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Abstract In this paper, we improve the classic SEIRmodel by separating the juvenile
group and the adult group to better describe the dynamics of childhood infectious
diseases. We perform stability analysis to study the asymptotic dynamics of the new
model, and perform sensitivity analysis to uncover the relative importance of the
parameters on infection. The transmission rate is a key parameter in controlling the
spread of an infectious disease as it directly determines the disease incidence. How-
ever, it is essentially impossible to measure the transmission rate for certain infectious
diseases. We introduce an inverse method for our new model, which can extract the
time-dependent transmission rate fromeither prevalence data or incidence data in exist-
ing open databases. Pre- and post-vaccination measles data sets from Liverpool and
London are applied to estimate the time-varying transmission rate. From the Fourier
transform of the transmission rate of Liverpool and London, we observe two spec-
tral peaks with frequencies 1/year and 3/year. These dominant frequencies are robust
with respect to different initial values. The dominant 1/year frequency is consistent
with common belief that measles is driven by seasonal factors such as environmental
changes and immune system changes and the 3/year frequency indicates the superior-
ity of school contacts in driving measles transmission over other seasonal factors. Our
results show that in coastal cities, the main modulator of the transmission of measles
virus, paramyxovirus, is school seasons. On the other hand, in landlocked cities, both
weather and school seasons have almost the same influence on paramyxovirus trans-
mission.

B Hao Wang
hao8@ualberta.ca

Jude D. Kong
jdkong@ualberta.ca

1 Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, AB T6G 2R3, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-015-0121-5&domain=pdf


2232 J. D. Kong et al.

Keywords Childhood infectious disease · Time-dependent transmission rate ·
Incidence algorithm · Prevalence algorithm · Inverse problem · Measles · Fourier
transform · Sensitivity analysis · Vaccination

1 Introduction

Many infectious diseases such asmeasles,whooping cough, chickenpox, polio,mumps
and rubella take special interest in children. The major reason for this is that they have
not yet developed immunity to them. Although vaccination has reduced the infection
from these diseases and eradicated some of them like small pox, they continue to kill
thousands of children around the world every year. Thus, understanding childhood
disease transmission and control remains essential. Because there are enough infection
data, mathematical models are increasingly useful for these purposes. Most of these
models are compartmentalmodelswhich classify the populationwith respect to various
stages of disease infection.

The classical compartmental model for childhood infectious diseases is the
McKendrick–Kermack SIR model with vital dynamics. This model has three com-
partments:

• Susceptible S(t) individuals who are currently susceptible to the disease;
• Infectious I (t) individuals who are currently infected with the disease;
• Removed R(t) individuals who have recovered from the disease and therefore
possess immunity.

It is assumed that the birth rate and the natural death rates are bothμ. This assumption
keeps the population size constant at a normalized value one. Infected children recover
at a constant rate ν and then become immune to the disease. Finally, it is assumed that
the incidence is proportional to the product of the number of susceptible and infected
individuals. These lead to the following system of equations:

dS(t)

dt
= μ − β(t)S(t)I (t) − μS(t),

dI (t)

dt
= β(t)S(t)I (t) − ν I (t) − μI (t),

dR(t)

dt
= ν I (t) − μR(t),

where S(t) + I (t) + R(t) = 1. Many authors have extended this model to include
individuals who are exposed (E) to infection, but are not yet infectious. They assumed
that children leave the exposed compartment and enter the infectious (I ) compartment
at some constant rate a, the reciprocal of which equals the mean latent period. This
model, called the SEIR model, is described by the following system of equations:

dS(t)

dt
= μ − β(t)S(t)I (t) − μS(t),

dE(t)

dt
= β(t)S(t)I (t) − aE(t) − μE(t),
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dI (t)

dt
= aE(t) − ν I (t) − μI (t),

dR(t)

dt
= ν I (t) − μR(t).

The rate atwhich susceptibles become infected is called the transmission rateβ. This
transmission rate depends on factors such as the frequency and closeness of contacts,
the infectivity of the infectious individuals, and the susceptibility of susceptible indi-
viduals. Thus, the transmission rate will be higher when children are packed together
and lower when they are not. Since children turn to be crowded together in school sea-
sons and separated during holidays, the transmission rate will therefore be extremely
high when children are in school and extremely low when they are on holidays. This
means that the transmission rate for a childhood disease varies dramatically in time.

According toSection 3.4.9 ofAnderson andMay (1991), ‘…the directmeasurement
of the transmission rate is essentially impossible for most infections. But if we wish
to predict the changes wrought by public health programmes, we need to know the
transmission rate ….’ Thus, unlike other parameters of infectious disease models,
such as recovery rate, birth rate and death rate, that can be easily measured directly
via public health databases, it is essentially impossible to measure the transmission
rate directly for certain infectious diseases. Moreover, other parameters are relatively
stable, while the transmission rate varies dramatically. Given that the important events
of disease transmission are incorporated in the transmission rate, there is urgent need
to have an estimate for this parameter. Some researchers model the transmission rate
using a step function based on school calendars (Earn et al. 2000). Other authors use
the sinusoidal function β(t) = β0(1+α cos(2π t)), where β0 is the mean transmission
rate and α is the amplitude of the seasonal variation (Glendinning and Perry 1997).

These models do not take into account all the seasonal factors that drive the trans-
mission rate of childhood infectious diseases. Even though the neglected factors are
of little importance, including them in the model will paint a complete picture of the
nature of the transmission rate of these diseases. One additional drawback of these
models is the lack of transmission data to validate them with. There is therefore a
need to extract the time-dependent transmission rate through a solution of an inverse
problem so as to have a complete picture of the transmission rate of these diseases and
equally validate the assumed transmission rate functions in the literature.

Some researchers (Becker 1989; Fine and Clarkson 1985) used the discrete time
SI or SIR model to extract the time-dependent transmission rate. Fine and Clarkson
(1985) used the model:

I (t + 1) = I (t)S(t)β(t)

S(t + 1) = S(t) − I (t + 1) + B(t) − V (t)

where I (t) and I (t + 1) denote the infected population at time periods t and t + 1,
S(t + 1) and S(t) the susceptible population at time periods t and t + 1, β(t) the
time-dependent transmission parameter, B(t) the number of susceptible introduced or
born into the population, V (t) the vaccinated population. From this model, the authors
obtained the recursive formula:
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β(t) = I (t + 1)

β(t)S(t)
.

This formula requires S(t), which is often difficult to estimate especially for out-
breaks in which a reasonable percentage of the population is immune to infection.
Also the formula is not explicit. For other drawbacks of this formula, see Pollicott
et al. (2010, 2012), Hadeler (2011). Pollicott et al. (2010, 2012) originally introduced
the inverse method for estimating a continuous time transmission rate from prevalence
data. Hadeler (2011) extended the inverse method for incidence data and other possi-
bilities. This inverse method does not require the knowledge of S(t) and leads to an
explicit formula for β(t). The inverse method for deriving these algorithms is applica-
ble to a majority of infectious diseases, but the algorithms have only been constructed
and applied to pre-vaccination data so far.

One can reduce the number of susceptible children with vaccines. Vaccination is
the administration of antigenic material to stimulate an individual’s immune system
to develop adaptive immunity to a pathogen. Vaccines can ameliorate both mortality
and morbidity. The effectiveness of vaccination has been widely studied and verified
since the first work of Edward Jenner on smallpox (Lombard et al. 2007). In this paper,
we first derive the algorithms with vaccination which is dominantly important in the
control of infectious diseases nowadays.

Assuming that all children grow to adults at somepoint in the future, in this paper,we
extend the SEIR model for childhood diseases to an SEIRAmodel by adding the adult
compartment (A). The SEIRAmodel is extended to include a compartment for children
that have been vaccinated, and the effect of vaccination on the dynamics of I (t) is
studied. We carry out stability and sensitivity analyses of these two models and extend
both the prevalence and incidence algorithms, respectively. Our sensitivity analysis
emphasizes the importance of the transmission rate in controlling outbreaks and thus
the need to estimate this key parameter. The applicability of our derived incidence
algorithm is illustrated with pre- and post-vaccination measles data from Liverpool
and London. The transmission rate estimated using our algorithm has two dominant
spectral peaks of frequencies 1 and 3 times per year. These dominant frequencies
are the same for pre- and post-vaccination situations for both cities. The dominant
frequency of 1 per year is consistent with common belief that measles is driven by
seasonal factors and the 3 times per year frequency indicates the superiority of school
contacts in driving measles transmission over other seasonal factors. The peak values
of 1 per year and the 3 per year frequencies are comparable for both pre- and post-
vaccination data from Liverpool, while the 1 per year peak value is larger than the
3 per year peak value for both pre- and post-vaccination data from London. This is
becauseLondon is a landlocked city and thus has relatively high-temperature variations
which strongly affect the seasonality of the measles virus with subsequent influence
on its transmission. Liverpool, on the other hand, is a coastal city with relatively stable
temperature, and thus, the main modulator of the transmission of measles virus for this
city was school dates. We find that the dominant frequencies of the Fourier transform
of the transmission rate in London have less noise than that of the Fourier transform of
the transmission rate in Liverpool. This could be attributed to the city size as London
is a much larger city than Liverpool.
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2 The SEIRA Model

Recall that in the derivation of the SEIR model, the total population is divided into
four compartments: susceptible, exposed, infective and recovered. This model can be
applied to all infectious diseases satisfying its assumptions. However, it is not suitable
for childhood infectious diseases since, in the SEIR model, adults who have never
been infected nor vaccinated are also considered as susceptibles.

When studying childhood infectious diseases, we first classify the population into
the adult (A) and the juvenile groups. Then, divide the juvenile group into susceptibles
(S), exposed (E), infective (I ) and recovered (R).

With SEIR model, we consider natural death rate for every group. But children
usually do not die naturally. They die only because of some specific reasons such
as accidents or diseases and their death rate is much lower than the natural death
rate. Therefore, here, we ignore natural death rate for the juvenile group. Instead, we
consider growth rate as children will grow up and no longer be susceptible.We assume
that children grow to become adults at a rate g, i.e., people under 1/g years old will
be considered as juvenile. Transition terms between S, E, I and R are the same as
in SEIR model.

Our model, called the SEIRAmodel, is described by the following system of equa-
tions:

dS(t)

dt
= δA(t) − β(t)S(t)I (t) − gS(t),

dE(t)

dt
= β(t)S(t)I (t) − aE(t) − gE(t),

dI (t)

dt
= aE(t) − ν I (t) − gI (t),

dR(t)

dt
= ν I (t) − gR(t),

dA(t)

dt
= g(S(t) + E(t) + I (t) + R(t)) − δA(t). (1)

The parameters are described in Table 1, which also contains the default values of
these parameters for measles.

Values of the parameters a and ν for measles are taken from Anderson and May
(1991) and “The weekly OPCS reports”: a = 52/year and ν = 52/year. Thus, the
infectious period is the same as the exposed period which is 1 year/52 = 1 week. We
assume that the average life span is 80 years and only kids under 16 are susceptible to
measles. Therefore, g = 1/16/year and natural death rate δ = 1/64/year. Values of
p and q are mainly determined by a vaccination policy, which can be as low as 0% if
there is no vaccination or as high as 100% if every individual is vaccinated. p will be
used in Sect. 7.

In Sects. 3 and 4, we assume that β is a constant and in Sects. 5, and 6, it is
considered to be a function of time.

123



2236 J. D. Kong et al.

Table 1 Parameter descriptions
and values for measles

Parameter Value Description Units

p 0–100% Vaccinated fraction No unit

δ 1/64 Natural death rate year−1

β ≈1000 Average transmission rate year−1

g 1/16 Growth rate year−1

ν 52 Recovery rate year−1

a 52 Rate at which exposed
individuals become infective

year−1

3 Qualitative Analysis

In this section, we list qualitative results such as positivity, boundedness, equilibria
and their stability of the SEIRA model. The proofs of the theorems in this section are
presented in “Appendix”.

Theorem 1 The compact set � = {(S, E, I, R, A): S ≥ 0, E ≥ 0, I ≥ 0, R ≥
0, A ≥ 0, S + E + I + R + A = 1} is positively invariant for the semiflow generated
by system (1).

Theorem 2 System (1) has two equilibria: the disease-free equilibrium point

(S∗
1 , E∗

1 , I ∗
1 , R∗

1 , A∗
1) =

(
δ

g+δ
, 0, 0, 0, g

g+δ

)
and the endemic equilibrium point

(
S∗
2 , E∗

2 , I ∗
2 , R∗

2 , A∗
2

) =
(

(a + g)(ν + g)

aβ
,

gδ

(a + g)(g + δ)

−g(ν + g)

aβ
,

agδ

(a + g)(g + δ)(ν + g)

− g

β
,

aνδ

(a + g)(g + δ)(ν + g)
− ν

β
,

g

g + δ

)
.

If aδβ < (a + g)(g + δ)(ν + g), the disease-free equilibrium will be locally
asymptotically stable and the endemic equilibrium will not be feasible. On the other
hand, if aδβ > (a + g)(g + δ)(ν + g), the endemic equilibrium will be locally
asymptotically stable and the disease-free equilibrium will be unstable.

Conjuncture 1 When R0 < 1, limt→+∞(S(t), E(t), I (t), R(t), A(t)) −→
Disease-free equilibrium (DFE)andwhen R0 > 1, limt→+∞(S(t), E(t), I (t), R(t),
A(t)) −→Endemic equilibrium (EE), where R0 = aδβ

(a+g)(g+δ)(ν+g) is the basic repro-
duction number.

Recall that when R0 > 1, the disease can spread and when R0 < 1, the disease will
finally disappear. We can rewrite R0 as

R0 = β

ν + g
· a

a + g
· δ

δ + g
.
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We know that βSI is the number of new cases over a unit time. Hence, the average
number of new cases caused by one infective individual is βSI

I = βS. Therefore, the
number of susceptibles an infective individual can infect is the average number over
a unit time multiply by the average length of duration an infective individual stay
infectious which is βS · 1

ν+g . The fraction of the infected individuals who can finally
become infective is the probability that an exposed individual will become infective in
a unit timemultiply by the time duration of an exposed individual stay exposedwhich is
a · 1

a+g . The expected fraction of susceptibles is
δ

δ+g which is the value of susceptibles

at the disease-free steady state. Therefore, βS · 1
ν+g · a

a+g = β · δ
δ+g · 1

ν+g · a
a+g is the

average number of susceptibles that one infective individual can infect.
Using the parameter values in Table 1, one gets R0 = 49.88. This value is higher

than the average value for R0, usually between 12 and 18. This is due to the maximum
susceptible age and live span assumptions made above. Imposing an upper susceptible
age of 6 years and an appropriate life span will yield a lower R0 value.

4 Sensitivity Analysis

In this section, we calculate, analyze and compare the normalized forward sensitivity
indices of the outbreak peak value, time of outbreak peak and steady state value of
I (t), to the parameters of the system by computing

S.I. = p

X∗
∂X∗

∂p
, (2)

where X∗ is the quantity being considered and p is the parameter which X∗depends
upon. Sensitivity indices can be positive or negative which indicate the nature of the
relationship. The magnitude of S.I. indicates the strength of the relationship.

When studying quantities like the peak value or the peak time which do not have
explicit formulas, we compute an approximate value of their S.I. as follows

S.I. = p

X∗(p)
X∗(p + 	p) − X∗(p − 	p)

2	p
. (3)

We calculate S.I. with respect to one specific parameter by perturbing this parameter
only and keeping the others unchanged. Here, we take 	p = 1%p.

4.1 Sensitivity Analysis of the Outbreak Peak Value

The sensitivity indices of the amplitude of the outbreak peak show how the first
epidemic depends on the parameters as seen in Table 2.

The removal rate ν has the strongest relationship to the magnitude of the outbreak
peak. The negative value tells us that a lower removal rate would lead to a more severe
epidemic. In contrast to the birth/death rate δ which has among the lowest of sensitivity
indices, ν would thus be an important parameter to control in order to reduce the harm
of an outbreak.
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Table 2 The sensitivity indices of the value of the outbreak peak with respect to the parameters values
δ = 1/64/12/month, β = 55/month, g = 1/16/12/month, ν = 52/12/month, a = 52/12/month and
initial values S(0) = 0.2, E(0) = 0.002, I (0) = 0.002, R(0) = 0.006, A(0) = 0.79

Parameter Sensitivity of peak Description

δ 0.0099 Death/birth rate

β 1.7200 Average transmission rate

g −0.0195 Growth rate

ν −2.8204 Removal rate

a 1.1102 Rate at which exposed
individuals become infective

Both the average transmission rate β and a have strong positivity relationship to
the peak outbreak as a higher β value would lead to a higher number of people in
the exposed compartment and a higher a would move more exposed to the infectives
compartment.

The sensitivity index with respect to the human birth/death rate μ is very low
in comparison with all the others. This makes sense, because the initial peak of an
epidemic occurs relatively quickly after the introduction of sick people, and the birth
and death of new susceptibles would take much longer time.

The sensitivity of the growth rate g to the outbreak peak is negative because a
larger growth rate will move people from the invectives compartment to the adult
compartment faster, thus reducing the outbreak peak. Similar to birth/death rate δ,
growth rate g has a small influence on the peak value.

In fact, parameters related to demography, such as birth/death rate and growth rate,
would have small influence on the outbreak level as the initial peak appears relatively
quickly. Parameters which are directly related to infection would have important influ-
ence on the initial peak. For instance, the following parameters: a which determines
how fast exposed individuals will become infectious, ν which determines how quickly
infectives will move to the recovered compartment and β which determines howmany
susceptibleswill be infected all have a strong relationshipwith the outbreak as expected
because they are directly related to infection.

4.2 Sensitivity Analysis of the Outbreak Peak Time

Sensitivity indices of the outbreak peak timemeasure how the first epidemics outbreak
time depends on different parameters as seen in the Table 3.

As outlined previously, we have the same reason that birth/death rate δ and growth
rate g have less influence on the outbreak time than the other three parameters.

We can see from Table 3 that the average transmission rate β has the strongest
influence on the dynamics of the system. This suggests that β is a more important
parameter to control to prevent outbreaks. The negative relationship tells us that a
larger average transmission rate would lead to a quicker outbreak.
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Table 3 The sensitivity of the outbreak peak time with respect to the parameters with values δ =
1/64/12/month, β = 55/month, g = 1/16/12/month, ν = 52/12/month, a = 52/12/month and ini-
tial values S(0) = 0.2, E(0) = 0.002, I (0) = 0.002, R(0) = 0.006, A(0) = 0.79

Parameter Sensitivity of peak time Description

δ −0.0011 Death/birth rate

β −0.7403 Average transmission rate

g 0.0027 Growth rate

ν 0.3075 Removal rate

a −0.2908 Rate at which exposed
individuals become infective

Table 4 Sensitivity of the
endemic steady state with
respect to the parameters with
values
δ = 1/64/12/month, β =
55/month, g =
1/16/12/month, ν =
52/12/month, a =
52/12/month

Parameter Sensitivity of I∗2 Description

δ 1.3221 Death/birth rate

β 0.6526 Average transmission rate

g −0.3260 Growth rate

ν −1.6508 Removal rate

a 0.0020 Rate at which exposed
individuals become infective

The relationship between rate a and the time of the maximum outbreak is negative,
because a higher contact rate (shorter latent period) will cause more new infections
and the timing of the maximum would be attained earlier.

The removal rate still has an important effect on the outbreak time. The positive
relationship between ν and the outbreak time is because patients will recover faster
with a larger ν value, thereby postponing the outbreak time.

4.3 Sensitivity Analysis of the Endemic Steady State

Endemic steady state determines the levels of the different groups of an endemic
infectious disease. It represents the expectation of the final size of all the groups. In
Table 4, we list sensitivity indices of I ∗

2 with respect to all the parameters.
The endemic level of infective individuals is most sensitive to the recovery rate ν

and birth/death rate δ. It has a strong negative relationship with ν because recovering
is the main way that infectives leave the infected compartment. The relationship with
δ is positive as a larger δ means more susceptible newborns will possibly become
infectives. Rate a has a weak but positive relationship with I ∗

2 as expected because a
larger a causes more people in the exposed compartment to become infectives. The
average transmission rate β is also of great importance in controlling the endemic
level of the infectives. The positive relationship is obvious since larger β means more
susceptibles will get infected.
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5 Extracting the Time-Dependent Transmission Rate β(t) from
Prevalence Pre-vaccination Data

In this section, we assume that β(t) is a function of time, compute the formula for β(t)
based on prevalence pre-vaccination data and then use it to construct an algorithm.

Theorem 3 Suppose the epidemic is observed over the time interval [0, T ], where
t = 0 and t = T are, respectively, the start and end of observations, then the time-
dependent transmission function β(t) for System (1) satisfy Mβ ′′β2 + N (β ′)2β +
Pβ ′β2 − Lβ4 − Qβ3 = 0 where f(t) is a smooth positive function which matches the
infection data in the interval [0, T ],

H(t) � f ′′(t) + (ν + 2g + a) f ′(t) + (a + g)(ν + g) f (t)

M = D = −H f 3,

N = C = 2H f 3,

P = B − (2g + δ)H f 3 = 2H f ′ f 2 − 2H ′ f 3 − (2g + δ)H f 3,

Q = −(A + (2g + δ)H ′ f 3 − (2g + δ)H f ′ f 2 + g(g + δ)H f 3)

= −(H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f + (2g + δ)H ′ f 3

− (2g + δ)H f ′ f 2 + g(g + δ)H f 3),

L = −(H ′ f 4 + (g + δ)H f 4 − agδ f 4).

Proof See “Appendix”. �	
Based on the formula for β(t) derived above, we now construct a prevalence algo-

rithm for extracting the transmission rate from the SEIRA model.

Step 1 Smoothly interpolate the infection data with a spline or trigonometric function
to generate a smooth function, f(t).

Step 2Calculate the function H(t) = f ′′(t)+(ν +2g+a) f ′(t)+(a+g)(ν +g) f (t).
Compute M, N, P, Q and L by plugging H(t) into (12).

Step 3 Choose β(0), β ′(0) and interval T , use an ODE solver to solve equa-
tion Mβ ′′β2 + N (β ′)2β + Pβ ′β2 − Lβ4 − Qβ3 = 0 for β(t) on interval
the [0, T ].

In the absence of real prevalence data, we use simulated data to test this algorithm.
To this end, consider the following function f (t) = 10−3[1.4 + cos(2π t/12)] that
approximates fractions of infectives from a typical infectious disease with periodic
outbreaks. Figure 1 contains the dynamics of β(t) for this data set, using the algorithm
above.
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Fig. 1 β(t) extracted from fake
prevalence data f (t) =
10−3[1.4 + cos(2π t/12)] with
initial value
β(0) = 56, β ′(0) = −1, and
parameters
ν = 52/12, a = 52/12, g =
1/16/12, δ = 1/64/12
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6 Extracting the Time-Dependent Transmission Rate from
Pre-vaccination Incidence Data

In this section, we compute the formula for β(t) that depends on incidence data and
use it to construct the incidence algorithm. As in the previous section, we assume that
the transmission rate depends on time.

6.1 Solution of the Inverse Problem for the SEIRA Model

To construct the algorithm, we first rewrite β(t) in terms of ω(t). With ω(t) = βSI
and S + E + I + R + A = 1, the SEIRA model can be rewritten as

dS(t)

dt
= (δA(t) − ω(t)) − gS(t) (4)

dE(t)

dt
= ω(t) − (a + g)E(t), (5)

dI (t)

dt
= aE(t) − (ν + g)I (t), (6)

dR(t)

dt
= ν I (t) − gR(t), (7)

dA(t)

dt
= g − (g + δ)A(t). (8)

We have the following theorem:

Theorem 4 For the SEIRA, given a continuous function w(t) generated from the
incidence data, β(t) can be estimated by ω(t)

S(t)I (t) with S(t) and I(t) given by (9) and
(10), respectively.
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Fig. 2 β(t) extracted from fake
incidence data f (t) =
10−4[2.7 + 1.5sin(2π t/12)]
with initial value S(0) =
0.25, E(0) = 0.0009, I (0) =
0.0001, A(0) = 0.7, and
parameters
ν = 52/12, a = 52/12, g =
1/16/12, δ = 1/64/12. β(t)
from time 0 to 40
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S(t) = S(0)e−gt +
∫ t

0

(
δ
(
A(0)e−(g+δ)s

+
∫ s

0
ge(g+δ)(σ−s)dσ

)
− ω(s)

)
eg(s−t)ds (9)

I (t) = I (0)e−(ν+g)t +
∫ t

0
a(E(0)e−(a+g)s

+
∫ s

0
ω(σ)e(a+g)(σ−s)dσ)e(ν+g)(s−t)ds (10)

Proof See “Appendix”. �	
We now turn the above theorem into an algorithm to extract time-dependent trans-

mission rate β(t) numerically, using incidence data:

Step 1 Smoothly interpolate incidence data with a spline or trigonometric function to
generate a smooth ω(t) ( in fact, we only need ω(t) to be continuous, not necessarily
smooth).

Step 2 Let T be the whole period of data. Compute β(t) = ω(t)
S(t)I (t) , for t ∈ [0, T ].

Because we have real incidence data, we test the latter algorithm using both fake and
real data. Firstly, we test the performance of the incidence algorithm using fake data.
As before, we use the function f (t) = 10−3[1.4+ cos(2π t/12)] to generate the data.
Figure 2 showsβ(t) plotted against time using simulated data. Our algorithm estimates
the transmission rate perfectly well, using this data.

Secondly, we use real incidence data from Liverpool and London given in Fig. 3 to
test the efficiency of our prevalence algorithm.

Figure 4a shows β(t) extracted from pre-vaccination measles weekly notification
data of Liverpool from 1944 to 1966 using the prevalence algorithm. There are more
noises with the weekly data. This is because Liverpool is a relatively smaller city
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Fig. 3 Measles weekly notification data in Liverpool and London from 1944 to 1986

compare to London. The population of Liverpool is less then 1/10 that of London.
Figure 4b plots modulus of Fourier transform of β(t) in Liverpool. We observe two
dominant peaks with frequencies 1/year and 3/year.

Figure 5a illustrates β(t) extracted from post-vaccination measles weekly notifi-
cation data of London from 1944 to 1966 by the prevalence algorithm. Figure 5b
plots modulus of Fourier transform of β(t) in this city. As with that in Liverpool, two
dominant peaks with frequencies 1/year and 3/year are observed.

The 1/year peak is consistent with common belief that measles is driven by seasonal
factors such as environmental changes and immune system changes and the 3/year
peak indicates the superiority of school contacts in driving measles transmission over
other seasonal factors and thus support authors in Grassly and Fraser (2006), Keeling
and Rohani (2008) that ignore other seasonal factors in determining the transmission
rate of measles. The 1/year frequency peak value is about twice the value of the
3/year frequency for the Fourier transform of the transmission rate in London, whereas
there is no great difference in the peak values of the dominant frequencies for that in
Liverpool. This might be linked to the geographical location of the two cities. Also, the
dominant frequencies are robust with respect to initial values. Moreover, the dominant
frequencies in London have less noise than those in Liverpool because the population
of London is greater than that of Liverpool and it is less sensitive to unexpected
factors.
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7 The SEIRA Model with Vaccination

In this section, we investigate the effect of vaccination on the SEIRA epidemic model.
Vaccination is the process by which a vaccine stimulates the immune system of an
individual to build immunity against a pathogen. Vaccination can ameliorate both
mortality and morbidity. The effectiveness of vaccination has been widely studied and
verified since the first work of Edward Jenner on smallpox (Lombard et al. 2007).

Different vaccination strategies are used to deal with different situations. Pediatric
vaccination is an efficient way in preventing dangerous human infectious diseases.
Much work has focused on the vaccination of newborn babies or infants to reduce the
prevalence of diseases such as measles, mumps and rubella. Mathematical treatment
of vaccination is straight forward and only needs a single addition to the SEIRAmodel.
Using p to denote the fraction of the newborns that are successfully vaccinated, we
obtain the following model:

dS(t)

dt
= δ(1 − p)A(t) − β(t)S(t)I (t) − gS(t),

dE(t)

dt
= β(t)S(t)I (t) − aE(t) − gE(t),

dI (t)

dt
= aE(t) − ν I (t) − gI (t),

dR(t)

dt
= ν I (t) − gR(t) + δpA(t),

dA(t)

dt
= g(S(t) + E(t) + I (t) + R(t)) − δA(t). (11)

However, it is not cost-effective to control rare infectious diseases by pediatric
vaccination. To this end, another vaccination policy, random vaccination is conducted
for rare infectious diseases or any potential outbreak.With this policy, all unvaccinated
susceptibles and not just newborns are vaccinated.

It is difficult for a disease to spread as long as the fraction of susceptibles is kept
low. Therefore, it is more reasonable that we should vaccinate less if the fraction of
susceptibles is lower and vice versa.

In Sects. 8 and 9, we assume that β is a constant, and in Sects. 10 and 11, it is
considered to be a function of time.

8 Qualitative Analysis

In this section, we list qualitative results such as positivity, boundedness, equilibria and
their stability of system (11). The proofs of the theorems in this section are presented
in “Appendix”.

Theorem 5 The compact set � = {(S, E, I, R, A): S ≥ 0, E ≥ 0, I ≥ 0, R ≥
0, A ≥ 0, S + E + I + R + A = 1} is positively invariant for the semiflow generated
by system (11).
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Theorem 6 System (11)has twoequilibria: the disease-free equilibrium (S∗
1 , E∗

1 , I ∗
1 ,

R∗
1 , A∗

1) =
(

δ(1−p)
g+δ

, 0, 0, δp
g+δ

,
g

g+δ

)
and the endemic equilibrium (S∗

2 , E
∗
2 , I ∗

2 , R∗
2 ,

A∗
2) =

(
(a+g)(ν+g)

aβ ,
gδ(1−p)

(a+g)(g+δ)
− g(ν+g)

aβ ,
agδ(1−p)

(a+g)(g+δ)(ν+g) − g
β
,

aνδ(1−p)
(a+g)(g+δ)(ν+g) − ν

β

+ δp
g+δ

,
g

g+δ

)

Whenaδ(1 − p)β < (a + g)(g + δ)(ν + g), the disease-free equilibrium is locally
asymptotically stable and the endemic equilibrium is not feasible ,and when aδ(1 −
p)β > (a+g)(g+δ)(ν+g), the endemic equilibrium is locally asymptotically stable
and the disease-free equilibrium is unstable.

The basic reproduction number is

R0 = aβδ(1 − p)

(a + g)(g + δ)(ν + g)
.

It can be rewritten as

R0 = β

ν + g
· a

a + g
· δ

δ + g
· (1 − p).

The first three terms have the same meanings as before. When considering vaccina-
tion, the level of susceptibles will be ‘discounted’ by p × 100% because vaccinated
newborns are not susceptible.

9 Sensitivity Analysis

In this section, we focus only on the sensitivity of the outbreak peak value, time of
outbreak peak and steady state value of I (t), to the Vaccinated fraction p, since we
have discussed the sensitive indices of these quantities to the other parameters of the
model in one of the previous sections.

9.1 Sensitivity Analysis of the Outbreak Peak Value

Table 5 shows the sensitivity of the outbreak peak value to all the parameters of
our model. Comparing sensitivity analysis of this model with that of the previous
model, we can see that the absolute value of sensitivity indices with respect to all
parameters are smaller, but vaccination does not change ranks of their importance. This
is because it is applied only to newborn babies, and newborns constitute only a very
small proportion of the total child population. TheVaccinated fraction p has a negative
relationship with the outbreak peak since more pediatric vaccination will result in less
infectives.
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Table 5 Sensitivity of the value
of the outbreak peak to the
parameters with the parameter
values p = 0.5, δ =
1/64/12/month, β =
150/month, g
= 1/16/12/month, ν =
52/12/month, a =
52/12/month and initial values
S(0) = 0.0998, E(0) =
0.0001, I (0) = 0.0001, R(0) =
0.11, A(0) = 0.79

Parameter Sensitivity of peak

p −0.0137 Vaccinated fraction

δ 0.0137 Human birth rate

β 0.8629 Transmission rate

g −0.0152 Growth rate

ν −1.3635 Removal Rate

a 0.5124 Rate at which exposed
individuals become
infective

Table 6 Sensitivity of the
outbreak peak time to the
parameters with parameter
values p = 0.5,
δ = 1/64/12/month,
β = 150/month, g =
1/16/12/month, ν =
52/12/month, a =
52/12/month and initial values
S(0) = 0.0998, E(0) =
0.0001, I (0) = 0.0001, R(0) =
0.11, A(0) = 0.79

Parameter Sensitivity of the peak time

p 0.0056 Vaccinated fraction

δ −0.0056 Human birth rate

β −1.1359 Transmission rate

g 0.0071 Growth rate

ν 0.5821 Removal rate

a −0.4484 Rate at which exposed
individuals become
infective

9.2 Sensitivity Analysis of the Outbreak Peak Time

FromTable 6, we can see that the Vaccinated fraction p is the least important to control
in preventing outbreaks. This is because the vaccination here is pediatric vaccination
and there are fewer newborns compare to all children.

9.3 Sensitivity Analysis of the Endemic Steady State

Table 7 shows that theVaccinated fraction p has the greatest importance in determining
the endemic level of infectives. Long-term vaccination to newborn babies will give
immunity to most kids after many years, and thus, the Vaccinated fraction p is critical
in endemics. The negative relationship is because more vaccination will reduce the
fraction of susceptibles. Infectives will be less with less susceptibles.

10 Extracting the Time-Dependent Transmission Rate β(t) from
Prevalence Post-vaccination Data

In this section, we derive the formula for β(t) from the SEIRAmodel with vaccination
based on prevalence data that can be used to construct an algorithm for extracting trans-
mission rate from post-vaccination prevalence data as with β(t) that we constructed
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Table 7 Sensitivity of the
endemic steady state to the
parameters with parameter
values p = 0.5, δ =
1/64/12/month, β =
150/month, g =
1/16/12/month, ν =
52/12/month, a =
52/12/month

Parameter Sensitivity of I∗2 Description

p −1.4076 Vaccinated fraction

δ 1.1261 Death/birth rate

β 0.4077 Transmission rate

g −0.1295 Growth rate

ν −1.4061 Removal rate

a 0.0017 Rate at which exposed
individuals become infective

for pre-vaccination data. We will omit the algorithm here as the steps of the algorithm
are the same as when extracting β(t) from prevalence pre-vaccination data.

Theorem 7 Suppose the epidemic is observed over the time interval [0, T ], where
t = 0 and t = T are, respectively, the start and end of observations, then the time-
dependent transmission function β(t) for System (11) satisfying (12),

My′′ + Py′′Qy + L = 0 (12)

where f(t) is a smooth positive function which matches the infection data in the interval
[0, T],

y = β−1

H = f ′′(t) + (a + 2g + ν) f ′(t) + (a + g)(ν + g) f (t),

M = −(1 − p)H f 3,

N = 2(1 − p)H f 3,

P = (1 − p)(2H f ′ f 2 − 2H ′ f 3 − (2g + δ)H f 3) − p′H f 3,

Q = −(1 − p)(H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f
+ (2g + δ)H ′ f 3 − (2g + δ)H f ′ f 2

+ g(g + δ)H f 3) − p′H ′ f 3 + p′H f ′ f 2 − gp′H f 3,

L = −(1 − p)(H ′ f 4 + (g + δ)H f 4 − agδ(1 − p) f 4) − p′H f 4.

The formula for the coefficients seems quiet different from the previous ones. In
fact, the formula presented above combines the situation when 0 ≤ p < 1 and when
p = 1. From the first equation of (11), we can see that when p = 1, dS

dt is independent
of A(t).Thus, we have the same behavior as with an SEIRmodel.We present formulae
for both cases: p = 1 and 0 ≤ p < 1.

• when p(t) = 1, we have

Pβ ′ − Lβ2 − Qβ = 0
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This is a Bernoulli equation. By letting y(t) = 1
β(t) , the Bernoulli equation can be

rewritten as a first-order linear differential equation Py′(t)+ Qy(t)+ L = 0 with

P = −H f,

Q = −(H ′ f − H f ′ + gH f ),

L = −H f 2.

• when 0 ≤ p(t) < 1, we have Mβ ′′β2 + N (β ′)2β + Pβ ′β2 − Lβ4 − Qβ3 = 0
with

M = −H f 3,

N = 2H f 3,

P = 2H f ′ f 2 − 2H ′ f 3 −
(

p′

1 − p
+ 2g + δ

)
H f 3,

Q = −(H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f +
(

p′

1 − p
+ 2g + δ

)
H ′ f 3

−
(

p′

1 − p
+ 2g + δ

)
H f ′ f 2 + g

(
p′

1 − p
+ g + δ)H f 3

)
,

L = −
(
H ′ f 4 +

(
p′

1 − p
+ g + δ

)
H f 4 − agδ(1 − p) f 4

)
.

We omit the proof of this theorem since it is similar to that of Theorem 3. Same
as before, the lack of post-vaccination prevalence data prevented us from testing the
algorithm with real data. But as can be seen from the experiment with fake data
demonstrated before, the prevalence algorithm works well.

11 Extracting the Time-Dependent Transmission Rate β(t) from
Incidence Post-vaccination Data

Here, we derive the formula for β(t) from the SEIRAmodel with vaccination based on
incidence data that can be used to construct an algorithm for extracting transmission
rate from post-vaccination incidence data as with β(t) that we constructed for pre-
vaccination data. As above, we will omit the algorithm for extracting β(t) from post-
vaccination incidence data as the steps of the algorithm are the same aswhen extracting
β(t) from incidence pre-vaccination data.

Theorem 8 For the vaccinated SEIRAmodel with time-dependent vaccinated fraction
p, the time-dependent transmission rate is β(t) = ω(t)

S(t)I (t) where S(t) and I (t) are

S(t) = S(0)e−gt +
∫ t

0
(δ(1-p(s))(A(0)e−(g+δ)s

+
∫ s

0
ge(g+δ)(σ−s)dσ) − ω(s))eg(s−t)ds′
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I (t) = I (0)e−(ν+g)t +
∫ t

0
a(E(0)e−(a+g)s

+
∫ s

0
ω(σ)e(a+g)(σ−s)dσ)e(ν+g)(s−t)ds.

The only difference between this Theorem and Theorem 4 is the present of 1− p(t) in
the equation for I (t) above. We omit the proof of this theorem, as it is almost identical
to the proof of Theorem 4.

Since we have post-vaccination measles weekly notification data of Liverpool and
London from 1974 to 1986 (see Fig. 3), we use it to illustrate the efficiency of this
algorithm.

Figure 6a presentsβ(t) extracted frompost-vaccinationmeaslesweekly notification
data of Liverpool from year 1974 to 1986. Figure 6b plots the modulus of Fourier
transform of β(t) in Liverpool. Same as with pre-vaccination incidence algorithm,
we observe dominant peaks of 1/year and 3/year periods. Figure 7a illustrates β(t)
extracted from post-vaccinationmeasles weekly notification data of London from year
1974 to 1986 by the incidence algorithm. Figure 7b shows the modulus of Fourier
transform of β(t) in London. The modulus of the Fourier transform of β(t) in this city
has the same number of dominant spectral peaks all having the same periods like that
in the city of Liverpool before and after vaccination and in it prior to vaccination.

Although the dominant frequencies for pre-vaccination and post- vaccination data
from both cities are the same, the peak values are greater in the pre-vaccination case.

For the same reason as with the pre-vaccination data, the dominant frequencies in
London have less noise than those in Liverpool. Also, as with pre-vaccination data,
there is no significant difference in the values of the dominant frequencies in Liverpool
as opposed to London where there is a noticeable difference in the values. The fact
that vaccination does not change the dominant frequencies in both cities strengthens
our belief that transmission of measles is driven by school seasons as well as other
seasonal factors.We find the transmission cycles to be synchronized in different cities.

12 Discussion

We present an efficient model with and without vaccination for childhood infectious
diseases. Our mathematical and numerical investigations have revealed a number of
biologically andmathematically significant results that provides theoretical framework
for public health interventions.

We conjecture that when R0 ≥ 1, the solutions of the SEIRA system go to the
endemic equilibrium and when R0 < 1, they go to the disease-free equilibrium.
R0 = aβδ(1−p)

(a+g)(g+δ)(ν+g) is the basic reproduction number.
Sensitivity analysis proves the importance of quarantining patients to prevent an

epidemic outbreak. It reveals that birth and removal rate are the most important factors
in controlling the endemic level of patients which indicts the importance of medication
treatment. We equally find out from our sensitivity analysis that the transmission rate
is one of the most important parameter in controlling the endemic level of infectives,
when an outbreak occurs and the number of people that are infected in an outbreak.
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We equally present algorithms to compute the time-dependent transmission rate
from pre- and post-vaccination prevalence and incidence data. We illustrate the effi-
ciency of these algorithms using London and Liverpool measles data. The extracted
transmission rate functions have two dominant spectral peaks with frequencies 1/year
and 3/year. These dominant frequencies are neither affected by vaccination nor the
city in question. The 1/year dominant frequency is consistent with common belief
that measles is driven by seasonal factors such as environmental changes and immune
system changes and the 3/year frequency indicates the superiority of school seasons
in driving measles transmission over other seasonal factors. The 1 per year and the 3
per year peaks are comparable for both pre- and post-vaccination data from Liverpool,
whereas the 1 per year peak is larger than the 3 per year peak for both pre- and post-
vaccination data from London. This is because London is a landlocked city and thus
has large temperature variations which strongly affect Paramyxovirus (measles virus)
seasonality with subsequent influence on its transmission. Weather variation thus is as
important as school seasons in modulating the transmission of paramyxovirus when
it comes to landlocked cities. Liverpool on the other hand is a coastal city with stable
temperature, and thus, the main modulator of the transmission of paramyxovirus for
this city was school seasons. The dominant frequencies in London have less noise than
those in Liverpool because the population of London is greater than that of Liverpool
and it is less sensitive to unexpected factors. The MATLAB inbuilt function fft was
used to compute the fast Fourier transforms (FFTs) of the data. The frequencies resolve
by fft are 1

T , 2
T , 3

T , . . . , N
2T , T = N	t where N = sampled points, 	t sampling time

interval. The first frequency is called the dominant frequency, and the last one is the
Nyquist critical frequency. By taking the absolute value of the FFT, we obtained the
amplitude spectrum shown in Figs. 4b, 5b, 6b and 7b.

Fine and Clarkson (1985) estimated the transmission parameter using the notifica-
tion data from England and Wales from 1950 to 1979. To compare our results to those
of these authors, we equally apply our algorithm to these data shown in Fig. 8. The
figure shows that the outbreaks within this period were biennial in nature, with the
magnitude of those in even numbered years higher than those in the odd numbered
years.

Figure 9 shows the results obtained by applying our algorithm to these data. As
in Fine and Clarkson (1985), the form of the transmission rate for odd and even
numbered years’ outbreaks differs only in magnitude. This difference in magnitude
can be credited to the difference in the number of susceptibles available. Since the trend
is similar, to analyze our extracted transmission parameter, we consider just the data
for few outbreaks. The figure shows that the trend of the transmission rate is similar to
that of the notified measles cases in Fig. 8. English schools have three terms: autumn,
spring and summer. These terms, respectively, run from September to mid-December
(followed by 2weeks Christmas holidays), January to lateMarch (followed by 2weeks
Easter holidays) and March to mid-July (followed by 6weeks of Summer holidays).
Each term is divided into half by a half term break. The transmission parameter drops
down whenever students were on either major holidays or midterm breaks and begin
rising immediately as soon as school resumes, reaching a peak value sometime within
the term. There are three main lengthy decline and steep rise. The lengthy decline
could be attributed to major school holidays and the steep rise to school openings
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Fig. 9 England and Wales time-dependent transmission rate β(t) from 1950 to 1952. The parameters
are δ = 1/64/52/week, a = 52/52/week, ν = 52/52/week, g = 1/16/52/week and initial values are
S(0) = 0.2, E(0) = 0.003, I (0) = 0.003, A(0) = 0.79

after major school holidays. The lowest incidence was reported during period when
students were on summer holidays. These support the assertion in Grassly and Fraser
(2006), Keeling and Rohani (2008) that measles transmission is mostly driven by
school contacts.

We believe that our algorithms could be used to estimate the transmission rate of
another infectious childhood disease. The choice of the algorithm to use depends on
the available data and on weather or not vaccination has been applied to a percentage
of children in the region. For almost any type of infectious diseases, the derivations of
our prevalence and incidence formulas can be applied with necessary modifications
in disease transmission models.

Appendix

Proof of Theorem 1 Positivity describes the property that for any positive initial val-
ues, the solution of a system will stay positive. The solution of an ODE dyi

dt =
fi (y1, y2, . . . , yn) (n ∈ N) is said to be positive for any positive initial values if
∀ 1 ≤ i ≤ n, fi ≥ 0 when yi = 0 and y j ≥ 0, j = i. Denoting S, E, I, R, A as
fi and the functions on the right-hand side of (1) as yi , f or 1 ≤ i ≤ 5, respectively,
we have that f1 = δy5 ≥ 0, f2 = βy1y3 ≥ 0, f3 = ay2 ≥ 0, f4 = νy3 ≥ 0, f5 =
g(y1 + y2 + y3 + y4) ≥ 0. Hence, the solution of (1) is positive for any positive initial
values. Also, we notice that S, E, I, R, and A sum to 1 and their derivatives sum
to 0. Hence, we can conclude that the solution of (1) will stay in {(S, E, I, R, A):
S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, A ≥ 0, S+ E + I + R+ A = 1} for any positive initial
values. �	
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Proof of Theorem 2 Suppose (S∗, E∗, I ∗, R∗, A∗) is an equilibrium point, then it
should satisfy

0 = δA∗ − βS∗ I ∗ − gS∗, (13)

0 = βS∗ I ∗ − (a + g)E∗, (14)

0 = aE∗ − (ν + g)I ∗, (15)

0 = ν I ∗ − gR∗, (16)

0 = g − (g + δ)A∗. (17)

From (17), we know that A∗ = g
g+δ

. From (15), we have E∗ = ν+g
a I ∗. Plugging

it into (14) we get

βS∗ I ∗ − (a + g)
ν + g

a
I ∗ = 0

⇒
(

βS∗ − (a + g)(ν + g)

a

)
I ∗ = 0

⇒ S∗ = (a + g)(ν + g)

aβ
or I ∗ = 0

If I ∗ = 0, then E∗ = ν+g
a I ∗ = 0, R∗ = ν

g I
∗ = 0, S∗ = δ

g A
∗ = δ

g+δ
.

If S∗ = (a+g)(ν+g)
aβ , then

I ∗ = δA∗ − gS∗

βS∗ = agδ

(a + g)(g + δ)(ν + g)
− g

β
,

E∗ = ν + g

a
I ∗ = gδ

(a + g)(g + δ)
− g(ν + g)

aβ
,

R∗ = ν

g
I ∗ = aνδ

(a + g)(g + δ)(ν + g)
− ν

β
.

Hence, there are twoequilibria: the disease-free equilibriumpoint (S∗
1 , E∗

1 , I ∗
1 , R∗

1 ,

A∗
1) =

(
δ

g+δ
, 0, 0, 0, g

g+δ

)
and the endemic equilibrium point

(
S∗
2 , E∗

2 , I ∗
2 , R∗

2 , A∗
2

) =
(

(a + g)(ν + g)

aβ
,

gδ

(a + g)(g + δ)
− g(ν + g)

aβ
,

agδ

(a + g)(g + δ)(ν + g)
− g

β
,

aνδ

(a + g)(g + δ)(ν + g)

− ν

β
,

g

g + δ

)
.

To determine the stability of the Equilibria, we first calculate the Jacobian matrix of
the SEIRA model. Since S, E, I, R, A sum up to 1, there are only four free variables.
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To calculate the Jacobianmatrix, we only need to consider any four of them.We ignore
the fourth equation of system (1) and obtain the Jacobian matrix as

J (S, E, I, A) =

⎛
⎜⎜⎝

−β I − g 0 −βS δ

β I −(a + g) βS 0
0 a −(ν + g) 0
0 0 0 −(g + δ)

⎞
⎟⎟⎠ .

• Notice that I ∗
2 can be rewritten as I ∗

2 = g
β(a+g)(g+δ)(ν+g) (aδβ − (a + g)(g +

δ)(ν + g)), thus for aδβ < (a + g)(g + δ)(ν + g), I ∗
2 < 0, R∗

2 = ν
g I

∗
2 < 0,

and E∗
2 = ν+g

a I ∗
2 < 0. Thus, the endemic equilibrium is not feasible for aδβ <

(a + g)(g + δ)(ν + g).
For the disease-free equilibrium, the Jacobian matrix is

J
(
S∗
1 , E

∗
1 , I

∗
1 , A∗

1

) =

⎛
⎜⎜⎝

−g 0 − δ
g+δ

β δ

0 −(a + g) δ
g+δ

β 0
0 a −(ν + g) 0
0 0 0 −(g + δ)

⎞
⎟⎟⎠

and the characteristic equation is (λ + g)(λ + ν + g)(λ2 + (a + 2g + ν)λ +
(a + g)(ν + g) − aδ

g+δ
β) = 0. Solving this, we obtain the following eigenvalues

λ1 = −g < 0, λ2 = −(g + δ) < 0 and

λ3,4 =
−(a + 2g + ν) ±

√
(a + 2g + ν)2 − 4((a + g)(ν + g) − aδ

g+δ
β)

2

=
−(a + 2g + ν) ±

√
(a − ν)2 + 4 aδ

g+δ
β

2

If (a + g)(ν + g) − aδ
g+δ

β > 0, λ3 and λ4 will both be less than zero.
Hence, the disease-free equilibriumpoint is asymptotically stable⇐⇒ (a+g)(ν+
g) − aδ

g+δ
β > 0 ⇐⇒ aδβ < (a + g)(g + δ)(ν + g).

• When aδβ > (a + g)(g + δ)(ν + g), we have that S∗
2 = (a+g)(ν+g)

aβ > 0, A∗
2 =

g
g+δ

> 0.

Also, I ∗
2 = g

β(a+g)(g+δ)(ν+g) (aδβ − (a + g)(g + δ)(ν + g)) > 0, and R∗
2 =

ν
g I

∗
2 > 0, E∗

2 = ν+g
a I ∗

2 > 0. Thus, the endemic equilibrium is feasible when
all the parameters are positive and aδβ > (a + g)(g + δ)(ν + g). Also, when
aδβ > (a + g)(g+ δ)(ν + g), from the previous proof, we know that the disease-
free equilibrium is unstable.
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For the endemic equilibrium, once again, we calculate the Jacobian matrix:

J
(
S∗
2 , E

∗
2 , I

∗
2 , A∗

2

) =

⎛
⎜⎜⎝

−β I ∗
2 − g 0 −βS∗

2 δ

β I ∗
2 −(a + g) βS∗

2 0
0 a −(ν + g) 0
0 0 0 −(g + δ)

⎞
⎟⎟⎠ .

From the above matrix, we can see that one eigenvalue of the characteristic
equation is λ1 = −(g + δ), and the other three satisfy λ3 + (−tr(M))λ2 +
(α(M))λ + (−Det(M)) = 0, where tr(M) = −(β I ∗

2 + a + 3g + ν), α(M) =(
β I ∗

2 + g
)
(a + g) + (

β I ∗
2 + g

)
(ν + g) + (a + g)(ν + g) − aβS∗

2 , Det(M) =
− (

β I ∗
2 + g

)
(a + g)(ν + g)+ agβS∗

2 . To study stability, we apply the third-order
Routh–Hurwitz stability criterion. We first review the third-order Routh–Hurwitz
stability criterion.

Third-Order Routh–Hurwitz stability Criterion Real parts of all solutions of a
third-order polynomial P(s) = a3s3 + a2s2 + a1s + a0 = 0 are negative if the
coefficients satisfy a3 > 0, a3 > 0, a1 > 0, a0 > 0 and a2a1 > a3a0.
Thus, for our characteristic equation we have that

a3 = 1 > 0,

a2 = −tr(M) = β I ∗
2 + 3g + a + ν > 0,

a1 = α(M) = (
β I ∗

2 + g
)
(a + g) + (

β I ∗
2 + g

)
(ν + g)

+(a + g)(ν + g) − aβS∗
2

= (
β I ∗

2 + g
)
(a + g) + (

β I ∗
2 + g

)
(ν + g) + (a + g)(ν + g)

−aβ
(a + g)(ν + g)

aβ
= (β I ∗

2 + g)(a + 2g + ν) > 0,

a0 = −Det(M) = (
β I ∗

2 + g
)
(a + g)(ν + g) − agβS∗

2

= β I ∗
2 (a + g)(ν + g) + g(a + g)(ν + g) − agβS∗

2

= β I ∗
2 (a + g)(ν + g) + g(a + g)(ν + g) − agβ

(a + g)(ν + g)

aβ
= β I ∗

2 (a + g)(ν + g) > 0,

a2a1 = α(M) ∗ (−tr(M))

= (β I ∗
2 + g)(a + 2g + ν)(β I ∗

2 + 3g + a + ν)

> β I ∗
2 (a + g)(ν + g) = −Det(M) = a3a0.

Hence, the conditions of Routh–Hurwitz stability criterion are satisfied. The
endemic equilibrium is thus asymptotically stable if all the parameters are positive
and aδβ > (a + g)(g + δ)(ν + g). �	

Proof of Theorem 3 Rewriting the third equation of System (1) as f ′(t) + (ν +
g) f (t) = aE(t) and differentiating both sides we get: f ′′(t)+(ν+g) f ′(t) = aE ′(t).
Plugging the second and third equations of (1) into the above equation, we have
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f ′′(t) + (ν + g) f ′(t) = aE ′(t)
= aβ(t)S(t) f (t) − (a + g)(aE(t))

= aβ(t)S(t) f (t) − (a + g)( f ′(t) + (ν + g) f (t)).

Rewriting the above equation as

aS(t) = f ′′(t) + (ν + 2g + a) f ′(t) + (a + g)(ν + g) f (t)

β(t) f (t)
.

i.e., aS(t) = H(t)
β(t) f (t) .

Taking the first and second derivatives of the above equation, we get

aS′(t) =
(

H(t)

β(t) f (t)

)′
= H ′(t)β(t) f (t) − H(t)(β′(t) f (t) + β(t) f ′(t)

β(t)2 f (t)2
,

aS′′(t) =
(
H ′(t)β(t) f (t) − H(t)(β′(t) f (t) + β(t) f ′(t)

β(t)2 f (t)2

)′

= [H ′β f − H(β′ f + β f ′)]′β2 f 2 − [H ′β f − H(β′ f + β f ′)](β2 f 2)′
(β2 f 2)2

= H ′′ f 3β3 + H ′ f 3β′β2 + H ′ f ′ f 2β3 − H ′ f 3β′β2 − H ′ f ′ f 2β3 − H f 3β′′β2 − 2H f ′ f 2β′β2 − H f ′′ f 2β3

β4 f 4

− 2(H ′ f 3β′β2 + H ′ f ′ f 2β3 − H f 3(β′)2β − H f ′ f 2β′β2 − H f ′ f 2β′β2 − H( f ′)2 fβ3)

β4 f 4

= [H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f ]β3 + [2H f ′ f 2 − 2H ′ f 3]β′β2 + 2H f 3(β′)2β − H f 3β′′β2

β4 f 4

= Aβ3 + Bβ′β2 + C(β′)2β + Dβ′′β2

β4 f 4
,

where A = H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f, B = 2H f ′ f 2 − 2H ′ f 3,C =
2H f 3, D = −H f 3.

Since S + E + I + R + A = 1, i.e., S + E + I + R = 1 − A, the fifth equation
of (1) becomes A′ = g(S + E + I + R) − δA = g(1 − A) − δA = g − (g + δ)A.

Taking the derivative of the first equation of (1) with respect to t we have: S′′ +
(βSI )′ + gS′ = δA′, plugging in the first and fifth equation of (1) we get

S′′ + (βSI )′ + gS′ = δA′ = δ(g − (g + δ)A)

= gδ − (g + δ)(δA)

= gδ − (g + δ)(S′ + βSI + gS).

Multiplying both sides of the above equation by a and simplifying gives

aS′′ + (2g + δ)(aS′) + g(g + δ)(aS) + (aβSI )′ + (g + δ)(aβSI ) = agδ.
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Substituting for aS, aS′ and aS′′ we have

(
Aβ3 + Bβ ′β2 + C(β ′)2β + Dβ ′′β2

β4 f 4

)

+ (2g + δ)

(
H ′(t)β(t) f (t) − H(t)(β ′(t) f (t) + β(t) f ′(t)

β(t)2 f (t)2

)

+ g(g + δ)

(
H(t)

β(t) f (t)

)
+ H ′ + (g + δ)H = agδ.

Multiplying both sides of the equation by β4 f 4 and expanding we get

Aβ3 + Bβ ′β2 + C(β ′)2β + Dβ ′′ β2 + (2g + δ)H ′ f 3β3 − (2g + δ)H f 3β ′β2

− (2g + δ)H f ′ f 2β3 + g(g + δ)H f 3β3 + H ′ f 4β4 + (g + δ)H f 4β4 = agδβ4.

This implies

(H ′ f 4 + (g + δ)H f 4 − agδ f 4)β4

+ (A + (2g + δ)H ′ f 3 − (2g + δ)H f ′ f 2 + g(g + δ)H f 3)β3

+ (B − (2g + δ)H f 3)β ′β2 + C(β ′)2β + Dβ ′′β2 = 0.

i.e.,

−Lβ4 − Qβ3 + Pβ ′β2 + N (β ′)2β + Mβ ′′β2 = 0, (18)

where

M = D = −H f 3,

N = C = 2H f 3,

P = B − (2g + δ)H f 3 = 2H f ′ f 2 − 2H ′ f 3 − (2g + δ)H f 3,

Q = −(A + (2g + δ)H ′ f 3 − (2g + δ)H f ′ f 2 + g(g + δ)H f 3)

= −(H ′′ f 3 − H f ′′ f 2 − 2H ′ f ′ f 2 + 2H( f ′)2 f + (2g + δ)H ′ f 3

− (2g + δ)H f ′ f 2 + g(g + δ)H f 3),

L = −(H ′ f 4 + (g + δ)H f 4 − agδ f 4).

Notice that N = −2M , Eq. (18) becomes

Mβ ′′β2 − 2M(β ′)2β + Pβ ′β2 − Qβ3 − Lβ4 = 0.
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Dividing by β4 we get

M
β ′′β2 − 2(β ′)2β

β4 + P
β ′β2

β4 − Q
β3

β4 − L
β4

β4

= −M(2β−3(β ′)2 − β−2β ′′) − P(−β−2β ′) − Q(β−1) − L

= 0.

Let y = β−1, y′ = −β−2β ′, y′′ = 2β−3(β ′)2 − β−2β ′′. (18) can be rewritten
as My′′ + Py′ + Qy + L = 0 with y = β−1. �	
Proof of Theorem 4 Solving the equations in the system using the method of variation
of parameters, we obtain

A(t) = C(t)e−(g+δ)t =
(
A(0) +

∫ t

0
ge(g+δ)sds

)
e−(g+δ)t

⇒ A(t) = A(0)e−(g+δ)t +
∫ t

0
ge(g+δ)(s−t)ds (19)

S(t) = S(0)e−gt +
∫ t

0
(δA(s) − ω(s))eg(s−t)ds (20)

I (t) = I (0)e−(ν+g)t +
∫ t

0
aE(s)e(ν+g)(s−t)ds (21)

E(t) = E(0)e−(a+g)t +
∫ t

0
ω(s)e(a+g)(s−t)ds (22)

Plug (22) into (21) and plug (19) into (20):

S(t) = S(0)e−gt+
∫ t

0

(
δ

(
A(0)e−(g+δ)s+

∫ s

0
ge(g+δ)(σ−s)dσ

)
− ω(s)

)
eg(s−t)ds

(23)

I (t) = I (0)e−(ν+g)t+
∫ t

0
a

(
E(0)e−(a+g)s+

∫ s

0
ω(σ)e(a+g)(σ−s)dσ

)
e(ν+g)(s−t)ds

(24)

Thus, β(t) = ω(t)
S(t)I (t) with S(t) and I (t) given in (9) and (10). �	

Proof of Theorem 5 Using the same symbols as in the qualitative analysis section
before, we have that f1 = δ(1 − p)y5 ≥ 0, f2 = βy1y3 ≥ 0, f3 = ay2 ≥ 0, f4 =
νy3 + δpy5 ≥ 0, f5 = g(y1 + y2 + y3 + y4) ≥ 0. Therefore the solution to system
(11) is positive for any positive initial values. Also, boundedness property is the same
as with the SEIRA model without vaccination analyze above. Combining positivity
and boundedness, we conclude that the solution of (11) will stay in {(S, E, I, R, A):
S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, A ≥ 0, S+ E + I + R+ A = 1} for any positive initial
values. �	
Proof of Theorem 6 Same as the proof of Theorem 2. �	
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