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Abstract
Animal movements and their underlying mechanisms are an extremely important research
area in biology and have been extensively studied for centuries. However, spatial memory and
cognition, which is the most significant difference between animal movements and chemical
movements, has been ignored in themodeling of animalmovements. To incorporate cognition
andmemory of “clever” animals in the simplest and self-containedway, we propose a delayed
diffusion model via a modified Fick’s law, whereas in literature the standard diffusion for
chemical movements was applied to describe “drunk” animal movements. Our mathematical
model is expressed by a reaction–diffusion equationwith an additional delayeddiffusion term,
which makes rigorous analysis intriguing and challenging. We show the wellposedness and
analyze the asymptotic stability of steady state in the spatial memory model. It is shown that
for the three possible reaction schemes, the stability of a spatially homogeneous steady state
fully depends on the relationship between the two diffusion coefficients but is independent
of the time delay. Finally, we numerically illustrate possible spatialtemporal patterns when
the system is divergent.
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1 Introduction

Diffusion is one of fundamental physical processes in which substances or organismsmove in
space. It was first used to describe the heat conduction in early nineteenth century, and since
then it has been used in numerous movement processes in physics, chemistry and biology
[7,15,16]. Diffusion equation is based on the basic mass balance law and the Fick’s law,
which assumes that the movement flux is in the direction of negative gradient of the density
distribution function, that is

J(x, t) = −D∇u(x, t). (1.1)

On the other hand, if the movement is in an advective environment like a river or stream,
then the flux is also affected by the fluid velocity and the flux in (1.1) can be modified as

J(x, t) = −D1∇u(x, t) − v(x, t) · u(x, t), (1.2)

where v(x, t) is a vector field indicating the fluid flow. Using the flux law in (2.2) and
the continuity equation, one arrives at the typical diffusion–advection equation to describe
movement:

∂u(x, t)

∂t
= D1�u(x, t) + div(v(x, t) · u(x, t)). (1.3)

However, the direct application of this physical process to animal movement has a severe
drawback. The main feature of animals, especially highly developed animals, is their cog-
nition and memory. A recent review paper [9] emphasized the importance of integrating
spatial memory into animal movements. Spatial memory is an extremely complicated and
poorly understood phenomenon in the study of animal movements, however, it is clearly
the most significant difference between chemical movements and animal movements. The
review paper summarized nine well-demonstrated memory mechanisms. Here we consider
the episodic-like spatial memory of animals. For example, an animal in a polar region usually
judges footprints to decide its spatial movement, and footprints record a history of species
distribution and movements, in which time delay is involved. Waning of footprints leads to a
finite delay. Apparently, highly developed animals can even remember the historic distribu-
tion or clusters of the species in space. Spatial memories decay over time, and these decays
may include decreases in intensity and/or spatial precision [9]. To incorporate this kind of
cognition and memory in the simplest and self-contained way, we propose a modified Fick’s
law that in addition to the negative gradient of the density distribution function at the present
time, there is a directed movement toward the negative gradient of the density distribution
function at past time. Such movement is based on the memory (or history) of a particular
past time density distribution.

The paper is organized as follows. The next section is to derive the animalmovementmodel
with spatial memory (or history) and discuss the wellposedness of the proposed model. The
third section is to analyze the stability of a spatially homogeneous steady state solution. The
fourth section is to discuss three examples with different forms of the reaction function. The
last section is the summary and discussion. Throughout the paper, N is the set of all positive
integers, and N0 = N ∪ {0} is the set of all non-negative integers.
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2 Model of Diffusion with Spatial Memory

Suppose that � is a bounded, connected open region in R
N , and u(x, t) is the population

density of a biological species for location x ∈ � and time t ≥ 0. Then by using the principle
of mass conservation and divergence theorem in calculus, we know that the rate of change
of the population density satisfies the following continuity equation:

∂u

∂t
(x, t) = −div(J(x, t)), (2.1)

where J(x, t) is the population flux of u. Here instead of the classical Fick’s law, we propose
the following modified Fick’s law which suggests a flux in the form of

J(x, t) = −D1∇u(x, t) − D2u(x, t) f (∇u(x, t − τ)), (2.2)

where D1 is the Fickian diffusion coefficient, D2 is the memory-based diffusion coefficient,
the time delay τ > 0 represents the averagedmemory period, and f : R

N → R
N is a function

showing the dependence of memory-based diffusion on the gradient of concentration at τ

time units before the present time. The memory-based diffusion flux is proportional to the
population density at present time and the spatial gradient at a particular past time. When
τ = 0 and f (U ) = U , the form of flux in (2.2) has been suggested in [19] to model the
dispersive force due to population pressure. Hence the formof flux in (2.2) is also an extension
of the derivation in [19] of instantaneous pressure to memory-based pressure.

By using themodified Fick’s law in (2.2) and combining the chemical/biological processes
of the species, the density function u(x, t) satisfies the following reaction–diffusion equation:

∂u

∂t
(x, t) = D1�u(x, t) + D2div(u(x, t) f (∇u(x, t − τ))) + g(x, t, u(x, t)), (2.3)

where g describes the chemical reaction or biological birth/death. For simplicity, in the
following we shall assume that f is the identity function, g is independent of x and t , and
the movement is confined to a bounded, connected open region � in R

N with C2 boundary
∂�. Then we have the following autonomous initial-boundary value problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
= D1�u + D2div(u∇uτ ) + g(u), x ∈ �, t > 0,

∂u

∂n
(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = ϕ(x, t), x ∈ �,−τ ≤ t ≤ 0.

(2.4)

Here u = u(x, t), uτ = u(x, t−τ);� is a bounded domain inR
N (N ≥ 1) withC2 boundary

∂�; a homogeneous Neumann boundary condition is imposed so that there is no population
movement across the boundary ∂�. The initial condition ϕ(x, t) satisfies

ϕ(x, t) ∈ C2,α(� × [−τ, 0]), ∂ϕ

∂n
(x, t) = 0, (x, t) ∈ ∂� × [−τ, 0], α ∈ (0, 1). (2.5)

The growth rate g(u) is always assumed to satisfy

g ∈ C1([0,∞), R), g(0) = g(1) = 0, g(u) < 0, for u > 1. (2.6)

When D2 = 0, Eq. (2.4) is the Fisher-KPP type scalar reaction–diffusion equation which is
well understood [4,15]. Hence in Eq. (2.4), we assume that D1 > 0 and D2 	= 0. Normally
we have D2 > 0, that is, animals leave away from high density to low density. This is a
natural phenomenon. However, some social animals have aggregations for group defense or
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group working (see Sect. 5 for more details). In this case, we have D2 < 0. Similar to the
classical Fisher–KPP equation with non-flux boundary condition, Eq. (2.4) is a closed system
with no population loss or gain through the boundary.

We remark that when the memory-based diffusion term D2div(u∇uτ ) is replaced by a
chemotaxis term −D2div(u∇v) and v represents the density of a chemical signal, then the
system (2.4) becomes the well-known Keller–Segel chemotaxis model with growth if v also
satisfies a reaction–diffusion equation [2,13,22]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= D1�u − D2∇ · (u∇v) + g(u), x ∈ �, t > 0,

∂v

∂t
= �v − αv + βu, x ∈ �, t > 0,

∂u

∂n
(x, t) = ∂v

∂n
(x, t) = 0, x ∈ ∂�, t > 0.

(2.7)

The system (2.4) can also be viewed as a taxis type system but with its past distribution as the
cue. In the classical Keller–Segel chemotaxis model (2.7), the cells are attracted to the higher
density location of the chemical signal, thus the term with D2 is negative. In other word, the
memory-based diffusion with D2 > 0 can be viewed as a repulsive taxis that the substances
u move away from higher density location of its own past distribution. This is in consistence
with the Fick’s law that substancesmove from high density locations to low density ones. The
dynamical behavior of (2.7) with logistic type g is still not fully understood, and numerical
simulations show that chaotic dynamics could exist for (2.7) [8,17]. On the other hand, when
D2 < 0 in system (2.4), the model resembles the classical chemo-attractive chemotaxis
model (2.7) for which the substances u is attracted by high concentration locations in the
past. However, as will also be seen from simulations, the pattern generated by the model
seems quite different from the case of D2 > 0.

To conclude this section, we prove the wellposedness (existence, uniqueness, and posi-
tivity) of solutions to Eq. (2.4).

Proposition 2.1 Suppose that D1 > 0, D2 ∈ R, τ > 0, � is a bounded, connected open
subset of R

N with C2 boundary ∂�, ϕ(x, t) satisfies (2.5) and g(u) satisfies (2.6). Then,
Eq. (2.4) possesses a unique solution u(x, t) for (x, t) ∈ � × [0,∞), and u ∈ C2,1(�̄ ×
[0,∞)). Moreover if ϕ(x, t) ≥ 0 for (x, t) ∈ ∂� × [−τ, 0], then u(x, t) > 0 for (x, t) ∈
� × (0,∞).

Proof For t ∈ [0, τ ], uτ coincides with the initial function ϕ(t − τ, x). Set

F(t, x, u,∇u) = D2∇ · (u∇ϕ(t − τ, x)) + g(u)

From (2.5) and (2.6), we know F is continuous and satisfies a Hölder condition with respect
to t , a Lipschitz condition with respect to (u,∇u). Since ∂� is C2, it then follows from [14,
Proposition 7.3.3] that (2.4) has a unique solution u ∈ C2,1(�̄ × [0, T )) for some T > 0.
The condition g(u) < 0 for u > 1 guarantees that the solution can be extended to [0, τ ] if
τ > T . Then this process can be repeated for t ∈ [τ, 2τ ] and further to any [kτ, (k + 1)τ ]
for k ∈ N as the step method for the existence of solutions to delay differential equations.
Thus the solution can be extended to t ∈ [0,∞).
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To prove the solution u(x, t) is positive, we observe that u is the solution of the initial-
boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
= D1�u + D2div(u∇xϕ(x, t − τ)) + g(u), x ∈ �, 0 < t < τ,

∂u

∂n
(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = ϕ(x, 0), x ∈ �.

(2.8)

Since g(0) = 0, then u(x, t) > 0 for x ∈ � × (0, τ ) from the standard maximum principle
of parabolic equations. Repeating this argument, we obtain that u(x, t) > 0 for (x, t) ∈
� × (0,∞). 
�

Note that in Proposition 2.1, we show that the solution u(x, t) of (2.4) exists for all t > 0,
so it exists globally. It is unknown whether the solution is bounded for t ∈ (0,∞) or even
bounded by a constant independent of initial conditions. Such question is not completely
solved for chemotaxis model (2.7) either. When there is a logistic growth term in (2.7),
it is known that the solution is bounded under some conditions [26], or even converges
to a constant equilibrium [28], but it is also known that solutions can blow up in finite time
despite logistic growth [27], or have other interesting dynamics [29,30]. Here Proposition 2.1
excludes the possibility of finite-time blowup of solutions when τ > 0, and it is not known
whether the blowup can occur when τ = 0.

3 Stability of Homogeneous States

Suppose that u = u∗ is a constant (spatially homogeneous) steady state solution of (2.4).
We analyze the asymptotic stability of the constant steady state u∗ with respect to the model
(2.4). Here we always assume that D1 > 0, D2 ∈ R and u∗ ≥ 0. The linearization of (2.4)
at u = u∗ is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ψ

∂t
= D1�ψ + D2u

∗�ψτ + g′(u∗)ψ, x ∈ �, t > 0,

∂ψ

∂n
(x, t) = 0, x ∈ ∂�, t > 0,

ψ(x, t) = ϕ0(x, t), x ∈ �,−τ ≤ t ≤ 0,

(3.1)

where ψ = ψ(x, t), ψτ = ψ(x, t − τ) and ϕ0 also satisfies (2.5).

3.1 Linear Stability

In this subsection, we show that the solution operator of (3.1) is an α-contraction, then from
Lemma 7.4.2 in [11], one can assert that the stability of the constant solution u = u∗ is
determined by the set of eigenvalues of (3.1). Let C := C([−τ, 0], L2(�)), and define the
difference operatorD : C → C byDφ = D1φ(0)+ D2u∗φ(−τ). Then, we can rewrite (3.1)
as an abstract ODE:

dψt

dt
= Aψt (3.2)
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where Aφ = φ′ for φ ∈ Dom(A) with

Dom(A) = {φ′ ∈ C : Dφ ∈ Dom(�), φ′(0) = �Dφ(θ) + g′(u∗)φ(0)}.
First we show that the spectral set σ(A) of A is consisted of eigenvalues only.

Lemma 3.1 For the linear operator A defined above, we have σ(A) = σP (A), the set of
eigenvalues of A, and μ ∈ σP (A) if and only if the operator �(μ) : L2(�) ⊃ H2(�) →
L2(�) defined by

�(μ)b = μb − (D1 + D2u
∗e−μτ )�b − g′(u∗)b,

for b ∈ H2(�), is non-invertible.

Proof Let ρ(A) be the resolvent set of A. The constant μ ∈ ρ(A) if and only if the equation

Aφ − μφ = η, (3.3)

has a solution φ ∈ Dom(A) for every η ∈ C([−τ, 0], H2(�)) (which is dense in C), and the
solution depends continuously on η. Recall that Aφ = φ′ for φ ∈ Dom(A). Solving (3.3),
we have

φ(θ) = eμθb +
∫ θ

0
eμ(θ−ξ)η(ξ)dξ, (3.4)

for some b ∈ H2(�). In order to ensure φ ∈ Dom(A), it requires that

μφ(0) + η(0) = �Dφ(θ) + g′(u∗)φ(0). (3.5)

Combining (3.4) and (3.5), we get

μb − �D(eμ·b) − g′(u∗)b = μb − (D1 + D2u
∗e−μτ )�b − g′(u∗)b

= −η(0) + �D
(∫ θ

0
eμ(θ−ξ)η(ξ)dξ

)

,

which has a solution for b ∈ H2(�) if and only if the operator �(μ) is invertible. On the
other hand, it follows from b ∈ H2(�), η ∈ C([−τ, 0], H2(�)) and (3.4) that φ(θ) also
satisfies Dφ ∈ Dom(�). Therefore,

{μ ∈ C : �(μ) is invertible} ⊆ ρ(A).

On the other hand, if there exists μ ∈ C such that �(μ) is non-invertible, i.e., μb −
�D(eμ·b) − g′(u∗)b = 0 always has a nontrivial solution for b ∈ H2(�), then by a similar
argument, we can show that Aφ − μφ = 0 has a unique solution, given by eμθb. Therefore,
μ ∈ σP (A). 
�

In order to show that the asymptotical stability of zero solution of (3.2) is completely
determined by the distribution of σP (A), one has to show that the solution operator of (3.2)
possesses some compactness property. For that purpose, we assume that

|q| < 1, where q = D2u∗

D1
. (3.6)

Now we make the following change of variable

D1ψ(x, t) + D2u
∗ψ(x, t − τ) = v(x, t), (3.7)
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and assuming (3.6), we can invert ψ from v in (3.7) by setting

ψ(x, t) = 1

D1

∞∑

n=0

(−1)nqnv(x, t − nτ) =: 1

D1
D̄vt (x, ·). (3.8)

By using (3.8), we can rewrite (3.2) as the following linear neutral partial functional differ-
ential equation with infinitely but countably many delays:

∂D̄vt (x, ·)
∂t

= D1�v(x, t) + g′(u∗)D̄vt (x, ·). (3.9)

subject to the initial condition

v(x, t) =
⎧
⎨

⎩

D1ϕ0(x, 0) + D2u∗ϕ0(x,−τ), t = 0,
D1ϕ0(x, t), t ∈ [−τ, 0),
0, t < −τ.

(3.10)

A typical choice of the phase space for (3.9) is

L =
{

ν ∈ L1((−∞, 0), L2(�)) : ‖ν‖L :=
∫ 0

−∞
‖ν(s)‖L2(�)e

εsds < ∞
}

, (3.11)

where ε > 0 is fixed, see [21]. Let T�(t) be the semigroup generated by the diffusion operator
D1�. Then, the associated integral form of (3.9) subject to the initial condition (3.10) is

D̄vt (x, ·) = T�(t)v(0) + g′(u∗)
∫ t

0
T�(t − s)D̄vs(x, ·)ds. (3.12)

As shown in [11,31], for neutral differential equations, the associated difference equation
plays a key role on the dynamics of the original neutral type equations. Here we also consider
the following associated difference equation of (3.9) on L2(�):

Dwt :=
∞∑

n=0

(−1)nqnw(t − nτ) = h(t), t ≥ 0, (3.13)

with w0 ∈ L such that Dw0 = h(0) and h ∈ C([0,∞), L2(�)). Define ζ : (−∞, 0] →
B(L2(�)) by

ζ(θ) =

⎧
⎪⎨

⎪⎩

0, θ ∈ (−τ, 0],
n∑

i=1

(−1)i−1qi , θ ∈ (−(n + 1)τ,−nτ ], n ∈ N,
(3.14)

where B(L2(�)) is the set of bounded linear operators from L2(�) to itself. Then, (3.13)
can be written as

w(t) +
∫ 0

−∞
wt (θ)dζ(θ) = h(t),

which is equivalent to

w(t) + η ∗ w = f (t) + h(t), t ≥ 0, (3.15)

where (η ∗w)(t) = ∫ t
0 w(t − s)dη(s), η : [0,∞) → B(L2(�)) is given by η(s) = −ζ(−s),

and f (t) = − ∫ +∞
t w0(t − s)dη(s). For the integral equation (3.15), we first show the

existence of resolvent ς of η in the following lemma.
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Lemma 3.2 Assume that (3.6) holds. For η(s) = −ζ(−s), the system

ς(t) + (η ∗ ς)(t) = η(t), ς(t) + (ς ∗ η)(t) = η(t) (3.16)

has a unique solution for ς : [0,∞) → B(L2(�)), which is given by

ς(t) =
{
0, t ∈ [0, τ ),

−q, t ∈ [τ,+∞).
(3.17)

Proof We first prove the existence and uniqueness of solution of (3.16) by using the contrac-
tion mapping principle. Let BV ([0,∞), B(L2(�))) be the space of functions from [0,∞)

to B(L2(�)) with bounded variation. For any ϑ ∈ BV ([0,∞), B(L2(�))), define

‖ϑ‖BV = Var
s∈R+ϑ(s) := sup

∥
∥
∥
∥
∥

∑

i

(ϑ(si ) − ϑ(si−1))

∥
∥
∥
∥
∥
B(L2(�))

.

Then, BV ([0,∞), B(L2(�))) equipped with ‖ · ‖BV is a Banach space. Note that
Var
s∈R+η(s) = |q|/(1 − q). Let η̃(t) = η(s)e−κt . Then, we can always choose κ > 0 large

enough so that Var
s∈R+η̃(s) < 1/2. Consider the operator F : BV ([0,∞), B(L2(�))) →

BV ([0,∞), B(L2(�))), given by

F ς̃ (t) := η̃(t) − (η̃ ∗ ς̃ )(t).

Then, for any ς̃1, ς̃2 ∈ BV ([0,∞), B(L2(�))), we have

‖F ς̃1 − F ς̃2‖BV ≤ Var
s∈[0,t]η̃(s)‖ς̃1 − ς̃2‖BV

< Var
s∈R+η̃(s)‖ς̃1 − ς̃2‖BV <

1

2
‖ς̃1 − ς̃2‖BV ,

which implies that F is a contraction mapping, and it admits a unique fixed point in
BV ([0,∞), B(L2(�))), or equivalently, there exists a unique ς̃ (t) such that

ς̃ (t) + (η̃ ∗ ς̃ )(t) = η̃(t).

Let ς(t) = ς̃ (t)eκt . It can be verified that ς(t) is the solution of the first equation of (3.16).
It remains to check that the solution of (3.16) is indeed given by (3.17). For t ∈ [nτ, (n +

1)τ ) with any n ≥ 1, we have

ς(t) +
∫ t

0
ς(t − s)dη(s)

= −q + (−q)ς(t − τ) + q2ς(t − 2τ) + (−q)3ς(t − 3τ) + · · · + (−q)nς(t − nτ)

= −q + q2 + · · · + (−q)n

= η(t),

that is, ς(t) is a solution of the first equation of (3.16). Using (3.14) and (3.17), we can verify
(η ∗ ς)(t) = (ς ∗ η)(t). Hence, ς(t) also satisfies the second equation of (3.16). 
�

By using the resolvent ς , we can obtain the solution of (3.15).

Lemma 3.3 Assume that (3.6) holds. For w0 ∈ L, the integral equation (3.15) admits a
unique solution w(t) such that w(t) = w0(t) for t ∈ (−∞, 0], which can be represented as
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w(t) = ( f + h) − ς ∗ ( f + h) = f (t) + h(t) −
∫ t

0
dς(s)[ f (t − s) + h(t − s)],

where ς is defined in (3.17).

Proof Let w(t) = ( f + h) − ς ∗ ( f + h). It then follows from (3.3) and the first equation
of (3.16) that

w + η ∗ w = w + η ∗ (( f + h) − ς ∗ ( f + h)) = w + η ∗ ( f + h) − (η ∗ ς) ∗ ( f + h)

= w + η ∗ ( f + h) − (η − ς) ∗ ( f + h) = w + ς ∗ ( f + h) = f + h.

This implies that w(t) = ( f + h) − ς ∗ ( f + h) is a solution of (3.15). Conversely, if w(t)
is a solution, i.e., w + η ∗ w = f + h, then we have

ς ∗ w + (ς ∗ η) ∗ w = ς ∗ ( f + h).

Using the second equation of (3.16), we have η ∗ ω = ς ∗ ( f + h), and therefore,

w(t) = −η ∗ w + ( f + h) = ( f + h) − ς ∗ ( f + h).

Note that, for t ∈ (nτ, (n + 1)τ ] with any n ≥ 0, we have

f (t) = −
+∞∑

i=n+1

w0(t − iτ)(−q)i .

If w0(t) satisfies (3.10), then w0(t) = 0 for t < −τ , and therefore, for t ∈ (nτ, (n + 1)τ ]
with n ≥ 0,

‖w(t)‖L2(�)

=
∥
∥
∥
∥ f (t) + h(t) −

∫ t

0
[ f (t − s) + h(t − s)]dς(s)

∥
∥
∥
∥
L2(�)

=
{ ‖ f (t) + h(t) + q f (t − τ) + qh(t − τ)‖L2(�), n ≥ 1,

‖ f (t) + h(t)‖, n = 0,

≤

⎧
⎪⎪⎨

⎪⎪⎩

(1 + q) sup
t−τ≤s≤t

‖h(s)‖L2(�), n ≥ 1,

+∞∑

i=1

‖w0(t − iτ)‖L2(�)|q|i + sup
0≤s≤τ

‖h(s)‖L(�), n = 0.

(3.18)


�
Now we have the main result of this subsection.

Theorem 3.4 Assume that (3.6) holds. If σP (A) ⊂ {z ∈ C : Rez < 0}, then for any ε > 0,
there exists K (ε) > 0 such that the solution operator T (t) of (3.2) satisfies

‖T (t)ψ0‖C ≤ K (ε)e−εt‖ψ0‖C, ∀ t ≥ 0, ψ0 ∈ C. (3.19)

Proof It can be verified that v(t) is a solution of (3.12) if and only if v(t) satisfies

D̄vt = e−γ t T�(t)v(0) +
∫ t

0
e−γ (t−s)T�(t − s)D̄vsds =: h1(t) + h2(t, vs).

for some γ > ε. Then, vt can be decomposed as vt = v1t + v2t , where v1t and v2t are the
solutions of D̄v1t = h1 with v10 = v0 and D̄v2t = h2 with v20 = 0, respectively.

123



988 Journal of Dynamics and Differential Equations (2020) 32:979–1002

Let S(t) be defined in such a way that S(t)v0 = v1t . For h1, we have

‖h1(t)‖L2(�) ≤ ‖e−γ t T�(t)v(0)‖L2(�) ≤ e−γ t‖v(0)‖L2(�), t ≥ 0. (3.20)

It then follows from (3.10) and (3.18) that, for t > τ ,

‖v1t ‖L =
(∫ 0

−∞
+

∫ t

0

)

‖v1(θ)‖L2(�)e
ε(θ−t)dθ

≤ e−εt‖v10‖L +
∫ τ

0

(+∞∑

i=1

‖w0(θ − iτ)‖L2(�)|q|i + sup
0≤s≤τ

‖h(s)‖L(�)

)

eε(θ−t)dθ

+ (1 + q)

∫ t

τ

sup
θ−τ≤s≤θ

‖h1(s)‖L2(ω)e
ε(θ−t)dθ

≤ e−εt‖v10‖L + e−εt‖v10‖L +
(
eετ − 1

ε
+ (1 + q)eγ τ

γ − ε

)

e−εt‖v(0)‖L2(�),

(3.21)

that is, there exists K > 0 and � > 0 such that

‖S(t)v10‖L ≤ Ke−�t‖v10‖L.

Therefore, S(t) is an α-contraction, in the sense that α(S(t)) < 1, where α(T ) := inf{c :
α(T P) ≤ cα(P),∀ bounded set P}, and α(P) is the Kuratowskii’s measure of a bounded
set P in a Banach space.

Let V (t)v20 = v2t = vt−S(t)v10. Then, V (t)v20 is the solution of D̄v2t = h2 with v20 = 0. By
a similar argument of Theorem2.2 in [12], one can show thatV (t) is compact. In fact, from the
regularity theory of parabolic equations, we know that h2(t, ·) : L → L2(�) is completely
continuous for any t ≥ 0. Suppose that {χk} be a bounded sequence in L. Then, there is
a subsequence of h2(t, χk), still denoted by h2(t, χk), converging to some h2(t) ∈ L2(�).
Let v2tk be the solution of D̄v2t = h2(t, χk). From (3.21), we know that {v2tk}∞k=1 is a Cauchy
sequence. This proves the compactness of V (t). Thus, U (t) := S(t) + V (t), the solution
operator defined by (3.12), is an α-contraction for t > τ . Using (3.7) and (3.6), we know that
T (t) is also an α-contraction. Recall that the radius of essential spectra σess(T (t)) of T (t) is
bounded above by α(T (t)), If σP (A) ⊂ {z ∈ C : Rez < 0}, then the spectral radius of T (t)
is less than 1 for large t , and therefore (3.19) follows directly from Lemma 7.4.2 in [11]. 
�

Finally we remark that if there exists λ ∈ σP (A) such that Reλ > 0, then the zero solution
of (3.1) is always unstable. In fact, in this case, (3.9) will always have an unstable manifold
in Cα , and therefore, there is a solution v̄(t) of (3.9) approaching to infinity. Recall that the
solutions of (3.9) and (3.1) are correlated by (3.7). It then follows from Lemma 3.3 that there
exists a solution (associated with v̄(t)) of (3.1) tending to infinity, that is, the zero solution
of (3.1) is unstable.

3.2 Spectral Set

In what follows, we will analyze σP (A) in detail. Define the real-valued Sobolev space X
by

X =
{

u ∈ H2(�) : ∂u(x)

∂n
= 0, x ∈ ∂�

}

,

and the complexification of X is given by

XC = X ⊕ i X = {x1 + i x2 : x1, x2 ∈ X} .
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Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · be the sequence of eigenvalues of the linear
eigenvalue problem

⎧
⎨

⎩

�φ + λφ = 0, x ∈ �,

∂φ

∂n
(x) = 0, x ∈ ∂�.

(3.22)

Then lim
n→∞ λn = ∞. By assuming that ψ(x, t) = eμt y(x), we obtain that the characteristic

equation of (3.1) is given by

μy − D1�y − D2u
∗e−μτ�y − g′(u∗)y = 0, (3.23)

where 0 	= y ∈ XC and μ ∈ C.
For n ∈ N0, define E(n, τ, μ) by

E(n, τ, μ) = μ + D1λn + D2u
∗λne−μτ − g′(u∗). (3.24)

Then we have the following basic property.

Lemma 3.5 μ ∈ C is an eigenvalue of the characteristic equation (3.23) if and only if there
exists some n0 ∈ N0 such that E(n0, τ, μ) = 0 and y is an eigenvector of (3.22)with λ = λn0 .

Proof Assume that μ ∈ C is an eigenvalue of the characteristic equation (3.23) and the
corresponding eigenfunction is 0 	= yμ(x) ∈ XC. Then

μyμ − D1�yμ − D2u
∗e−μτ�yμ − g′(u∗)yμ = 0. (3.25)

Let {φnj : 1 ≤ j ≤ dim En} be an orthonormal basis of the eigenspace En of the linear eigen-
value problem (3.22) corresponding to the eigenvalue λn . Then yμ(x) can be decomposed
as

yμ(x) =
∞∑

n=1

dim En∑

j=1

anjφnj (x), (3.26)

where anj ∈ C. Substituting (3.26) into (3.25) and noticing that �φnj = −λnφnj yields

∞∑

n=1

dim En∑

j=1

(μ + D1λn + D2u
∗λne−μτ − g′(u∗))anjφnj (x)

=
∞∑

n=1

dim En∑

j=1

E(n, τ, μ)anjφnj (x) = 0. (3.27)

Multiplying the two sides of (3.27) by φnj (x) and integrating the resulted equality on� gives

E(n, τ, μ)anj = 0, n ∈ N0, 1 ≤ j ≤ dim En . (3.28)

In addition, from yμ 	= 0 we know that there exists a certain an0 j0 ∈ C such that an0 j0 	= 0
and hence (3.28) leads to E(n0, τ, μ) = 0. That is, μ is an eigenvalue of E(n0, τ, μ).

Now we suppose that μ is an eigenvalue of E(n0, τ, μ), that is, E(n0, τ, μ) = 0. Take

yμ(x) = φn01(x).
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Then yμ 	= 0 and

μyμ − D1�yμ − D2u
∗e−μτ�yμ − g′(u∗)yμ

= (μ + D1λn0 + D2u
∗λn0e−μτ − g′(u∗))φn01(x) = E(n0, τ, μ)φn01(x) = 0.

Therefore μ is also an eigenvalue of the Eq. (3.23). This completes the proof. 
�
Let σn(τ ) be defined by

σn(τ ) ≡ {μ ∈ C : E(n, τ, μ) = 0}. (3.29)

Then Lemma 3.5 demonstrates that the spectral set of (3.23) can be expressed by

σ(τ) =
∞⋃

n=0

σn(τ ). (3.30)

From (3.30) one can say that the constant steady state u = u∗ of the model (2.4) is linearly
(or locally asymptotically) stable for the delay τ ≥ 0 if for all n ∈ N0, σn(τ ) ⊆ C

− =
{α + βi : α < 0}. However, if there exists some n ∈ N0 such that σn ∩ C

+ 	= ∅ where
C

+ = {α + βi : α > 0}, then the steady state u = u∗ of the model (2.4) is unstable and we
also say that u = u∗ is unstable for the delay τ ≥ 0 in mode-n. In particular, the constant
steady state u = u∗ of the model (2.4) is unstable for any delay τ ≥ 0 when g′(u∗) > 0
since in this case it is unstable in mode-0.

We remark that instead of assuming ψ(x, t) = eμt y(x) to derive (3.23), one can also
solve (3.1) by using Fourier series. Indeed we write the solution of (3.1) as

ψ(x, t) =
∞∑

n=0

Tn(t)φn(x),

where {φn(x) : n ∈ N0} is an orthonormal basis of L2(�) consisting of normalized eigen-

functions of (3.22) satisfying
∫

�

φ2
n(x)dx = 1. Then Tn(t) satisfies the delay differential

equation
⎧
⎪⎨

⎪⎩

T ′
n(t) = (−D1λn + g′(u∗))Tn(t) − D2u

∗λnTn(t − τ), t > 0,

Tn(t) = ϕ̃n(t) :=
∫

�

ϕ0(x, t)φn(x)dx, −τ ≤ t ≤ 0.
(3.31)

Well-known theory [20] can be used to established the existence and uniqueness of solution
to (3.31). In particular, the stability of equilibrium Tn = 0 with respect to (3.31) is equivalent
to that all roots μ of E(n, τ, μ) = 0 have negative real parts. Hence the stability of u∗ with
respect to (2.4) is again reduced to the characteristic equation E(n, τ, μ) = 0.

To determine the stability, we give the description of the spectral set σ(τ) and σn(τ ). First
we consider the case that D2 > 0.

Theorem 3.6 Suppose that D1, D2 > 0. Let σn(τ ) be the spectral set of (3.1) defined as in
(3.29). Then σ0(τ ) = {g′(u∗)} for any τ ≥ 0; for any n ∈ N, define

μ̄n := g′(u∗) − (D1 + D2u
∗)λn, τ ∗

n = sup
μ≤μ̄n

Fn(μ), (3.32)

where

Fn(μ) := − 1

μ
ln

(
g′(u∗) − D1λn − μ

D2u∗λn

)

, μ ∈ (−∞, μ̄n]. (3.33)
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Then

1. σn(0) = {μ̄n};
2. for τ ∈ (0, τ ∗

n ), σn(τ ) ∩ R = {μ1,n, μ2,n} with −∞ < μ2,n < μ1,n < μ̄n satisfying
Fn(μ1,n) = Fn(μ2,n) = τ ; σn(τ

∗
n )∩R = {μ1,n} ⊆ R with −∞ < μ1,n < μ̄n satisfying

Fn(μ1,n) = τ ∗
n ; and for τ ∈ (τ ∗

n ,∞), σn(τ ) ∩ R = ∅;
3. for τ ∈ (0,∞),σn(τ )∩(C−R) = ⋃∞

k=0 σn,k(τ ), andσn,k(τ ) = {αn,k(τ )±iβn(αn,k, τ )},
where αn,k(τ ) satisfies

D2u
∗λnτ = eτα cos

−1(pn(α, τ )) + 2kπ
√
1 − p2n(α, τ )

:= qn,k(α, τ ), k ∈ N0, (3.34)

and pn(α, τ ) and βn(α, τ ) are defined by

pn(α, τ ) := eτα[g′(u∗) − α − D1λn]
D2u∗λn

,

βn(α, τ ) := D2u
∗λne−τα

√

1 − p2n(α, τ ).

(3.35)

Moreover for fixed n ∈ N, the set of all real-valued eigenvalues of (3.1) is an analytic curve

�r ,n = {(τ, μ) : 0 ≤ τ ≤ τ ∗
n , μ ∈ σn(τ )} = {(Fn(μ), μ) : μ ≤ μ̄n}, (3.36)

and the set of all complex-valued eigenvalues of (3.1) can be represented by a union of
denumerable analytic curves �c,n = ⋃∞

k=0 �c,n,k where

�c,n,k = {(τ, α) : τ > 0, α ± iβn(α, τ ) ∈ σn(τ )}
= {(τ, α) : τ > 0, D2u

∗λnτ = qn,k(α, τ )}. (3.37)

Proof It is easy to see that σ0(τ ) = {g′(u∗)} for any τ ≥ 0. So from now on, we assume that
n ∈ N is fixed. When τ = 0, μ = g′(u∗) − (D1 + D2u∗)λn is the only eigenvalue in σn(0).
Then in the following we assume that τ > 0. First we determine the real-valued eigenvalues
of (3.1) when τ > 0 and n ∈ N is fixed. If μ ∈ R is an eigenvalue of (3.1), then from (3.24)
and solving E(n, τ, μ) = 0, we obtain that τ = Fn(μ) where Fn(μ) is defined in (3.32).
Since τ > 0, it is necessary that μ < g′(u∗) − (D1 + D2u)λn := μ̄n . Hence (τ, μ) lies on
the curve �r ,n defined as in (3.36). It is easy to see that Fn(μ̄n) = 0 and lim

μ→−∞ Fn(μ) = 0.

We show that there exists a unique μ∗
n ∈ (−∞, μ̄n) such that

F ′
n(μ) > 0, μ ∈ (−∞, μ∗

n), F ′
n(μ) < 0, μ ∈ (μ∗

n, μ̄n). (3.38)

Let

G1,n(μ) = −μ

g′(u∗) − D1λn − μ
, and G2,n(μ) = ln

g′(u∗) − D1λn − μ

D2u∗λn
.

It is straightforward to show that G ′
1,n(μ) > 0 and G ′

2,n(μ) < 0 for μ ∈ (−∞, μ̄n),
lim

μ→−∞G1,n(μ) = 1, G1,n(μ̄n) > 1, lim
μ→−∞G2,n(μ) = ∞ and G2,n(μ̄n) = 0. Therefore

G1,n(μ) = G2,n(μ) has a unique root for μ ∈ (−∞, μ̄n), and so does

F ′
n(μ) = −

[ −μ

g′(u∗) − D1λn − μ
− ln

g′(u∗) − D1λn − μ

D2u∗λn

]

/μ2 = 0

This implies that Fn(μ) attains its maximum τ ∗
n > 0 at some μ∗

n ∈ (−∞, μ̄n), and (3.38)
holds. In particular, (3.38) implies that for τ ∈ (0, τ ∗

n ), there exist exactly twoμ ∈ (−∞, μ̄n)
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(called μ1,n and μ2,n with μ2,n < μ1,n) such that τ = Fn(μ), and for τ > τ ∗
n , there is no

μ > 0 such that τ = Fn(μ). When τ = τ ∗
n , the only root of τ = Fn(μ) is μ = μ∗

n = μ1,n .
This completes the proof for real-valued eigenvalues (part 1–3 and �r ,n).

Next we consider the complex-valued eigenvalues of (3.1) when τ > 0 and n ∈ N is fixed.
Suppose that μ = α + iβ (β > 0) is a root of (3.24). That is, E(n, τ, α + iβ) = 0. Then,
separating the real and imaginary parts of (3.24), we have

α + D1λn − g′(u∗) + D2u
∗λne−τα cosβτ = 0,

β − D2u
∗λne−τα sin βτ = 0,

(3.39)

which yields

(α + D1λn − g′(u∗))2 + β2 = D2
2(u

∗)2λ2ne−2τα. (3.40)

Hence β = βn(α, τ ), where pn(α, τ ) and βn(α, τ ) are defined by (3.35), and it follows from
the first equation of (3.39) that (α, τ ) satisfies

cos(D2u
∗λne−τατ

√

1 − p2n(α, τ )) = pn(α, τ ), (3.41)

or equivalently (3.34).
We show that the solution set of (3.34) for any fixed τ > 0 is not empty. Let α̃n =

g′(u∗) − D1λn − τ−1. Then it is easy to see that

lim
α→−∞ pn(α, τ ) = 0, lim

α→∞ pn(α, τ ) = −∞,

and pn(α, τ ) is strictly decreasing in α for α ∈ (α̃n,∞), and is strictly increasing in α for
α ∈ (−∞, α̃n). It then follows that there exists α̂n > α̃n such that pn(α̂n, τ ) = −1. If

pn(α̃n, τ ) = eτ α̃n

D2λnτ
> 1, then there exists α∗

n , α
∗∗
n ∈ R such that α∗

n < α̃n < α∗∗
n <

α̂n and pn(α∗
n , τ ) = pn(α∗∗

n , τ ) = 1. Therefore, the admissible domain for qn,k(α, τ ) is
either I 1n := (−∞, α̂n) or I 2n := (−∞, α∗

n) ∪ (α∗∗
n , α̂n). Since limα→−∞ qn,k(α, τ ) =

0, and limα→α̂n− qn,k(α, τ ) = limα→α∗
n− qn,k(α, τ ) = ∞, the Eq. (3.34) qn,k(α, τ ) =

D2u∗λnτ always have roots in either I 1n or (−∞, α∗
n). We denote such root by αn,k(τ ), then

αn,k(τ ) ± iβn(αn,k, τ ) ∈ σn(τ ). Therefore for any τ > 0, there exists complex eigenvalue
αn,k(τ ) ± iβn(αn,k, τ ) where αn,k(τ ) satisfies (3.34). 
�

Note that αn,k(τ ) is not necessarily unique, and it is not clear whether the set �c,n,k

is connected. Figure 1 shows the distribution of eigenvalues of (3.24) for varying τ and
D1, D2 > 0.

We also have the following asymptotic behavior of αn,k(τ ).

Proposition 3.7 Suppose that D1, D2 > 0, αn,k(τ ) is a root of (3.34) for n ∈ N, k ∈ N0 and
τ > 0. Then

1. For fixed τ > 0 and n ∈ N, lim
k→∞ αn,k(τ ) = −∞.

2. For fixed τ > 0 and k ∈ N, lim
n→∞ αn,k(τ ) = ln(D2u∗/D1)

τ
.

Proof For fixed τ > 0 and n ∈ N, from (3.34), the root αn,k(τ ) satisfies

D2u
∗λnτ

√

1 − p2n(α, τ ) = eτα[cos−1(pn(α, τ )) + 2kπ]. (3.42)
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Fig. 1 Distribution of eigenvalues of (3.24) for varying time delay τ for different diffusion coefficients with
all the parameters are the same (u∗ = 1, g′(u∗) = −1): D1 = 1 and D2 = 0.9 for top two panels; and D1 = 1
and D2 = 1.1 for bottom ones. Real-valued eigenvalues of (3.24) for n = 1, 2, 3 are shown in left two panels,
and the real parts αn,k of complex eigenvalues of (3.24), for n = 1, 2, 3, 4 and k = 1, . . . , 20, are plotted in
the right two panels

When k → ∞, cos−1(pn(α, τ )) + 2kπ → ∞ but the left hand side of (3.42) is bounded.
Hence eτα → 0 which implies that αn,k(τ ) → −∞ as k → ∞. This proves part 1.

For part 2, we fix τ > 0 and k ∈ N. Substituting α = ln(D2u∗/D1)

τ
+ δ into (3.39) for

some δ ∈ R and β > 0, then (3.39) becomes

ln(D2u∗/D1)

τ
+ δ − g′(u∗) + D1λn(1 + e−τδ cosβτ) = 0,

β − D1λne
−τδ sin βτ = 0.

(3.43)

From the second equation of (3.43), we know δ = 1

τ
ln

D1λn sin βτ

β
. It then follows from

the first equation of (3.43) that

Gn(β) := ln(D2/D1)

τ
+ 1

τ
ln

D1λn sin βτ

β
− g′(u∗) + D1λn + β cosβτ

sin βτ
= 0.
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The function Gn(β) is well-defined and continuous on the interval

(
2kπ

τ
,
(2k + 1)π

τ

)

for any k ∈ N0, and lim
β→ (2k+1)π

τ
− Gn(β) = −∞ for any n ∈ N. Note the fact that

lim
β→ 2kπ

τ
+
sin βτ

β
= 0 for k ∈ N, and limx→0+

[
1

τ
ln(D1λnx) + 1

x

]

= ∞ for any n ∈ N.

Therefore lim
β→ 2kπ

τ
+ Gn(β) = +∞. This implies Gn(β) = 0 always has a root, denoted

by βn,k , in

(
2kπ

τ
,
(2k + 1)π

τ

)

for any n ∈ N and k ∈ N. Note that βτ ∈ (2kπ, (2k + 1)π)

implies that (3.34) is satisfied.

Now, for fixed k, we show that βn,k → (2k + 1)π

τ
as n → ∞. Since

Gn+1(β) − Gn(β) = 1

τ
ln

λn+1

λn
+ D1(λn+1 − λn) > 0

for large n, we know that βn,k is strictly increasing in n, and hence converges to some

β̄ ≤ (2k + 1)π

τ
. If β̄ <

(2k + 1)π

τ
, we have

0 = lim
n→∞Gn(βn,k)

= ln(D2u∗/D1)

τ
− g′(u∗) + lim

n→∞

[
1

τ
ln

D1λn sin β̄τ

β̄
+ D1λn + β̄ cos β̄τ

sin β̄τ

]

= +∞,

which is a contradiction. Thus β̄ = (2k + 1)π

τ
.

Recall that αn,k = ln(D2u∗/D1)

τ
+ δn,k , where δn,k = 1

τ
ln

D1λn sin βn,kτ

βn,k
. It remains

to prove that limn→∞ δn,k = 0 for fixed k ∈ N. Indeed, from (3.43), we have

D2
1λ

2
ne

−2τδn,k = (βn,k)
2 +

[
ln(D2u∗/D1)

τ
+ δn,k − g′(u∗) + D1λn

]2

which will not hold for large n if δn,k � 0 as n → ∞. This completes the proof. 
�
The spectral sets σ(τ) and σn(τ ) have similar structure when D1 > 0 and D2 < 0 (see

Fig. 2 for the distribution of eigenvalues of (3.24) for varying τ with D1 > 0, D2 < 0).

Theorem 3.8 Suppose that D1 > 0 and D2 < 0. Let σn(τ ) be the spectral set of (3.1) defined
as in (3.29). Then σ0(τ ) = {g′(u∗)} for any τ ≥ 0; for any n ∈ N, let μ̄n and Fn(μ) be
defined as in (3.32) and (3.33). Then

1. σn(0) = {μ̄n};
2. for τ ∈ (0,∞), σn(τ ) ∩ R = {μ3,n} satisfying Fn(μ3,n) = τ ; μ3,n < 0 if μ̄n < 0, and

μ3,n > 0 if μ̄n > 0;
3. for τ ∈ (0,∞),σn(τ )∩(C−R) = ⋃∞

k=0 σn,k(τ ), andσn,k(τ ) = {αn,k(τ )±iβn(αn,k, τ )},
where αn,k(τ ) satisfies (3.34) and

lim
n→∞ αn,k(τ ) = ln(−D2u∗/D1)

τ
.

Moreover for fixed n ∈ N, the set of all real-valued eigenvalues of (3.1) is an analytic curve

�r ,n = {(τ, μ) : τ ≥ 0, μ ∈ σn(τ )} = {(Fn(μ), μ) : μ ∈ (0, μ̄n] or [μ̄n, 0)}, (3.44)
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Fig. 2 Distribution of real eigenvalues of (3.24) for D2 = −0.9 and D2 = −1.1 (right)

and the set of all complex-valued eigenvalues of (3.1) can be represented by a union of
denumerable analytic curves �c,n = ⋃∞

k=0 �c,n,k given as in (3.37).

Proof The proof is similar to that of Theorem 3.6 and the structure of complex eigenvalues
is same as the one with D2 > 0. For real-valued eigenvalues, recall that τ = Fn(μ). Since
τ > 0, it is necessary that μ̄n < μ < 0 when μ̄n < 0 or 0 < μ < μ̄n when μ̄n > 0, if μ

is a real-valued eigenvalue. For μ̄n < 0, we have limμ→0− Fn(μ) = +∞, Fn(μ̄n) = 0 and
F ′
n(μ) > 0. Similarly, for μ̄n < 0, limμ→0+ Fn(μ) = +∞, Fn(μ̄n) = 0 and F ′

n(μ) < 0.
Therefore, for any τ > 0, there exists a unique μ̃n between 0 and μ̄n such that Fn(μ̃n) = τ

no matter μ̄n > 0 or μ̄n < 0. 
�
In Fig. 3, we plot the distribution of roots of (3.24) for fixed τ . We can observe that the

real parts of the roots approach ln(|D2|u∗/D1)/τ as n → ∞, no matter D2 > 0 or D2 < 0.
As a direct consequence of Theorems 3.6 and 3.8, and Proposition 3.7, we have the following
stability results of a constant steady state u∗ of (2.4).

Corollary 3.9 Let u∗ be a constant steady state of (2.4).

1. If g′(u∗) > 0, then u∗ is unstable for any D1 > 0, D2 ∈ R and τ ≥ 0.
2. If g′(u∗) < 0, then u∗ is locally asymptotically stable when D1 ≥ |D2|u∗ and τ ≥ 0,

and it is unstable when D1 < |D2|u∗ and τ > 0.

Proof If g′(u∗) > 0, then σ0(τ ) = {g′(u∗)} for any τ ≥ 0 so u∗ is unstable for any D1 >,
D2 ∈ R and τ ≥ 0.

If D2 > 0 and g′(u∗) < 0, then from Theorem 3.6, all real-valued eigenvalues μ ≤ μ̄n <

0. Assume that D1 ≥ D2u∗. Suppose that (3.1) has an eigenvalue α + iβ with α ≤ 0. Then
α satisfies (3.34) with |pn(α, τ )| ≤ 1. But α ≥ 0 and D1 ≥ D2u∗ imply that |pn(α, τ )| > 1,
which is a contradiction. Hence when D1 ≥ D2u∗, any complex-valued eigenvalue of (3.1)
has negative real part. Thus u∗ is locally asymptotically stable in this case. On the other
hand, if D1 < D2u∗, then for any τ > 0, from Proposition 3.7 part 2, we have αn,k > 0 for
sufficiently large n ∈ N, hence u∗ is unstable.

If D2 < 0 and g′(u∗) < 0, then all real eigenvalues are negative for D1 + D2u∗ > 0, and
there are infinitely many positive eigenvalue s for D1 + D2u∗ < 0. Moreover, the complex
roots have strictly negative real parts when D1 + D2u∗ > 0, and infinitely many complex
roots will have positive real parts when when D1 + D2u∗ < 0, since they concentrate on
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Fig. 3 Distribution of roots of (3.24) for n = 1, . . . , 9 (distinguished by different colors from left to right)
with fixed τ = 1. Here, D1 = 1, D2 = 0.9 for the left panel, D1 = 1, D2 = 1.1 for the right one, and all the
other parameters are the same (u∗ = 1 and g′(u∗) = −1). For each n, (3.24) is a transcendental equation, and
hence it has infinitely many roots. Furthermore, there are only a finite number of roots in any vertical strip in
the complex plane. It is observed that there are infinitely many roots, marked by red start in the right panel,
with positive real parts when D2 > D1 (Color figure online)

the vertical line {μ ∈ C : Reμ = ln(−D2u∗/D1)
τ

} in the complex plane. In summary, when
g′(u∗) < 0, u∗ is linearly stable thus locally asymptotically stable by Theorem 3.4 when
D1 ≥ |D2|u∗ and all τ ≥ 0, and it is unstable when D1 < |D2|u∗ and all τ > 0. 
�

Corollary 3.9 shows that the local stability of u∗ completely depends on the ratio
|D2|u∗/D1, but is independent of the time delay τ .

Finally we determine the Hopf bifurcation values τ in the case of D2u∗ > D1 and
g′(u∗) < 0. Note that from Corollary 3.9, in this case, the constant steady state u∗ is always
unstable for all τ > 0, so there exists no stability switch value τ0 > 0 which separates
stability/instability regimes. But nevertheless such Hopf bifurcation values show that the
real part of pairs of complex eigenvalues change from positive to negative. From (3.34) and
(3.35), if μ = iβ (β > 0) is an eigenvalue of (3.24), then

τn,k = cos−1(pn(0, τ )) + 2kπ
√
1 − p2n(0, τ )D2u∗λn

, where pn(0, τ ) = g′(u∗) − D1λn

D2u∗λn
. (3.45)
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It is clear that limn→∞ τn,k = 0 for a fixed k ∈ N, and limk→∞ τn,k = ∞ for a fixed n ∈ N.
Thus for any τ > 0, there are infinitely many pair of complex eigenvalues with positive real
parts when D2u∗ > D1 and g′(u∗) < 0.

4 Dynamics with Different Reaction Functions

The local stability of constant steady state solution u∗ of (2.4) has been completely classified
from results in Sect. 3. In this section we demonstrate global dynamics of (2.4) under under
several different assumptions on the nonlinearity of the reaction function g(u): (i) logistic
growth; or (ii) strong Allee effect growth.

4.1 Logistic Growth Rate

We assume that g takes the form of logistic type growth rate, defined as follows:

g ∈ C1([0,∞), R), g(0) = g(1) = 0, g(u)(u − 1) < 0, for u ∈ (0,∞)\{1},
g′(0) = a > 0, g′(1) = −b < 0, a, b > 0.

(4.1)

For the global boundedness of solutions, the following estimate for the total population (L1

norm) is easy to observe.

Lemma 4.1 Suppose that the conditions of Proposition 2.1 are satisfied. Then there exists
C1 > 0 depending only on g such that

lim sup
t→∞

∫

�

u(x, t)dx ≤ C1|�|. (4.2)

for any solution u(x, t) of (2.4) and (4.1).

Proof Integrating the equation in (2.4), and using the boundary conditions in (2.5) and (4.1),
we obtain

d

dt

∫

�

u(x, t)dx =
∫

�

g(u(x, t))dx . (4.3)

From (4.1), there exists a1, b1 > 0 such that

g(u) ≤ a1u − b1u
2, for u ∈ [0, 1]. (4.4)

Define

U (t) =
∫

�

u(x, t)dx, t ≥ 0.

Then from (4.3) and (4.4), we have

U ′(t) ≤ a1U (t) − b1

∫

�

u2(x, t)dx ≤ a1U (t) − b1|�|−1U 2(t), (4.5)

which implies (4.2) with C1 = a1/b1. 
�
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It is easy to see that the steady-state solutions of the model (2.4) satisfy the following
boundary value problem

⎧
⎨

⎩

D1�u + D2div(u∇u) + g(u) = 0, x ∈ �,

∂u

∂n
(x) = 0, x ∈ ∂�.

(4.6)

The non-negative solutions of (4.6) can be classified as follows.

Proposition 4.2 Suppose that D1, D2 > 0, and g(u) satisfies the condition (4.1). Then the
only non-negative solutions of (4.6) are u = 0 and u = 1.

Proof From the strong maximum principle, any non-negative solution u(x) of (4.6) satisfy
0 ≤ u(x) ≤ 1 for x ∈ �, and either u(x) ≡ 0, or u(x) ≡ 1, or 0 < u(x) < 1 for x ∈ �. In

the last case, we integrate (4.6) over �, and we obtain
∫

�

g(u(x))dx = 0. But on the other

hand, 0 < u(x) < 1 for x ∈ � and g(u) > 0 for u ∈ (0, 1) imply that
∫

�

g(u(x))dx > 0.

We obtain a contradiction. Hence u(x) ≡ 0 or u(x) ≡ 1. 
�
From Corollary 3.9, we have the following conclusion on the stability of the two non-

negative steady state solutions u = 0 and u = 1.

Proposition 4.3 Assume that g(u) satisfies the condition (4.1). Then, the trivial steady state
u = 0 of (2.4) is unstable for any τ ≥ 0 and D1 > 0, and the constant positive steady state
u = 1 is locally asymptotically stable for all τ > 0 and D1 ≥ |D2|, and it is unstable for all
τ > 0 when |D2| > D1 > 0.

The precise global dynamics of (2.4) is not known. For D1 ≥ |D2|, the positive steady state
u = 1 appears to be not only locally asymptotically stable but indeed global asymptotically
stable. Figures 4 and 5 show numerical simulations in that case of D1 > |D2| in which the
solution tends to u = 1 as t → ∞. On the other hand, when |D2| > D1, the solution appears
to be oscillatory but divergent, see Figs. 4 and 5. When the delay τ increases, the wave length
of patterns increases, and the time period also increases. When τ is small, all or more modes
are unstable, then patterns are neutralized. When τ is large, some modes are unstable and
some are stable, however, unstable ones are more observable.

4.2 Strong Allee Effect

For the growth rate g(u) = G(u)(u − β) with strong Allee effect, where G(u) satisfies the
condition (4.1) and β ∈ (0, 1), there are constant steady states u∗ = 0, β or 1 for (2.4). Note
that different from logistic case, (2.4)may have other non-constant steady state state solutions
but they are unstable even when τ = 0 [18,24]. The characteristic equation of (3.24) at a
constant steady state u∗ is given by

μy − D1�y − D2u
∗e−μτ�y − G ′(u∗)(u∗ − β)y − G(u∗)y = 0, (4.7)

where 0 	= y ∈ XC, which is equivalent to a sequence of following transcendental equations

μ + D1λn + D2u
∗λne−μτ − G ′(u∗)(u∗ − β) − G(u∗) = 0, n ∈ N0. (4.8)

At u∗ = 0, the roots of (4.8) are given by μ = −D1λn − aβ < 0, indicating that 0 is
always stable. For u∗ = β and u∗ = 1, we have the following conclusion, via the same logic
as the logistic growth case.
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Fig. 4 The solutions of (2.4) and (4.1) in the case of D1 = 1 and D2 = 0.9 for different time delay: τ = 1 for
the top-left panel and τ = 5 for the top-right one. Both solutions tend to the constant steady states as t → +∞,
while the convergent speed for large delay is much slower than the one for small delay. Here � = (0, 10),
and g(u) = 0.1u(1− u), and the initial value φ = 1+ 0.5 cosπx . If D2 is increased to 1.1 without changing
all the other parameters, then the solution, with different time delay τ = 1 (bottom left) and τ = 5 (bottom
right), will oscillate both temporally and spatially on a certain interval of time

Fig. 5 Numerical simulations of (2.4) and (4.1) for D = −0.9 and D2 = −1.1.Here τ = 5,φ = 1+0.1 cosπx
and all the other parameters are the same as Fig. 4

Proposition 4.4 Assume that g(u) = G(u)(u − β) with G(u) satisfying the condition (4.1).
The steady states u = β is always unstable. If |D2| < D1, then the constant steady state
u = 1 is asymptotically stable for all τ > 0; and if 0 < D1 < |D2|, then u = 1 is unstable
for all τ > 0.
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Fig. 6 Choose D1 = 1, r = 0.1, � = (0, 10) and Allee effect growth rate with β = 0.2. If D2 = 0.9 < D1,
then solution tends to the steady states u = 0 with small positive initial value 0.1+0.1 cos(πx) (top-left), and
to the steady states u = 1 with initial value 1 + 0.1 cos(πx) (top-right). If D2 = 1.1 > D1, the solution also
exhibits oscillation in almost the same manner as in the logistic growth rate: τ = 1 for the bottom-left panel,
and τ = 5 for the bottom-right one

We illustrate, by numerical simulations, the stabilities of the steady states u = 0 and u = 1
under different orders of the two diffusion coefficients D1 and D2 (see Fig. 6). When these
steady states are both unstable, we obtain almost same patterns as in the logistic growth case
(see Figs. 5 and 6).

5 Discussion

In this paper, we propose a novel reaction–diffusion model with spatial memory for “clever”
animal movements. The spatial memory is modeled in the form of a delayed diffusion term
via amodified Fick’s law.We show that themodel is well-posed and the stability of a spatially
homogeneous steady state only depends on the order of the two diffusion coefficients but
is independent of the time delay. We then discuss the model with three different reaction
functions.

Open mathematical questions include (1) general results on the global stability of the
spatially homogeneous steady state; (2) when the spatially homogeneous steady state is
unstable, what is the asymptotic behavior of the solutions? (3) spatiotemporal pattern for-
mation induced by delayed diffusion; (4) the local stability of a spatially non-homogeneous
steady state in which the time delay shall play a critical role.
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Naturally animals want to escape from high density due to the limitation of resources,
in which case D2 > 0. However, some social animals have aggregations, such as starling
flocks [1] and insects [3], in the purpose of group defense or group working. To consider
this collective animal behavior, we have D2 < 0. The selection of D2 > 0 or D2 < 0
depends on the social behavior of the studied animal species: some always defend and work
by individuals, while some always defend and work in groups. Of course, some animals may
use optimal mixed strategies of social behavior according to the environmental conditions,
for instance, they select to move to higher density this time but select to move to lower
density next time. In this case we have the switch between D2 > 0 and D2 < 0 when some
environmental conditions change.

The modeling idea of spatial memory behind our proposed model can be extended to
multi-species interaction models such as competition models or predator-prey models in the
presence of “clever” animal movements. We are in the process of analyzing and simulating
some of these extended models. Another extension could be to use a distributed delay instead
of a discrete delay for memory waning.

The spatial memory included in our mathematical model is a specific type of episodic-like
memory [6], such as footprint judgment within the observable area. Other memory-based
movements include, but not limited to, cognitive map (like a GPS navigation system) [10],
path integration [25], cultural transmission [5], genetic memory [9], and natal homing [23]. It
is theoretically feasible and extremely important to construct mechanistic animal movement
models in the incorporation of these different types of memory and cognition.
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