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Abstract

The decline of coral reefs characterized by macroalgae

increase has been a global threat. We consider a slightly

modified version of an ordinary differential equation

(ODE) model proposed in Blackwood, Hastings, and

Mumby [Theor. Ecol. 5 (2012), pp. 105–114] that explicitly
considers the role of parrotfish grazing on coral reef

dynamics. We perform complete stability, bifurcation, and

persistence analysis for this model. If the fishing effort (f) is

in between two critical values f0 and f1, then the system

has a unique interior equilibrium, which is stable if

f f f< <0 1 and unstable if f f f< <1 0. If f is less (more)

than these critical values, then the system has up to two

(zero) interior equilibria. Also, we develop a more realistic

delay differential equation (DDE) model to incorporate the

time delay and treating it as the bifurcation parameter, and

we prove that Hopf bifurcation about the interior

equilibria could occur at critical time delays, which

illustrate the potential importance of the inherent time

delay in a coral reef ecosystem.

Recommendations for Resource Managers

• One serious threat to coral reefs is overfishing of

grazing species, including high level of algal abun-

dance. Fishing alters the entire dynamics of a reef

(Hughes, Baird, & Bellwood, 2003), for which the coral

cover was predicted to decline rapidly (Mumby, 2006).

One major issue is to reverse and develop appropriate

management to increase or maintain coral resilience.

• We have provided a detailed local and global analysis

of model (Blackwood, Hastings, & Mumby, 2012) and
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obtained an ecologically meaningful attracting region,

for which there is a chance of stable coexistence of

coral–algal–fish state.

• The healthy reefs switch to unhealthy state, and the

macroalgae–parrotfish state becomes stable as the

fishing effort increases through some critical values.

Also, for some critical time delays, a switch between

healthy and unhealthy reef states occurs through a

Hopf bifurcation, which can only appear in the
delay differential equation (DDE) model. Even-

tually, for large enough time delay, oscillations

appear and an unhealthy state occurs.

KEYWORD S

coral reef, delay differential equation, Hopf bifurcation, ordinary

differential equation, stability

1 | INTRODUCTION

Global diversity and quality of life of millions of people living in tropical coastal regions have
been endangered by frequency and scale of human impacts on the health of world’s coral reefs
(cf., Mumby, Hastings, & Edwards, 2007; Pandolfi, Bradbury, & Sala, 2003). The worldwide
decline of coral reefs, which is characterized by macroalgae increase, has demonstrated an
urgent need to scale up the management effort based on improved understanding of
ecological dynamics that underlies the reef resilience (cf., Bellwood, Hughes, Folke, &
Nystrom, 2004).

Mumby et al. (2007) introduced a model with grazing that shows a coral reef ecosystem that
may lose resilience and shift to coral‐depleted state through reductions in grazing intensity,
which has been analyzed mathematically in Li, Wang, Zhang, and Hastings (2014). This model
has been extended by Blackwood et al. (2012) in the explicit incorporation of parrotfish
abundance. It has been hypothesized that excessive fishing pressure is a potential cause of
hysteresis (cf., Li et al., 2014). Motivated by these papers, our aim is to consider a modified
version of the ordinary differential equation (ODE) model in Blackwood et al. (2012) and to
determine explicitly the role of parrotfish abundance on grazing intensity and implement
management on the coral reef system.

The analysis of ecological systems often focuses on their asymptotic behavior, but it is
important to understand the role of transient behavior. The inherent delay effect has been
considered to be important on coral–algae–parrotfish interactions (cf., Blackwood & Hastings,
2011), in which the authors discussed the effect of time delays on the basis of attraction of stable
equilibria, which in turn may have important management implications in coral reef as well as
other ecosystems exhibiting similar dynamical behavior. Algal turfs will not be bloomed
immediately after macroalgae are grazed by parrotfish. To account for the time delay, and
accordingly the time that affect the natural system, we develop and analyze a more realistic
delay differential equation (DDE) model by treating the time delay as the bifurcation parameter.
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We consider the fishing effort and time delay as the bifurcation parameter and analyze the local
stability of equilibria for the DDE model.

The paper is organized as follows. In Section 2, we present our basic assumptions and the
ODE model. In Section 3, we consider the existence, stability, and bifurcation of all possible
equilibria of the system and show the uniform persistence result. In Section 4, we construct a
DDE model to account for the role of time delay in the coral reef dynamics. We prove that the
Hopf bifurcation can occur about the unique interior equilibria. In Section 5, we present
representative numerical simulations to support our analytical results. Finally, in Section 6, we
conclude our results and provide biological interpretations.

2 | THE MODEL AND BASIC ASSUMPTIONS

In this section, we consider the following modified version of the ODE model presented in
Blackwood et al. (2012):

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪ ( )

aMC γMT

rTC dC aMC

γMT rTC dC

sP fP

= − + ,

= − − ,

= − − + ,

= 1 − − .

dM
dt

g P M
M T

dC
dt
dT
dt

g P M
M T

dP
dt

P
βK C

( )
1 + +

( )
1 + +

( )

(1)

(i) We assume that a particular region of the seabed is covered entirely by macroalgae M( ),
coral C( ), and algal turfs T( ) so that M C T+ + is kept constant, which by a rescaling we
may assume that M C T+ + = 1. Therefore, the fraction of algal turfs is defined by

T M C= 1 − − and consequently = − −dT
dt

dM
dt

dC
dt .

(ii) It is assumed that corals recruit and overgrow algal turfs at a rate r , they have a natural
mortality rate of d, are overgrown by macroalgae at a rate a, and macroalgae spread
vegetatively over algal turfs at a rate γ . Space freed by coral mortality is assumed to be
recolonized by algal turfs. Additionally, M M T/(1 + + ) is simply the proportion of
grazing that affects macroalgae.

(iii) Changes in parrotfish abundance, P, are modeled as logistic growth with an intrinsic rate
of growth s and a time varying carrying capacity such that β is the maximum carrying
capacity and ≤K C0 < ( ) 1 is a nondimensional term that limits carrying capacity of
parrotfish as a function of coral cover. We have simplified the model by the assuming that
parrotfish lacks adequate refugia, likely as a result of hurricane impacts resulting in a
positive relationship between parrotfish carrying capacity and coral growth. Thus, we use
the carrying capacity that is defined as K C kC( ) = 1 − , where ≤ k0 < 1, so that there is a
short‐term positive response to coral recruitment. Furthermore, it is assumed that
mortality resulting from fishing effort is held at a constant level ≥f 0.

(iv) Grazing intensity varies depending on parrotfish abundance so that the grazing is defined
by as a function g P( ). It is assumed that the grazing intensity is proportional to parrotfish

abundance, relative to its maximum carrying capacity, or g P( ) = αP
β
, where α is a positive
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constant. It is natural to let α g= max , where gmax is the maximum possible grazing

intensity and for simplicity it is assumed to be equal one. Thus, g P( ) = P
β

and this

formulation guarantees that the grazing intensity will arrive at its maximum only if fishing
effort is eliminated f( = 0). For simplicity, we scale parrotfish abundance and introduce the

nondimensional variable ̃P to be parrotfish abundance relative to its maximum carrying

capacity, or ̃P = P
β
. Substituting this in the last equation of (1) leaves with

̃ ̃
̃ ̃

sP fP= (1 − ) −dP
dt

P
K C( )

, and the grazing function is now given by ̃g P P( ) = . For simplicity

in notation, we set ̃P P=: .

From the aforementioned and setting ≔ ≔M x C y, , and ≔P z, equations of the model
dynamics are given by the following nonlinear system of ODEs:

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

≔

≔

≔

x γ γx a γ y xF x y z

y r d r a x ry yG x y z

z s f zH x y z

= − + ( − ) − ( , , ),

= [( − ) − ( + ) − ] ( , , ),

= ( − ) − ( , , ).

dx
dt

z
y

dy
dt

dz
dt

sz
ky

2 −

1 −

(2)

The brief description of the parameter selection and parameter values can be found in
Blackwood et al. (2012) and Mumby et al. (2007), in which the authors listed the parameter
values as follows:

≤ ≤a d s γ r f k= 0.1, = 0.44, = 0.49, = 0.8, = 1, 0 < 0.49, 0 < 1.

Here, we only assume that all parameters are positive and satisfy the following assumptions:

≤a γ r a r d
s f

s
γ k< < + , > , 0 <

−
< 2 , 0 < 1. (3)

For convenience, we denote ≔μ s f
s
− .

3 | EQUILIBRIA: STABILITY AND BIFURCATION

In this section, we find all possible equilibria and consider their stabilities. By considering the
nullclines of the system (2), we could easily find the following equilibria:

• The trivial state: O = (0, 0, 0).
• The axial states: R μ N Q= (0, 0, ), = (0, , 0), = (1, 0, 0)r d

r
− .

• The boundary states: D F μ= (0, , ), = (1 − , 0, )r d
r

μ r k kd
r

μ
γ

− ( (1 − ) + )
2 . Here, we notice that

there is another boundary stateG = ( , , 0)ra ad dγ
ar a aγ

γ a d
a ar aγ

− +
+ −

− ( + )
+ −2 2 , which is not in the first positive

octant, so it is ignored here.
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• The interior steady state: E x y z= ( , , )* * * * is the solution of F x y z( , , ) =
G x y z H x y z( , , ) = ( , , ) = 0, so that x* and z* satisfy

x r d
r a

ry
r a

z μ ky= −
+

−
+

, = (1 − ).* * * * (4)

and y* is a solution of the following quadratic equation:

≔K y y y( ) + + ,2� � � (5)

where

a r a γ
γ a d a r a γ μk r a

γ a d μ r a

= − ( + − ),
= − ( + ) + 2 ( + − ) − ( + ),
= 2 ( + ) − ( + ).

�

�

�

This solution should belong to the interval (0, )r d
r
− , because otherwise x < 0* . Notice that,

under the assumption (3), the axial points (R, N , and Q) and the boundary points (D and F)
always exist. Now, let us define the following quantities:

≔ ≔μ
a r d r d γd

r rkd r k
μ

γ a d
r a

( − ) + ( + )
+ −

,
2 ( + )

+
.0

2 2

2 2 1 (6)

Notice that μ0 is a function of k and μ μ=0 1 for ≔k k= − a r d a r γ
γr a d0

1
2

( − )( + − )
2 ( + ) . Also, μ μ<1 0 for

≤ k k0 <0 and ≤ μ μ0 <0 1 for ≤ k k0 < 0.
In the following, we find conditions of interior equilibrium.
First, we note that

( )( )
K r a μ μ

K r a μ μ

(0) = ( + )( − ),

= ( + ) 1 − ( − ),r d
r

k r d
r

1
− ( − )

0

where μ0 and μ1 are defined in (6). LetYmax be the maximum point of K y( ) and Δ = − 42� ��.
We need to consider the following cases separately:

Case (I) μ μ0 < <1 0: Then, there can be three different scenarios:

(i) μ μ μ0 < < <1 0: In this case, K (0) > 0 and K ( ) > 0r d
r
− . Then, depending on the

position of Ymax, there are three possibilities:

(a) ≤ ≤Y0 r d
rmax
− : Then, K y K K( ) > max( (0), ( )) > 0r d

r
− .

(b) Y > r d
rmax
− : Then, K y( ) is increasing in (0, )r d

r
− and there-

fore K y K( ) > (0) > 0.
(c) Y < 0max : Then, K y( ) is decreasing in (0, )r d

r
− and therefore

K y K( ) > ( ) > 0r d
r
− . This implies that K y( ) is positive on (0, )r d

r
− and

therefore there is no interior equilibrium.
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(ii) μ μ μ0 < < <1 0: In this case, K (0) < 0 and K ( ) > 0r d
r
− , then K y( ) has at least

one solution in (0, )r d
r
− . Depending on the position of Ymax, there are two

possibilities:

(a) Y0 < < r d
rmax
− .

(b) ≥Y r d
rmax
− . In either case, K y( ) has two positive solutions from which only

the smaller solution, y =* − − Δ
2

�

�
, is in (0, )r d

r
− .

(iii) μ μ μ0 < < <1 0 : In this case, K (0) < 0 and K ( ) < 0r d
r
− . Again there are three

different possibilities:
(a) ≤Y 0max or

(b) ≥Y r d
rmax
− . In these two cases, K y( ) is monotone on (0, )r d

r
− and therefore

there is no solution in the interval of interest.

(c) Y0 < < r d
rmax
− : Notice that this holds only if μ μ μ< <* *, where

≔μ
a d γ a r a

k r a
μ

aγ r d d r a a γ
kr r a

= :
(3 + ) − 2 ( + )

( + )
,

( + ) + ( + )(−2 + )
( + )

.* *

But μ μ> > 0* * always holds, as by hypothesis (3), a r d γ r a2 ( − )[− + + ] > 0.
Furthermore, μ μ,* *, and μ0 are functions of parameter k. μ* and μ* are decreasing in
k, whereas μ0 is increasing in k. Also, it can be shown that μ μ(1) <* 1. Therefore,
depending on the value of K yΔ, ( ) can have up to two solutions in (0, )r d

r
− .

Case (II) μ μ0 < <0 1:
As in Case (I) and by similar argument, we can conclude the following:

(i) μ μ μ< <0 1: K y( ) has no solution in interval (0, )r d
r
− .

(ii) μ μ μ0 < < <0 1: K y( ) has a unique positive solution y =* − + Δ
2

�

�
in the

interval (0, )r d
r
− .

(iii) μ μ μ< <0 1 : K y( ) can have up to two solutions in the interval (0, )r d
r
− .

We summarize the above discussion in the following proposition.

Proposition 1.

(a) If μ μ μ0 < < <1 0 or μ μ μ0 < < <0 1, the system (2) has a unique interior
equilibrium.

(b) If μ μ μ< <1 0 or μ μ μ< <0 1, the system (2) has no interior equilibria.
(c) If μ μ μ< <1 0 or μ μ μ< <0 1 , the system (2) can have up to two interior equilibria.

Now, we study the local stability of the trivial state O, the axial states R, N , Q, and the
boundary states D and F by calculating the eigenvalues of the Jacobian matrix of the system (2)
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⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟J

F xF xF xF
yG G yG yG
zH zH H zH

=
+

+
+

x y z

x y z

x y z

x y z

( , , )

about different equilibria. By looking at eigenvalues of J , we can easily check that O is an
unstable node, whereas the axial solutions R, N , and Q are always a saddle. Now, we consider
the boundary points:

• Boundary point D. Eigenvalues are λ μ μ λ r d= ( − ), = −( − )r k kd
r d1

( (1 − ) + )
( + ) 0 2 , and λ sμ= −3 .

Under the assumption (3), λ2 and λ3 are always negative. If μ μ λ< , < 00 1 , and D is a stable
node, if μ μ λ0 < < , > 00 1 and it is unstable. It can be easily checked that the system
undergoes a transcritical bifurcation about the boundary point D as μ passes through μ0.

• Boundary point F . Eigenvalues are λ γ λ μ μ= − + , = ( )( − )μ r a
γ1 2 2

+
2 1 , and λ sμ= −3 . Under

the assumption (3), λ1 and λ3 are always negative. F is a stable node, if μ μ λ> , < 01 2 and it
is unstable if μ μ λ0 < < , > 01 2 . It can be easily seen that the system (2) undergoes a
transcritical bifurcation as μ passes through μ1.

Next, we analyze the stability of interior equilibrium point E x y z= ( , , )* * * * . About E*, the
Jacobian matrix J takes the form

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟J

x F x F x F
y G y G y G
z H z H z H

=
* * *
* * *
* * *

E

x y z

x y z

x y z

*

and its eigenvalues satisfy

λ Aλ Bλ C+ + + = 0,3 2 (7)

where

⎡
⎣⎢

⎤
⎦⎥

≔

≔

≔

( )
)

A γx ry sμ

B γrx y x y a r a γ sμ γx ry

C sμx y rγ a r a γ

+ + ,

+ ( + ) − − + ( + ),

+ ( + )( − ) − + .

* *

* * * * * *

* *

z
y

z r a
y

k r a μ
y

(2 − )

( + )
(2 − )

( + )
(2 − )

*
*

*
* *

2

2

To determine the type of stability of E*, we determine the sign of A C, , and AB C− . Here, it is clear
that A > 0. From the algebraic equation F x y z( , , ) = 0* * * , we have γ γx a γ y= − + ( − )* *z

y2 −
*

*

and from G x y z( , , ) = 0* * * , we have x =* r d ry
r a

− −
+

* , then C can be written as

C
sμx y

y
a r a γ ay r a γ kμ r a γ a d=

2 −
[2 ( + − ) − 2 ( + − ) + ( + ) − ( + )].

* *
*

*

To determine the sign of C, we consider the following two cases separately:
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(a) μ μ μ0 < < <1 0. From (4), we have

a r a γ y2 ( + − ) = − − Δ ,* �

therefore, C = [ Δ ]sμx y
y2 −

* *
* , which is positive.

(b) μ μ μ0 < < <0 1. In this case,

a r a γ y2 ( + − ) = − + Δ ,* �

thus C = − [ Δ ]sμx y
y2 −

* *
* , which is negative.

In contrast by substituting z μ ky= (1 − )* * and γ γx a γ y= − + ( − )* *z
y2 −

*
* in the expression

for AB C− , and after some algebraic simplification, we get

≥

AB C γx ry ax y a γ r sμ γx ry sμ

ax y a γ r γx ry sμ γx ry sμ γx ry a r x y
ax y a γ r γx ry sμ γx ry sμ x γ ay ry x

− = ( + )( ( − + ) + ( + + ))

− −

( − + )( + ) + ( + + )[ + − ( + ) ]
= ( − + )( + ) + ( + + )[ ( − ) + (1 − )]
> 0,

* * * * * *

* * * * * * * * * *
* * * * * * * * * *

a r x y γx ry a r y γx ry
y

a r ksμ x y
y

( + ) ( + − ( + ) )( + )
2 −

( + )
2 −

* * * * * * *
*

* *
*

2

under the assumption (3). By the Routh–Hurwitz criterion, all eigenvalues have negative real
parts if and only if A C> 0, > 0, and AB C− > 0.

Therefore, E* is locally asymptotically stable if μ μ μ0 < < <1 0 and it is unstable
if μ μ μ0 < < <0 1.

We summarize the above results as follows:

Theorem 1. Let (3) holds, then the system (2) has one trivial equilibrium O, three axial
equilibria R, N , and Q, and two boundary equilibria D and F . Moreover,

(a) The trivial equilibrium point O is an unstable node, whereas the axial equilibrium
points R, N , and Q are saddle points.

(b) The boundary point D is a stable node if μ μ0 < <0 and it is a saddle if μ μ0 < < 0.
(c) The boundary point F is a stable node if μ μ0 < < 1 and it is a saddle if μ μ0 < <1 .
(d) If μ μ μ0 < < <1 0( k k0 < <0 ), then there is a unique interior equilibrium E*, which is

asymptotically stable.
(e) If μ μ μ0 < < <0 1( k k0 < < < 10 ), a unique interior equilibrium E* exists, which is

unstable.

We note that although E* changes its stability, however it is not possible to have a Hopf
bifurcation there. Because for that to happen, it is necessary that Equation (7) has purely
imaginary roots λ ω= ±i and it should be in the following form:

λ Aλ Bλ C λ ω λ A+ + + = ( + )( + ).3 2 2 2

It is easy to verify that this holds only if B ω= 2 and C Aω= 2. Because A is always positive, this
implies that C B> 0, > 0, and AB C− = 0. However, we prove that under the assumption (3),
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AB C− is always positive. Then, Equation (7) cannot have purely imaginary roots. Also, for a
set of particular parameter values, we have numerically computed AB C− and used the path
continuation AUTO to numerically find the various bifurcations.

For example, when a d s γ r k= 0.1, = 0.44, = 0.49, = 0.8, = 1, = 0.6, we obtain
f = 0.056450 and f = 0.105121 . This suggests that only the transcritical bifurcation can occur.
See Figure 1.

Now, we consider the global behavior of the system (2). Because, in our system,
all variables should be nonnegative, we are only interested in the dynamics of model (2)
in the closed first octant +

3 . First, we remind the definition of a uniformly persistent
region.

Definition 1 (see Chen, 2005). If there exists a compact set ⊆ Int = Ω+
3� , such that

all solutions of (2) with initial condition eventually enter and remain in region � , then
the system (2) is called uniformly persistent.

Now, let us denote

≤ ≤ ≤ ≤ ≤ ≤x y z x y z= {( , , ): 0 1, 0 1, 0 1}.� (8)

The vector field defined by system (2) is locally Lipschitz continuous in � , which guarantees
the existence and uniqueness of their solutions.

In the following, we show that the region � defined above is uniformly persistent under the
flow of (2).

Lemma 1. The set � in (8) is an attracting set for the system (2).

Proof. Consider the system (2). First of all, it is clear that the planes x y= 0, = 0, and
z = 0 are invariant under the flow of system (2). Now, we show that all orbits with initial

FIGURE 1 One‐parameter bifurcation diagrams for the system (2) produced by AUTO, with k = 0.6 and f
as the bifurcation parameter, showing a transcritical bifurcation of D and E* at f = 0.056450 and a transcritical
bifurcation of E* and F at f = 0.105121 . Other parameter values are a d s γ r= 0.1, = 0.44, = 0.49, = 0.8, = 1.
All panels show f on the horizontal axis, whereas the vertical axes are x , y, and z in the left, middle, and right
panels, respectively. Solid red lines correspond to branches of stable equilibria, and solid black lines to unstable
equilibria. The portions of branches corresponding to x < 0 and y < 0 have no significance in the model, but are
shown to clarify the transcritical bifurcation and change of stability
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conditions ∈x y z( , , ) Ω0 0 0 with ≤ ≤y M1 < 20 will eventually enter region � . To
show this, we note that for ≥x 10 , we have

≤x γ x x γ a y˙ (1 − ) − ( − ) < 0.

This implies that there is some finite time T0 such that for ≥t T0, we have ≤x t( ) 1.
Similarly, if ≥y 10 , then

≤

≤

y r d ry r a x
d r a x d

˙ ( − ) − − ( + )
= − ( + ( + ) ) − < 0.

Therefore, there is some finite T1 such that for ≥t T1, we have ≤y t( ) 1. Also, for ≥z 10 ,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥≤z s f s

ky
f sky

ky
f˙ ( − ) −

1 −
= − −

1 −
< − .

Thus, there is some finite time T2 so that for ≤t T z t> , ( ) 12 . Previous discussion and the
invariance of the planes x y= 0, = 0, and z = 0 imply that the cube � is an attracting
set for system (2). □

Theorem 2. Suppose μ μ μ0 < < <1 0 and assumption (3) are satisfied, then the region
� defined by Lemma 1 is uniformly persistent under the flow of the system (2).

Proof. We prove this theorem by the method of average Lyapunov function (cf., Gard &
Hallam, 1979; Hutson, 1986). Let ν x y z xyz( , , ) = α, where α is a positive constant to be
determined. Therefore,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

≔ξ x y z ν
ν

x
x

y
y

α z
z

γ γx a γ y z
y

r d r a x ry α s f sz
ky

( , , ) ˙ = ˙ +
˙

+ ˙ = − + ( − ) −
2 −

+ [( − ) − ( + ) − ] + − −
1 −

.

Now, we consider the value of ξ x y z( , , ) at each of the boundary equilibria (limit set of (2)
on the boundary of � ) and prove that this function is positive at each of these boundary
equilibria. We have

⎡⎣ ⎤⎦
( )

( )

ξ O ξ γ r d s f

ξ R ξ μ γ r d

ξ N ξ α s f

( ) = (0, 0, 0) = + ( − ) + ( − ),

( ) = (0, 0, ) = − + − ,

( ) = 0, , 0 = + ( − ),

μ

r d
r

a r d γd
r

2

− ( − ) +

which are positive by the assumption (3). At the equilibrium Q = (1, 0, 0), we obtain
ξ a d α s f(1, 0, 0) = −( + ) + ( − ). For any given set of parameters a d s, , , and f , it is
sufficient to choose α > a d

s f
+
− , therefore ξ Q( ) is positive. Likewise, we get the values of ξ at

equilibria D and F , respectively,
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(A)

(B)

(C)

FIGURE 2 (a) Equilibrium covers of coral reef and parrotfish and trajectories over time, (b) equilibrium
covers of macroalgae and parrotfish, and (c) the phase portrait of macroalgae and corals
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⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥( )

( )

( )

ξ D γ a γ μ

μ

μ μ

ξ F r d r a r a d a

μ μ μ

( ) = + ( − ) −

= −

= ( − ),

( ) = − − ( + ) 1 − = ( + ) − ( + )

= − = ( − ),

r d
r

r k kd
r d

r k kd
r d

a r d r d γd r d
r r k kd

r k kd
r d

μ
γ

μ
γ

r a
γ

γ a d
r a

r a
γ

− (1 − ) +
+

(1 − ) +
+

( − )( + ) + ( + )
( (1 − ) + )

(1 − ) +
+ 0

2 2

+
2

2 ( + )
+

+
2 1

which are positive. Therefore, ν is an average Lyapunov function and thus, the system (2)
is uniformly persistent by Theorem 3.1 in Hutson (1986). □

4 | THE DDE MODEL AND ITS MATHEMATICAL
ANALYSIS

In this section, we have all assumptions about the system (2) and hypothesis (3) satisfied and
further assume that

μ μ μ0 < < < ,1 0 (9)

so that there is a unique stable interior equilibrium. It has been suggested by Blackwood and
Hastings (2011) that the inherent time delay has significant impact on dynamics of coral–
algae interactions. Here, we construct the following delay model by using the fact that it
takes a long time before algal turfs accumulate growth after macroalgae are grazed by
parrotfish:

⎧

⎨
⎪⎪

⎩
⎪⎪ ⎡⎣ ⎤⎦

x a γ y γ γx

y r d r a x ry

z s f

= [( − ) + − ] − ,

= [ − − ( + ) − ],

= ( − ) − .

dx
dt

z t τ x t τ
y t τ

dy
dt

dz
dt

sz
ky

( − ) ( − )
2 − ( − )

1 −

(10)

In the following, we are interested in stability of equilibria in the DDE model (10).

4.1 | Stability analysis of equilibria

The equilibrium points of the system (10) are the same as those of the system (2). The linearized
system takes the form

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A

x t
y t
z t

A
x t τ
y t τ
z t τ

=
( )
( )
( )

+
( − )
( − )
( − )

,

dx
dt
dy
dt
dz
dt

1 2
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where

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
A

γ xγ a γ y a γ x
a r y r d ry a r x

s f
=

− 2 + ( − ) ( − ) 0
− ( + ) − − 2 − ( + ) 0

0 − −
,

ksz
ky

sz
ky

1
−

(1 − )
2

1 −
2

2

(11)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A =

− −

0 0 0
0 0 0

.

z t
y t

z t x t
y t

x t
y t

2

− ( )
2 − ( )

( ) ( )
(2 − ( ))

( )
2 − ( )2

(12)

Now, we analyze the stability of these equilibria. At the equilibrium O = (0, 0, 0), we have
A J O= ( )1 and A = [0]2 3×3, then the equilibrium O remains unstable for any value of the delay τ .

At the equilibrium ( )R = 0, 0, s f
s
− , we have A1 and A2 as

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A

γ
r d

ksμ sμ
A=

0 0
0 − 0
0 − −

, =
− 0 0

0 0 0
0 0 0

.

μ

1
2

2
2

Then, the characteristic equation is given by

⎜ ⎟
⎛
⎝

⎞
⎠( ) ( )( )λI A A λ γ

μ
λ r d λ sμdet − − e = − −

2
e − + + .λτ λτ

1 2
− − (13)

For τ = 0, the eigenvalues are λ γ λ r d= − > 0, = − > 0μ
1 2 2 , and λ sμ= − < 03 . Thus, the

axial equilibrium R is unstable. For τ > 0, as the time delay τ increases, any changes in the sign
of real part of eigenvalues correspond to a purely imaginary root λ ω= i . Now, we assume that
there is some τ τ= > 0* such that Equation (13) has a root λ τ α τ ω τ( ) = ( ) + i ( ) satisfying
α τ λ τ ω τ ω( ) = 0, ( ) = i ( ) = i* * * . Then,

ω γ
μ

γ
μ

ωτ
μ

ωτi = −
2

e = −
2

cos + i
2

sin .* *ωτ−i * (14)

By equating the real and imaginary parts of (14) and using the identity ωτ ωτsin + cos = 1* *2 2 ,
we obtain

ω
μ γ

μ γ μ γ=
− 4
4

= 1
4

( − 2 )( + 2 ),2
2 2

which is negative due to μ γ< 2 in the assumption (3). Therefore, Equation (13) has no
purely imaginary roots, and hence, the number of roots with positive real parts of Equation
(13) does not change as the time delay τ increases (cf., Cooke & Grossman, 1982). Therefore,
for any τ > 0, the linearized equation of the system (10) at the equilibrium R has one
negative eigenvalue, two positive eigenvalues, and all other eigenvalues have negative real
parts. Consequently, for any τ > 0, the axial equilibrium R is unstable.
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By similar argument, we can conclude that the time delay has no effect on the stability of the
equilibria N = (0, , 0)r d

r
− and Q = (1, 0, 0). We omit the details here.

Now, we discuss the stability of the equilibrium D = (0, , )r d
r

μ r k kd
r

− ( (1 − ) + ) . At this
equilibrium, A1 and A2 are

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )A

γ a γ

a r r d

ksμ sμ

A=

+ ( − ) 0 0

−( + ) −( − ) 0

0 − −

, =
0 0

0 0 0
0 0 0

.

r d
r

r d
r

μ r k kd
r d

1

−

−

2

2

− ( (1 − ) + )
( + )

Then, the characteristic equation is

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥λ γ a γ r d

r
s f r k kd

s r d
λ r d λ sμ− − ( − ) − +

( − )( (1 − ) + )
( + )

e [ + ( − )][ + ] = 0.λτ−

Hence, two of the eigenvalues are λ r d= −( − )2 and λ sμ= −3 , which are negative [under the
assumption (3)]. The other eigenvalue satisfies

( )λ γ a γ

μ μ

= + ( − ) − e

= [ − e ].

r d
r

μ r k kd
r d

λτ

r k kd
r d

λτ

− ( (1 − ) + )
( + )

−

(1 − ) +
( + ) 0

−
(15)

Recall that for τ = 0, the eigenvalues are λ μ μ λ r d= ( − ), = −( − ) < 0r k kd
r d1

(1 − ) +
( + ) 0 2 , and λ =3

sμ− < 0. Thus, D is a saddle point. For τ > 0, we assume that there exists τ τ= > 0* , then
Equation (15) has a complex root λ τ α τ ω τ( ) = ( ) + i ( ) satisfying α τ( ) = 0,*
λ τ ω τ ω( ) = i ( ) = i* * . Then,

ω r k kd
r d

μ μ ωτ μ ωτi = (1 − ) +
( + )

[( − cos ) + i sin ].* *0 (16)

Therefore, by equating the real and imaginary parts of (16), we obtain

( )ω r k kd
r d

μ μ= ( (1 − ) + )
( + )

− < 0.2
2

2
2

0
2

Again there are no purely imaginary roots for Equation (15). Thus, the number of roots with
positive real parts of Equation (15) does not change as the time delay τ increases (cf., Cooke
& Grossman, 1982). Therefore, for any τ > 0, the linearized equation of the system (10) at
the equilibrium D has one positive eigenvalue, two negative eigenvalues, and all other
eigenvalues have negative real parts. Therefore, the boundary equilibrium D is unstable for
any τ > 0.

At the equilibrium F μ A= (1 − , 0, ),μ
γ2 1 and A2 take the form
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

( )

( ) ( )

A

γ μ a γ

a d a r

ks μ sμ

A

=

− + ( − ) 1 − 0

0 − − + ( + ) 0

0 − ( ) −

,

=
− 1 − − 1 −

0 0 0
0 0 0

.

μ
γ

μ
γ

μ μ μ
γ

μ
γ

1

2

2
2

2

−
2 2 2

1
2 2

It can be easily verified that two of the eigenvalues are

λ r a
γ

μ μ λ sμ= − ( + )
2

( − ), = − ,2 1 3

and the third eigenvalue satisfies

⎜ ⎟
⎛
⎝

⎞
⎠λ γ μ

μ
= − + −

2
e .λτ− (17)

Recall that for τ = 0, the eigenvalues are λ γ λ μ μ= − + < 0, = ( − ) > 0μ r a
γ1 2 2

( + )
2 1 , and

λ sμ= − < 03 . For τ > 0, we assume that λ τ α τ ω τ( ) = ( ) + i ( ) is a root of Equation (17)
satisfying α τ λ τ ω τ ω( ) = 0, ( ) = i ( ) = i* * * for some τ > 0* . Then,

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ω γ μ

μ
γ μ

μ
ωτ

μ
ωτi = − + −

2
e = − + −

2
cos + i

2
sin .* *ωτ−i * (18)

Therefore, we obtain

ω γ μ μ γ= 1
4

[(2 − )(3 − 2 )].2 (19)

Thus, for μ < γ2
3 , Equation (17) has no purely imaginary roots, but for μ μ γ< < < 2γ

1
2
3 , there

is a sequence of time delays ⋯ ⋯τ τ τ τ< < < < <j j0
+

1
− +

+1
− , with

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟{ }τ τ

ω
γ
μ

πj j= = 1 ±arccos 2 1 − + 2 , = 0, 1, 2, …,j
±

where Equation (17) has a pair of purely imaginary roots λ ω= ±i with

ω γ μ μ γ= 1
2

(2 − )(3 − 2 ) . (20)

Now, we compute = ( )dτ
dλ

dλ
dτ

−1 from (17) and obtain ( ) = −dλ
dτ λμ

τ
λ

−1 2eλτ
. Therefore,
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⎜ ⎟⎛
⎝

⎞
⎠ ∣ ∣

dλ
dτ

d τ
dλ

ωτ
μω μ

Re = Re = 2 sin = 4 > 0,λ ω λ ω

−1

=±i =±i 2

which implies that ∣( )d λ τ
dτ τ τ

Re ( )
= j

± is positive for j = 0, 1, 2,…. Therefore, for τ τ0 < < 0
+, the

linearized equation at the equilibrium F has one negative eigenvalue, one positive eigenvalue,
and all the others have negative real parts. Thus, the equilibrium F is unstable. When
τ τ j= ( = 1, 2,…)j

± , the characteristic equation (17) has a pair of purely imaginary roots. For
every j, as the time delay τ increases and passes through τ τ= j

±, the number of eigenvalues
with positive real parts increases by two. Therefore, for τ τ> 0

+, trajectories about F are
oscillatory and move away from F (see Figure 3). We summarize the above discussions in the
following theorem.

Theorem 3. Consider the system (10) and assume that hypotheses (3) and (9) are
satisfied. Then,

(a) For all τ > 0, the characteristic equation about the trivial solution O, axial solutions
R N, , and Q, and the boundary point D will have no pure imaginary eigenvalues and
delay has no effect on their stability.

(b) If μ μ< < γ
1

2
3 , then the characteristic equation about F will have no pure imaginary

eigenvalues and delay has no effect on their stability. However, for μ μ> >γ2
3 1, there will be

a sequence of time delays τ τ j= , = 1, 2,…j
± so that as the time delay τ increases and

passes through τ τ= j
±, the number of eigenvalues with positive real parts increases by two.

Now, we investigate the dynamics of the delay system (10) about the interior
equilibrium E x y z= ( , , )* * * * . We have already proved that under the condition (9), this
point is asymptotically stable for τ = 0. For, τ A A> 0, and1 2 have the following form,
respectively,

(A) (B)

FIGURE 3 (a,b) Solution of the system (10), with initial condition (0.4, 0.007, 0.8) and time delay τ = 3.55.
DDE: delay differential equation; 3D: three dimensional
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⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

A
γ x γ a γ y a γ x

a r y ry
ksμ sμ

A

=
− 2 + ( − ) ( − ) 0

−( + ) − 0
0 − −

,

=
− −

0 0 0
0 0 0

.

* * *
* *

z
y

z x
y

x
y

1
2

2

−
2 − (2 − ) 2 −

*
*

* *
*

*
*2

Then, the characteristic equation is given by

λ λ a a λ a a a a+ ( + e ) + ( + e ) + ( + e ) = 0,λτ λτ λτ3 2
1 2

−
3 4

−
5 6

− (21)

where

≔

≔

≔

≔

≔

≔

a γ x γ a γ y sμ ry

a γ γx a γ y

a sμ ry γ x γ a γ y ry sμ a r a γ x y

a sμ ry

a rsμy γ x γ a γ y a r sμ a γ x y

a rsμ

− + 2 * − ( − ) * + + *,

= − * + ( − ) *,

( + *)(− + 2 * − ( − ) *) + * + ( + )( − ) * *,

( + *) − ,

*(− + 2 * − ( − ) *) + ( + ) ( − ) * *,

+ − .

*
*

*
*

* * *
*

* *
*

* *
*

* * *
*

z
y

z
y

a r x y z
y

z y
y

kx y a r sμ
y

a r sμx y z
y

1

2 2 −

3

4 2 −
( + )

(2 − )

5

6 2 −
( + )

(2 − )
( + )

(2 − )

2

2

2

When τ = 0, the characteristic equation (21) is given by

λ a a λ a a λ a a+ ( + ) + ( + ) + ( + ) = 0.3
1 2

2
3 4 5 6 (22)

By comparing with Equation (7) and according to the conclusion in Section 2,
we have ≡ ≡A a a B c c( + ) > 0, ( + ) > 01 2 3 4 , and ≡C a a( + ) > 05 6 , and all three
eigenvalues are negative. When τ > 0, let λ τ α τ ω τ( ) = ( ) + i ( ) be a root of Equation
(21) satisfying α τ λ τ ω τ ω( ) = 0, ( ) = i ( ) = i* * * for some τ > 0* . If λ ω= i is a root, then

≠ω 0 and

ω a ω a ω a ω a ω a a− i − − e + i + i e + + e = 0.ωτ ωτ ωτ3
1

2
2

2 −i
3 4

−i
5 6

−i* * * (23)

By equating the real and imaginary parts of (23) equal to zero, we have

{ ( )
( )

ω a ω a ω a ωτ a ω ωτ
a ω a a ω ωτ a ω a ωτ

− + + − sin + cos = 0,
− + + sin − − cos = 0.

* *
* *

3
3 2

2
6 4

1
2

5 4 2
2

6
(24)

It follows from (24) that

( ) ( )ω a a a ω a a a a a a ω a a+ − 2 − + − 2 − + 2 + − = 0.6
1
2

3 2
2 4

3
2

1 5 4
2

2 6
2

5
2

6
2 (25)
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Denote

≔ ≔ ≔( ) ( )A a a a B a a a a a a C a a− 2 − , − 2 − + 2 , − ,1 1
2

3 2
2

1 3
2

1 5 4
2

2 6 1 5
2

6
2

and let ≔ω ζ2 , then Equation (25) becomes

≔h ζ ζ A ζ B ζ C( ) + + + = 0.3
1

2
1 1 (26)

The cubic function h ζ( ) can have at most three positive roots, which are denoted by
ζ ω i= , = 1, 2, 3i i

2 with ω ω ω0 < < <1 2 3. Also, from (24), we get

ωτ

ωτ

cos = ,

sin = .

*

*

a a a ω a a a a a a ω a a
a ω a ω a

a ω a a a a a ω a a a a ω
a ω a a ω

( − ) + ( − + ) −
+ ( − )

+ (− + − ) + ( − )
+ ( − )

4 1 2
4

1 6 4 3 2 5
2

5 6

4
2 2

2
2

6
2

2
5

6 4 1 2 3
3

3 6 5 4

4
2 2

6 2
2 2

Then, corresponding to each positive root ζ i, = 1, 2, 3i of h ζ( ), there exist a sequence of time
delays ⋯ ⋯τ τ τ τ0 < < < < < <i i i n i n,0

+
,1
−

,
+

, +1
− such that (22) has a pair of pure imaginary

eigenvalues, where

⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥τ

ω
a a a ω a a a a a a ω a a

a ω a ω a
nπ= 1 ±arccos

( − ) + ( − + ) −
+ ( − )

+ 2 ,i n
i

i i

i i
,
± 4 1 2

4
1 6 4 3 2 5

2
5 6

4
2 2

2
2

6
2 (27)

for i n= 1, 2, 3, = 0, 1, 2,….
Now, we discuss the stability of the interior equilibrium E* according to the number of

positive roots for Equation (25). There are four cases of interest:

(I) Equation (25) has no positive roots. Then, delay has no effect on the stability of E*, which
is asymptotically stable for all τ > 0.

(II) h ζ( ) only has one simple positive root ζ ω=1 1
2. There is one positive root for Equation

(25), which is simple. Thus, for τ τ= n1,
± , the characteristic equation (21) has a pair

of purely imaginary roots. To discuss the possible Hopf bifurcation about E* as τ
passes through τ n1,

± , we need to determine sign{ }d λ
dτ τ τ

(Re )
= n1,

± . From Equation (21), we

have

⎜ ⎟⎛
⎝

⎞
⎠

dλ
dτ

λ a λ a a λ a
a λ a λ a λ

τ
λ

a λ a λ a
λ a λ a λ a

= e (3 + 2 + ) + 2 +
( + + )

− , e = −( + + )
+ + +

.
λτ

λτ
−1 2

1 3 2 4

2
2

4 6

2
2

4 6
3

1
2

3 5

Thus,
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⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

{ }

{ }{ } ( )

( ) ( )

h ζ

sign = sign Re

= sign Re +

= sign −

= sign

= sign{ ′( )} > 0,

d λ
dτ τ τ

dλ
dτ λ ω

λ a λ a
λ λ a λ a λ a

a λ a
λ a λ a λ a λ ω

ζ a ζ a a a ζ a
ζ ζ a a ζ a

a a a ζ a
a ζ a ζ a

ζ a a a ζ a a a a a a
a ζ a a ζ

(Re )

=

−1

=i

−(3 + 2 + )
( + + + )

2 +
( + + ) =i

( − )(3 − ) + 2 ( − )
( − ) + ( − )

+ 2 ( − )
+ ( − )

3 + 2 − 2 − + − 2 − + 2
( − ) +

1

n1,
±

1

2
1 3

3
1

2
3 5

2 4

2
2

4 6 1

1 3 1 3 1 1 1 5

1 1 3
2

1 1 5
2

4
2

2 2 1 6

4
2

1 2 1 6
2

1
2

1
2

3 2
2

1 3
2

1 5 4
2

2 6

2 1 6
2

4
2

1

because a ζ a a ζ( − ) + > 02 1 6
2

4
2

1 . Characteristic equation (21) with τ = 0 has three
negative eigenvalues, then when τ τ0 < < 1,0

+ , the characteristic equation (21) has the
eigenvalues with negative real parts, and thus the equilibrium E* is asymptotically stable.
When τ τ= 1,0

+ , the characteristic equation (21) has a pair of purely imaginary roots ω± i 1
and h ζ′( ) > 01 , then as τ increase through τ n1,

± , a Hopf bifurcation occurs, and a nontrivial
periodic solution appears. When τ τ τ< <1,0

+
1,1
− , the characteristic equation (21) has a pair

of eigenvalues with positive real parts, whereas the others with negative real parts, hence
the equilibrium E* becomes unstable, and so on. Therefore, after a pair of imaginary
eigenvalues appear, the stability of the solution can only be lost but not regained as τ
increases.

(III) If Equation (25) has a pair of positive roots with double multiplicity ω ζ=1
2

1, then

h ζ′( ) = 01 , then the transversality condition for the Hopf bifurcation does not hold, thus
the direction of movement of eigenvalues by increasing τ depends on the higher
derivatives, which are very complex. Now, suppose there are two positive simple roots

ω ζ ω ζ= , =1 1 2 2 for Equation (25), with ∣ ∣ ∣ ∣ω ω>2 1 . In this case, using Equation (24),

there are the two sets of values of τ τ n i= , = 0, 1,…, = 1, 2i n,
± , for which Equation (22)

has two pairs of pure imaginary eigenvalues. In this case, h ζ′( ) < 01 and h ζ′( ) > 02 and by
similar calculation as Case (II), we have

⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
dλ
dτ

dλ
dτ

sign Re < 0, sign Re > 0.
λ ω λ ω

−1

=i

−1

=i1 2

Characteristic equation (21) with τ = 0 has three negative eigenvalues, and τ τ<2,0
+

1,0
+ .

Otherwise suppose τ τ>2,0
+

1,0
+ , but h ζ′( ) < 01 , then we should have a pair of complex

eigenvalues with positive real parts for ζ ζ< 1, which is impossible, because ζ ζ= 1 is the
smallest positive value, for which h ζ( ) = 0 has a pair of pure imaginary roots. Then, when

τ τ0 < < 2,0
+ , the characteristic equation (21) has three eigenvalues with negative real parts,

and thus the equilibrium E* is asymptotically stable; when τ τ= 2,0
+ , the characteristic

equation (21) has a pair of purely imaginary roots ω± i 2, and sign h ζ′( )2 is positive, then a
supercritical Hopf bifurcation occurs, and a nontrivial periodic solution exists for
τ τ τ< <2,0

+
1,0
+ . For these values of τ , the characteristic equation (21) has a pair of

eigenvalues with positive real parts, and the others have negative real parts, hence the
equilibrium E* is unstable; when τ τ= 1,0

+ , the characteristic equation (21) will have
another pair of purely imaginary roots ω± i 1, and h ζ′( ) < 01 , hence a subcritical Hopf
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bifurcation occurs as τ decreases through τ1,0
+ , and a nontrivial periodic solution bifurcates

from the equilibrium E*; when τ τ τ< <1,0
+

2,1
− , the characteristic equation (21) has three

eigenvalues with negative real parts, then the equilibrium E* is asymptotically stable;
when τ τ= 2,1

− , the characteristic equation (21) has a pair of purely imaginary roots ω± i 2,
and h ζ′( ) > 02 , then a supercritical Hopf bifurcation occurs, and a nontrivial periodic
solution appears as τ increases through for τ τ= 2,1

− , and so on. Note that h ζ′( ) > 02 and
h ζ′( ) < 01 , then after one cycle, the number of eigenvalues with positive real parts does not
change. Therefore, if there are two imaginary roots, then the stability of the solution can
change for a finite number of times as τ increases, and eventually it becomes unstable.

(IV) There are three positive roots

ω ζ ω ζ ω ζ= , = , =1 1 2 2 3 3

for Equation (25), with ∣ ∣ ∣ ∣ ∣ ∣ω ω ω> >3 2 1 . In this case, using Equation (24), corresponding
to each pair of pure imaginary eigenvalues ω i, = 1, 2, 3i , there are two sequences of time
delays τ τ n i= , = 0, 1,…, = 1, 2, 3i n,

± . In this case, h ζ h ζ′( ) > 0, ′( ) < 01 2 , and h ζ′( ) > 03 ,
and similar to Case (II), we have

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
dλ
dτ

h ζsign Re = sign{ ′( )}.
τ τ

i
= i n,

±

We know that characteristic equation (21) with τ = 0 has three negative eigenvalues. With
similar reasoning as Case (III), the following two cases are possible:
(a) τ τ τ< <3,0

+
2,0
+

1,0
+ : When τ τ0 < < 3,0

+ , the characteristic equation (21) has the

eigenvalues with negative real parts, thus the equilibrium E* is stable; when
τ τ= 3,0

+ , the characteristic equation (21) has a pair of purely imaginary roots ω± i 3, and

h ζ′( )3 is positive, then the Hopf bifurcation occurs, and a nontrivial periodic solution

exists for τ τ= 3,0
+ ; when τ τ τ< <3,0

+
2,0
+ , the characteristic equation (21) has a pair of

eigenvalues with positive real parts, the others with negative real parts, hence the
equilibrium E* is unstable; when τ τ= 2,0

+ , the characteristic equation (21) has a pair of

purely imaginary roots ω± i 2, and h ζ′( )2 is negative, hence the Hopf bifurcation occurs,

and a nontrivial periodic solution bifurcates from E*; when τ τ τ< <2,0
+

1,0
+ , the

characteristic equation (21) has the eigenvalues with negative real parts, then the
equilibrium E* is stable; when τ τ= 1,0

+ , the characteristic equation (21) has a pair of

purely imaginary roots ω± i 1, and h ζ′( )1 is positive, then the Hopf bifurcation occurs,
and a nontrivial periodic solution appears.

(b) τ τ τ< <1,0
+

2,0
+

3,0
+ : When τ τ0 < < 1,0

+ , we can have similar arguments as Case (a) by
exchanging indices 1 and 3.

Note that the number of pure imaginary roots of the characteristic equation (21) depends on the
sign of C1 in Equation (26). If C1 is positive, then one of the two cases (I) or (III) can occur; if C1
is negative, then one of the two cases (II) or (IV) can occur. We summarize the above
discussions in the following theorem.
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Theorem 4. Suppose ≔ω ζj j
2 and ≠h ζ′( ) 0j for j = 1, 2, 3, then h ζsign ′( ) =j

sign
dλ τ

dτ
( )j n,

±

, for j = 1, 2, 3 and n = 0, 1, 2,…
Moreover, if Equation (26) has one simple positive root ζ1 or has two positive roots, ζ ζ,1 2 with
ζ ζ<2 1, then there is a Hopf bifurcation for the system (10) as τ passes through τ n1,

+ , leading
to a stable periodic solution that bifurcates from E*. If there are three positive roots of (26),
ζ ζ ζ< <1 2 3, respectively, then

dλ τ
dτ

dλ τ
dτ

dλ τ
dτ

n
( )

> 0,
( )

< 0,
( )

> 0, = 0, 1, 2,…,n n n1,
±

2,
±

3,
±

which implies that there is a Hopf bifurcation as τ increases through τ τmin{ , }1,0
+

3,0
+ , leading

to a stable periodic orbit.

5 | NUMERICAL SIMULATIONS

In this section, we carry out some simulations with the following parameters:

a d s γ r f k= 0.1, = 0.44, = 0.49, = 0.8, = 1, = 0.08, = 0.6, (28)

TABLE 1 Parameter values and definitions

Parameter Value Definition

a 0.1 Rate macroalgae directly overgrow coral (1/year)

γ 0.8 Rate macroalgae spread vegetatively over algal turfs (1/year)

r 1 Rate of coral recruitment to algal turfs (1/year)

d 0.44 Natural coral mortality accounts for 2–4% (1/year), and predation accounts for 30%
(1/year)

s 0.49 Rate of parrotfish growth (1/year)

k 0.6 Dimensionless parameter that determines the strength of the linear relationship
between coral cover and carrying capacity

f 0.08 Rate of destruction of parrotfish resulting from fishing effort

(B)(A)

FIGURE 4 (a,b) Solution of the system (10), with initial condition (0.2, 0.33, 0.67) and time delay τ = 3.15
about the equilibrium E*. DDE: delay differential equation; 3D: three dimensional
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where we have a unique stable interior equilibrium E*. See Table 1 for parameter values and
their definitions (these parameter values can be found in Mumby et al., 2007; Mumby, Foster, &
Glynn Fahy, 2005). For these values of parameters, the steady states are as follows: O =

R N Q D F(0, 0, 0), = (0, 0, 0.83673), = (0, 0.56, 0), = (1, 0, 0), = (0, 0.56, 0.55559), =
(0.47705, 0, 0.83673),E = (0.20799, 0.33121, 0.67045)* , and the critical parameter values are
f f= 0.05645, = 0.105120 1 , and k = 0.450 .

In our analytical study, we know that the boundary planes x{ = 0}, y{ = 0}, and z{ = 0} are
invariant. Hence, the phase portraits of the system (2), in the absence of macroalgae (x), coral
reef (y), and parrotfish (z), are given in Figure 2a–c, respectively. As we have seen in our
analytical analysis, the boundary point F and the unique interior steady state E* are the most
important equilibrium points from the ecological point of view. Hence, we put emphasis on
these in our numerical study. Now, we consider the steady state F . According to Theorem 1, if
f f s< <1 , the boundary equilibrium F is stable, but it is unstable for f f< 1. Therefore, for the
set of parameter values given in (28), F is unstable. Now, we consider the effect of delay, by
Theorem 3, we know that if ≤ f f f0 < = 0.10512 < = 0.228671 2 , the equilibrium F is unstable
for all ≥τ 0. Also, when τ τ= = 3.55820 , then Equation (17) has a pair of purely imaginary

(A) (B)

FIGURE 5 (a,b) Solution of the system (10), with initial condition (0.2, 0.33, 0.67) and time delay τ = 3.17
around the equilibrium E*. DDE: delay differential equation; 3D: three dimensional

(A) (B)

FIGURE 6 (a,b) Solution of the system (10), with initial condition (0.2, 0.33, 0.67) and time delay τ = 3.20
around the equilibrium E*. DDE: delay differential equation; 3D: three dimensional
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roots λ ω= ±i with ω = 0.41675. Trajectories about F are oscillating away from F toward E*
and then away from E*. This is shown in Figure 3.

By substituting the parameter values in (28) and (7), we obtain

A B C= 0.90760, = 0.18784, = 0.002713.

Then, by Theorem 1, the equilibrium E* is stable. Now, we consider the system (10). Case II
occurs for the interior equilibrium E*. Then, as we can see from Figures 4, 5, and 6, the
trajectories about E* change as follows when τ increases:

(i) First, it becomes oscillatory but eventually approaches E* (due to the appearance of a pair
of complex eigenvalues with negative real parts). See Figure 4 as an illustration.

(ii) By increasing the delay τ further, as τ passes through τ1,0
+ , a Hopf bifurcation occurs and a

stable periodic orbit bifurcates from E*. See Figure 5 as an illustration.
(iii) By increasing τ further, as τ passes through τ1,1

+ , the periodic orbit becomes unstable. See
Figure 6 as an illustration.

6 | DISCUSSION

In this paper, we have provided local and global stability analyses of all steady states of the coral
reef ODE model (2) under fishing. We have proved that there is an ecologically meaningful
attracting region, for which the system is uniformly persistent. We have shown that fishing
plays a crucial role on the coral reef dynamics. If the fishing rate is lower than some threshold
( f f< 0), the coral–parrotfish state is globally attracting stable node, which implies that the reefs
are healthy. By increasing the fishing rate (for f f> 1), the macroalgae–parrotfish state becomes
a stable node, which implies that macroalgae arise and reefs switch from healthy to unhealthy.
When the fishing rate is in some intermediate range k k0 < < 0, then the interior state E* is

FIGURE 7 Two‐parameter bifurcation diagram of the system (2) showing curves of codimension one local
bifurcation in the f k( , ) parameter plane. Also, regions in f k( , ) parameter space, where (2) has positive internal
equilibria, for fixed parameter values a d s γ r= 0.1, = 0.44, = 0.49, = 0.8, = 1 have been shown
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unstable, but the coral–parrotfish state and the macroalgae–parrotfish state are both stable;
however, if k k< < 10 , then the interior state E* is stable, and the coral–parrotfish and
macroalgae–parrotfish states are both unstable (see Figure 7).

In contrast, because it takes some time for algal turfs to arise after macroalgae are grazed by
parrotfish, then the inherent time delay has significant impact on the dynamics of coral–algae–
parrotfish interactions. Therefore, we have incorporated the delay in our model and treated both the
fishing effort and the time delay as the bifurcation parameters. Delay has no effect on the stability of
the extinction state, macroalgae only state, coral only state, and parrotfish only state. However,
stability of the coral–parrotfish state and the macroalgae–parrotfish state depends not only on the
fishing effort but also on the time delay. Reefs remain healthy only for a low fishing rate and a short
delay time. With high fishing rate and a long delay time, the macroalgae–parrotfish state is stable,
and hence the healthy reefs switch to the macroalgae‐dominant status.

For some critical values of the time delay, a Hopf bifurcation occurs, which leads to a nontrivial
periodic solution. This implies a switch between healthy and unhealthy states. This phenomenon
can only appear in the DDE model. For large enough time delay, oscillations with large amplitudes
appear. Finally, some numerical simulations are carried out for illustrating the analytic results.
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