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Abstract

For decades, the network-organized reaction-diffusion models have been widely used to study ecological 
and epidemiological phenomena in discrete space. However, the high dimensionality of these nonlinear 
systems places a long-standing restriction to develop the normal forms of various bifurcations. In this paper, 
we take an important step to present a rigorous procedure for calculating the normal form associated with 
the Hopf bifurcation of the general network-organized reaction-diffusion systems, which is similar to but 
can be much more intricate than the corresponding procedure for the extensively explored PDE systems. To 
show the potential applications of our obtained theoretical results, we conduct the detailed Hopf bifurcation 
analysis for a multi-patch predator-prey system defined on any undirected connected underlying network 
and on the particular non-periodic one-dimensional lattice network. Remarkably, we reveal that the structure 
of the underlying network imposes a significant effect on the occurrence of the spatially nonhomogeneous 
Hopf bifurcations.
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1. Introduction

Many realistic reaction-diffusion processes take place in discrete space, rather than in continu-
ous space, such as the population dynamics and evolution in fragmented landscapes [18,14], and 
the spread of infectious diseases among cities or urban areas [32,38]. Under the basic assumption 
that interacting species or sub-populations occupy network nodes representing the isolated dis-
crete locations, and diffuse across the dispersal links, the network-organized reaction-diffusion 
modeling approach has become an increasingly essential framework to understand the intrin-
sic mechanisms and to develop effective strategies for ecological management and protection as 
well as disease prevention and control [23,10]. The spatially structured metapopulation models 
in ecology with dispersal connection between habitats allow exploring population dynamics in-
cluding stability and persistence under spatial connectivity and individual movement [19,9]. The 
metapopulation epidemic model in transportation networks is another excellent example for the 
network-organized reaction-diffusion models, whose threshold dynamics have been extensively 
studied in literatures [1,7,36]. In the 21st century, the network-based metapopulation approach 
has also been revamped in data-driven large-scale simulations and forecasting for the spread of 
infectious diseases [8,5].

In the network-organized reaction-diffusion models from ecology, epidemiology and other 
fields, network architecture usually results in the high dimensionality of these large systems, and 
thereby leads to grievous restrictions on the dynamical analysis of such spatial network models, 
which severely limits the broad applications of this fundamental class of discrete-space models. 
On the contrary, once these restrictions are broken through, great progress will be hopeful to ac-
complish. This conclusion can be easily obtained once we review the research of Turing patterns 
in networks. As early as 1971, Othmer and Scriven [26] pointed out that Turing instability could 
emerge in the network-organized reaction-diffusion models with proposing a general mathemat-
ical framework for the analysis of this instability. In the following several decades, this research 
was limited to regular lattices or small networks [27,31]. In 2010, Nakao and Mikhailov [25] con-
ducted a landmark research of Turing patterns in large random complex networks, and their work 
has already triggered many follow-up investigations in this direction. In the past decade, abundant 
stationary Turing patterns found in various networks have largely expanded the understanding of 
spatial self-organizations [30,11,17,12]. Besides stationary Turing patterns, Turing-like traveling 
waves (oscillatory Turing patterns) also gain some attention. Hata et al. [16] studied oscillatory 
Turing instabilities for all possible food webs with three predator or prey species and revealed 
that no wave patterns existed in networks but there existed spontaneous development of heteroge-
neous oscillations and possible extinction of species. Asllani et al. [2] demonstrated the existence 
of traveling waves in the balanced directed networks, which is impossible in undirected networks 
under same conditions. Petit and his collaborators [29,28] showed the delay-induced Turing-like 
waves for one-species and two-species reaction-diffusion models on networks. Later, Chang et 
al. [6] studied a Leslie-Gower Holling-type III predator-prey model with a single discrete-time 
delay defined on networks and discussed the influences of network topology on delay-induced 
wave patterns in the aspects of amplitude and period.

The above research works about the stationary Turing patterns and the Turing-like traveling 
waves are obtained by determining the corresponding Turing instability and oscillatory Turing 
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instability via a linear stability analysis. The method is to expand the heterogeneous perturbations 
over the set of Laplacian eigenvectors of one certain underlying network [26,25]. However, this 
is not sufficient for uncovering complex dynamical behaviors of the general network-organized 
reaction-diffusion systems. As we all know, the normal form theory, together with the central 
manifold method, has been widely applied to discover the complex dynamical behaviors in ordi-
nary differential equations (ODEs) [22] and partial differential equations (PDEs) [15,39,33,35]. 
Currently, the research on complex dynamical behaviors of the network-organized reaction-
diffusion systems, as one kind of high dimensional ODEs, is yet far less extensive and in-depth 
than that of their corresponding parabolic PDEs. It is important and intriguing to establish the 
normal form theory of the steady-state bifurcation, the Hopf bifurcation [39] and the Turing-Hopf 
bifurcation [33], and other types of bifurcations for the network-organized reaction-diffusion sys-
tems to uncover the complex dynamical behaviors.

To the best of our knowledge, a promising progress has not been made until recently by Tian 
et al. [37,34]. Based on the orthogonality of Laplacian eigenvectors of the underlying network, 
they utilized a linear stability analysis and a center manifold theory to determine the direction and 
stability of the Hopf bifurcations in some specific network-organized reaction-diffusion models 
in the presence or absence of a time delay. However, they still did not establish any abstract Hopf 
bifurcation theorem for the general network-organized reaction-diffusion systems. Furthermore, 
their application of the orthogonality of Laplacian eigenvectors to transform the original systems 
lacks rigorous mathematical proofs, at least up to now.

In this paper, without following these previous works, we make a lot of effort to strictly derive 
the normal form of Hopf bifurcation for the general two-species network-organized reaction-
diffusion systems according to the basic Hopf bifurcation theory. With the aid of Kronecker prod-
uct, we demonstrate the fundamental Theorem 2.1, which manifests the eigenvalues and their 
associated eigenvectors of the high dimensional Jacobian matrix at one homogeneous equilib-
rium of the considered system, for the first time. This critical theorem allows strictly developing 
the Hopf bifurcation Theorem 2.2 for the general two-species homogeneous network-organized 
reaction-diffusion systems. Our theorem mainly reveals that the procedure for calculating the 
normal form associated with the Hopf bifurcation in interest is similar to but can be more in-
tricate than the corresponding procedure for the PDE system provided in [15,39]. Generally, 
the unexpected difficulty lies in getting the analytic expressions for computing the important 
quantity Re(c1(μ0)) to determine their bifurcation direction of the possible bifurcating spatially 
nonhomogeneous periodic solutions, which needs to be handled by some numerical calculations.

To show the potential applicability of the established theorem, we provide a rigorous study 
of the Hopf bifurcation for a multi-patch predator-prey system, which can be defined on any 
underlying network. When this illustrative system is defined on the special non-periodic one-
dimensional lattice network, it is equivalent to one spatially semidiscrete approximating system 
of the corresponding reaction-diffusion system subject to Neumann boundary conditions on one-
dimensional spatial domain, with a necessary rescaling of the diffusion rates. Following the 
intuition, the Hopf bifurcation results in this particular case are in good agreement with the 
ones of the corresponding PDE model studied in [39]. Meanwhile, we derive the analytic expres-
sions for computing quantity Re(c1(μ0)) of its bifurcating spatially nonhomogeneous periodic 
solutions, although they are of different forms.

However, once our illustrative system is defined on other types of connected undirected net-
works, the occurrence and properties of spatially nonhomogeneous periodic solutions yet exhibit 
substantial differences, which might suggest some significant ecological laws for population 
dynamics. In mathematics, it yet becomes a challenge to obtain the analytic expressions for 
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computing quantity Re(c1(μ0)) of the possible bifurcating spatially nonhomogeneous periodic 
solutions. In addition, the decreasing of negative Laplacian eigenvalues of underlying networks 
can reduce the number of the possible spatially nonhomogeneous Hopf bifurcation points. Ba-
sically, our analytical results confirm an ecological conclusion that a sufficiently small diffusion 
rate will promote the spatially nonhomogeneous distribution of populations in network (dis-
crete space) by weakening diffusion coupling among nodes. We further reveal that the nonlocal 
connected edges, the rewired stochastic edges, and the hub nodes with large connectivity in 
underlying networks will directly or indirectly suppress the spatial heterogeneity of population 
distribution.

The remaining parts of this paper are structured as follows. In Section 2, we develop the Hopf 
bifurcation theorem for the general two-species network-organized reaction-diffusion systems. 
In Section 3, we apply the obtained theoretical results to the Hopf bifurcation analysis of a multi-
patch predator-prey system defined on any underlying connected undirected network and on the 
particular non-periodic one-dimensional lattice network. In Section 4, we provide four typical 
examples and a group of numerical simulations to illustrate the effects of network topology 
on the occurrence of spatially nonhomogeneous Hopf bifurcations. We finally summarize and 
discuss our findings in Section 5.

2. Normal form of Hopf bifurcation for general network-organized reaction-diffusion 
systems

We consider a general network-organized reaction-diffusion system defined on a certain un-
derlying network G of size N :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

ui(t) = f (μ,ui, vi) + du

N∑
j=1

Lijuj ,

d
dt

vi(t) = g(μ,ui, vi) + dv

N∑
j=1

Lij vj ,

(2.1)

for i = 1, . . . , N , where ui and vi are local densities on node i of species u and v. System (2.1)
takes the consideration that there are two different species u and v living on discrete nodes and 
diffusing over links between them with their respective diffusion constants denoted as du, dv ∈
R+. The local dynamics of species u and v are specified by the functions f (u, v) and g(u, v), and 
the diffusive fluxes of them are correspondingly expressed as du

∑N
j=1 Lijuj and dv

∑N
j=1 Lijvj , 

with Lij being the elements of network Laplacian matrix L. The Laplacian matrix L is defined as 
Lij = Aij − kiδij , where Aij are the elements of the adjacency matrix A taking Aij = 1 if node i
and j (i, j = 1, . . . , N) are connected i �= j and Aij = 0 otherwise, ki =∑N

j=1 Aij is the degree 
of node i, and δij is the Kronecker delta function, such that δij = 0 for i �= j and 1 otherwise. 
Notice that in (2.1), the Laplacian matrix L describes the diffusion of species following the 
well-known Fick’s law as the Laplacian operator � in the reaction-diffusion systems in classical 
continuous media [25].

Here, μ ∈ R is introduced as the bifurcation parameter, and without loss of generality, we 
assume that f, g : R × R2 → R are Ck(k ≥ 3) with f (μ, 0, 0) = g(μ, 0, 0) = 0. Therefore, 
system (2.1) admits a homogeneous equilibrium Eμ : (μ, ui, vi) = (μ, 0, 0) for i = 1, 2, . . . , N
and all μ. Around the equilibrium Eμ, the linearized system of (2.1) is
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

ui(t) = A(μ)ui + B(μ)vi + du

N∑
j=1

Lijuj ,

d
dt

vi(t) = C(μ)ui + D(μ)vi + dv

N∑
j=1

Lij vj ,

(2.2)

where A(μ) = fu(μ, 0, 0), B(μ) = fv(μ, 0, 0), C(μ) = gu(μ, 0, 0), D(μ) = gv(μ, 0, 0).
By introducing the vector U(t) := (u1(t), v1(t), · · · · · · , uN(t), vN(t)

)T , system (2.2) can be 
written as the matrix form

dU

dt
= (IN ⊗ K(μ)

)
U + (L ⊗ D

)
U , (2.3)

where K(μ) =
(

A(μ) B(μ)

C(μ) D(μ)

)
, D =

(
du 0
0 dv

)
, IN is the N × N identity matrix, and ⊗

denotes the Kronecker product (i.e., the direct product or tensor product) [13]. Apparently, the 
stability of this linear system is determined by the eigenvalues of Jacobian matrix

M(μ) := IN ⊗ K(μ) + L ⊗ D. (2.4)

Actually, for the eigenvalues of matrix M(μ), it is easy to check the following theorem.

Theorem 2.1. For the defined mode matrices

M l(μ) = K(μ) + �lD (2.5)

for l = 1, 2, · · · , N , if M l(μ) has the eigenvalue λl with the corresponding eigenvector Cl =(
Cl1, Cl2

)T
satisfying the condition M l(μ)Cl = λlCl , then λl is the eigenvalue of M(μ), and 

the corresponding eigenvector is given as φ(l) ⊗ Cl . Here, �l are eigenvalues of Laplacian 
matrix L with corresponding eigenvectors φ(l) = (φ(l)

1 , φ(l)
2 , · · · , φ(l)

N

)T
, which are determined 

by Lφ(l) = �lφ
(l), that is, 

∑N
j=1 Lijφ

(l)
j = �lφ

(l)
i for i, l = 1, 2, · · · , N .

Proof. Direct computation shows that for l = 1, 2, · · · , N ,

M(μ)(φ(l) ⊗ Cl) = (IN ⊗ K(μ) + L ⊗ D)(φ(l) ⊗ Cl)

= (IN ⊗ K(μ))(φ(l) ⊗ Cl) + (L ⊗ D)(φ(l) ⊗ Cl)

= (INφ(l)) ⊗ (K(μ)Cl) + (Lφ(l)) ⊗ (DCl)

= φ(l) ⊗ (K(μ)Cl) + (�lφ
(l)) ⊗ (DCl)

= φ(l) ⊗ (K(μ)Cl) + φ(l) ⊗ ((�lD)Cl

)
= φ(l) ⊗ (K(μ)Cl + (�lD)Cl

)
= φ(l) ⊗ ((K(μ) + �lD)Cl

)
= φ(l) ⊗ (M l (μ)Cl

)
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= φ(l) ⊗ (λlCl

)
= λlφ

(l) ⊗ Cl.

That is, M(μ)(φ(l) ⊗ Cl) = λl(φ
(l) ⊗ Cl). �

We note that the Laplacian matrix L of the underlying undirected network G is a real, symmet-
ric and negative semi-definite matrix. Therefore, all eigenvalues of L are real and non-positive, 
and their eigenvectors can be orthonormalized as 

∑N
l=1 φ

(i)
l φ

(j)
l = δi,j where i, j = 1, 2, . . . , N . 

With the additional assumption that the underlying network is connected, equivalently Lapla-
cian matrix L is also irreducible, we can further sort the indices {l} in the decreasing order of 
eigenvalues such that the condition 0 = �1 > �2 ≥ · · · ≥ �N holds. Due to the fact that the mul-
tiplicity of eigenvalue �1 = 0 is equal to the number of connected components of the network 
[4], we here emphasize �1 > �2.

According to the basic Hopf bifurcation theorem in [22,15,39], we provide the Hopf bifurca-
tion condition for system (2.1):

(H1) For some μ0 ∈ R, there exists a neighborhood O of μ0 such that for μ ∈ O , M(μ) has a 
pair of complex, simple, conjugate eigenvalues α(μ) ± iω(μ), continuously differentiable 
in μ, with α(μ0) = 0, ω(μ0) = ω0 > 0, and α′(μ0) �= 0; all other eigenvalues of M(μ)

have non-zero real parts for μ ∈ O .

According to Theorem 2.1, the eigenvalues of M(μ) are given by the eigenvalues of M l (μ)

for l = 1, 2, · · · , N . Actually, the characteristic equation of M l(μ) is

λ2 − λTl(μ) + Dl(μ) = 0, (2.6)

where {
Tl(μ) = A(μ) + D(μ) + �l(du + dv),

Dl(μ) = �2
l dudv + �l

(
dvA(μ) + duD(μ)

)+ A(μ)D(μ) − B(μ)C(μ),

and the eigenvalues λ(μ) are given by

λ(μ) =
Tl(μ) ±

√
T 2

l (μ) − 4Dl(μ)

2
, (2.7)

for l = 1, 2, · · · , N . Therefore, the Hopf bifurcation condition (H1) implies that at μ = μ0, 
M(μ) has a pair of simple purely imaginary eigenvalues ±iω0 if and only if there exists a unique 
n ∈ {1, 2, · · · , N} such that ±iω0 are the purely imaginary eigenvalues of Mn(μ0). We denote 
the associated eigenvector by q = (anφ

(n)
1 , bnφ

(n)
1 , . . . , . . . , anφ

(n)
N , bnφ

(n)
N )T = φ(n) ⊗ (an, bn

)T , 

with an, bn ∈ C satisfying Mn(μ0)
(
an, bn

)T = iω0
(
an, bn

)T such that M(μ0)q = iω0q .
By adapting the framework in Chapter 5 of [22], we rewrite system (2.1) in the abstract form

dU = M(μ)U + F (μ,U), (2.8)

dt
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where

F (μ,U) =
(

· · · , f (μ,ui, vi) − A(μ)ui − B(μ)vi, g(μ,ui, vi) − C(μ)ui − D(μ)vi, · · ·
)T

.

(2.9)
For simplicity of notations, we introduce a new expression to represent F (μ, U) as

F (μ,U) := col

(
f (μ,ui, vi) − A(μ)ui − B(μ)vi

g(μ,ui, vi) − C(μ)ui − D(μ)vi

)i=N

i=1
.

At μ = μ0, system (2.8) reduces to

dU

dt
= M(μ0)U + F 0(U), (2.10)

where F 0(U) := F (μ, U)|μ=μ0 = F (μ0, U).
Let 〈·, ·〉 be the complex-valued inner product on vector space C2N , defined as

〈
U (1),U (2)

〉= N∑
i=1

(
ū

(1)
i u

(2)
i + v̄

(1)
i v

(2)
i

)
, (2.11)

where U (i) = (u
(i)
1 , v(i)

1 , . . . , u(i)
N , v(i)

N ) ∈ C2N for i=1, 2. Clearly, 〈λU (1), U (2)〉 = λ〈U (1), U (2)〉. 
We denote the transposed matrix of M(μ0) as(

M(μ0)
)T := IN ⊗ (K(μ0)

)T + L ⊗ D. (2.12)

From (H1), we can then choose q∗ := (a∗
nφ

(n)
1 , b∗

nφ
(n)
1 , . . . , . . . , a∗

nφ
(n)
N , b∗

nφ
(n)
N )T = φ(n) ⊗(

a∗
n, b∗

n

)T with a∗
n, b∗

n ∈ C satisfying 
(
Mn(μ0)

)T (
a∗
n, b∗

n

)T = −iω0
(
a∗
n, b∗

n

)T such that

(
M(μ0)

)T
q∗ = −iω0q

∗, 〈q∗,q〉 = 1, and 〈q∗, q̄〉 = 0.

We can decompose R2N = T c ⊕T su with T c := {zq + zq̄|z ∈C} and T su := {U ∈ X|〈q∗, U〉 =
0}. For any U = (u1, v1, . . . , uN, vN)T , there exists z ∈ C and w = (w

(u)
1 , w(v)

1 , . . . , w(u)
N , w(v)

N )T

∈ T su such that

U = zq + zq̄ + w, or

{
ui = zanφ

(n)
i + z̄ · anφ

(n)
i + w

(u)
i ,

vi = zbnφ
(n)
i + z̄ · bnφ

(n)
i + w

(v)
i ,

for i = 1,2, · · · ,N. (2.13)

Thus system (2.10) can be transformed to the following system in (z, w) coordinates;{
dz
dt

= iω0z + 〈q∗,F 0〉,
dw
dt

= M(μ0)w + H (z, z,w),
(2.14)

where

H (z, z,w) := F 0 − 〈q∗,F 0〉q − 〈q∗,F 0〉q̄, and F 0 := F 0(zq + zq̄ + w). (2.15)
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As in [22], we write F 0(U) in the form

F 0(U) := 1

2
Q(U ,U) + 1

6
C(U ,U ,U) + O(|U |4), (2.16)

where Q(X, Y ) and C(X, Y , Z) are multilinear functions. In coordinates, we have

Qi(X,Y ) =
N∑

j,k=1

∂2Fi(ξ)

∂ξj ∂ξk

∣∣∣∣
ξ=0

xjyk,

and

Ci(X,Y ,Z) =
N∑

j,k,l=1

∂3Fi(ξ)

∂ξj ∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl,

where i = 1, 2, . . . , N . For simplicity, we write QXY = Q(X, Y ), and CXYZ = C(X, Y , Z). For 
later use, we calculate Qqq , Qqq̄ and Cqqq̄ as follows:

Qqq =
(

· · · , (φ
(n)
i )2cn, (φ

(n)
i )2dn, · · ·

)T = col

(
(φ

(n)
i )2cn

(φ
(n)
i )2dn

)i=N

i=1

,

Qqq̄ =
(

· · · , (φ
(n)
i )2en, (φ

(n)
i )2fn, · · ·

)T = col

(
(φ

(n)
i )2en

(φ
(n)
i )2fn

)i=N

i=1

,

Cqqq̄ =
(

· · · , (φ
(n)
i )3gn, (φ

(n)
i )3hn, · · ·

)T = col

(
(φ

(n)
i )3gn

(φ
(n)
i )3hn

)i=N

i=1

,

(2.17)

with

cn = fuua
2
n + 2fuvanbn + fvvb

2
n,

dn = guua
2
n + 2guvanbn + gvvb

2
n,

en = fuu|an|2 + fuv(anbn + anbn) + fvv|bn|2,
fn = guu|an|2 + guv(anbn + anbn) + gvv|bn|2,
gn = fuuu|an|2an + fuuv(2|an|2bn + a2

nbn) + fuvv(2|bn|2an + b2
nan) + fvvv|bn|2bn,

hn = guuu|an|2an + guuv(2|an|2bn + a2
nbn) + guvv(2|bn|2an + b2

nan) + gvvv|bn|2bn.

(2.18)

Note that in (2.18), all partial derivatives are evaluated at (μ0, 0, 0).
Let

H (z, z,w) = H 20

2
z2 + H 11zz + H 02

2
z2 + o(|z|3) + o(|z| · |w|), (2.19)

and note that
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H (z, z,w)

= F 0 − 〈q∗,F 0〉q − 〈q∗,F 0〉q̄

= 1

2
z2(Qqq − 〈q∗,Qqq〉q − 〈q∗,Qqq〉q̄)+ zz

(
Qqq̄ − 〈q∗,Qqq̄〉q − 〈q∗,Qqq̄〉q̄)

+ 1

2
z2(Qq̄q̄ − 〈q∗,Qq̄q̄〉q − 〈q∗,Qq̄q̄〉q̄)+ · · · ,

then matching the coefficients of terms z2 and zz yields{
H 20 = Qqq − 〈q∗,Qqq〉q − 〈q∗,Qqq〉q̄,

H 11 = Qqq̄ − 〈q∗,Qqq̄〉q − 〈q∗,Qqq̄〉q̄,
(2.20)

where

〈q∗,Qqq〉 = (a∗
ncn + b∗

ndn

) N∑
i=1

(
φ

(n)
i

)3
, 〈q∗,Qqq〉 = (a∗

ncn + b∗
ndn

) N∑
i=1

(
φ

(n)
i

)3
,

〈q∗,Qqq̄〉 = (a∗
nen + b∗

nfn

) N∑
i=1

(
φ

(n)
i

)3
, 〈q∗,Qqq̄〉 = (a∗

nen + b∗
nfn

) N∑
i=1

(
φ

(n)
i

)3
.

It follows from Chapter 5 of [22] that system (2.14) possesses a center manifold, and then we 
can write w in the form

w = w20

2
z2 + w11zz + w02

2
z2 + o(|z|3), (2.21)

where 〈q∗, wij 〉 = 0, with i, j = 0, 1, 2, i + j = 2. By (2.19) and (2.21), together with

M(μ0)w + H (z, z,w) = dw

dt
= ∂w

∂z
· dz

dt
+ ∂w

∂z
· dz

dt
,

we obtain {
w20 = [IN ⊗ (2iω0I2) − M(μ0)]−1H 20,

w11 = −[M(μ0)]−1H 11,
(2.22)

where H 20 and H 11 are given by (2.20).
Once we have w20 and w11, we can obtain the network-organized reaction-diffusion system 

restricted to the center manifold as

dz

dt
= iω0z + 1

2
g20z

2 + g11zz + 1

2
g02z

2 + 1

2
g21z

2z + O(|z|4), (2.23)

where g20 = 〈q∗, Qqq〉, g11 = 〈q∗, Qqq̄〉, g02 = 〈q∗, Qq̄q̄〉, and

g21 = 2〈q∗,Qw q〉 + 〈q∗,Qw q〉 + 〈q∗,Cqqq̄〉.
11 20
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The dynamics of (2.14) could be determined by the dynamics of (2.23).
According to Chapter 3 of [22], we can write the Poincaré normal form of (2.8) (for μ in a 

neighborhood of μ0) in the form

dz

dt
= (α(μ) + iω(μ)

)
z + z

M∑
j=1

cj (μ)(zz)j , (2.24)

where z is a complex variable, M ≥ 1 and cj (μ) are complex-valued coefficients. For c1(μ), we 
have

c1(μ) = g20g11(3α(μ) + iω(μ))

2(α2(μ) + ω2(μ))
+ |g11|2

α(μ) + iω(μ)
+ |g02|2

2(α(μ) + 3iω(μ))
+ g21

2
. (2.25)

Thus, at μ = μ0,

c1(μ0) = i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)+ g21

2
. (2.26)

Therefore, the real part of c1(μ0) is

Re
(
c1(μ0)

)=Re

(
i

2ω0
〈q∗,Qqq〉 · 〈q∗,Qqq̄〉

)
+ Re

(
〈q∗,Qw11q〉 + 1

2
〈q∗,Qw20q〉 + 1

2
〈q∗,Cqqq̄〉

)
.

(2.27)

To summarize the above analysis, we put forward the following Hopf bifurcation theorem for 
the general network-organized reaction-diffusion system (2.1).

Theorem 2.2. Suppose (H1) holds, then system (2.1) undergoes a Hopf bifurcation near the 
homogeneous equilibrium Eμ0 at μ = μ0. Furthermore:

1. The bifurcation is supercritical (resp. subcritical) if 1
α′(μ0)

Re(c1(μ0)) < 0 (resp. > 0).
2. In addition, if all other eigenvalues of M(μ0) have negative real parts, then the bifurcating 

periodic solutions are stable (resp. unstable) if Re(c1(μ0)) < 0 (resp. > 0).

Remark 2.1. The above main theoretical result is similar to Theorem 2.1 in [39], and we empha-
size some important points here.

1. As remarked in [39], we also note that under (H1), if additionally there exists at least one 
eigenvalue of M(μ0) having positive real part, then the bifurcating periodic solutions are 
always unstable because the eigenvalues with positive real parts give rise to characteristic 
(Floquet) exponents with positive real parts.

2. For the class of ODEs taking forms as (2.1), Re(c1(μ0)) is difficult to be formulated in 
an explicit form. Formula (2.27) is just a form to compute Re(c1(μ0)). Indeed, in order to 
compute it, we first need to calculate 〈q∗, Qqq〉, 〈q∗, Qqq̄〉, 〈q∗, Qw11q〉, 〈q∗, Qw20q〉, and 
〈q∗, Cqqq̄〉. These terms are defined in other formulas as mentioned above, and substituting 
73



W. Gou, Z. Jin and H. Wang Journal of Differential Equations 346 (2023) 64–107
these definitions into formula (2.27) will be lengthy. For concrete examples (like the one in 
the next section), we use (2.27) and corresponding substitutions to calculate these related 
quantities.

3. The last but not least, Theorem 2.1 is simple but indispensable in the derivation of the above 
result. This theorem provides us with a solid foundation to derive the considered Hopf bifur-
cation normal form. Actually, it can further guide us to investigate other bifurcation dynamics 
of the general or concrete network-organized reaction-diffusion systems.

Before ending this section, we would like to call for special attention to formula (2.20) of 
computing H 20 and H 11, and formula (2.22) of computing ω20 and ω11, which are quite differ-
ent from the corresponding formulas (2.21), (2.24) and (2.27) in [39]. To show this important 
difference, we solve the solution of the following linear system as an illustration.

Lemma 2.1. For a given cl ∈ C which is not the eigenvalue of matrix M l (μ) where μ ∈R, then 
for any 

(
a, b
)T ∈R2, the unique solution of the linear system

[
IN ⊗ (clI 2) − M(μ)

](
φ(l) ⊗

(
x1
x2

))
= φ(l) ⊗

(
a

b

)
(2.28)

is given as (
x1
x2

)
= [clI 2 − M l (μ)

]−1
(

a

b

)
,

for l = 1, 2, . . . , N , where M(μ) and M l (μ) are defined by (2.4) and (2.5) respectively, 
and �l are Laplacian eigenvalues of network G with corresponding eigenvectors φ(l) =(
φ

(l)
1 , φ(l)

2 , · · · , φ(l)
N

)T
, for l = 1, 2, . . . , N .

Proof. Because cl ∈ C is not the eigenvalue of matrix M l (μ), then by Theorem 2.1, cl ∈ C is 
not the eigenvalue of matrix M(μ) either. Therefore, (2.28) has a unique solution. Furthermore, 
it is straightforward to check that

[
IN ⊗ (clI 2) − M(μ)

](
φ(l) ⊗

(
x1
x2

))
=
[
IN ⊗ (clI 2) − (IN ⊗ K(μ) + L ⊗ D

)](
φ(l) ⊗

(
x1
x2

))
=
[
− L ⊗ D + IN ⊗ (clI 2 − K(μ)

)](
φ(l) ⊗

(
x1
x2

))
= −(L ⊗ D

)(
φ(l) ⊗

(
x1
x2

))
+
(
IN ⊗ (clI 2 − K(μ)

))(
φ(l) ⊗

(
x1
x2

))
= −(Lφ(l)

)⊗(D

(
x1
x2

))
+ (INφ(l)

)⊗((clI 2 − K(μ)
)(x1

x2

))
= −(�lφ

(l)
)⊗(D

(
x1
x

))
+ φ(l) ⊗

((
clI 2 − K(μ)

)(x1
x

))

2 2
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= −φ(l) ⊗
(

�lD

(
x1
x2

))
+ φ(l) ⊗

((
clI 2 − K(μ)

)(x1
x2

))
= φ(l) ⊗

((
clI 2 − K(μ) − �lD

)(x1
x2

))
= φ(l) ⊗

((
clI 2 − M l(μ)

)(x1
x2

))
.

Thus, due to (2.28), we have (
x1
x2

)
= [clI 2 − M l (μ)

]−1
(

a

b

)
.

Therefore, this lemma is proven. �
Based on formulas (2.20) and (2.22), and Lemma 2.1, we have the following comments:

Remark 2.2.

1. Given any underlying undirected network, the relation 
∑N

i=1

(
φ

(n)
i

)3 = 0 does not surely 
hold for n �= 1. By (2.20), then for n �= 1, there are not surely H 20 = Qqq or H 11 = Qqq̄ . 
This is different from the result that for n �= 0, there are surely H 20 = Qqq and H 11 = Qqq̄

in [39].
2. Because there is not a universal relation similar to 

(
φ

(n)
i

)2 = (
φ

(2n)
i + φ

(1)
i

)
/2 for i =

1, 2, . . . , N and n �= 1, like the special relation cos2 n
�
x = (cos 2n

�
x + 1

)
/2 used in PDE 

case in [39], the forms of Qqq and Qqq̄ given by (2.17) in (2.22) might not allow applying 
Lemma 2.1 to further compute ω20 and ω11 analytically. This situation may cause a big issue 
in computing Re(c1(μ0)), but we can handle this via numerical calculations.

3. Hopf bifurcation in a multi-patch predator-prey system

In this section, we provide an example to show the potential applicability of the above estab-
lished theorem. To this end, we introduce a specific multi-patch predator-prey system.

We recall a homogeneous reaction-diffusion predator-prey model with the simplified dimen-
sionless form as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t

u(x, t) = Du�u(x, t) + u(1 − u
k
) − muv

1+u
, x ∈ (0, �π), t > 0,

∂
∂t

v(x, t) = Dv�v(x, t) + muv
1+u

− θv, x ∈ (0, �π), t > 0,

ux(0, t) = vx(0, t) = 0, ux(�π, t) = vx(�π, t) = 0, t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0, x ∈ (0, �π),

(3.1)

where u(x, t) and v(x, t) represent the local dimensionless densities of the prey and predator at 
time t ≥ 0 in a spatial position x ∈ (0, �π) with � ∈ R+, respectively. This system has zero-flux 
boundary conditions and Holling type-II functional response. For the dimensionless parameters, 
k is the rescaled carrying capacity, θ is the death rate of the predator, m is the strength of the 
interaction, and Du and Dv are the rescaled diffusion coefficients of the prey and predator, re-
spectively. More details can be found in [39].

We consider the network analogue of system (3.1) as a specific example of (2.1). The network 
version of system (3.1) is written as
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

ui(t) = du

N∑
j=1

Lijuj + ui(1 − ui

k
) − muivi

1+ui
,

d
dt

vi(t) = dv

N∑
j=1

Lijvj + muivi

1+ui
− θvi,

(3.2)

for i = 1, 2, . . . , N , where ui and vi are local densities on node i of the prey and predator, 
respectively. We use du and dv in system (3.2) to denote the diffusion coefficients of the prey and 
predator in discrete networks instead of Du and Dv in system (3.1), since there does exist some 
difference in describing species diffusion in continuous space and discrete networks. Indeed, 
semidiscreting system (3.1) with meshing size h leads to one system (see system (3.42)), which 
is equivalent to one specified system of (3.2) defined on the non-periodic one-dimensional lattice 
network, where du and dv equals Du/h2 and Dv/h2 respectively.

For the corresponding ODE system of (3.1) or (3.2) without diffusion written in the following 
form {

d
dt

u(t) = u(1 − u
k
) − muv

1+u
,

d
dt

v(t) = muv
1+u

− θv,
(3.3)

it is easy to find that system (3.3) always has the zero equilibrium (0, 0) and a boundary equilib-
rium (k, 0). It also has a coexistence equilibrium (μ, vμ), where

μ = θ

m − θ
, vμ = (k − μ)(1 + μ)

km
,

if and only if m > θ(1 + k)/k (or 0 < μ < k). Moreover, we shall recall the following stability 
information: if μ ≥ k, (k, 0) is globally asymptotically stable; if (k − 1)/2 < μ < k, (μ, vμ) is 
globally asymptotically stable, while if 0 < μ < (k − 1)/2, there is a globally asymptotically 
stable periodic orbit. Especially, at μ = (k − 1)/2, system (3.3) undergoes a subcritical Hopf 
bifurcation. See [20,39] and related references for more details.

Therefore, system (3.2) has only one positive homogeneous equilibrium E∗ : (ui, vi) =
(μ, vμ) for i = 1, 2, . . . , N , provided m > θ(1 + k)/k (or 0 < μ < k). Of course, we are in-
terested in analyzing the stability of E∗ and further considering the related Hopf bifurcation for 
(3.2) defined on a certain underlying network G with fixed θ and k. We will use μ as the bifur-
cation parameter (or equivalently m as a parameter) as Yi et al. did in [39] for the convenience 
of direct comparison.

Setting ûi(t) = ui(t) − μ and v̂i (t) = vi(t) − vμ for i = 1, 2, . . . , N , and then dropping the 
hats for simplification of notation, we have the transformed system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt

ui(t) = du

N∑
j=1

Lijuj + (ui + μ)(1 − ui+μ
k

) − m(ui+μ)(vi+vμ)

1+ui+μ
,

d
dt

vi(t) = dv

N∑
j=1

Lij vj + m(ui+μ)(vi+vμ)

1+ui+μ
− θ(vi + vμ),

(3.4)

for i = 1, 2, . . . , N . As in Section 2, we obtain the Jacobian matrix around (ui, vi) = (0, 0) for 
i = 1, 2, . . . , N of system (3.4):
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M(μ) = IN ⊗ K(μ) + L ⊗ D, (3.5)

and the matrices in Theorem 2.1,

M l (μ) = K(μ) + �lD, (3.6)

where �l are Laplacian eigenvalues for l = 1, 2, . . . , N , and

K(μ) =
(

A(μ) B(μ)

C(μ) D(μ)

)
, D =

(
du 0
0 dv

)
,

with A(μ) = μ(k−1−2μ)
k(1+μ)

, B(μ) = −θ , C(μ) = k−μ
k(1+μ)

and D(μ) = 0.
The characteristic equation of M l (μ) is

λ2 − λTl(μ) + Dl(μ) = 0, l = 1,2, . . . ,N, (3.7)

where {
Tl(μ) = μ(k−1−2μ)

k(1+μ)
+ (du + dv)�l,

Dl(μ) = dudv�
2
l + dvμ(k−1−2μ)

k(1+μ)
�l + θ

k−μ
k(1+μ)

.
(3.8)

We then identify the Hopf bifurcation value μ0 that satisfies the condition (H1) and is given as: 
There exists n ∈ {1, 2, . . . , N} such that

Tn(μ0) = 0, Dn(μ0) > 0, and Tl(μ0) �= 0, Dl(μ0) �= 0, for l �= n; (3.9)

and for the unique pair of complex eigenvalues near the imaginary axis α(μ) ± iω(μ),

α′(μ0) �= 0. (3.10)

From (3.8), one can easily check that when 0 < k ≤ 1 or k > 1, but (k −1)/2 < μ < k, Tl(μ) < 0
and Dl(μ) > 0 for l = 1, 2, . . . , N , which implies that the positive homogeneous equilibrium E∗
is locally asymptotically stable. Therefore, we can state that any possible bifurcation point μ0
must be in the interval (0, (k − 1)/2] with k > 1. For any possible Hopf bifurcation point μ0 in 
(0, (k − 1)/2], α(μ) ± iω(μ) are the eigenvalues of Mn(μ), hence

α(μ) = Tn(μ)

2
, ω(μ) =

√
Dn(μ) − α(μ)2, (3.11)

and

α′(μ0) = T ′
n(μ)

2

∣∣∣∣∣
μ=μ0

= k − 1 − 4μ0 − 2μ2
0

2k(1 + μ0)2

⎧⎪⎨⎪⎩
> 0, if 0 < μ0 < μ∗,
= 0, if μ0 = μ∗,
< 0, if μ∗ < μ0 ≤ (k − 1)/2,

(3.12)

where
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μ∗ =
√

k + 1

2
− 1 ∈

(
0,

k − 1

2

)
, with k > 1. (3.13)

Therefore, the transversality condition (3.10) is always satisfied as long as μ0 �= μ∗. From The-
orem 2.1, we hence obtain that when μ∗ < μ0 < (k − 1)/2, the real part of one pair of complex 
eigenvalues of M(μ) becomes negative once μ increases crossing μ0; and when 0 < μ0 < μ∗, 
the real part of one pair of complex eigenvalues of M(μ) becomes positive once μ increases 
crossing μ0.

Based on the above discussion, we can conclude that the determination of Hopf bifurcation 
points reduces to the description of the set

SH :={μ ∈ (0,μ∗) ∪ (μ∗, (k − 1)/2] :
for some n ∈ {1,2, . . . ,N}, (3.9) and (3.10) are satisfied}, (3.14)

when a set of parameters (du, dv, θ, k) and a certain underlying network G are provided.
In the following, we fix the underlying network G, parameters θ > 0 and k > 1, and the 

ratio σ = du/dv , but tune the value of dv appropriately to determine the possible spatially ho-
mogeneous and nonhomogeneous Hopf bifurcation points of system (3.2). In our context, the 
bifurcating spatially homogeneous periodic solutions require that every node of the network 
exhibits homogeneous periodic dynamical behavior, while the bifurcating spatially nonhomoge-
neous periodic solutions admit that every node of the network exhibits nonhomogeneous periodic 
dynamical behavior.

We first consider the Hopf bifurcation of spatially homogeneous periodic solution of system 
(3.2). Actually, μH

1 := (k − 1)/2 is always an element of SH , because Tl(μ
H
1 ) < T1(μ

H
1 ) = 0 for 

l = 2, 3, . . . , N , and Dl(μ
H
1 ) > 0 for l = 1, 2, . . . , N . Apparently, μH

1 is the unique value μ for 
the Hopf bifurcation of spatially homogeneous periodic solution of system (3.2), which results 
from the fact that μH

1 is the unique bifurcation point where its corresponding ODE system (3.3)
undergoes the subcritical Hopf bifurcation.

We then seek the spatially nonhomogeneous Hopf bifurcation for n ∈ {2, 3, . . . , N}. Note 
that A(0) = A(μH

1 ) = 0, A(μ) > 0 in (0, μH
1 ), and A(μ) has a unique critical point μ = μ∗ at 

which A(μ) takes a local maximum A(μ∗) = (
√

k + 1 − √
2)2/k := M∗ > 0. We pick all single 

eigenvalues of the Laplacian matrix L of the given underlying network G as follows:

Ssingle := {�nτ : 0 = �1 = �n1 > �n2 > · · · > �nM1
}. (3.15)

To consider the possible spatially nonhomogeneous Hopf bifurcation, we assume that the set 
Ssingle has at least two elements, equivalently N ≥ M1 ≥ 2. Actually, this mild assumption is 
usually satisfied. Define

dv,τ := − M∗
(1 + σ)�nτ

, τ = 2, . . . ,M1. (3.16)

Then for dv,τ+1 ≤ dv < dv,τ , and 2 ≤ j ≤ τ , we define μH
j,− and μH

j,+ to be the roots of A(μ) +
(du + dv)�n = 0 satisfying 0 < μH < μ∗ < μH < μH . All these points follow
j j,− j,+ 1
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0 < μH
2,− < μH

3,− < · · · < μH
τ,− < μ∗ < μH

τ,+ < · · · < μH
3,+ < μH

2,+ < μH
1 .

Obviously, Tnj
(μH

j,±) = 0 and Ti(μ
H
j,±) �= 0 for i �= nj . On the other hand, we also need to 

verify whether Di(μ
H
j,±) �= 0 for i = 1, 2, . . . , N , and in particular, Dnj

(μH
j,±) > 0. Here, we just 

impose a sufficient condition so that Di(μ) > 0 for all μ ∈ [0, μH
1 ], which implies Di(μ

H
j,±) > 0

for i = 1, 2, . . . , N . Notice that the quadratic function g(y) = dudvy
2 + dvμ(k−1−2μ)

k(1+μ)
y + θ

k−μ
k(1+μ)

is positive for all y ∈R if

θ >
dvμ

2(k − 1 − 2μ)2

4duk(k − μ)(1 + μ)
.

Indeed, if μ ∈ [0, μH
1 ], 1+μ

k−μ
< 1, then

dvμ
2(k − 1 − 2μ)2

4duk(k − μ)(1 + μ)
= kdv

4du

· 1 + μ

(k − μ)
· μ2(k − 1 − 2μ)2

k2(1 + μ)2
<

kdv

4du

· A2(μ) <
kdvM

2∗
4du

.

Therefore, if

θ

k
>

dvM
2∗

4du

, (3.17)

then Di(μ) > 0 for μ ∈ [0, μH
1 ], and particularly Di(μ

H
j,±) > 0 for i = 1, 2, . . . , N .

Together with Theorem 2.2, we summarize the above analysis in the following theorem.

Theorem 3.1. Given a certain underlying network G, and assume that the parameters θ > 0, 
k > 1 and m > θ(1 + k)/k, and the ratio σ = du/dv satisfy

σ = du

dv

>
(
√

k + 1 − √
2)4

4θk
. (3.18)

Then for any dv ∈ [dv,τ+1, dv,τ ) where dv,τ are defined as in (3.16), there exist 2(τ − 1) points 
μH

j,±(G), 2 ≤ j ≤ τ , satisfying

0 < μH
2,−(G) < · · · < μH

τ,−(G) < μ∗ < μH
τ,+(G) < · · · < μH

2,+(G) < μH
1 ,

such that the system (3.2) defined on network G undergoes a Hopf bifurcation at μ = μH
j,±(G)

or μ = μH
1 . Moreover:

1. The bifurcating periodic solutions from μ = μH
1 are spatially homogeneous, and they coin-

cide with the periodic solutions of the corresponding ODE system;
2. The bifurcating periodic solutions from μ = μH

j,±(G) are spatially nonhomogeneous.
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Remark 3.1.

1. Without the restriction (3.18), the system (3.2) defined on any connected undirected network 
always undergoes a Hopf bifurcation at μ = μH

1 .
2. To make the condition (3.18) hold, (a) du/dv should be large enough for any given θ > 0 and 

k > 1; or (b) θ should be large enough while k(> 1) small enough for any given du, dv > 0. 
Meanwhile, (3.18) is actually a sufficient condition such that only Hopf bifurcations occur 
but steady state bifurcations do not occur. The latter possible bifurcations are not considered 
in this work. Of course, some Hopf bifurcations may still occur when (3.18) does not hold.

3. Introducing the set of single Laplacian eigenvalues Ssingle is necessary, since if there exists 
one multi Laplacian eigenvalue �n such that A(μ) + (du + dv)�n = 0, we might encounter 
other more intricate bifurcations. For example, if the Laplacian �n of multiplicity 2 satisfy-
ing the condition A(μ) +(du+dv)�n = 0, we need to deal with the double-Hopf bifurcation, 
which is not considered in this work. Note that this is quite different from the correspond-
ing PDE case in [39], and suggests that the network may enrich the dynamical behaviors of 
system (3.2).

4. Take (3.18) into consideration again, with the fixed ratio σ = du/dv to make this condition 
hold for any given θ > 0 and k > 1, we tune dv such that dv,τ+1 ≤ dv < dv,τ to allow 
the system having time-periodic spatially nonhomogeneous patterns. For the simplest case 
where �2 is the largest single non-zero Laplacian eigenvalue, if dv ≥ dv,2, then μ = μH

1 is 
the only Hopf bifurcation point, and dv,2 := −M∗/(1 + σ)/�2 is the maximal diffusion rate 
for the system to have a time-periodic spatial patterns. Moreover, smaller dv usually implies 
more possible periodic spatially nonhomogeneous patterns. This revealed result is consistent 
with some ecological phenomena. Indeed, the sufficiently small diffusion rate of species will 
weaken the diffusion coupling and diminish the effect between nodes, which does lead to 
spatially nonhomogeneous distribution of populations. We finally would like to emphasize 
that different underlying networks usually have distinct Laplacian spectra, which can trigger 
substantial differences in their respective Hopf bifurcations. We will discuss this issue in 
detail in Section 4.

Next we consider the bifurcation direction and stability of the bifurcating spatially homoge-
neous periodic solutions.

Theorem 3.2. For the system (3.2) defined on any underlying network G, the Hopf bifurcation at 
μ = μH

1 is subcritical, and the bifurcating spatially homogeneous periodic solutions are locally 
asymptotically stable.

Proof. By Theorem 2.2, in order to determine the stability and bifurcation direction of the bifur-
cating periodic solution from μ = μH

1 , we calculate Re(c1(μ
H
1 )). When μ = μH

1 , we put

q = φ(1) ⊗
(

a1
b1

)
= φ(1) ⊗

(
1

− iω1
θ

)
,

q∗ = φ(1) ⊗
(

a∗
1

b∗
1

)
= φ(1) ⊗

(
1
2− iθ
2ω1

)
,

(3.19)

where ω1 = √
θ/k and φ(1) =

(
1/

√
N,1/

√
N, . . . ,1/

√
N
)T

.
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In our context, we have

f (μ,u, v) = (u + μ)(1 − u + μ

k
) − m(u + μ)(v + vμ)

1 + u + μ
,

g(μ,u, v) = m(u + μ)(v + vμ)

1 + u + μ
− θ(v + vμ),

(3.20)

then we can compute all the following partial derivatives of f and g around (μH
1 , 0, 0):

fuu = −2(k − 1)

k(k + 1)
, fuv = − 4θ

(k + 1)(k − 1)
, fvv = 0,

fuuu = − 24

k(1 + k)2 , fuuv = 16θ

(k − 1)(1 + k)2 , fuvv = fvvv = 0,

guu = − 4

k(1 + k)
, guv = 4θ

(k + 1)(k − 1)
, gvv = 0,

guuu = 24

k(1 + k)2 , guuv = − 16θ

(k − 1)(1 + k)2 , guvv = gvvv = 0.

By (2.18), we have

c1 = −2(k − 1)2 + 8iω1k

k(k + 1)(k − 1)
, d1 = −4(k − 1) + 8iω1k

k(k + 1)(k − 1)
,

e1 = 2(1 − k)

k(k + 1)
, f1 = − 4

k(k + 1)
, g1 = −h1 = −24(k − 1) + 16iω1k

k(k − 1)(k + 1)2 ,

(3.21)

and

〈q∗,Qqq〉 = 1√
N

· 4ω1θk − (k − 1)2ω1 + 2θ(3 − k)i

k(k − 1)(k + 1)ω1
,

〈q∗,Qqq̄〉 = 1√
N

· (1 − k)ω1 − 2θi

k(k + 1)ω1
,

〈q∗,Qqq〉 = 1√
N

· −(k − 1)2ω1 − 4θω1k + 2θ(k + 1)i

k(k − 1)(k + 1)ω1
,

〈q∗,Qqq̄〉 = 1√
N

· (1 − k)ω1 + 2θi

k(k + 1)ω1
,

〈q∗,Cqqq̄〉 = 1

N
· −12(k − 1)ω1 − 8θω1k + 4(3k − 5)θi

k(k − 1)(k + 1)2ω1
.

(3.22)

Therefore, it is straightforward to calculate

H 20 = Qqq − 〈q∗,Qqq〉q − 〈q∗,Qqq〉q̄ = 0,

H = Q − 〈q∗,Q 〉q − 〈q∗,Q 〉q̄ = 0,
(3.23)
11 qq̄ qq̄ qq̄

81



W. Gou, Z. Jin and H. Wang Journal of Differential Equations 346 (2023) 64–107
which implies that w20 = w11 = 0 from (2.22). Thus

〈q∗,Qw11q〉 = 〈q∗,Qw20q〉 = 0.

Therefore,

Re (c1(μ0)) = Re

{
i

2ω1
〈q∗,Qqq〉 · 〈q∗,Qqq̄〉 + 1

2
〈q∗,Cqqq̄〉

}
= θ

(
4θk − (k − 1)2 − (3 − k)(1 − k)

)
Nk2(k − 1)(k + 1)2ω2

1

− 6(k − 1) + 4θk

Nk(k − 1)(k + 1)2

= 4θk − (k − 1)2 − (3 − k)(1 − k)

Nk(k − 1)(k + 1)2 − 6(k − 1) + 4θk

Nk(k − 1)(k + 1)2

= 4θk − (k − 1)2 − (3 − k)(1 − k) − 6(k − 1) − 4θk

Nk(k − 1)(k + 1)2

= −2(k − 1)(k + 1)

Nk(k − 1)(k + 1)2 = − 2

Nk(k + 1)
< 0.

(3.24)

From (3.12), it follows that α′(μH
1 ) < 0, and then by Theorem 2.2, the bifurcation is subcriti-

cal. On the other hand, from (3.8), Tl(μ
H
1 ) < 0 and Dl(μ

H
1 ) > 0 for l = 2, 3, . . . , N , thus the 

bifurcating periodic solutions are stable since Re (c1(μ0)) < 0. �
Then, for the spatially nonhomogeneous periodic solutions in Theorem 3.1, we have

Theorem 3.3. For the system (3.2) defined on one certain underlying network G, the Hopf 
bifurcation at μ = μH

j,−(G) is subcritical (supercritical) if Re(c1(μ
H
j,−(G))) > 0(< 0), while 

the one at μ = μH
j,+(G) is subcritical (supercritical) if Re

(
c1(μ

H
j,+(G))

)
< 0(> 0), in which 

Re(c1(μ
H
j,±(G))) is determined by (3.31); and the bifurcating spatially nonhomogeneous peri-

odic solutions are unstable.

Proof. By (3.12), we have α′(μH
j,−(G)) > 0 and α′(μH

j,+(G)) < 0. To determine the bifurcation 

direction, we calculate Re(c1(μ
H
j,±(G))), with μH

j,±(G) satisfying the condition A(μH
j,±(G)) +

(du + dv)�nj
= 0.

When μ = μH
j,±(G) with 2 ≤ j ≤ τ and 2 ≤ nj ≤ N , we can set

q = φ(nj ) ⊗
(

anj

bnj

)
= col

(
anj

φ
(nj )

l

bnj
φ

(nj )

l

)l=N

l=1

,

q∗ = φ(nj ) ⊗
(

a∗
nj

b∗
nj

)
= col

(
a∗
nj

φ
(nj )

l

b∗
nj

φ
(nj )

l

)l=N

l=1

,

(3.25)

where
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anj
= 1, bnj

= −dv�nj
+ iωnj

θ
,

a∗
nj

= ωnj
− idv�nj

2ωnj

, b∗
nj

= − iθ

2ωnj

,

ωnj
=
√

θC(μH
j,±(G)) − d2

v�2
nj

,

and φ(nj ) is the normalized eigenvector of the network Laplacian matrix L with corresponding 
eigenvalue �nj

.
We next compute the following partial derivatives of f and g evaluated at (μH

j,±(G), 0, 0):

fuu = −2
(
μH

j,±(G)
)2 − 6μH

j,±(G) + 2k − 2

k
(
1 + μH

j,±(G)
)2 , fuv = − θ

μH
j,±(G)

(
1 + μH

j,±(G)
) ,

fuuu = − 6
(
k − μH

j,±(G)
)

k
(
1 + μH

j,±(G)
)3 , fuuv = 2θ

μH
j,±(G)

(
1 + μH

j,±(G)
)2 ,

guu = − 2
(
k − μH

j,±(G)
)

k
(
1 + μH

j,±(G)
)2 , guv = θ

μH
j,±(G)

(
1 + μH

j,±(G)
) ,

guuu = 6
(
k − μH

j,±(G)
)

k
(
1 + μH

j,±(G)
)3 , guuv = − 2θ

μH
j,±(G)

(
1 + μH

j,±(G)
)2 ,

fvv = fuvv = fvvv = 0, gvv = guvv = gvvv = 0.

(3.26)

Then, (2.17) and (2.18) read as

Qqq =
(

· · · , (φ
(nj )

l )2cnj
, (φ

(nj )

l )2dnj
, · · ·

)T = col

(
(φ

(nj )

l )2cnj

(φ
(nj )

l )2dnj

)l=N

l=1

,

Qqq̄ =
(

· · · , (φ
(nj )

l )2enj
, (φ

(nj )

l )2fnj
, · · ·

)T = col

(
(φ

(nj )

l )2enj

(φ
(nj )

l )2fnj

)l=N

l=1

,

Cqqq̄ =
(

· · · , (φ
(nj )

l )3gnj
, (φ

(nj )

l )3hnj
, · · ·

)T = col

(
(φ

(nj )

l )3gnj

(φ
(nj )

l )3hnj

)l=N

l=1

,

(3.27)

and

cnj
= fuu − 2dv�nj

+ 2iωnj

θ
fuv, dnj

= guu − 2dv�nj
+ 2iωnj

θ
guv,

enj
= fuu − 2dv�nj

θ
fuv, fnj

= guu − 2dv�nj

θ
guv,

gnj
= fuuu − 3dv�nj

+ iωnj
fuuv, hnj

= guuu − 3dv�nj
+ iωnj

guuv.

(3.28)
θ θ
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By (2.20), we can obtain H 20 and H 11 as

H 20 = Qqq − 〈q∗,Qqq〉q − 〈q∗,Qqq〉q̄,

H 11 = Qqq̄ − 〈q∗,Qqq̄〉q − 〈q∗,Qqq̄〉q̄.
(3.29)

From (2.22), we obtain{
w20 = [IN ⊗ (2iωnj

I2) − M(μH
j,±(G))]−1H 20,

w11 = −[M(μH
j,±(G))]−1H 11,

(3.30)

where H 20 and H 11 are given by (3.29). Unfortunately, as we pointed out previously that the 
forms of Qqq and Qqq̄ in (3.27) might not allow applying Lemma 2.1 to further compute ω20 and 
ω11 analytically, which is different from the case in PDE where the special relation cos2 n

�
x =(

cos 2n
�

x + 1
)
/2 holds such that we can obtain the analytic expressions for computing these 

terms. Therefore, (3.29) is just a form to compute ω20 and ω11.
By (2.27), we have

Re
(
c1(μ

H
j,±(G))

)
= Re

( i

2ωnj

〈q∗,Qqq〉 · 〈q∗,Qqq̄〉
)

+ Re
(
〈q∗,Qw11q〉

)
+ 1

2
Re
(
〈q∗,Qw20q〉 + 〈q∗,Cqqq̄〉

)
.

(3.31)

The bifurcating periodic solutions are unstable since the positive equilibrium E∗ is unstable. 
In fact, for 1 ≤ i < nj , Ti(μ

H
j,±(G)) > Tnj

(μH
j,±(G)) = 0. Thereby, the bifurcating periodic 

solutions are unstable. �
We provide a special example by setting the underlying network in system (3.2) as the non-

periodic one-dimensional lattice network of size N , Gla(N). See an illustrative case where the 
network size is N = 9 in Fig. 1(a). There are two main reasons for considering this kind of 
networks. Firstly, we can find a similar relation like cos2 n

�
x = (cos 2n

�
x + 1)/2 to transform the 

expression of Qqq and Qqq̄ , which allows applying Lemma 2.1 to further obtain an analytical 
expression to compute Re(c1(μ

H
j,±(Gla))). Secondly, by introducing a spatially semidiscrete 

approximation to the continuous PDE system (3.1) using finite volume method, we can obtain 
this sample model as system (3.2) defined on Gla of the network size N . Such an example can 
bridge the occurrence and properties of the spatially nonhomogeneous periodic solutions in a 
network and in continuous space, and help distinguish their departures.

Following Liu et al. [24], we now introduce a spatially semidiscrete approximation to system 
(3.1) using finite volume method. Setting the meshing step size h = �π/H̃ with H̃ ∈ N+, we get 
the mesh

�h = {xl : xl = lh, l = 0,1,2, . . . , H̃ }. (3.32)

Letting �l = [x
l− 1

2
, x

l+ 1
2
] with x

l± 1
2

= (l ± 1
2 )h, and integrating the first equation of (3.1) on �l

leads to
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∫
�l

∂u

∂t
dx =

∫
�l

f (u, v)dx + Du

∫
�l

∂2u

∂x2 dx. (3.33)

By mid-rectangle formula, the first two terms can be approximated as

I1 =
∫

�l

∂u

∂t
dx =

∫ x
l+ 1

2

x
l− 1

2

∂u

∂t
dx ≈ h

du(xl, t)

dt
,

I2 =
∫

�l

f (u, v)dx =
∫ x

l+ 1
2

x
l− 1

2

f (u, v)dx ≈ hf
(
u(xl, t), v(xl, t)

)
.

(3.34)

For the third terms, from Newton-Leibniz formula and mid-rectangle formula, we have

I3 = Du

∫
�l

∂2u

∂x2 dx = Du

∫ x
l+ 1

2

x
l− 1

2

∂2u

∂x2 dx

= Du

(∂u(x
l+ 1

2
, t)

∂x
−

∂u(x
l− 1

2
, t)

∂x

)
≈ Du

h

[(
u(xl+1, t) − u(xl, t)

)− (u(xl, t) − u(xl−1, t)
)]

= Du

h

(
u(xl+1, t) − 2u(xl, t) + u(xl−1, t)

)
.

(3.35)

By letting ul(t) be the finite volume approximation to u(xl, t), and according to (3.32) and 
(3.33)-(3.35), the spatially semidiscrete scheme for the first equation in (3.1) takes the following 
form

d

dt
ul(t) = f (ul, vl) + Du

h2

(
ul−1 − 2ul + ul+1

)
. (3.36)

Particularly, if xl is a boundary node, such as x0 and xH̃ , it follows from (3.36) that

du0

dt
= f (u0, v0) + Du

h2

(
u−1 − 2u0 + u1

)
,

duH̃

dt
= f (uH̃ , vH̃ ) + Du

h2

(
uH̃−1 − 2uH̃ + uH̃+1

)
.

(3.37)

In the above formulas, the terms related to those nodes (or positions) x−1 and xH̃−1 outside �h

can be eliminated by applying the zero-flux boundary conditions in (3.1). Note that the boundary 
condition of u is equivalent to

∂

∂x
u0(t) = ∂

∂x
uH̃ (t) = 0. (3.38)

Using Taylor expansion, we have
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u−1(t) ≈ u0(t) − h
∂

∂x
u0(t) = u0(t),

uH̃+1(t) ≈ uH̃ (t) + h
∂

∂x
uH̃ (t) = uH̃ (t).

(3.39)

Thereby, for u0(t) and uH̃ (t), (3.37) can be written as

du0

dt
= f (u0, v0) + Du

h2

(− u0 + u1
)
,

duH̃

dt
= f (uH̃ , vH̃ ) + Du

h2

(
uH̃−1 − uH̃

)
.

(3.40)

For the second equation in (3.1), we have a similar spatially semidiscrete approximation. 
Finally, by introducing the Laplacian matrix L of network Gla of size N = H̃ + 1 that takes the 
following form

L =

⎛⎜⎜⎜⎜⎜⎝
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎞⎟⎟⎟⎟⎟⎠ , (3.41)

we obtain the spatially semidiscrete approximating system of (3.1):⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

ui(t) = Du

h2

N∑
j=1

Lijuj + ui(1 − ui

k
) − muivi

1+ui
,

d
dt

vi(t) = Dv

h2

N∑
j=1

Lijvj + muivi

1+ui
− θvi,

(3.42)

for i = 1, 2, . . . , N , where Lij are restricted as (3.41). Therefore, set du = Du/h2 and dv =
Dv/h2, we obtain the corresponding system (3.2) defined on the non-periodic one-dimensional 
lattice network Gla of network size N = H̃ + 1.

Remark 3.2. The above spatially semidiscrete approximation to the continuous PDE system 
(3.1) is an indication that the spatiotemporal dynamics of the continuous PDE system (3.1) are 
limitedly supported in essence by the reaction-diffusion system (3.2) defined on the non-periodic 
one-dimensional lattice network Gla . In this sense, we would say that it is of urgent importance 
to investigate the reaction-diffusion system defined on various kinds of networks, even beyond 
this special kind of networks.

In the remaining part of this section, we always set the underlying network as the non-periodic 
one-dimensional lattice network Gla(N). According to [26,21], the right normalized eigenvec-
tors of Laplacian matrix L of network Gla(N) are

φ(j) =
√

2 (
cos (j−1)π

2N
, cos 3(j−1)π

2N
, . . . , cos (2N−1)(j−1)π

2N

)T

, (3.43)

N
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with corresponding eigenvalues �j = 2 cos (j−1)π
N

− 2, for j = 2, 3, . . . , N . In addition, when 
j = 1, the eigenvalue is �1 = 0 with the corresponding normalized eigenvector

φ(1) = (1/
√

N, 1/
√

N, . . . , 1/
√

N
)T

.

Therefore, we can particularly obtain the set

Ssingle := {�n : 0 = �1 > �2 > · · · > �N }. (3.44)

According to Theorem 3.1, we are able to obtain the following corollary.

Corollary 3.1. Set the underlying network as the non-periodic one-dimensional lattice network 
of size N , i.e. Gla(N), and assume that the parameters θ > 0, k > 1 and m > θ(1 + k)/k, and 
especially, du = Du/h2 and dv = Dv/h2 with Du, Dv > 0 and h = �π/(N − 1) where � ∈ R+
satisfy

du

dv

= Du

Dv

>
(
√

k + 1 − √
2)4

4θk
. (3.45)

Then, for any � ∈ (�n, �n+1] with

�n := N − 1

π

√
−(Du + Dv)

M∗
(
2 cos

(n − 1)π

N
− 2
)

(3.46)

for n = 2, 3, . . . , N , there exist 2(n − 1) points μH
j,±(Gla) determined by A(μ) + (du + dv)�n =

A(μ) + 2(du + dv)
(

cos (n−1)π
N

− 1
)= 0 for j = 2, 3, . . . , n, satisfying

0 < μH
2,−(Gla) < · · · < μH

n,−(Gla) < μ∗ < μH
n,+(Gla) < · · · < μH

2,+(Gla) < μH
1 ,

such that the system (3.2) defined on the network Gla(N) undergoes a Hopf bifurcation at μ =
μH

j,±(Gla) or μ = μH
1 . Moreover:

1. The bifurcating periodic solutions from μ = μH
1 are spatially homogeneous, and they coin-

cide with the periodic solutions of the corresponding ODE system;
2. The bifurcating periodic solutions from μ = μH

j,±(Gla) are spatially nonhomogeneous.

One can similarly put forward a series of comments like Remark 3.1, but here we only would 
like to highlight something important.

Remark 3.3.

1. It is easy to check lim
N→+∞�n = lim

N→+∞
N−1

π

√
−(Du+Dv)

M∗
(
2 cos (n−1)π

N
− 2
)= (n −1)

√
Du+Dv

M∗
for n = 2, 3, . . ., which is totally in line with equation (2.47) in [39] by transforming their 
index starting from 2. Actually, taking account for the case where N takes +∞, the occur-
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rence of Hopf bifurcations of system (3.2) defined on the network Gla is of no difference 
from the results of the PDE system (3.1) revealed by Theorem 2.4 in [39].

2. With all Laplacian eigenvalues of network Gla being single, μ = μH
1 is the only Hopf bifur-

cation point if 0 < � < �2, where

�2 = N − 1

π

√
−(Du + Dv)

M∗
(
2 cos

π

N
− 2
)
.

As in [39], this fact means that �2π is a minimal lattice length for the system to have a time-
periodic spatial pattern. For this minimal lattice length �2π , it is worth putting out that �2π

grows with a limit

lim
N→+∞�2π = π

√
(du + dv)k√

k + 1 − √
2

as we increase the network size N to +∞. Besides, we should pay attention to the fact that 
more periodic patterns are possibly triggered by increasing lattice length �π . In our consid-
eration, increasing lattice length �π or decreasing network size N does mean equivalently 
tuning the diffusion rates du and dv smaller, which is essential to induce heterogeneous 
distribution of populations. In this spirit, the minimal lattice length �2π makes the same eco-
logical sense to our previously discussed maximal diffusion rate dv,2. At the same time, once 
we increase the network size N , we also need to enlarge the lattice length �π appropriately 
to keep the sufficiently small diffusion rates and thereby result in the time-periodic spatial 
heterogeneity in the system.

3. In system (3.2) defined on other types of networks instead of the network Gla, we can also 
set du = Du/h2 and dv = Dv/h2 with Du, Dv > 0 and h = �π/(N − 1) where � ∈ R+
by ignoring the influence of the edge length (the distance between the connected nodes) on 
species diffusion rates. Then we can also define the characteristic length as

�n := N − 1

π

√
−(Du + Dv)

M∗
�n, (3.47)

for n = 2, 3, . . . , N . Following the same logic in Corollary 3.1, we can similarly discuss 
the corresponding Hopf bifurcations of the system (3.2) defined on the non-periodic one-
dimensional lattice network. We will show some applications in our Examples 4.2-4.4 in 
Section 4.

Without any doubt, Theorem 3.2 supports that the system (3.2) defined on network Gla under-
goes a subcritical Hopf bifurcation, and the bifurcating spatially homogeneous periodic solutions 
are locally asymptotically stable.

For the bifurcation direction and stability of the bifurcating spatially nonhomogeneous solu-
tions, we can state the following theorem.

Theorem 3.4. For the system (3.2) defined on the non-periodic one-dimensional lattice network 
Gla , the Hopf bifurcation at μ = μH

j,−(Gla) is subcritical (supercritical) if Re(c1(μ
H
j,−(Gla))) >

0(< 0), while the one at μ = μH (Gla) is subcritical (supercritical) if Re(c1(μ
H (Gla))) < 0(>
j,+ j,+
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0), in which Re(c1(μ
H
j,±(Gla))) is determined by (A.23), (A.24) and (A.25); and furthermore, 

the bifurcating spatially nonhomogeneous periodic solutions are unstable.

Proof. It is clear that the bifurcating periodic solutions are unstable since the positive equi-
librium E∗ is unstable. In fact, for 1 ≤ i < j , Ti(μ

H
j,±(G)) > Tj (μ

H
j,±(G)) = 0. Thereby, the 

bifurcating periodic solutions are unstable. The bifurcation direction is determined by (3.12)
and Theorem 2.2. The calculation of Re(c1(μ

H
j,±(Gla))), given by (A.23), (A.24) and (A.25), 

is lengthy, and we provide the details in Appendix A. Together with α′(μH
j,−(Gla)) > 0 and 

α′(μH
j,+(Gla)) < 0 from (3.12), we obtain that, for the system (3.2) defined on the special un-

derlying network Gla , the Hopf bifurcation at μ = μH
j,−(Gla) is subcritical (supercritical) if 

Re(c1(μ
H
j,−(Gla))) > 0(< 0), while the one at μ = μH

j,+(Gla) is subcritical (supercritical) if 

Re(c1(μ
H
j,+(Gla))) < 0(> 0). �

Remark 3.4. In the above theorem, the procedure of calculating Re(c1(μ
H
j,±(Gla))) shown in 

Appendix A is very similar to the corresponding procedure in Appendix A of [39]. However, our 
obtained formulas of Re(c1(μ

H
j,±(Gla))) are quite different.

4. Numerical simulations

In this section, we provide some illustrative numerical simulations for system (3.2) defined 
on several typical networks to confirm our theoretical results obtained in Section 3, and more 
importantly, to investigate the effects of each underlying network on Hopf bifurcations.

We briefly introduce the following four kinds of networks to be used as the candidate under-
lying networks.

• The non-periodic one-dimensional lattice network. In this network, all nodes are placed 
into a one-dimensional lattice with the non-periodic boundary conditions, and each is con-
nected with its possible nearest neighbors on its left and right by undirected edges. That is, 
each inner node is connected with one adjacent node on its left and right; and the right (left) 
boundary node is connected with its one left (right) adjacent node. For convenience, we de-
note Gla(N) as the non-periodic one-dimensional lattice network composed of N nodes. See 
the illustrative network Gla(9) in Fig. 1(a).

• The non-periodic one-dimensional K-nearest lattice network. In this network, all nodes 
are also placed into a one-dimensional lattice with the non-periodic boundary conditions, but 
each is connected with its all possible K nearest neighbors on its left and right by undirected 
edges. We here denote Gn(N, K) as the non-periodic one-dimensional K-nearest lattice 
network of size N . Clearly, once K = 1, the non-periodic one-dimensional 1-nearest lattice 
network Gn(N, 1) reduces to the non-periodic one-dimensional lattice network Gla(N). See 
the illustrative network Gn(9, 2) in Fig. 1(b).

• The non-periodic one-dimensional small-world lattice network. We perform a random 
rewiring procedure to a prepared non-periodic one-dimensional K-nearest lattice network 
to generate this network. Concretely, for each edge in the prepared non-periodic one-
dimensional K-nearest lattice network, we break it with a given probability P ∈ [0, 1] and 
reconnect one of its two ending nodes chosen with equal probability to a node chosen uni-
formly at random over the entire lattice, with duplicate edges forbidden; otherwise we leave 
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Fig. 1. Illustrative networks: (a) the non-periodic one-dimensional lattice network Gla(9), (b) the non-periodic one-
dimensional 2-nearest lattice network Gn(9, 2), (c) the non-periodic one-dimensional small-world lattice network 
Gsw(9, 2, 0.1), in which the dash arc connecting node 3 and 5 is the broken edge, and the long arc connecting node 
3 and node 7 is the rewired edge, (d) the randomly embedded one-dimensional scale-free lattice network Gsf (9, 2), 
whose corresponding Barabási-Albert scale-free network before randomly embedding is inside the dash rectangle.

the edge in place. Here, the generated network is denoted by Gsw(N, K, P). Note that when 
P = 0, the network Gsw(N, K, P) reduces to the network Gn(N, K). See the illustrative 
network Gsw(9, 2, 0.1) in Fig. 1(c) where there exists only one random rewiring edge.

• The randomly embedded one-dimensional scale-free lattice network. To generate this 
network, we first generate one Barabási-Albert scale-free network by the preferential attach-
ment algorithm [3], in which m new connections are added at each iteration step. Then, we 
randomly place each node into a distinct site to occupy all sites of a one-dimensional lattice 
for randomly embedding the network. We denote Gsf (N, m̃) as the randomly embedded 
one-dimensional scale-free lattice network of size N with parameter m̃. See the illustrative 
network Gsf (9, 2) in Fig. 1(d).

After setting up the four types of candidate underlying networks, we provide our examples 
for system (3.2) defined on different underlying networks. It is conceivable that we work on 
different underlying networks under the same other parameters in our examples. As in [39], we 
choose k = 17, θ = 4, du = Du/h2 and dv = Dv/h2 with Du = 1, Dv = 3, h = �π/199 where 
� = 2

√
119/7 or � = 4

√
85/5. Direct computation shows that μH

1 = 8, μ∗ = 2, M∗ = 8/17, and 
condition (3.18) is satisfied. Especially, the first example considers the system (3.2) defined on 
the non-periodic one-dimensional lattice network. This example serves as a counterpart for the 
PDE system (3.1) provided in [39], and shall play as a baseline to compare the results in other 
three examples. By distinguishing the differences between these results, we finally can infer and 
conclude some effects of the underlying networks on Hopf bifurcations.

Example 4.1. Set the underlying network as the non-periodic one-dimensional lattice network 
of size N = 200, i.e., Gla(200), whose single Laplacian eigenvalues are �n = 2 cos (n−1)π

200 − 2

for n = 1, 2, . . . , N . Therefore, by (3.46), we have �n = 199
π

√
17(1 − cos (n−1)π

200 ) for n =
2, 3, . . . , N . Particularly, �2 ≈ −0.000247, �3 ≈ −0.000987 and �4 ≈ −0.002220, and corre-
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spondingly �2 ≈ 2.900867, �3 ≈ 5.801559 and �4 ≈ 8.701890. Therefore, we have the following 
results:

1. Let � = 2
√

119/7 ≈ 3.116775, then � ∈ (�2, �3] ≈ (2.900867, 5.801559]. Solving A(μ) +
2(du + dv)(cos π

200 − 1) = 0, we have μH
2,− ≈ 0.972693 and μH

2,+ ≈ 3.562290. Then, we 
obtain the set of Hopf bifurcation points

SH = {μH
2,−,μH

2,+,μH
1 } ≈ {0.972693,3.562290,8}.

By the computation of (A.23), we have Re
(
μH

2,−
) ≈ −0.003217 < 0, Re

(
μH

2,+
) ≈

−0.000197 < 0, and by (3.12), we have α′(μH
2,−
)

> 0 and α′(μH
2,+
)

< 0. Therefore, the 
bifurcation direction is supercritical and subcritical at μ = μH

2,− and μ = μH
2,+ respectively;

2. Let � = 4
√

85/5 ≈ 7.375636, then � ∈ (�3, �4] ≈ (5.801559, 8.701890]. Solving A(μ) +
2(du + dv)(cos π

200 − 1) = 0, we have μH
2,− ≈ 0.084802 and μH

2,+ ≈ 7.296445. And, solving 
A(μ) +2(du +dv)(cos π

100 −1) = 0, we have μH
3,− ≈ 0.491682 and μH

3,+ ≈ 5.033460. Then, 
we obtain the set of Hopf bifurcation points

SH = {μH
2,−,μH

3,−,μH
3,+,μH

2,+,μH
1 } ≈ {0.084802,0.491682,5.033460,7.296445,8}.

By the computation of (A.23), we have Re
(
μH

2,−
) ≈ −0.110655 < 0, Re

(
μH

3,−
) ≈

−0.010671 < 0, Re
(
μH

3,+
) ≈ −0.000090 < 0 and Re

(
μH

2,+
) ≈ −0.000049 < 0, and by 

(3.12), we have α′(μH
2,−
)
> 0 and α′(μH

3,−
)
> 0, α′(μH

3,+
)

< 0 and α′(μH
2,+
)

< 0. There-

fore, the bifurcation direction is supercritical at μ = μH
2,− and μ = μH

3,−; and subcritical at 
μ = μH

2,+ and μ = μH
3,+.

Example 4.2. Set the underlying network as the non-periodic one-dimensional 2-nearest lattice 
network of size N = 200, i.e., Gn(200, 2), whose first two largest non-zero single Laplacian 
eigenvalues are �2 ≈ −0.001234 and �3 ≈ −0.004933. By (3.47), we have �2 ≈ 6.486374 and 
�3 ≈ 12.971358. Therefore, we have the following results:

1. Let � = 2
√

119/7 ≈ 3.116775, then � < �2 ≈ 6.486374. Thereby, there exists only one Hopf 
bifurcation point μ = μH

1 ;
2. Let � = 4

√
85/5 ≈ 7.375636, then � ∈ (�2, �3] ≈ (6.486374, 12.971358]. Solving A(μ) +

(du + dv)�2 = 0, we have μH
2,− ≈ 0.743060 and μH

2,+ ≈ 4.163332. Then, we obtain the set 
of Hopf bifurcation points

SH = {μH
2,−,μH

2,+,μH
1 } ≈ {0.743060,4.163332,8}.

By the computation of (A.23), we have Re
(
μH

2,−
) ≈ −0.005294 < 0, Re

(
μH

2,+
) ≈

−0.000111 < 0, and by (3.12), we have α′(μH
2,−
)

> 0 and α′(μH
2,+
)

< 0. Therefore, the 
bifurcation direction is supercritical and subcritical at μ = μH

2,− and μ = μH
2,+ respectively.

Example 4.3. Set the underlying network as Gsw(200, 2, 0.05), whose largest non-zero single 
Laplacian eigenvalue is �2 ≈ −0.042189. By (3.47), we have �2 ≈ 37.932611. Therefore, we 
have the following results:
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1. Let � = 2
√

119/7 ≈ 3.116775, then � < �2 ≈ 37.932611. Thereby, there exists only one 
Hopf bifurcation point μ = μH

1 ;
2. Let � = 4

√
85/5 ≈ 7.375636, then � < �2 ≈ 37.932611. Thereby, there exists only one Hopf 

bifurcation point μ = μH
1 as well.

Example 4.4. Set the underlying network as Gsf (200, 2), whose largest non-zero single Lapla-
cian eigenvalue is �2 ≈ −0.581614. By (3.47), we have �2 ≈ 140.841275. Therefore, we have 
the following results:

1. Let � = 2
√

119/7 ≈ 3.116775, then � < �2 ≈ 140.841275. Thereby, there exists only one 
Hopf bifurcation point μ = μH

1 ;
2. Let � = 4

√
85/5 ≈ 7.375636, then � < �2 ≈ 140.841275. Thereby, there exists only one 

Hopf bifurcation point μ = μH
1 as well.

In the above four examples, one can find that increasing the parameter K in network 
Gn(N, K) or the parameter P in network Gsw(N, K, P) will hinder the emergence of the 
bifurcating nonhomogeneous periodic solutions. The same consequence also lies in network 
Gsf (N, m̃). To explain this difference, we should pay attention to the decreasing Laplacian 
eigenvalues (especially including �2 and �3) from Example 4.1 to Example 4.4. From a math-
ematical point of view, we can conclude that the decrement of Laplacian eigenvalues requires 
larger � (smaller diffusion rate of species) to keep the emergence of bifurcating nonhomoge-
neous periodic solutions.

More importantly, we would like to understand these results with apparent distinctiveness 
from an ecological perspective. Actually, increasing the parameter K in network Gn(N, K) does 
increase the number of diffusion routines of each node to its nearest nodes (landscape patches) 
in networks, which allows the prey and predators move among more patches on a larger scale. 
As a result, this enhancement of diffusion coupling would suppress the heterogeneous spatial 
distribution of individuals.

In the network Gsw(N, K, P), the rewired edges play a role as some stochastic routines be-
tween nodes in network to mimic the random movement of populations. The sufficiently more 
rewired edges with increasing P will lead to the phenomenon of “small world”. The shorter av-
erage (path) length makes the effect of each node better transmitted to the nodes of the whole 
network directly or indirectly, especially including the nodes which are far apart in the one-
dimensional lattice space. In the ecological perspective, the stochastic routines would promote 
spatial homogeneity of population distribution.

Example 4.4 shows the disappearance of Hopf bifurcation for spatially nonhomogeneous pe-
riodic solutions, which might result from the existence of hubs in the Barabási-Albert scale-free 
network. Imagine that the hub nodes play as some centers in a network to connect with a large 
number of nodes, and strengthen the effect between all nodes in a network even indirectly. This 
important centrality induces the spatially homogeneous dynamical behaviors of populations.

According to the above results, we finally provide a group of numerical simulations to show 
the bifurcating unstable spatially nonhomogeneous periodic solution of prey for system (3.2)
defined on the network Gla(200) in Fig. 2, and the network Gn(200, 2) in Fig. 3, the corre-
sponding bifurcating stable spatially homogeneous periodic solution of prey for system (3.2)
defined on network Gsw(200, 2, 0.05) in Fig. 4, and the network Gsf (200, 2) in Fig. 5. In these 
simulations, we set the same parameters as N = 200, k = 17, θ = 4, μ = 4, du = Du/h2 and 
dv = Dv/h2 with Du = 1, Dv = 3, h = �π/199 where � = 4

√
85/5, and the same initial condi-
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Fig. 2. The bifurcating unstable spatially nonhomogeneous periodic solution of system (3.2) defined on network 
Gla(200).

Fig. 3. The bifurcating unstable spatially nonhomogeneous periodic solution of system (3.2) defined on network 
Gn(200, 2).

Fig. 4. The bifurcating stable spatially homogeneous periodic solution of system (3.2) defined on network 
Gsw(200, 2, 0.05).

tions as ui(0) = 4 − 0.01 cos
(
(2i − 1)π/400

)
, vi(0) = 0.764709 − 0.01 cos

(
(2i − 1)π/400

)
for 

i = 1, 2, . . . , 200.
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Fig. 5. The bifurcating stable spatially homogeneous periodic solution of system (3.2) defined on network Gsf (200,2).

5. Discussion

In this paper, with the aid of Kronecker product, we demonstrated the fundamental The-
orem 2.1, and then rigorously established the Hopf bifurcation Theorem 2.2 for the general 
homogeneous network-organized reaction-diffusion systems. Our Hopf bifurcation theorem can 
be extended to the delayed network-organized reaction-diffusion systems, where the delay needs 
to be incorporated cautiously.

We further provided a rigorous exploration for the Hopf bifurcation in a multi-patch predator-
prey system (3.2), which can be defined on any underlying network. The foremost point to 
mention is that the studied system (3.2) defined on the non-periodic one-dimensional lattice 
network can be viewed as one spatially semidiscrete approximating system of the corresponding 
reaction-diffusion system subject to Neumann boundary conditions on one-dimensional spatial 
domain, with a necessary rescaling of the diffusion rates. As expected, its results about Hopf 
bifurcations were in good agreement with those of the corresponding PDE system. Like Yi et al. 
[39], we could determine a minimum lattice length �π depending on the network size N for the 
existence of time-periodic spatially nonhomogeneous solutions as well. Moreover, we demon-
strated that more possible periodic patterns could be triggered by increasing lattice length �π . 
More importantly, we could derive the analytic expressions for computing quantity Re(c1(μ0))

of its bifurcating spatially nonhomogeneous periodic solutions, even though they were of differ-
ent forms.

By considering the system (3.2) defined on any connected undirected network, including the 
non-periodic one-dimensional lattice networks, with the fixed ratio σ = du/dv satisfying the 
condition (3.18), we found that there existed a maximal diffusion rate of dv (and du concurrently) 
for the system to possess a bifurcating spatially nonhomogeneous periodic solution. In addition, 
decreasing the diffusion rate might induce more bifurcating spatially nonhomogeneous periodic 
solutions. Since increasing � meant decreasing the diffusion rates with the fixed ratio σ = du/dv , 
these conclusions were in the same spirit of the statement about the lattice length �π in the 
last paragraph. These results might support an ecological observation that the sufficiently small 
diffusion rate of species will weaken the coupling and diminish the effect between patches, which 
can lead to spatially nonhomogeneous distribution of populations.

When system (3.2) was defined on other underlying networks, rather than the special non-
periodic one-dimensional lattice network, more differences exhibited. This was mainly due to 
the Laplacian spectrum of different underlying networks. Mathematically it was difficult to get 
the analytic expressions for computing quantity Re(c1(μ0)) of its bifurcating spatially nonhomo-
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geneous periodic solutions, without the support of Lemma 2.1. On the other hand, as we showed 
in the four examples in Section 4, when the largest single negative Laplacian eigenvalue �2 de-
creased, the number of the possible spatially nonhomogeneous Hopf bifurcation points decreased 
and could even become zero. In our examples, the causes of this phenomenon may include more 
edges to nodal farther nearest neighbors on a nonlocal scale, sufficient rewired stochastic edges, 
and the emergence of hub nodes with large connectivity. These results could lead to some new 
ecological laws. The enhanced coupling between nodes by the increasing nonlocal connected 
edges would suppress the heterogeneous spatial distribution of individuals. The phenomenon of 
“small world” triggered by randomly rewired edges might make each node better transmitted 
to the nodes of the whole network directly or indirectly, and promote spatial homogeneity of 
population distribution. Furthermore, the hub nodes in a network could play as some centers that 
strengthen the effect between nodes and lead to the spatially homogeneous dynamical behaviors.

One missing part in this study is that we only consider the periodic solutions bifurcating 
from the single Laplacian eigenvalue, but do not study the possible periodic solutions bifurcat-
ing from multiple eigenvalues. Further analysis of the Hopf bifurcation in the reaction-diffusion 
system defined on the directed underlying networks remains a challenging problem. Hopefully 
our fundamental Theorem 2.1 will stimulate more research on rigorous bifurcation analysis in 
the general or some concrete reaction-diffusion systems defined on networks.
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Appendix A. The calculation of Re(c1(μ
H
j,±(Gla))) in Theorem 3.4

In this appendix, we provide the lengthy calculation of Re(c1(μ
H
j,±(Gla))) in Theorem 3.4. As 

a necessary preparation, we first state one important relation about the normalized eigenvectors 
of Laplacian matrix (3.41) of the non-periodic one-dimensional lattice network. Based on (3.43), 
we denote

(
φ(j)

.

)2 := 2

N

(
cos2 (j−1)π

2N
, cos2 3(j−1)π

2N
, . . . , cos2 (2N−1)(j−1)π

2N

)T

,

then, when N is odd, we have

(
φ(j)

.

)2 =
⎧⎨⎩

1√
2N

φ(2j−1) + 1√
N

φ(1), 2 ≤ j ≤ N+1
2 ,

− 1√
2N

φ(2(N+2−j)−1) + 1√
N

φ(1), N+3
2 ≤ j ≤ N,

(A.1)

and when N is even, we have
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(
φ(j)

.

)2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
2N

φ(2j−1) + 1√
N

φ(1), 2 ≤ j ≤ N
2 ,

1√
N

φ(1), j = N
2 + 1,

− 1√
2N

φ(2(N+2−j)−1) + 1√
N

φ(1), N
2 + 1 < j ≤ N.

(A.2)

Then, we consider the case where N is odd for calculating Re(c1(μ
H
j,±(Gla))), in which 

μH
j,±(Gla) satisfies the following condition

A(μH
j,±(Gla)) + 2(du + dv)

(
cos

(j − 1)π

N
− 1
)= 0.

For the other case where N is even, Re(c1(μ
H
j,±(Gla))) can be obtained in a similar way.

When μ = μH
j,±(Gla) with 2 ≤ j ≤ N , we can set

q = φ(j) ⊗
(

aj

bj

)
= col

(
φ

(j)
l aj

φ
(j)
l bj

)l=N

l=1

,

q∗ = φ(j) ⊗
(

a∗
j

b∗
j

)
= col

(
φ

(j)
l a∗

j

φ
(j)
l b∗

j

)l=N

l=1

,

(A.3)

where

aj = 1, bj = −2dv(cos (j−1)π
N

− 1) + iωj

θ
,

a∗
j = ωj − 2idv(cos (j−1)π

N
− 1)

2ωj

, b∗
j = − iθ

2ωj

,

ωj =
√

θC
(
μH

j,±(Gla)
)− 4d2

v

(
cos

(j − 1)π

N
− 1
)2

,

φ(j) =
√

2

N

(
cos (j−1)π

2N
, cos 3(j−1)π

2N
, . . . , cos (2N−1)(j−1)π

2N

)T

.

We next compute the following partial derivatives of f and g evaluated at 
(
μH (Gla), 0, 0

)
:
j,±
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fuu = −2
(
μH

j,±(Gla)
)2 − 6μH

j,±(Gla) + 2k − 2

k
(
1 + μH

j,±(Gla)
)2 , fuv = − θ

μH
j,±(Gla)

(
1 + μH

j,±(Gla)
) ,

fuuu = − 6
(
k − μH

j,±(Gla)
)

k
(
1 + μH

j,±(Gla)
)3 , fuuv = 2θ

μH
j,±(Gla)

(
1 + μH

j,±(Gla)
)2 ,

guu = − 2
(
k − μH

j,±(Gla)
)

k
(
1 + μH

j,±(Gla)
)2 , guv = θ

μH
j,±(Gla)

(
1 + μH

j,±(Gla)
) ,

guuu = 6
(
k − μH

j,±(Gla)
)

k
(
1 + μH

j,±(Gla)
)3 , guuv = − 2θ

μH
j,±(Gla)

(
1 + μH

j,±(Gla)
)2 ,

fvv = fuvv = fvvv = 0, gvv = guvv = gvvv = 0.
(A.4)

Then, (2.17) and (2.18) read as

Qqq =
(

· · · , cj cos2 (2i − 1)(j − 1)π

2N
,dj cos2 (2i − 1)(j − 1)π

2N
, · · ·

)T

= col

(
cj cos2 (2i−1)(j−1)π

2N

dj cos2 (2i−1)(j−1)π
2N

)i=N

i=1

,

Qqq̄ =
(

· · · , ej cos2 (2i − 1)(j − 1)π

2N
,fj cos2 (2i − 1)(j − 1)π

2N
, · · ·

)T

= col

(
ej cos2 (2i−1)(j−1)π

2N

fj cos2 (2i−1)(j−1)π
2N

)i=N

i=1

,

Cqqq̄ =
(

· · · , gj cos3 (2i − 1)(j − 1)π

2N
,hj cos3 (2i − 1)(j − 1)π

2N
, · · ·

)T

= col

(
gj cos3 (2i−1)(j−1)π

2N

hj cos3 (2i−1)(j−1)π
2N

)i=N

i=1

,

(A.5)

and

cj = fuu + P1fuv + iP2fuv, dj = guu + P1guv + iP2guv,

ej = fuu + P1fuv, fj = guu + P1guv,

gj = fuuu + 3

2
P1fuuv + i

2
P2fuuv,

hj = guuu + 3

2
P1guuv + i

2
P2guuv,

(A.6)

with

P1 = −4dv

(
cos (j−1)π

N
− 1
)
, and P2 = −2ωj

. (A.7)

θ θ
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In this case, due to 
∑N

i=1

(
φ

(j)
i

)3 = 0 for j = 2, 3, . . . , N , we have 〈q∗, Qqq〉 = 〈q∗, Qqq̄〉 =
0. Thus H 20 = Qqq and H 11 = Qqq̄ . In fact, together with (A.1), we obtain that when N is odd,

H 20 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
2N

φ(2j−1) ⊗
(

cj

dj

)
+ 1√

N
φ(1) ⊗

(
cj

dj

)
, 2 ≤ j ≤ N+1

2 ,

− 1√
2N

φ(2(N+2−j)−1) ⊗
(

cj

dj

)
+ 1√

N
φ(1) ⊗

(
cj

dj

)
, N+3

2 ≤ j ≤ N,

(A.8)

and

H 11 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
2N

φ(2j−1) ⊗
(

ej

fj

)
+ 1√

N
φ(1) ⊗

(
ej

fj

)
, 2 ≤ j ≤ N+1

2 ,

− 1√
2N

φ(2(N+2−j)−1) ⊗
(

ej

fj

)
+ 1√

N
φ(1) ⊗

(
ej

fj

)
, N+3

2 ≤ j ≤ N.

(A.9)

By (2.22), we obtain{
w20 = [IN ⊗ (2iωj I2) − M(μH

j,±(Gla))]−1H 20,

w11 = −[M(μH
j,±(Gla))]−1H 11.

(A.10)

From (A.8) and (A.9), together with Lemma 2.1, we obtain that, when N is odd,

w20 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2N

φ(2j−1) ⊗
{[

2iωjI 2 − M(2j−1)(μ
H
j,±(Gla))

]−1
(

cj

dj

)}

+ 1√
N

φ(1) ⊗
{[

2iωjI 2 − M1(μ
H
j,±(Gla))

]−1
(

cj

dj

)}
, 2 ≤ j ≤ N+1

2 ,

− 1√
2N

φ(2(N+2−j)−1) ⊗
{[

2iωjI 2 − M(2(N+2−j)−1)(μ
H
j,±(Gla))

]−1
(

cj

dj

)}

+ 1√
N

φ(1) ⊗
{[

2iωjI 2 − M1(μ
H
j,±(Gla))

]−1
(

cj

dj

)}
, N+3

2 ≤ j ≤ N,

(A.11)
and

w11 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2N

φ(2j−1) ⊗
{[

− M(2j−1)(μ
H
j,±(Gla))

]−1
(

ej

fj

)}

+ 1√
N

φ(1) ⊗
{[

− M1(μ
H
j,±(Gla))

]−1
(

ej

fj

)}
, 2 ≤ j ≤ N+1

2 ,

− 1√
2N

φ(2(N+2−j)−1) ⊗
{[

− M(2(N+2−j)−1)(μ
H
j,±(Gla))

]−1
(

ej

fj

)}

+ 1√
N

φ(1) ⊗
{[

− M1(μ
H
j,±(Gla))

]−1
(

ej

fj

)}
, N+3

2 ≤ j ≤ N.

(A.12)
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It is straightforward to compute that

[
2iωjI 2 − M(2j−1)(μ

H
j,±(Gla))

]−1 = (α1 + iα2)
−1
(

2iωj + P41 −θ

C(μH
j,±(Gla)) 2iωj + P51

)
,

[
2iωjI 2 − M(2(N+2−j)−1)(μ

H
j,±(Gla))

]−1 = (α3 + iα4)
−1
(

2iωj + P42 −θ

C(μH
j,±(Gla)) 2iωj + P52

)
,

[
2iωjI 2 − M1(μ

H
j,±(Gla))

]−1 = (α5 + iα6)
−1
(

2iωj −θ

C(μH
j,±(Gla)) 2iωj + P6

)
,

[
− M(2j−1)(μ

H
j,±(Gla))

]−1 = α−1
7

(
P41 −θ

C(μH
j,±(Gla)) P51

)
,

[
− M(2(N+2−j)−1)(μ

H
j,±(Gla))

]−1 = α−1
8

(
P42 −θ

C(μH
j,±(Gla)) P52

)
,

[
− M1(μ

H
j,±(Gla))

]−1 = 1

θC(μH
j,±(Gla))

(
0 −θ

C(μH
j,±(Gla)) P6

)
,

with

α1 = 4dudv

[
cos

2(j − 1)π

N
− cos

(j − 1)π

N

][
cos

2(j − 1)π

N
− 1
]

+ 4d2
v

[
cos

(j − 1)π

N
− 1
][

cos
(j − 1)π

N
− cos

2(j − 1)π

N

]
− 3ω2

j ,

α2 = −4ωj (du + dv)
[

cos
2(j − 1)π

N
− cos

(j − 1)π

N

]
,

α3 = 4dudv

[
cos

2(N + 1 − j)π

N
− cos

(j − 1)π

N

][
cos

2(N + 1 − j)π

N
− 1
]

+ 4d2
v

[
cos

(j − 1)π

N
− 1
][

cos
(j − 1)π

N
− cos

2(N + 1 − j)π

N

]
− 3ω2

j ,

α4 = −4ωj (du + dv)
[

cos
2(N + 1 − j)π

N
− cos

(j − 1)π

N

]
,

α5 = 4d2
v

[
cos

(j − 1)π

N
− 1
]2 − 3ω2

j ,

α6 = 4ωj (du + dv)
[

cos
(j − 1)π

N
− 1
]
,

α7 = 4dudv

[
cos

2(j − 1)π

N
− cos

(j − 1)π

N

][
cos

2(j − 1)π

N
− 1
]

+ 4d2
v

[
cos

(j − 1)π

N
− 1
][

cos
(j − 1)π

N
− cos

2(j − 1)π

N

]
+ ω2

j ,

α8 = 4dudv

[
cos

2(N + 1 − j)π

N
− cos

(j − 1)π

N

][
cos

2(N + 1 − j)π

N
− 1
]

+ 4d2
v

[
cos

(j − 1)π

N
− 1
][

cos
(j − 1)π

N
− cos

2(N + 1 − j)π

N

]
+ ω2

j ,
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and

P41 = −2dv

[
cos

2(j − 1)π

N
− 1
]
,

P42 = −2dv

[
cos

2(N + 1 − j)π

N
− 1
]
,

P51 = 2du

[
cos

2(j − 1)π

N
− cos

(j − 1)π

N

]
− 2dv

[
cos

(j − 1)π

N
− 1
]
,

P52 = −2du

[
cos

2(N + 1 − j)π

N
− cos

(j − 1)π

N

]
− 2dv

[
cos

(j − 1)π

N
− 1
]
,

P6 = 2(du + dv)
[

cos
(j − 1)π

N
− 1
]
.

For simplicity of notations, we denote

w20 = φ(j∗) ⊗
(

ξ (j∗)

η(j∗)

)
+ φ(1) ⊗

(
τ

χ

)
(A.13)

with

ξ (j∗) = ξ
(j∗)
R + iξ

(j∗)
Im , η(j∗) = η

(j∗)
R + iη

(j∗)
Im ,

τ = τR + iτIm, χ = χR + iχIm,

and

w11 = φ(j∗) ⊗
(

ξ̃ (j∗)

η̃(j∗)

)
+ φ(1) ⊗

(
τ̃

χ̃

)
(A.14)

where

ξ
(j∗)
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1√
2N(α2

1+α2
2)

[
P41(fuu + P1fuv) − 2P2ωjfuv − θ(guu + P1guv)

]
+ α2√

2N(α2
1+α2

2)

[
P41P2fuv + 2ωj (fuu + P1fuv) − θP2guv

]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

α3√
2N(α2

3+α2
4)

[
P42(fuu + P1fuv) − 2P2ωjfuv − θ(guu + P1guv)

]
+ α4√

2N(α2
3+α2

4)

[
P42P2fuv + 2ωj (fuu + P1fuv) − θP2guv

]
,

j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N, if N is odd,

ξ
(j∗)
Im =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1√
2N(α2

1+α2
2)

[
P41P2fuv + 2ωj (fuu + P1fuv) − θP2guv

]
− α2√

2N(α2
1+α2

2)

[
P41(fuu + P1fuv) − 2P2ωjfuv − θ(guu + P1guv)

]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

α3√
2N(α2

3+α2
4)

[
P42P2fuv + 2ωj (fuu + P1fuv) − θP2guv

]
− α4√

2N(α2
3+α2

4)

[
P42(fuu + P1fuv) − 2P2ωjfuv − θ(guu + P1guv)

]
,

j∗ = 2(N + 2 − j) − 1, for N+3 ≤ j ≤ N, if N is odd,

(A.15a)
2
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and

η
(j∗)
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1√
2N(α2

1+α2
2)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P51(guu + P1guv) − 2P2ωjguv

]
+ α2√

2N(α2
1+α2

2)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P51P2guv

]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

α3√
2N(α2

3+α2
4)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P52(guu + P1guv) − 2P2ωjguv

]
+ α4√

2N(α2
3+α2

4)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P52P2guv

]
,

j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N, if N is odd,

η
(j∗)
Im =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1√
2N(α2

1+α2
2)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P51P2guv

]
− α2√

2N(α2
1+α2

2)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P51(guu + P1guv) − 2P2ωjguv

]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

α3√
2N(α2

3+α2
4)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P52P2guv

]
− α4√

2N(α2
3+α2

4)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P52(guu + P1guv) − 2P2ωjguv

]
,

j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N, if N is odd,

(A.15b)

and

τR = α5√
N(α2

5 + α2
6)

[− 2P2ωjfuv − θ(guu + P1guv)
]

+ α6√
N(α2

5 + α2
6)

[
2ωj (fuu + P1fuv) − θP2guv

]
,

τIm = α5√
N(α2

5 + α2
6)

[
2ωj (fuu + P1fuv) − θP2guv

]
− α6√

N(α2
5 + α2

6)

[− 2P2ωjfuv − θ(guu + P1guv)
]
,

χR = α5√
N(α2

5 + α2
6)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P6(guu + P1guv) − 2P2ωjguv

]
+ α6√

N(α2
5 + α2

6)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P6P2guv

]
,

χIm = α5√
N(α2

5 + α2
6)

[
C(μH

j,±(Gla))P2fuv + 2ωj (guu + P1guv) + P6P2guv

]
− α6√

N(α2
5 + α2

6)

[
C(μH

j,±(Gla))(fuu + P1fuv) + P6(guu + P1guv) − 2P2ωjguv

]
,

(A.15c)

and
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ξ̃ (j∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√

2Nα7

[
P41(fuu + P1fuv) − θ(guu + P1guv)

]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

1√
2Nα8

[
P42(fuu + P1fuv) − θ(guu + P1guv)

]
,

j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N, if N is odd,

η̃(j∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√

2Nα7

[
C(μH

j,±(Gla))(fuu + P1fuv) + P51(guu + P1guv)
]
,

j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 , if N is odd,

1√
2Nα8

[
C(μH

j,±(Gla))(fuu + P1fuv) + P52(guu + P1guv)
]
,

j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N, if N is odd,

(A.15d)

and

τ̃ = − 1√
NC(μH

j,±(Gla))
(guu + P1guv),

χ̃ = 1√
NθC(μH

j,±(Gla))

[
C(μH

j,±(Gla))(fuu + P1fuv) + P6(guu + P1guv)
]
.

(A.15e)

Therefore, we have

Qw20q = col

(
[fuuξ

(j∗) + fuv(η
(j∗) + bj ξ

(j∗))]φ(j∗)
l φ

(j)
l

[guuξ
(j∗) + guv(η

(j∗) + bj ξ
(j∗))]φ(j∗)

l φ
(j)
l

)l=N

l=1

+ col

(
[fuuτ + fuv(χ + bj τ )]φ(1)

l φ
(j)
l

[guuτ + guv(χ + bj τ )]φ(1)
l φ

(j)
l

)l=N

l=1

,

(A.16)

Qw11q = col

(
[fuuξ̃

(j∗) + fuv(̃η
(j∗) + bj ξ̃

(j∗))]φ(j∗)
l φ

(j)
l

[guuξ̃
(j∗) + guv(̃η

(j∗) + bj ξ̃
(j∗))]φ(j∗)

l φ
(j)
l

)l=N

l=1

+ col

(
[fuuτ̃ + fuv(χ̃ + bj τ̃ )]φ(1)

l φ
(j)
l

[guuτ̃ + guv(χ̃ + bj τ̃ )]φ(1)
l φ

(j)
l

)l=N

l=1

.

(A.17)

And then, we have

〈q∗,Qw20q〉 =
{
a∗
j [fuuξ

(j∗) + fuv(η
(j∗) + bj ξ

(j∗))]

+ b∗
j [guuξ

(j∗) + guv(η
(j∗) + bj ξ

(j∗))]
} N∑

l=1

φ
(j∗)
l

(
φ

(j)
l

)2
+
{
a∗
j [fuuτ + fuv(χ + bj τ )] + b∗

j [guuτ + guv(χ + bj τ )]
} N∑

l=1

φ
(1)
l

(
φ

(j)
l

)2
.

(A.18)

and
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〈q∗,Qw11q〉 =
{
a∗
j [fuuξ̃

(j∗) + fuv(̃η
(j∗) + bj ξ̃

(j∗))]

+ b∗
j [guuξ̃

(j∗) + guv(̃η
(j∗) + bj ξ̃

(j∗))]
} N∑

l=1

φ
(j∗)
l

(
φ

(j)
l

)2
+
{
a∗
j [fuuτ̃ + fuv(χ̃ + bj τ̃ )] + b∗

j [guuτ̃ + guv(χ̃ + bj τ̃ )]
} N∑

l=1

φ
(1)
l

(
φ

(j)
l

)2
.

(A.19)

Therefore,

Re
(〈q∗,Qw20q〉)

=
{

1

2

[
fuuξ

(j∗)
R + fuv

(
η

(j∗)
R − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
R − ωj

θ
ξ

(j∗)
Im

)]

− dv

ωj

(
cos

(j − 1)π

N
− 1
)[

fuuξ
(j∗)
Im + fuv

(
η

(j∗)
Im − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
Im + ωj

θ
ξ

(j∗)
R

)]

− θ

2ωj

[
guuξ

(j∗)
Im + guv

(
η

(j∗)
Im − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
Im + ωj

θ
ξ

(j∗)
R

)]} N∑
l=1

φ
(j∗)
l

(
φ

(j)
l

)2
+
{

1

2

[
fuuτR + fuv

(
χR − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τR − ωj

θ
τIm

)]

− dv

ωj

(
cos

(j − 1)π

N
− 1
)[

fuuτIm + fuv

(
χIm − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τIm + ωj

θ
τR

)]

− θ

2ωj

[
guuτIm + guv

(
χIm − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τIm + ωj

θ
τR

)]} N∑
l=1

φ
(1)
l

(
φ

(j)
l

)2
,

Re
(〈q∗,Qw11q〉)

= 1

2

(
fuuξ̃

(j∗) + fuvη̃
(j∗) + guvξ̃

(j∗)
) N∑

l=1

φ
(j∗)
l

(
φ

(j)
l

)2
+ 1

2

(
fuuτ̃ + fuvχ̃ + guvτ̃

) N∑
l=1

φ
(1)
l

(
φ

(j)
l

)2
.

(A.20)

At the same time, we have

〈q∗,Cqqq̄〉 = (a∗
j gj + b∗

j hj

) N∑
l=1

(
φ

(j)
l

)4
, (A.21)

and, hence
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Re
(〈q∗,Cqqq̄〉)= 1

2

(
fuuu − 4dv

θ

(
cos

(j − 1)π

N
− 1
)
fuuv + guuv

) N∑
l=1

(
φ

(j)
l

)4
. (A.22)

Indeed, when N is odd, for j = 2, 3, . . . , N , we have

N∑
l=1

(
φ

(j)
l

)4 = 3

2N
,

N∑
l=1

φ
(1)
l

(
φ

(j)
l

)2 = 1√
N

,

N∑
l=1

φ
(j∗)
l

(
φ

(j)
l

)2 =
⎧⎨⎩

1√
2N

, j∗ = 2j − 1, for 2 ≤ j ≤ N+1
2 ,

− 1√
2N

, j∗ = 2(N + 2 − j) − 1, for N+3
2 ≤ j ≤ N.

So, and so far, by (2.27), when N is odd, for 2 ≤ j ≤ N+1
2 , we have

Re
(
c1(μ

H
j,±(Gla))

)
= Re

(〈q∗,Qw11q〉)+ 1

2
Re
(〈q∗,Qw20q〉)+ 1

2
Re
(〈q∗,Cqqq̄〉)

= 1

2
√

2N

(
fuuξ̃

(j∗) + fuvη̃
(j∗) + guvξ̃

(j∗)
)

+ 1

2
√

N

(
fuuτ̃ + fuvχ̃ + guvτ̃

)
+ 1

4
√

2N

{[
fuuξ

(j∗)
R + fuv

(
η

(j∗)
R − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
R − ωj

θ
ξ

(j∗)
Im

)]

− 2dv

ωj

(
cos

(j − 1)π

N
− 1
)[

fuuξ
(j∗)
Im + fuv

(
η

(j∗)
Im − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
Im + ωj

θ
ξ

(j∗)
R

)]

− θ

ωj

[
guuξ

(j∗)
Im + guv

(
η

(j∗)
Im − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
ξ

(j∗)
Im + ωj

θ
ξ

(j∗)
R

)]}

+ 1

4
√

N

{[
fuuτR + fuv

(
χR − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τR − ωj

θ
τIm

)]

− 2dv

ωj

(
cos

(j − 1)π

N
− 1
)[

fuuτIm + fuv

(
χIm − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τIm + ωj

θ
τR

)]

− θ

ωj

[
guuτIm + guv

(
χIm − 2dv

θ

(
cos

(j − 1)π

N
− 1
)
τIm + ωj

θ
τR

)]}

+ 3

8N

[
fuuu − 4dv

θ

(
cos

(j − 1)π

N
− 1
)
fuuv + guuv

]
.

(A.23)

For N+3 ≤ j ≤ N , we have
2
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Re
(
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(A.24)

For the other case where N is even, we can compute Re(c1(μ
H
j,±(Gla))) in a similar way and 

obtain that for 2 ≤ j ≤ N
2 and N2 + 1 < j ≤ N , Re(c1(μ

H
j,±(Gla))) is given by (A.23) and (A.24)

respectively with their corresponding ξ (j∗)
R , ξ (j∗)
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R , η(j∗)
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R , τ (j∗)
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η̃(j∗), ̃τ and χ̃ . However, especially for j = N

2 + 1, Re(c1(μ
H
j,±(Gla))) is given as
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(A.25)
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