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COMPETITION OF FAST AND SLOW MOVERS

FOR RENEWABLE AND DIFFUSIVE

RESOURCE

SILOGINI THANARAJAH AND HAO WANG

ABSTRACT. In many studies of mathematical ecology, re-
searchers have been discussing the competition of fast and slow
species in the presence of a renewable and diffusive resource.
To explore this competition, most of these studies have used
the Lotka-Volterra competition model with diffusion, which in-
cludes resources implicitly. A mechanistic model should ex-
plicitly incorporate resource dynamics. We construct such a
resource-explicit competition model with linear or nonlinear re-

source uptake functions. Conclusions from our linear model are
consistent with Lotka-Volterra type models: i) the fast mover
is excluded and the slow mover stays at a positive constant
level; ii) both go extinct. Our nonlinear model exhibits two
new outcomes: iii) the fast mover is excluded and the slow
mover survives at oscillations; iv) oscillatory coexistence. If we
further assume the fast mover has a larger resource uptake rate
than the slow mover, it is possible that v) the slow mover is
excluded by the fast mover.

1 Introduction Movement of animals is a characteristic feature
for species. The role of moving speed in species competition has been
studied recently in many papers. Applying the Lotka-Volterra com-
petition model with diffusion, previous studies showed that the slow
mover excludes the fast mover after a long time [1, 2, 4]. However,
it is actually possible to have the coexistence case or the case that the
fast mover excludes the slow mover [3, 5, 6]. The well-known Lotka-
Volterra competition model with diffusion is a phenomenological model
which incorporates the effect of a resource implicitly. A better model
should incorporate resource dynamics explicitly.

The main goal of this short note is to develop a mechanistic but
simple model to examine the competition of fast and slow species in the
presence of a renewable and diffusive resource. These two species are
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assumed to be genetically identical except for their moving speeds. The
environment is assumed to be continuous but not homogeneous. Using
these assumptions, we construct a resource-explicit model with linear or
nonlinear resource uptake functions.

Simulations of our linear model show two cases: the fast mover goes
extinct but the slow mover survives at a positive constant level, or both
species go extinct. These are consistent with the previous results [2].
Simulations of our nonlinear model show two new outcomes: the fast
mover goes extinct but the slow mover survives at oscillations, or both
species survive at oscillations. The coexistence scenario can definitely
appear in nature, thus our resource-explicit competition model with non-
linear resource uptake functions is a more realistic model than the Lotka-
Volterra type models or our model with linear resource uptake functions.

2 Models and simulations We consider the competition of two
species with different moving speeds. These two species compete for a
renewal and diffusive resource, and they are genetically identical except
for their diffusion coefficients. The PDE model has three variables: F
(density of the fast mover), S (density of the slow mover), and R (density
of renewable resource):

∂F

∂t
= D1∆F + [h1(R) − δ1] F,

∂S

∂t
= D2∆S + [h2(R) − δ2] S,

∂R

∂t
= D3∆R + R(m(x) − R) −

1

γ1

h1(R)F −
1

γ2

h2(R)S,

where the resource uptake functions hi(R) satisfy the conditions hi(0) =
0, h′

i(t) > 0, and h′′

i (t) ≤ 0, for example, hi(R) = αiR/(ki + R) or
hi(R) = αiR. Here, αi’s are maximum resource uptake rates, ki’s are
half-saturation constants for resource uptake (representing resource up-
take efficiencies), δi’s are mortality rates, γi’s are yield constants, and
Di’s are diffusion coefficients. According to the definitions of F and S,
we should have D1 >> D2. In our simulations, we apply zero flux bound-
ary conditions. We choose the resource renewal rate (or carrying capac-
ity) function m(x) = r(1+ tanh(x− 0.5)/0.1) or r exp((x− 0.5)2)/0.1 or
r exp(−(x − 0.5)2)/0.1. The first function (tanh(x − 0.5)/0.1) is mono-
tone, the second function (exp((x − 0.5)2)/0.1) has its minimum in the
middle, and the third function exp(−(x − 0.5)2)/0.1 has its maximum
in the middle. Environments are heterogeneous across space and time.
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The function m(x) represents their natural growth rates and it reflects
the quality and quantity of resources available at position x. We vary
two key resource parameters r and D3 to discuss the competition results
of fast and slow movers (see Tables 1–6).

We integrate both variables F and S over space to obtain the (to-
tal) densities of the two competing species. All possible competition
outcomes of the (total) densities are listed below:

C1 → both go extinct;
C2 → the fast mover goes extinct but the slow mover survives at a

positive constant level;
C3 → the fast mover goes extinct but the slow mover survives at

oscillations;
C4 → the fast mover survives at a positive constant level but the slow

mover goes extinct;
C5 → the fast mover survives at oscillations but the slow mover goes

extinct;
C6 → both survives at an internal steady state;
C7 → both survives at oscillations.

2.1 Linear model The model with linear resource uptake functions
is mathematically tractable, especially for stability analysis. The linear
resource uptake functions apply the well-mixing assumption, which is
widely accepted in many biological interactions. The linear model is
provided by

(1)

∂F

∂t
= D1∆F + [α1R − δ1]F,

∂S

∂t
= D2∆S + [α2R − δ2] S,

∂R

∂t
= D3∆R + R(m(x) − R) −

1

γ1

α1RF −
1

γ2

α2RS,

where m(x) = r(1+tanh(x−0.5)/0.1), D1 = 1, D2 = 0.01, D3 = 0.001−
10, α1 = α2 = 0.7, δ1 = δ2 = 0.4, γ1 = γ2 = 0.49, and r = 0.01− 10.

We run a group of simulations for three different forms of the function
m(x). Comparing Figure 1(b) with Figure 1(a) for different forms of
m(x), we find that the density of the slow mover quickly increases from
very beginning in panel (a), but the density of the slow mover starts to
increase after a while in panel (b). The asymptotic behaviors are about
the same in these two panels: the fast mover goes extinct and the slow
mover survives at a positive constant level. Comparing panel (c) with
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panel (a), the fast mover dominates the community in the beginning
in panel (a), but when we choose smaller value for the parameter r
in panel (c), the slow mover seems dominant all the time. When we
choose the parameter r extremely small in the panel (d), then both
species go extinct due to the shortage of resource. We vary the resource
related parameters r and D3 in Tables 1–3, which provide more thorough
results. From these tables, we observe that both species go extinct when
r is small, while the fast mover goes extinct and slow mover survives
at a positive constant level when r is large. These two outcomes are
consistent to Lotka-Volterra type models [2].
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(a) m(x) = r(1 + tanh(x − 0.5)/0.1),
r = 10
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(b) m(x) = r exp((x − 0.5)2/0.1),
r = 10
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(c) m(x) = r(1 + tanh(x − 0.5)/0.1),
r = 1

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5x 10−3

Time t

D
e
n
s
it
y
 o

f 
s
p
e
c
ie

s

 

 

Fast mover
Slow mover

(d) m(x) = r(1 + tanh(x − 0.5)/0.1),
r = 0.1

FIGURE 1: Plots of total density as a function of time for linear case
with different values of the parameter r and different forms of the func-
tion m(x). Chosen values of parameters are: D1 = 1, D2 = 0.01,
D3 = 0.001 − 10, α1 = α2 = 0.7, δ1 = δ2 = 0.4, γ1 = γ2 = 0.49.
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H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C1 C2 C2

0.01 C1 C1 C2 C2

0.1 C1 C1 C2 C2

1 C1 C1 C2 C2

10 C1 C1 C2 C2

TABLE 1: Linear case with m(x) = r(1 + tanh x−0.5
0.1

).

H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C1 C2 C2

0.01 C1 C1 C2 C2

0.1 C1 C1 C2 C2

1 C1 C1 C2 C2

10 C1 C1 C2 C2

TABLE 2: Linear case with m(x) = r exp[ (x−0.5)2

0.1
].

H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C1 C2 C2

0.01 C1 C1 C2 C2

0.1 C1 C1 C1 C2

1 C1 C1 C1 C2

10 C1 C1 C1 C2

TABLE 3: Linear case with m(x) = r exp[− (x−0.5)2

0.1
].

Because the resource equation has faster dynamics than the equations
of the competing species, we apply the quasi-steady state approximation
to obtain

R = k(x) −
r

γ
(F + S)
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which implies

∂F

∂t
= D1Fxx +

(

rk(x) − d −
r2

γ
F −

r2

γ
S

)

F,

∂S

∂t
= D2Sxx +

(

rk(x) − d −
r2

γ
F −

r2

γ
S

)

S.

This is the same model as the Lotka-Volterra competition model with
diffusion [2]. Hence, the results of our linear model are qualitatively
same as Lotka-Volterra type models.

2.2 Nonlinear model The linear resource uptake function tends to
infinity as the resource availability tends to infinity. This is obviously
unrealistic. The Monod function gives a saturation level of the resource
uptake function when the resource availability is sufficiently high. This
nonlinear nutrient uptake function can lead to more realistic predictions.
The nonlinear model is provided by

(2)

∂F

∂t
= D1∆F +

[

α1R

k1 + R
− δ1

]

F,

∂S

∂t
= D2∆S +

[

α2R

k2 + R
− δ2

]

S,

∂R

∂t
= D3∆R + R(m(x) − R) −

1

γ1

α1R

k1 + R
F −

1

γ2

α2R

k2 + R
S,

where m(x) = r(1+tanh(x−0.5)/0.1), D1 = 1, D2 = 0.01, D3 = 0.001−
10, α1 = α2 = 0.7, δ1 = δ2 = 0.4, γ1 = γ2 = 0.49 and r = 0.01− 10.

We simulate the ODE Case in (Figure 3) with high and low resource
renewal rates. The movers (without moving in this case) always go
extinct.

We plot representative simulation results for the nonlinear model in
Figure 2. If we fix r and increase D3 from the panel (a) to panel (b),
we have the transition from the case when the fast mover goes extinct
and the slow mover survives at oscillations, to the oscillatory coexistence
case. If we fix D3 and increase r from panel (c) to panel (d), we have a
transition from the extinction case to the case when the fast mover goes
extinct and the slow mover survives at a positive constant level.

We vary r and D3 for different forms of the function m(x) in Tables 4–
6, which provide more thorough results. When we choose the monotone
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(a) r = 0.1, D3 = 0.01
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(b) r = 0.1, D3 = 0.1
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(c) r = 0.01, D3 = 0.001
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(d) r = 0.1, D3 = 0.001

FIGURE 2: Plots of total density as a function of time for nonlinear case
with different values of r and D3. Chosen values are D1 = 1, D2 = 0.01,
D3 = 0.001 − 10, α1 = α2 = 0.7, δ1 = δ2 = 0.4, k1 = k2 = 0.06,
γ1 = γ2 = 0.49.

m(x), the possible outcomes are same as the linear model or Lotka-
Volterra type models. When we choose the other two types of m(x) (min
or max in the middle), the nonlinear model leads to two new outcomes:
the fast mover goes extinct and the slow mover survives at oscillations,
or both survive at oscillations. These new observations seem to occur in
the intermediate values of r (between 0.1 and 1). These possibilities can
never be obtained from the linear model or Lotka-Volterra type models.
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H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C2 C1 C1

0.01 C1 C2 C1 C1

0.1 C1 C2 C1 C1

1 C1 C2 C1 C1

10 C1 C2 C1 C1

TABLE 4: Nonlinear case with m(x) = r(1 + tanh x−0.5
0.1

).

H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C2 C2 C2

0.01 C1 C3 C2 C2

0.1 C1 C7 C1 C2

1 C1 C7 C1 C1

10 C1 C7 C1 C1

TABLE 5: Nonlinear case with m(x) = r exp[ (x−0.5)2

0.1
].

H
H

H
H

H
D3

r
0.01 0.1 1 10

0.001 C1 C1 C3 C2

0.01 C1 C1 C3 C1

0.1 C1 C1 C7 C1

1 C1 C1 C7 C1

10 C1 C1 C7 C1

TABLE 6: Nonlinear case with m(x) = r exp[− (x−0.5)2

0.1
].

Following the same logic as in the linear model, we apply the quasi-
steady state approximation to obtain

m(x) − R =
1

γ

(

αF

k + R
+

αS

k + R

)

which implies

R2 + (k − m(x))R +

(

α

γ
(F + S) − m(x)k

)

= 0
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(a) r = 0.1, D1 = D2 = 0
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(b) r = 0.01, D1 = D2 = 0

FIGURE 3: ODE case. Chosen values are D1 = 0, D2 = 0, D3 = 0,
α1 = α2 = 0.7, δ1 = δ2 = 0.4, k1 = k2 = 0.06, m=3.12228 r.

whose roots are

R =
m(x) − k ±

√

(k − m(x))2 − 4(α
γ
(F + S) − m(x)k)

2
.

If we replace R with one of these roots in the first two equations of the
model (2), we will obtain a very complicated model that is quite different
from the Lotka-Volterra competition model with diffusion [2]. This is
kind of one way to explain the appearance of the two new outcomes from
the nonlinear model.
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In addition, we consider a special case for the effect of the consump-
tion function hi in the nonlinear model. First we plot the solution for
resource without being eaten (consumption function h1 = h2 = 0) (Fig-
ure 4), then we plot the solution with resource being eaten by only the
fast mover or only the slow mover or both to see the outcomes (Figure 5).
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(a) m(x) = r exp((x − 0.5)2/0.1)
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(b) m(x) = r exp(−(x − 0.5)2/0.1)

0
0.2

0.4
0.6

0.8
1

0

50

100
0

0.1

0.2

0.3

0.4

Distance x

Resource

Time t

D
en

si
ty

 o
f R

es
ou

rc
e

(c) m(x) = r(1 + tanh(x − 0.5)/0.1)

FIGURE 4: Resource without being eaten by fast and slow movers
(h1 = h2 = 0) along space and time for different m(x). Chosen values
are D1 = 1, D2 = 0.01, D3 = 0.01, α1 = α2 = 0.7, δ1 = δ2 = 0.4,
k1 = k2 = 0.06.

2.3 Nonsymmetric resource uptake rates The fast mover has
higher energy cost, which leads to higher resource uptake rate than the
slow mover, that is, α1 > α2. We apply this nonsymmetric nutrient
uptake rates for the linear model in Figures 6 and 7. Figure 6 shows the
new outcome that the fast mover survives at a positive constant level
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(a) Resource and fast mover (h2 = 0)
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(b) Resource and slow mover (h1 = 0)
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(c) Resource, fast mover and slow mover

FIGURE 5: Resource being eaten by (a) only fast mover, (b) only slow
mover, (c) both. Chosen values are D1 = 1, D2 = 0.01, D3 = 0.01,
α1 = α2 = 0.7, δ1 = δ2 = 0.4, k1 = k2 = 0.06, γ1 = γ2 = 0.49, r = 0.1
m(x) = r exp((x − 0.5)2/0.1).

and the slow mover goes extinct. In Figure 7, we vary α1 from α2 (= 0.7)
to 1.8. The switch occurs at α1 = 1.1 from the case the slow mover wins
to the case the fast mover wins. For the nonlinear model, we can see the
similar switch as the linear model, although the fast mover can survive
not only at a positive constant level but also at oscillations.
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FIGURE 6: Nonsymmetric resource uptake rates α1 > α2 with r = 1,
D3 = 0.01.

FIGURE 7: Bifurcation diagram with m(x) = r(1 + tanh(x− 0.5)/0.1),
r = 1, D3 = 0.01.
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3 Discussion For the competition of fast and slow movers for re-
newable and diffusive resource, Lotka-Volterra type models only suggest
two possibilities: the slow mover excludes the fast mover or both species
go extinct. Our linear mechanistic model shows similar results. Our
nonlinear mechanistic model, a more realistic framework, suggests two
new possibilities: the slow mover excludes the fast mover in oscillatory
way or both species coexist in oscillatory way. If the nutrient uptake
rate of the fast mover is larger than that of the slow mover, it is possible
for the fast mover to exclude the slow mover. The possibility that the
fast mover wins can also be caused by stochasticity (extinction of the
slower mover in the early stage) or predation (the slow mover is easier
to be caught by predators). In our model, results are obtained by the
differences in the diffusion rates (Di) because the per-capita rates (hi)
of increase are same for both species. In reality the winner should be
those who eat and grow fast but not run fast since R is diffusive.

Our results are independent of the from of the scalar function m(x), as
long as it is not constant. Therefore, the function m(x) is not important
since R is diffusive. When the function m(x) is a constant function
(degenerate case), we can observe that both species survive at steady
state. This result is a new possibility. We do not provide any simulation
of this in the paper because we assume a nonhomogeneous environment.
When the parameter r is large, we have accuracy problems to run the
simulation program.

In future, we plan to run simulations for mechanistic models on higher
dimensional space. Mathematical results of the proposed models need
to be done. Specific species should be discussed later for data fitting.
In addition, we will expand our models to incorporate species’ resting
stage, which may provide more possibilities for the competition results.
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