6.5] together with an
argument similar to that in the proof of [21,Theorem 2] gives (ii). ��

Note that if the periods of any nontrivial periodic solutions of system (4.6) are bounded,
then the global Hopf branch P(e∗, τ H

j , Tj ) is bounded for each τ H
j ∈ �0

H . We leave the proof
of upper boundedness of the periods of any nontrivial periodic solutions of (4.6) as an open
problem.

5 Numerical Exploration

In this section, we use numerical exploration to illustrate our theoretical results on the model
dynamics. Following an earlier work in [8], we choose the growth function of the prey as
b(u) = ru(1− u/K ) and the predator functional response as g(u) = cu/(1+ u). According
to Theorems 2.2, 2.3 and 4.2, the stability region of system (1.2) in the c − τ space can be
plotted in Fig. 1. We choose the domain � = (0, 2π) and the parameter values as follows.
d1 = 1, d2 = 1, r = 0.8, K = 3, c = 1, s = 0.6, μ = 0.2. A simple calculation gives
τ̂ = 2.2029, sup I0 = 1.7418 and sup I1 = 0.4576. We further obtain that supI0 S

0
0 (τ ) > 0,
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Fig. 1 The stability region of (1.2) in the c − τ space

supI0 S
1
0(τ ) < 0, supI0 S

0
1 (τ ) < 0, and S00 (τ ) has exactly two zeros in I0: τ H

0 = 0.7725 and
τ H
1 = 1.6522. The dynamics of system (1.2) are summarized as follows:

(i) If τ ∈ [̂τ ,∞), then (K , 0) is globally asymptotically stable; see Fig. 2(a).
(ii) If τ ∈ (0, τ H

0 )∪ (τ H
1 , τ̂ ), then (K , 0) is unstable, and (u∗, v∗) is locally asymptotically

stable; see Fig. 2(b).
(iii) If τ ∈ (τ H

0 , τ H
1 ), then (K , 0) and (u∗, v∗) = (1.9764, 0.8124) are unstable. Moreover,

there exists a periodic solution bifurcation from (u∗, v∗); see Fig. 2(c). System (1.2)
undergoes a Hopf bifurcation at (u∗, v∗) when τ = τ H

i for i = 0, 1.

Theorem 3.3 gives sufficient conditions for the existence of positive heterogeneous steady
states. Set the parameter values in Fig. 3, we calculate δ− ≈ 0.031, δ+ ≈ 1.06, and δi =
i2/36 ∈ (δ−, δ+) for integer i ∈ [2, 6]. Thus, there exists five simple eigenvalues of −� in
� with Neumann boundary condition in the interval (δ−, δ+). It then follows from Theorem
3.3 that system (1.2) has at least one positive heterogeneous solution (u(x), v(x)), as shown
in Fig. 3. To illustrate the steady state bifurcation at (u∗, v∗), we set the domain � = (0, 2π)

and the parameter values: d1 = 1, d2 = 3, r = 1, K = 11.9, c = 2, μ = 0.3. We choose
σ := 0.3esτ

2−0.3esτ as the bifurcation parameter by varying parameters s and τ . Then δi = i2/4
for integer i ≥ 0 and

T (σ, p) = 4p + σ(0.168σ − 0.916)

1 + σ
,

D(σ, p) = 3p2 + 3σ(0.168σ − 0.916)

1 + σ
p + 0.3(1 − σ/11.9)

1 + σ
.

As shown in Fig. 4, the equation D(σ, δ1) = 0 has two different roots: σ S
1 = 1.4 and

σ S
2 = 2.763, and the equation D(σ, δ j ) = 0 has no real roots for j �= 1 and j ≥ 0.

We further compute p′+(σ S
1 ) = 0.2317 > 0 and p′−(σ S

2 ) = −0.09037 < 0. According
to Theorem 3.6, there are two steady state bifurcations, corresponding to the steady state
bifurcation values σ S

1 , σ S
2 , respectively.
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(a) τ = 3 > τ , (3, 0) is globally asymptotically stable. (b) τ = 2 ∈ (τH
1 , τ), (u∗, v∗) is locally asymptotically stable.

(c) A periodic solution bifurcated from (u∗, v∗) for τ = 1.64 ∈ (τH
0 , τH

1 ).

Fig. 2 The dynamics of system (1.2) for different delay. Initial conditions for (a) are u0(x, θ) = v0(x, θ) =
1 + 0.01 cos x , for (b) and (c) are u0(x, θ) = u∗ + 0.01 cos x, v0(x, θ) = v∗ + 0.01 cos x for θ ∈ [−τ, 0]

Fig. 3 Projection of the heterogeneous positive steady state (u(x), v(x)) on x − t plane. Parameter values are
d1 = 0.5, d2 = 0.02, r = 6.5, K = 2.8, c = 6, s = 10, μ = 10−4, τ = 1 and � = (0, 6π)

To demonstrate the coexistence of multiple global Hopf branches, we choose the domain
� = (0, 2π) and a different set of parameter values:

d1 = 1, d2 = 2, r = 10, K = 3, c = 15, s = 0.05, μ = 6.75. (5.1)
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Fig. 4 Graph of D(σ, p) = 0, T (σ, p) = 0, and p = n2/4 for integer n ≥ 1. This gives steady state
bifurcation values σ S

1 and σ S
2

Fig. 5 The graphs of Skn for integers 0 ≤ n, k ≤ 2. This gives the Hopf bifurcation values τH
j for integer

0 ≤ j ≤ 11

It follows from Sect. 4 that sup I0 ≈ 4.68, sup I1 ≈ 4.31, sup I2 ≈ 2.98, and In = ∅ for
n ≥ 3. By Theorem 4.2, there are exactly 12 Hopf bifurcation values, namely,

τ H
0 ≈ 0.26 < τ H

1 ≈ 0.27 < τ H
2 ≈ 0.31 < τ H

3 ≈ 1.52 < τ H
4 ≈ 1.70 < τ H

5 ≈ 2.89
< τ H

6 ≈ 3.49 < τ H
7 ≈ 3.97 < τ H

8 ≈ 4.12 < τ H
9 ≈ 4.30 < τ H

10 ≈ 4.63 < τ H
11 ≈ 4.68,

as shown in Fig. 5. Theorems 4.2 and 4.6 imply that (u∗, v∗) is locally asymptotically stable
for τ ∈ [0, τ H

0 ) ∪ (τ H
11 , τ̂ ), and unstable for τ ∈ (τ H

0 , τ H
11); and model (1.2) has at least

one periodic solution for τ ∈ (τ H
0 , τ H

11). Moreover, the bifurcating periodic solutions from
τ ∈ {τ H

0 , τ H
3 , τ H

6 , τ H
7 , τ H

10 , τ
H
11} are spatially homogeneous, and the bifurcating periodic

solutions from τ ∈ {τ H
1 , τ H

2 , τ H
4 , τ H

5 , τ H
8 , τ H

9 } are spatially nonhomogeneous, see Fig. 6. It
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Fig. 6 Left: τ = 0.264 ∈ (τH
0 , τH

1 ), a bifurcating spatially homogeneous periodic solution exists. Right:

τ = 1.36 ∈ (τH
1 , τH

3 ), a bifurcating spatially non-homogeneous periodic solution exists

exists with a small delay τ = 0.1. tion exists with a mediate delay τ = 1.

a large delay τ = 5.

(a) A stable spatially homogeneous periodic solution (b) A stable spatially heterogeneous periodic solu-

(c) The positive constant steady state is stable with (d) (3, 0) is stable if the delay is too large τ = 20.

Fig. 7 Time delay induces different dynamical behaviors for the nonlocal model (1.1) with the truncated
normal density function K (x, y)

is also verified by numerical simulations that the periods of the periodic solutions for (1.2)
are bounded. It then follows from Theorem 4.6 that all global Hopf branches are bounded
and connected by a pair of Hopf bifurcation values.

To consider the combination impacts of nonlocal interaction and time delay on the model
dynamics, we choose the nonlocal kernel function as the density function of the truncated
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normal distribution:

K (x, y) = e−2|x−y|2∫
�
e−2|x−y|2dy

.

It is clear that
∫
�
K (x, y)dy = 1 and for each x , K (x, y) achieves itsmaximum at y = x . The

other parameter values are chosen as in (5.1) and the domain � = (0, 3π). Numerical simu-
lation suggests that the spatially homogeneous time periodic solution is stable for small delay
τ = 0.1 (Fig. 7(a)), the spatially heterogeneous time periodic solution exists and is stable for
mediate delay τ = 1 (Fig. 7(b)), while the positive constant steady state is stable for large
delay τ = 5 (Fig. 7(c)). However, if the time delay exceeds the critical value ln(g(K )/μ)/s,
then the solution converges to the predator-free steady state; see Fig. 7(d). It seems that the
nonlocal interaction in the delayed term can induce more interesting dynamics than the local
model. Due to the lack of available analytical techniques, we leave the theoretical analysis
of the nonlocal model with time delay as future work.

6 Concluding Remarks

We investigated a general diffusive predator–prey system with predator maturation delay
in this paper. This model generalized many models studied in the literature and our theo-
retical results extended the global dynamic results obtained for the models without delay.
Under certain conditions on model parameters, we obtained global asymptotic stability of
the predator-free equilibrium and uniform persistence of solutions. With the aid of Leray–
Schauder degree theory, we proved the existence of a spatial heterogeneous steady state. We
also analyzed steady state bifurcation and Hopf bifurcation. Global Hopf bifurcation analysis
was further conducted to show that global Hopf branches are bounded and connected by a
pair of bifurcation points. There is an open problem in global Hopf bifurcation analysis: to
prove that the periods of any nontrivial periodic solutions of system (4.6) are bounded.

Our theoretical results are illustrated bynumerical simulations.Wecompared the dynamics
of the local model to those of the nonlocal model. Clearly the nonlocal interaction in the
delayed term leads to more exciting dynamics. However, rigorous analysis is not feasible
yet, and we leave this as an open problem for future development of new mathematical
techniques.
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