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Abstract Cholera remains epidemic and endemic in the world, causing thousands of
deaths annually in locations lacking adequate sanitation and water infrastructure. Yet,
its dynamics are still not fully understood. In this paper, we simplify and improve
Jensen et al.’s model (PNAS 103:4652–4657, 2006) by incorporating a Minimum
Infection Dose (MID) into the incidence term. We perform local stability analysis and
provide bifurcation diagrams of the bacterial carrying capacity with or without shed-
ding. Choosing parameters such that the endemic or epidemic equilibrium is unstable
(as it is the case in reality), we observe numerically that for the bacterial carrying
capacity (K) less than the MID (c), oscillating trajectories exist only in the microbial
scale, whereas for K > c, they exist in both the microbial and population scales. In
both cases, increasing pathogen shed rate ξ increases the amplitude of the trajectories
and the period of the trajectories for those that are periodic. Our findings highlight
the importance of the relationship among the shedding rates, K, MID, the maximum
bacterial growth rate (r) and the features of the disease outbreak. In addition, we iden-
tified a region in the parameter space of our model that leads to chaotic behaviour.
This could be used to explain the irregularity in the seasonal patterns of outbreaks
amongst different countries, especially if the positive relationship between bacterial
proliferation and temperature is considered.
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1 Introduction

Cholera is a disease of the intestinal tract, which causes severe diarrhoea, leading to
dehydration which if left untreated can cause death. It is caused by the bacteria Vibrio
cholerae and is treatable if caught within 1–2 days of symptoms first appearing. In
places with adequate health care and access to antibiotics, cholera is not much of a
problem. However, in countries where such health services are lacking in a permanent
sense or because of natural disasters reducing their availability, cholera outbreaks are
still a concern. Dhaka, the capital of Bangladesh, for example, has two outbreaks of
cholera per year (Islam et al. 1994) that occur with the changes in seasons and the
amount of rainfall, both of which affect the quality of the water supply.

Despite being studied for more than 100 years by the likes of English physician John
Snow in the mid 1800s (Snow 1985) and many others, the transmission dynamics of the
disease are not fully understood. The role of blue-green algae, which is present in the
water supplies of countries like Bangladesh, has been suggested by some (Islam et al.
1994) as a reservoir that the bacteria can exist in during inter-epidemic times. However,
this does not explain its natural cycles completely. One problem in understanding the
dynamics is that V. cholerae is always found in lower levels than predicted, leading
to possible explanations that V. cholerae can revert from a culturable form to a viable
but not culturable form within the human body (Colwell et al. 1996). Experiments
show that V. cholerae becomes many times more infectious for a short period of time
once it has passed through the human digestive tract (Hartley et al. 2006). A more
complete understanding of how exactly V. cholerae is transmitted through populations
will certainly help improve the control of outbreaks in the future for regions where it
is an issue.

The contributions from mathematical modelling indicate that mathematical mod-
elling is a promising way to look into the nature of the cholera dynamics. Many
mathematical differential equation models have been proposed. Among these, the
main ones that make use of ordinary differential equations are those built upon the
Cappasso–Fontona model (1979) and the Codeço model (2001). Codeço model (2001)
is considered to be the first modern cholera model. The author divided the human pop-
ulation into three compartments; Susceptible, Infected and Recovered compartments.
The recovered compartment was not started explicitly, as the population was assumed
to be constant. The author equally assumed that there is no disease-induced mortality.
He represented the aquatic reservoir very simply with a linear growth term and linear
shedding contribution. This was because the ecological dynamics of V. cholerae were
not well understood at the time (they are still not completely understood). The oscil-
lations in this system die out over time; so in order to simulate the periodic behaviour
of outbreaks observed in some endemic areas, periodic contact rates, shedding rates
and net growth rates of bacteria were also included. Hartley et al. (2006) incorporated
a hyperinfectious route of transmission to the Codeço model, and Joh et al. (2009),
Tian et al. (2011), Jensen et al. (2006) and Mukanvire et al. (2011) have further built
on and branched off from these models.

Aimed at taking into account the role of bacteriophage which has been suggested
by experimentalists as important, Jensen et al. (2006) modified the Codeço model
to include a phage compartment P, and dividing infectives into bacteria and phage
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infected, and phage-infected individuals. Bacteria are assumed to experience logistic
growth with carrying capacity, and predation by phage occurs via a Holling I response.
The infection term is a Holling III functional response. The sigmoidal shape is intended
to capture the low infectivity of low levels of bacteria, but there are still infections at
very small levels which could overestimate the number of infections in the long run.
The focus of this model was to determine the ability of phage to end outbreaks or
indirectly cause outbreaks by being reduced in number. Both of these abilities were
demonstrated in the analysis. However, they did not examine the role, or existence, of
limit cycles caused by the predator–prey-like relationship of phage and bacteria, which
is something we will pay attention to in the presence and absence of human shedding.
In particular, we will show that cycles observed in the human population (macro
scale) are caused by cycles in the microscale of bacteria and bacteriophage as has been
suggested by Faruque et al. (2005) and others. Jensen et al. (2006) also failed to take into
account the fact that bacteria have to enter the human body in higher concentrations to
overwhelm the natural immune response (Murphy et al. 2007) (existence of a minimum
infection dose (MID) for bacteria), something that was first considered in modelling
by Joh et al. (2009). We improve this model by incorporating a MID into the incidence
term. This infection term is a piecewise continuous function which is zero below the
minimum infectious dose (MID) threshold and a Holling II response curve above the
threshold. Similar to Jensen et al. (2006), we also allow bacteria to exist naturally
under logistic growth. With these adjustments and a few others made to the model, we
determine the invariant domain, carry out local stability analysis and locate limit cycles,
with or without human shedding, and show numerically that by choosing parameters
such that the endemic or epidemic equilibrium is unstable (as it is the case in reality),
for the bacteria carrying capacity (K) less than the MID (c), oscillating trajectories
exist only in the microbial scale, whereas for K > c , they exist in both the microbial
and population scales, and that in both cases, increasing pathogen shed rate ξ increases
the amplitude of the trajectories and the period of the trajectories for those that are
periodic. Further, in this paper, we demonstrate the existence of a chaotic region in the
parameter space, which could account for the different natures of outbreaks observed
around the world.

2 Model Formulation

Bacteria and bacteriophage exist in a predator–prey relationship. We capture this inter-
action using a Holling II predation term γ B

K1+B P , where γ is the maximum predation
rate; B and P represent bacteria and phage densities, respectively; and K1 is the half-
saturation constant of predation (the bacterial level at which predation occurs at half
of the maximum rate). We assume that the bacterial population experiences logistic
growth in the absence of predation and human influence, with carrying capacity K
and maximum growth rate r . As in Jensen et al.’s model (2006) and Codeço’s model
(2001), the human population is assumed to be constant, and this is assumed to be
no disease-induced mortality. The lack of death due to infection as was the case in
Dhaka during the 2004 outbreak , where all severe cases were treated (see Jensen et
al. 2006 and reference therein), almost all endemic/epidemic regions nowadays have
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hospitals that provide the right treatment. No death is inevitable with cholera if the
right treatment is provided. This motivates the following model, which assumes no
infection-derived immunity for simplicity:

dS

dt
= −α(B)S + μI,

dI

dt
= α(B)S − μI, (1)

dB

dt
= r B

(
1 − B

K

)
− γ

B

K1 + B
P + ξ I,

dP

dt
= βγ

B

K1 + B
P − δP + φξ I.

The incidence term we use is α(B)S where α(B) is the bacterial density-dependent
component. The ‘indirect’ part of the incidence term α(B) is defined by

α(B) =
{

0, B < c;
a(B−c)

(B−c)+H , B ≥ c.

Unlike in larger scale predator–prey dynamics, where β would be a measure of the
conversion rate of prey into predators, often less than unity, β here represents a ‘burst
size’, as each infected bacterial cell will give rise to many new phage cells. Human
contamination of the water supply through infected faeces contributes to both bacteria
and phage levels and is called ‘shedding’. Bacteria and phage shedding rates need not
be the same so the rate for bacteria is ξ and for phage, it is φξ where φ is some constant.
In the absence of predators and humans, bacteria will exist at their carrying capacity
K . We assume that phage and bacteria can live naturally without human interference,
as in inter-epidemic times, and so it is assumed that βγ > δ. If this is not so, phage
would die out in the absence of human shedding. This maximum predation rate γ is
difficult to measure, and for numerical solutions, it is chosen to satisfy this inequality.
The half-saturation constant for the predation term, K1, was also estimated, and was
assumed to be less than the natural carrying capacity K so that predation does not
always occur near the maximal rate. For numerical simulations, parameters are taken
from the literature, and the ranges are given in Table 1.

3 Forward Invariance

We would like to define a forwardly invariant set in which solutions of (1) will be
bounded. From the first two equations of (1), we see that Ṡ(S = 0) = μI but as
S + I = N , we can write Ṡ(S = 0) = μN > 0. Thus S(t) > 0 for t > 0.
Even though there is no birth or death in this system, if the entire population were to
be infected, there would be people recovering and moving back into the susceptible
category.
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Table 1 Parameter values expanded from Jensen et al. (2006) and Cash et al. (1974)

Parameter Values Description Units

r 0.3–14.3 Maximum per capita pathogen growth efficiency Day−1

K 105−107 Pathogen carrying capacity Cell liter−1

H 106−108 Half-saturation pathogen density Cell liter−1

a 0.1 Maximum rate of infection Day−1

ξ 0–100 Pathogen shed rate Cell liter−1 day−1

μ 0.1 Human recovery rate Day−1

N 106 Total Population Persons

c 105−107 MID Cell liter−1

β 80–100 Phage burst size Virions day−1

γ 0−0.025 Maximum per capita phage absorption rate Cell virion −1 Day−1

δ 0.5-7.9 Phage death rate Virions day−1

φ 10−6−1 Mean phage shed rate Virions cell−1

K1 < K Half-saturation bacteria predation density Cell liter−1

Similarly, İ (I = 0) = α(B)S ≥ 0 as we just saw that S(t) > 0 for t > 0 and
α(B) ≥ 0 by definition. As S > 0 and I ≥ 0 then as there are only two compartments
for humans, S ≤ N and I < N .

The BP system is more complicated as for upper bounds, but note that Ḃ(B = 0) =
ξ I thus B(t) ≥ 0. We have that Ḃ < r B

(
1 − B

K

) + ξ N and so we can define

Bmax =
r K + K

√
r2 + 4r

K ξ N

2r
,

where if B(0) ∈ [0, Bmax) then B(t) ∈ [0, Bmax) for t ≥ 0. Finally, consider Ṗ(P =
0) = φξ I ≥ 0 and so P(t) ≥ 0 for all t > 0. The upper bound of P(t) requires the
following lemma.

Lemma 1 Define positive constants u and v such that ((r+u)β)2 K
4rβ < v. Then, for all

values of B, the following is true:

0 <
r

K
βB2 − ((r + u)β)B + v.

We can now show that B and P are bounded above, although it was already demon-
strated that B is bounded. Consider

d

dt
(βB + P) < rβB − r

K
B2β − δP + (β + φ)ξ N .
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By invoking Lemma 1, we see that

d

dt
(βB + P) < −U (βB + P) + (β + φ)ξ N + v,

where U := min{u, δ}, which implies that βB + P is bounded. Defining V :=
(β + φ)ξ N + v, we can write

lim sup
t→∞

βB(t) + P(t) ≤ U

V
or βB(t) + P(t) ≤ max

{
βB(0) + P(0),

U

V

}
.

We summarize the above results with a proposition.

Proposition 1 (Feasible Region) The set

Γ = {S, I, B, P ≥ 0 : S + I = N , βB(t) + P(t) ≤ U

V
, B < Bmax}

defines a forwardly invariant region of system (1), where V := (β + φ)ξ N + v and

U := min{u, δ}, with u, v > 0 satisfying ((r+u)β)2 K
4rβ < v.

4 Existence and Stability of Equilibria with no Shedding

4.1 Existence of Equilibria

In countries with modern sanitational infrastructure, human contamination of the water
supply (shedding) is very low; in the ideal case, shedding is completely absent. We
can determine the number and stability of steady states of (1) without shedding by
substituting ξ = 0 and further noting that as S = N − I the first equation is not
necessary, leaving us with the following:

dI

dt
= α(B)(N − I ) − μI,

dB

dt
= r B

(
1 − B

K

)
− γ

B

K1 + B
P, (2)

dP

dt
= βγ

B

K1 + B
P − δP.

If the bacteria level is below the minimum infectious dose, then α(B) = 0. The first
equation of (2) implies that I ∗ = 0 in this case, and so S∗ = N as well. The second
and third equations of (2) at steady state become

0 = r B

(
1 − B

K

)
− γ

B

K1 + B
P and 0 =

(
βγ

B

K1 + B
− δ

)
P.

The second equation of (2) at steady state can be solved for P; P = r
γ K (K − B)(K1 +

B) =: F1(B), having roots B = K and B = −K1. The solution B = −K1 is
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not biologically relevant and also is not within our invariant region Γ , as defined in
the previous section. The other root, B = K , of F1(B) satisfies α(K ) = 0 only if
K ≤ c. The third equation at steady state can be solved as well; either P = 0 or
B = B1 := δK1

βγ−δ
; with the latter being relevant only if B1 ≤ c, i.e. α(B1) = 0.

To satisfy both equations at once, either (B, P) = (0, 0), (K , 0) or (B1, P1), where
P1 = F1(B1). Thus, when α(B) = 0, there are three possible steady states, all of which
are disease free. The simplest equilibrium point occurs when S = N , I = 0, B = 0 and
P = 0. The disease-free, bacteria-free and phage-free equilibrium E0 = (N , 0, 0, 0)

is always an equilibrium of (2) for all parameter values. The disease-free, phage-free
equilibrium denoted EK = (N , 0, K , 0) is an equilibrium if K ≤ c. Similarly, if
B1 ≤ c, then α(B1) = 0 and the disease-free equilibrium E1 = (N , 0, B1, P1) exists.
However, for the positivity of P1, we require that B1 < K . Note that if B1 = K ,
then P1 = 0 and E1 is simply EK . The case of equilibria when α(B) �= 0 is more
complicated, but it can be shown that there are up to two additional endemic equilibria
denoted E∗

1,K = (S∗
1,K , I ∗

1,K , B∗
1,K , P∗

1,K ) where all of the entries are strictly positive,
making E∗

1,K the only interior equilibria if they exist. If α(B∗) �= 0, first note that
B∗ > c by definition. Dropping the asterisk on B, the first equation of (2) at equilibrium
implies

I ∗ = G1(B) := Na
(B − c)

(a + μ)(B − c) + μH
.

So for each equilibrium value B∗ such that α(B∗) �= 0, there exists a unique value
I ∗ = G1(B∗). To find B∗ and P∗, it is of no consequence that I ∗ �= 0 because with
ξ = 0, the second and third equations of (2) do not contain terms including I . Thus, the
nontrivial values of (B, P) that satisfy the second and third equations at steady state are
the same as before: (B, P) = (K , 0) and (B1, P1), but now K > c is required so that
α(K ) �= 0 and B1 > c so that α(B1) �= 0. For the positivity of P1, it is still necessary
that B1 < K . Summarizing, there are up to two endemic equilibria of (2), denoted
E∗

K = (S∗
K , I ∗

K , K , 0) and E∗
1 = (S∗

1 , I ∗
1 , B1, P1), where I ∗

K = G1(K ), I ∗
1 = G1(B1)

and S∗
i = N − I ∗

i , i = 1, k, with the condition that K > c and c < B1 < K for E∗
K

and E∗
1 to exist respectively. As seen above, if B1 = K , then this would mean P1 = 0

and E∗
K = E∗

1 , leaving only one endemic equilibrium.

4.2 Linearization

Due to the threshold in the infection term, linearization yields two cases, one for
B∗ ≤ c, denoted Jac1, and one for B∗ > c, denoted Jac2:

Jac1(I, B, P) =
⎛
⎜⎝

−μ 0 0
0 r − 2 r

K B − γ K1
(K1+B)2 P −γ B

K1+B

0 βγ a H
(B−c+H)2 P βγ B

K1+B − δ

⎞
⎟⎠ ,
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and

Jac2(I, B, P) =
⎛
⎜⎝

−α(B) − μ (N − I ) a H
(B−c+H)2 0

0 r − 2 r
K B − γ K1

(K1+B)2 P −γ B
K1+B

0 βγ a H
(B−c+H)2 P βγ B

K1+B − δ

⎞
⎟⎠ .

4.3 Stability of the Disease-Free, Bacteria-Free, Phage-Free Equilibrium E0

Corresponding to E0, we have the following eigenvalues: λ = −μ,−δ < 0 and
r > 0. This means that the disease-free, bacteria-free and phage-free equilibrium E0
is a saddle-node equilibrium with a one-dimensional unstable manifold.

4.4 Stability of the Disease-Free, Phage-Free Equilibrium EK

Corresponding to EK , we have the following eigenvalues: λ = −μ,−r, βγ K
K1+K −δ.

If K < δK1
βγ−δ

= B1, then all eigenvalues are negative and EK is a stable equilibrium,

but if K > δK1
βγ−δ

= B1, then EK is a saddle-node equilibrium with a one-dimensional
unstable manifold. Note that B1 < K is required for E1 to exist, so the existence of
E1 and the stability of EK are contrary notions.

4.5 Stability of the Disease-Free Equilibrium E1

For the Equilibrium point E1, we have the following Jacobian matrix:

Jac1(0, B1, P1) =
⎛
⎜⎝

−μ 0 0
0 r − 2 r

K B1 − γ K1
(K1+B1)2 P1 −γ B1

B1+K1

0 βγ K1
(K1+B1)2 P1 0

⎞
⎟⎠ .

The matrix is slightly more complicated, so we will use a lemma from McCluskey
and van den Driessche (2004) with regard to three-dimensional matrices.

Lemma 2 (Lemma 3, McCluskey and Driessche 2004) Let A be an 3×3 matrix with
real entries. If tr(A), det A and the determinant of the second additive compound
matrix of A, det A[2], are all negative, then all of the eigenvalues of A have negative
real part.

The converse of Lemma 2 is also true, which is apparent if you note that the eigenvalues
of the second additive compound matrix A[2], for a 3 × 3 matrix A, are just

∑
λi +λ j

for i < j with λi being the eigenvalues of A.
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Defining J (2, 2) = r − 2 r
K B1 −γ K1

(K1+B1)2 P1, the second additive compound of Jac1

at E1 is

Jac[2]
1 (0, B1, P1) =

⎛
⎜⎝

−μ + J (2, 2) −γ B1
B1+K1

0

βγ K1
(K1+B1)2 P1 −μ 0

0 0 J (2, 2)

⎞
⎟⎠ .

The determinant of Jac1(E1) is

det Jac1(E1) = −μγ B1
B1+K1

βγ K1
(K1+B1)2 P1 < 0,

so it will always satisfy its role in the antecedent of Lemma 2. The trace is given by

tr(Jac1(0, B1, P1)) = −μ + J (2, 2).

If

J (2, 2) < 0 ⇒ tr(Jac1) < 0,

J (2, 2) > 0,−μ + J (2, 2) < 0 ⇒ tr(Jac1) < 0,

J (2, 2) > 0,−μ + J (2, 2) > 0 → tr(Jac1) > 0.

Finally, we need to consider the sign of detJac[2]
1 (E1).

det Jac[2]
1 (E1) =J (2, 2) {[−μ + J (2, 2)][−μ]+(

βγ
K1

(K1 + B1)2 P1

) (
γ

B1

B1 + K1

)}
.

We can see that if J (2, 2) < 0, then det Jac[2]
1 < 0 and if J (2, 2) > 0 but

J (2, 2) − μ < 0, then det Jac[2]
1 > 0. If J (2, 2) > 0 and J (2, 2) − μ > 0, then

the antecedent of Lemma 2 will not be satisfied as tr(Jac1(0, B1, P1)) > 0. Thus,
because det Jac1(0, B1, P1) < 0 all the time, by Lemma 2, we have that

E1 is stable ⇐⇒ J (2, 2) < 0

⇐⇒ K <
βγ + δ

βγ − δ
K1 = B1 + βγ

K1

βγ − δ

Define B3 = B1 + βγ K1
βγ−δ

and note that as we assume βγ > δ, it follows that
B3 > 2B1.
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4.6 Stability of the Phage-Free Endemic Equilibrium E∗
K

Considering the equilibrium point E∗
K , we have that

Jac[2]
2 (E∗

K ) =

⎛
⎜⎜⎝

−α(K ) − μ − r −γ K
K1+K 0

0 −α(K ) − μ +
(
βγ K

K+K1
− δ

)
(N − I ∗) aH

(K−c+H)2

0 0 −r +
(
βγ K

K+K1
− δ

)

⎞
⎟⎟⎠ .

tr(Jac2(E∗
K )) = − α(K ) − μ +

(
βγ

K

K + K1
− δ

)

with

det Jac2(E∗
K ) =[−α(K ) − μ][−r ]

[
βγ

K

K1 + K
− δ

]

and

det Jac[2]
2 (E∗

K ) =[−α(K ) − μ − r ]
[
−α(K ) − μ + βγ

K

K + K1
− δ

]
[
−r + βγ

K

K1 + K
− δ

]
.

Common to all three expressions is that if K < B1, then they are each negative. And
if K > B1 then det Jac2 at E∗

K is positive. Hence E∗
K is stable ⇐⇒ K < B1. Note

that the stability condition of E∗
K is contrary to the existence condition for E∗

1 and so
there can only ever be at most one locally stable endemic equilibrium point at a time.

4.7 Stability of the Interior Endemic Equilibrium E∗
1

Finally, considering the local stability of interior endemic equilibrium E∗
1 , we have

that

Jac[2]
2 (I ∗

1 , B1, P1) =
⎛
⎜⎝

−α(B1) − μ + J (2, 2) −γ B1
K1+B1

0

βγ K1
(K1+B1)2 P1 −α(B1) − μ (N − I ∗) aH

(B1−c+H)2

0 0 J (2, 2)

⎞
⎟⎠ .

tr(Jac2(I ∗
1 , B1, P1)) = − α(B1) − μ + J (2, 2)

and

det Jac2(I ∗
1 , B1, P1) =[−α(B1) − μ]γ B1

B1 + K1
βγ

K1

(K1 + B1)2 P1 < 0.

So the determinant is always negative, and the trace can be negative if J (2, 2) <

0. We now consider the sign of the determinant of Jac[2]
2 evaluate at (I ∗

1 , B1, P1).
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det Jac[2]
2 (I ∗

1 , B1, P1) = J (2, 2)
{
[−α(B1)−μ+ J (2, 2)][−α(B1)−μ]+βγ K1

(K1+B1)2

P1γ
B1

B1+K1

}
which appears complicated but the important part is that if J (2, 2) < 0,

then it will be negative. If 0 < J (2, 2) < α(B1) + μ implies that det Jac[2]
2 (E∗

1 ) > 0,

and if J (2, 2) > α(B1) + μ implies that both det Jac[2]
2 (E∗

1 ) > 0 and tr(E1) > 0. As
seen previously, J (2, 2) < 0 is equivalent to B1 < B3, thus

E∗
1 is stable ⇐⇒ B1 < B3 = B1 + βγ

βγ − δ
.

4.8 Local Stability Summary, Bifurcation Diagrams and Numerical Simulations

Noting that there are at most 2 equilibria that exist at any one time other than E0,
and writing ‘un’ for locally unstable and ‘s’ for locally asymptotically stable, we can
summarize the preceding local stability results with a proposition.

Proposition 2 (Local stability of the non-shedding case) E0 always exists and is
locally stable for all parameter values.

If c < K and c ≥ B1

B3 ≤ K implies E1(un) and E∗
K (un) exist,

K < B3 implies E1(s) and E∗
K (un) exist

and c < B1

K < B1 implies E∗
K (s) exists

B1 < K < B3 implies E∗
K (un) and E∗

1 (s) exist

B3 ≤ K implies E∗
K (un) and E∗

1 (un) exist.

If c ≥ K and c ≥ B1

K < B1 implies EK (s) exists

B1 < K < B3 implies EK (un) and E1(s) exist

B3 ≤ K implies EK (un) and E1(un) exist

and c < B1

as B1 < B3 then EK (s) exists

The results of Proposition 2 are perhaps better understood as a bifurcation diagram.
Figure 1 demonstrates the changes in stability as the carrying capacity K is varied.
The first diagram is for the case when the minimum infectious dose c is greater than
B1, which means that only E1 can exist, and not E∗

1 . The lower figure has c < B1,
which reverses the situation.

If K = B3, implying J (2, 2) = 0, then computing det[λI − Jac1(E1)] we find that

det(λI − Jac1(E1)) = (λ + α(B1) + μ)

{
λ2 + βγ

K1

(B1 + K1)2 P1
γ B1

B1 + K1

}

which has one real negative and two purely imaginary roots. We conclude that E1
undergoes a Hopf bifurcation as K passes B1, and E1 changes from locally stable
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Fig. 1 Bifurcation diagrams when ξ = 0 and there is no shedding. Limit cycles exist when E1 and E∗
1
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Fig. 2 Cycles in phage, bacteria and infected populations. The bacteria peak ends first, followed by the
infected 4 days later and phage 8 days later. The parameters are r = 3, K = 7.3e6, γ = 0.02, K1 =
1.6e6, β = 80, δ = 1, ξ = 0, a = 0.1, c = 7.1e6, μ = 0.1 and H = 1e6

to unstable. In Fig. 2, we demonstrate the existence of limit cycles occurring as a
result of the unstable E1. The stability conditions for the endemic equilibrium E∗

1
are the same as for E1, and it also undergoes a Hopf bifurcation when it exists and
K increases past B3. The only difference in the calculation of the eigenvalues of
Jac2(E∗

1 ) is that the second entry in Jac2 is nonzero, but as ξ = 0, the zeros in
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the first column reduce the calculation of the eigenvalues of Jac2(E∗
1 ) to that shown

above. When E1 or E∗
1 was unstable and the carrying capacity K was less than the

MID ( denoted c), cycles were observed numerically in the bacteria-phage system
(BP) but not the susceptible-infected (SI) system. If K was sufficiently larger than c,
implying that the MID was at a level such that bacteria at carrying capacity would
cause infections, the cycles existed in both the SI and BP systems with the infected
population peaking 4 days after and the phage population 8 days after in Fig. 2.
While these cycles are far too short to match real world situations, as the infected
class peaks occurred after the bacteria class, and because with shedding at zero the
BP system influences the SI system unidirectionally, their existence does support the
idea that cycles that naturally occur are bottom-up and not top-down in cause. When
shedding is included, the cycles lengthen to relevant levels as we shall see in the next
section.

5 Existence and Stability of Equilibria with Shedding

5.1 Existence of Equilibria

The complete absence of human contamination of the water supply is the ideal, but it
is certainly not the reality anywhere and particularly not in places where the disease
is endemic. Noting that the first equation of (1) is not necessary as S + I = N , we
can rewrite it as follows:

dI

dt
= α(B)(N − I ) − μI,

dB

dt
= r B

(
1 − B

K

)
− γ

B

K1 + B
P + ξ I, (3)

dP

dt
= βγ

B

K1 + B
P − δP + φξ I.

If α(B) = 0, then we will have the same endemic equilibria E0 = (N , 0, 0, 0),
EK = (N , 0, K , 0) and E1 = (N , 0, B1, P1) as before, with the same conditions.
If α(B) �= 0 at steady state, then from the first equation of (3), we have that
I ∗ = G1(B∗) = Na(B∗−c)

(a+μ)(B∗−c)+μH , and from the third equation, we have that

P∗ = −φξ I ∗
βγ B∗

K1+B∗ −δ
= −φξG1(B∗)(K1+B∗)

βγ B∗−δ(K1+B∗) . This expression for P∗ provides a condition

for B∗ as the denominator must be strictly negative in order to have a well-defined
and positive value for P∗. That is, B∗ < K1δ

βγ−δ
= B1. Solving the second equation of

(3) at equilibrium for B∗, assuming that α(B) �= 0, will then possibly lead to endemic
equilibria E∗. Dropping the asterisks on B∗ for convenience, the second equation at
steady state becomes

0 = r B

(
1 − B

K

)
+ ξ I ∗ − γ

B

K1 + B
P∗ = F(B) + G(B), (4)
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Table 2 Possible ordering of
{B2, B1, K , b1, c}

The first column determines the
order of {B2, B1, K }, the second
places b1 in that ordering and
the third column places c within
the ordering

Case Subcase Ordering

(Ia)

0 < B2 < B1 < K (i) B2 < b1 < B1 B2 < b1 < c < B1

B2 < c < b1 < B1

(ii) 0 < b1 < B2 b1 < B2 < c < B1

(Ib)

0 < B2 < K < B1 (i) b1 > K K < c < b1 < B1

c < K < b1 < B1

(ii) B2 < b1 < K B2 < b1 < c < K

B2 < c < b1 < K

(iii) b1 < B2 b1 < B2 < c < K < B1

(Ic)

K < B2 < B1 (i) B2 < b1 < B1 B2 < c < b1 < B1

(IIa)

B2 < 0 < B1 < K (i) b1 < B1 b1 < c < B1 < K

c < b1 < B1 < K

(IIb)

B2 < 0 < K < B1 (i) K < b1 K < c < b1 < B1

c < K < b1 < B1

(ii) b1 < K b1 < c < K < B1

c < b1 < K < B1

where

F(B) := r B

(
1 − B

K

)
[(a + μ)(B − c) + μH ][(βγ − δ)B − δK1)]

G(B) := Naξ [γ (φ + β)B − δK1 − δB](B − c).

Note that F(B) is a quartic with roots 0, K , B2 := c − μH
a+μ

and B1 which was

defined previously as B1 = δK1
βγ−δ

, which opens downwards. The three roots of 0,
B1 and K are nonnegative, but B2 could be negative or zero with realistic parame-
ters. To solve 0 = F(B) + G(B), it suffices to find the intersections of F(B) and
−G(B). As such note that −G(B) is a downward opening parabola, with roots c and
b1 := δK1

γ (φ+β)−δ
.

The roots of the two functions have some obvious relationships which limit the
number of possibilities we need to consider when looking for points where the two
functions intersect. Consider b1 and B1, which are clearly related. We assume βγ −δ >

0 and as φ > 0, being part of the shedding term for the phage population φξ ; it is
clear that 0 < b1 < B1. Also, B2 < c as all parameter values are positive. Previously,
we found that c < B∗ < B1 to ensure P∗ > 0 and α(B∗) > 0, so this implies that
c < B1 is a condition for any B∗ to exist.
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Between the third and fourth roots of F , we see that F(B) > 0, whatever those
roots may be. If the largest root is B1, then we find a problem if c is the next largest of
{b1, c, K , B1, B2}. As −G(c) = 0 with −G(B) < 0 for B ≥ c, and F(c) > 0, then
clearly no intersections can occur until B > B1 when F(B) is no longer nonnegative.
Any such intersection would be inadmissible as B∗ > B1 for that B∗. Also, any
intersections between F and −G with B < c are also inadmissible as we require
B∗ > c. Hence, if c < B1 and {c, B1} are the largest of {b1, c, K , B1, B2}, then there
will be no endemic equilibria.

The possible orderings of {B2, B1, K , b1, c} are outlined in Table 2. There are only
9 combinations of {B2, B1, K , b1} and 15 orderings of all of the roots of F and G
when all of the restrictions are considered. There can be up to 4 equilibria at one time
depending on the relationships among the parameters. We can summarize these results
with a proposition.

Proposition 3 (Existence of Equilibria) The equilibrium E0 = (N , 0, 0, 0) always
exists.

If c ≥ K and B1 ≤ c,

if also B1 > K , then only EK exists.

if B1 ≤ K then EK and E1 exist.

and B1 > c,

if c < b1 then there are up to B∗
1,2 ∈ (c, b1) and EK .

if c > b1 then there are no internal equilibria but EK exists.

If c < K and B1 > c

then B∗ exists between the second and third in the ordering of {c, K , b1, B1}.
and B1 ≤ c

there are no internal equilibria and E1 is an equilibrium.

5.2 Linearization

Due to the threshold in α(B), we will have two linearizations of (3) with the first
having α(B) = 0, denoted J1:

J1(I, B, P) =
⎛
⎜⎝

−μ 0 0
ξ r − 2 r

K B − γ K1
(K1+B)2 P −γ B

K1+B

φξ βγ a H
(B−c+H)2 P βγ B

K1+B − δ

⎞
⎟⎠ ,

and the second linearization applies when α(B) �= 0, denoted J2

J2(I, B, P) =
⎛
⎜⎝

−α(B) − μ (N − I ) a H
(B−c+H)2 0

ξ r − 2 r
K B − γ K1

(K1+B)2 P −γ B
K1+B

φξ βγ a H
(B−c+H)2 P βγ B

K1+B − δ

⎞
⎟⎠ .

123



2040 J. D. Kong et al.

5.3 Stability of Disease-Free, Bacteria-Free, Phage-Free Equilibrium E0

Corresponding to E0, we have the following eigenvalues −μ,−δ < 0 and r > 0. This
means that the equilibrium E0 is a saddle-node equilibrium with a one-dimensional
unstable manifold.

5.4 Stability of the Boundary Equilibrium EK

Considering the equilibrium point EK , we have that

J [2]
1 (0, K , 0) =

⎛
⎜⎜⎝

−μ − r
(
−γ K

K1+K

)
0

0 −μ + βγ K
K1+K − δ 0

−φξ ξ −r +
(
βγ K

K1+K − δ
)

⎞
⎟⎟⎠

tr(J1(0, K , 0)) = −μ− r +
(
βγ K

K1+K − δ
)

, det J1(0, K , 0) = μr
(
βγ K

K1+K − δ
)

and det J [2]
1 = (−μ−r)

(
−μ + βγ K

K1+K − δ
) (

−r + βγ K
K1+K − δ

)
. If βγ K

K1+K −
δ < 0 this implies that tr(J1), det J1 and det J [2]

1 are all negative, but if βγ K
K1+K −

δ > 0, then det J1 > 0. By Lemma 2, this means that EK is stable if and only if
K < δK1

βγ−δ
= B1. Note that B1 < K is required for E1 to exist, so the existence of

E1 and the stability of EK are contrary notions.

5.5 Stability of the Disease-Free Equilibrium E1

Defining J (2, 2) = r − 2 r
K B1 − γ K1

(K1+B1)2 P1 again as in the previous non-shedding
case, the second additive compound matrix of J1 is

J [2]
1 (0, B1, P1) =

⎛
⎜⎝

−μ + J (2, 2) −γ B1
B1+K1

0

βγ K1
(K1+B1)2 P1 −μ 0

−φξ ξ J (2, 2)

⎞
⎟⎠ .

The determinant of J1, det J1(0, B1, P1),< 0, so it will always satisfy the antecedent
of Lemma 2. The trace is given by tr(J1(0, B1, P1)) = −μ + J (2, 2). As before
J (2, 2) < 0 if and only if, K < B3 = B1 + βγ K1

βγ−δ
. If

J (2, 2) < 0 ⇒ tr(J1) < 0

J (2, 2) > 0,−μ + J (2, 2) < 0 ⇒ tr(J1) < 0

J (2, 2) > 0,−μ + J (2, 2) > 0 → tr(J1) > 0.
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Finally, consider the sign of det J [2]
1

det J [2]
1 (0, B1, P1) =J (2, 2)

{
[−μ + J (2, 2)][−μ]

+
(

βγ
K1

(K1 + B1)2 P1

) (
γ

B1

B1 + K1

)}
,

where it is clear that if J (2, 2) < 0 then det J [2]
1 < 0 and if J (2, 2) > 0 but

J (2, 2) − μ < 0 then det J [2]
1 > 0. If J (2, 2) > 0 and J (2, 2) − μ > 0, then

the antecedent of Lemma 2 will not be satisfied as tr(J1(0, B1, P1)) > 0. Thus, since
det J1(0, B1, P1) < 0 all the time, by Lemma 2, we have that E1 is stable ⇐⇒
J (2, 2) < 0 i.e E1 is stable if and only if K <

βγ+δ
βγ−δ

K1 = B1 + βγ K1
βγ−δ

= B3

5.6 Stability of Endemic Equilibria E∗ and E∗
1,2

The stability of the endemic steady states was found numerically. If c > b1 and c < B1,
then there is a unique endemic equilibrium, E∗. Using parameter values, r = 1, γ =
0.02, K1 = 3.6e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 5.9e5
and μ = 0.1 will achieve such a relationship. If K = 7e5 > c or larger, EK does
not exist, and E0 and E∗ are the only equilibria. Limit cycles are observed, and if B∗
and its eigenvalues are computed numerically, then we see that E∗ is a saddle-node
equilibrium with a two-dimensional unstable manifold.

If K = 4e5 < c = 5e5, with all other parameters the same, then K < c < b1 and
two endemic equilibria exist, along with E0 and EK . In this case, they are both saddle-
node equilibria, where E∗

1 (with the smaller B∗ value) has a one-dimensional unstable
manifold, and the other has a two-dimensional unstable manifold. If K = 5.9e5 > c or
greater, then there is a unique endemic equilibria and EK no longer exists. As before,
it is a saddle-node with two-dimensional unstable manifold.

Finally, if K1 is decreased to K1 = 1.6e5, with all other parameters as before, and
if c > b1 and the endemic equilibrium is unique, then it is again a saddle-node with
two-dimensional unstable manifold. If instead c < b1, then when the two internal
equilibria exist, E∗

1 (with the smaller B∗) is a saddle-node with one-dimensional
unstable manifold as before. The larger, however, is stable as its eigenvalues all have
negative real part. Finally, if K > c, for example K = 2.2e6 or higher, then there
is a unique endemic equilibrium E∗ which is locally stable as all eigenvalues have
negative real part.

5.7 Local Stability Summary, Bifurcation Diagrams and Numerical Simulations

We can summarize the local stability results of the previous sections with a proposition,
writing ‘un’ for locally unstable, and ‘s’ for local asymptotic stability. The goal of the
bifurcation diagrams below was to exhibit all possible cases of the model, and thus
their associated parameter ranges are wider than the variation of parameter values in
simulations.
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Proposition 4 (Local Stability) E0 is always locally unstable.

If c ≥ K and B1 ≤ c,

if K > B3, then E1(un) and EK (un).

if B1 < K < B3 then E1(s) and EK (un).

if K < B1 then EK (s).

and B1 > c,

if c < b1 then there are up to E∗
1,2 and EK (s),

with B∗
i ∈ (c, b1).

if c > b1 then there are no internal equilibria but EK (s).

If c < K and B1 > c,

then E∗ exists,

with B∗ between the second and third in the ordering of {c, K , b1, B1}.
and B1 ≤ c,

if K > B3, then E1(un).

if K < B3, then E1(s).

In addition to the infection-free, bacteria-free and phage-free equilibrium E0, which
always exists and is always locally unstable, there are at most three other equilibria
for any given set of parameters. Note that E1 and EK are never both stable at the
same time, as the condition for the local stability of EK implies that E1 does not exist.
Of the two, E1 is more realistic as it has the phage population existing at nonzero
levels, which is certainly the case during inter-epidemic times. The existence of a
stable endemic equilibrium, either when E∗ is unique, or when it exists with another,
which is unstable, does not match the usual pattern of explosive outbreaks of cholera,
but if the B∗ level is low enough, perhaps it could be biologically relevant for certain
areas. Our main interest is on the existence of limit cycles, as will be discussed below.
The results of Proposition 4 are perhaps better understood with bifurcation diagrams.
Figure 3 shows the case when B1 < c, and only nonendemic equilibria are possible.
In the figure, B3 < c, which means that both E1 and EK can be unstable at the same
time. If this was reversed and B3 > c, then the difference would be that E1 would be
unstable only when EK does not exist, and the two could not be unstable for the same
set of parameters.

Equilibrium E1 is only present in the first diagram, and when the carrying capacity
K = B3, we can calculate det[λI − J1(E1)], noting that J (2, 2) = 0 to see that

det[λI − J1(E1)] = (λ + μ)

{
λ2 + βγ

K1

(K1 + B1)2 P1γ
B1

B1 + K1

}
,

and observe that J1(E1) would have one negative eigenvalue and two purely imaginary
eigenvalues. Thus, E1 undergoes a Hopf bifurcation as K increases past B3 and E1
switches from locally stable to unstable. With parameters in the region where E1 is
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Fig. 3 Bifurcation diagrams with all parameters positive and B1 < c, which implies only nonendemic
equilibria exist. Equilibrium E1 undergoes a Hopf bifurcation when carrying capacity K increases past B3,
leading to limit cycles denoted L.C

unstable, we found limit cycles to exist. If K < c, then these cycles existed only in
the BP community and did not cause any infections. Figure 4 demonstrates such limit
cycles, with period of only 14 days, and phage peaking 5 days after the bacteria class
does. If K > c by a large enough amount, meaning that the minimum infectious dose
is less than the normal carrying capacity of bacteria, the cycles entered the human
population as well and increase greatly in period. Unlike the case with ξ = 0, the
period of these cycles could even be approximately 180 days, which could correspond
to the biannual outbreaks observed in some endemic areas. Figure 5 is an example of
such cycles with period of 150 days. The bacteria are the first to peak, followed by the
human-infected population 3 days later, and the phage 1 day after the infected class.
As these cycles can exist at low levels and only enter the human population when
the bacteria levels increase passed the MID, and because the bacteria peak before the
infected human population, we conclude that the BP system is ‘driving’ these limit
cycles.

Figure 6 contains bifurcation diagrams for the cases of endemic equilibria. The first
diagram of Fig. 6 is for when E∗ is unique, and numerically, it was found to always be
unstable and causing limit cycles. The second diagram is very similar, except that up to
two E∗

1,2 can exist. These are either both unstable, or the equilibrium with the smaller
B∗

i value was unstable and the larger was stable. The unique E∗ in the second diagram
could be either stable or unstable for realistic parameter values, and when it was unsta-
ble, limit cycles were found to exist. These cycles ranged in period, but could be found
with periods of approximately 360 days, as in Fig. 7, which correspond to the annual
outbreaks observed in some endemic areas. The period of outbreaks and maximum
number of people infected in an outbreak differ from one endemic region to another
depending largely on sanitational infrastructures. Figure 8a shows that whenever an
outbreak occurs in an endemic/epidemic region with poor sanitational infrastructures,
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Fig. 4 Dynamics of I, S, B and P when E1 is unstable and K < c. When the bacteria levels pass the minimum
infectious dose (MID), the cycles spread to the human population as well. The period is approximately 15
days and the phage peak 4 days the bacteria. The parameters are r = 1, K = 1.3e6, γ = 0.02, K1 =
2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 1.5e6 and μ = 0.1

many people are infected compared to when it occurs in an endemic region with better
sanitational infrastructures. The number of infected persons increases monotonically
as ξ increases from 0 to 300. Thus, improving the sanitational infrastructure of an
endemic region could lead to a reduction in the number of infected persons whenever
an outbreak occurs. This alone is unable to eradicate cholera. Figure 8b shows the
effect of poor sanitational infrastructure on the period of the outbreaks. By increasing
ξ from 0 to 300, the period of the outbreaks decreases monotonically as ξ moves
from 0 to 15 and attends a minimum value of approximately 346 days, and thereafter
increases monotonically as ξ goes above 15. The fact that the period of the outbreaks
decreases as the shedding rate increases from 0 to 15 is counterintuitive.

6 Chaos

In this section, we will attempt an explanation to the different natures of the outbreak
experience around the world. We will attempt to explain why you might have countries
with the same sanitational infrastructure but the outbreak in one might be sporadic,
whereas those in the other are periodic. For instance, Malaysia and Zambia have
approximately the same sanitational infrastructure but the outbreaks in Malaysia are
sporadic, whereas those in Zambia are periodic.

123



Dynamics of a Cholera Transmission Model 2045

6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

5

S
us

ce
pt

iv
e 

po
pu

la
tio

n 
le

ve
l

0

1

2

3

4

5

6
x 10

6

B
ac

te
ria

 p
op

ul
at

io
n 

le
ve

l

0

2

4

6

8

10

12

14
x 10

8
P

ha
ge

 p
op

ul
at

io
n 

le
ve

l

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

In
fe

ct
ed

 p
op

ul
at

io
n 

le
ve

l

Time (days)

Susceptive

Infected

Bateria

Phage

Fig. 5 Dynamics of I, S, B and P when E1 is unstable and K > c. When the bacteria levels pass the
minimum infectious dose (MID), the cycles spread to the human population as well. The infected class
peaks 3 days after the bacteria, and the phage 4 days after. The parameters are r = 1, K = 1.8e6, γ =
0.02, K1 = 2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 1.5e6 and μ = 0.1. The period
is approximately 150 days, which corresponds to biannual outbreaks in endemic areas
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Fig. 7 Dynamics of I, S, B and P when E∗ is unique and unstable with K > c. When the bacteria levels
pass the minimum infectious dose (MID), the cycles spread to the human population as well. The infected
class peaks 3 days after the bacteria, and the phage 6 days after. The parameters are r = 1, K = 4.12e5, γ =
0.02, K1 = 2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 4.1e5 and μ = 0.1. The period
is approximately 351 days, which corresponds to annual outbreaks in endemic areas

In many countries that experience endemic cholera, there are annual cholera outbreaks
which appear to be periodic. However, in countries with similar sanitation infrastruc-
ture, the outbreaks are much more frequent and lack an overwhelmingly periodic
structure. The general trend is that countries closer to the equator have higher levels
of outbreaks with greater frequency, while countries that are farther from the equator
typically have seasonal outbreaks (Emch et al. 2008). An explanation for this trend
may lie in the existence of chaotic behaviour in (1) for certain values of the shedding
parameters ξ and φ. This window of chaos depends on other parameters in (1) as well,
and not just ξ and φ. The maximal growth rate of bacteria r is proportional to the
values ξc and φc where chaos first occurs. If this value of r is itself proportionate to
average temperatures, and thus inversely proportional to the distance from the equator,
then warmer countries with a higher r value could have chaotic behaviour of bacterial
levels, and thus outbreaks with the same values of ξ and φ. A positive relationship
between bacteria proliferation and average temperature is known to exist, so this expla-
nation is plausible (Singleton et al. 1982). Figure 9 demonstrates different trends in
cholera outbreaks for countries at different latitudes. Malaysia for example is the clos-
est to the equator of the four countries shown, at a latitude of 4◦, and has a somewhat
uniform distribution of monthly outbreaks when summed over 32 years. The other
three countries of Romania, Iran and Zambia, which are at a distance of at least ±13◦
from the equator, have much stronger trends in what month cholera outbreaks typically
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Fig. 9 (Color Figure Online) Sums of monthly cholera outbreaks over the last 32 years in countries at
different latitudes, adapted from Emch et al. (2008)

occur. For Romania and Iran, which are both in the Northern Hemisphere, outbreaks
typically occur between August and November. In Zambia, which is in the Southern
Hemisphere, outbreaks occur most often between February and May. A larger value
of the maximal bacterial growth rate r for countries closer to the equator, which also
corresponds to a lower value of ξc and φc, could explain why the outbreaks in warmer
countries occur less seasonally than in countries further away from the equator.

In the panels (a) and (d) of Fig. 10, the shedding rate ξ is increased by 0.01 after
each time step, and for each value, the peak values of the trajectory produced are
numerically determined and used to estimate the length of each cycle in it. For the
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Fig. 11 (Color Figure Online) Lyapunov exponents for (1). The parameters used are the same as those in
Fig. 10a with ξ = 11. The largest is positive which is enough to determine that the trajectory is chaotic

maximal growth rate r comparatively low, we have trajectories oscillating with varying
peak values and periods occurring for lower values of ξ . In Fig. 10a, r is comparatively
low and for most values of ξ approximately less than 30, the corresponding trajectory
has varying periods (See Fig. 10b for the behaviour of the trajectories for a typical
ξ in this interval). On the contrary, for r comparatively high, oscillating trajectories
with varying peak values and periods occur for higher values of ξ as can be seen in
Fig. 10d where r = 5 and for ξ approximately greater than 20, the trajectory for each
ξ has varying peak values and length of cycles (see Fig. 10f for the behaviour of the
trajectories for a ξ taken from this interval). Thus, the same values of ξ and φ could
cause different trajectories for different values of r. In Fig. 10, it is the unstable E1 that
causes the cycles, but an unstable E∗ could also be used. Figure 10c and e presents
the Fast Fourier Transform (FFT) of the filtered infected population trajectories in
Fig. 10b and f, respectively. These FFT show continuous spectrum of frequencies.
This behaviour is typical of chaotic motions. However, it is not enough to determine
if the behaviour is chaotic: we should consider the Lyapunov Exponents. In Fig. 11,
we see that due to the positivity of the largest Lyapunov exponent, the behaviour is
in fact chaotic. Furthermore, the largest two exponents are both positive and almost
the same value. They correspond to the bacteria and phage categories from the model,
which suggests that it is the bacteria-phage system which drives the cyclic behaviour
of the entire system, and that they are the most sensitive to perturbations.

7 Discussion

We have presented a model, which is an extension of the one in Jensen et al. (2006).
This model explicitly includes the dynamics of bacteriophage and bacteria, and also
contains a new indirect infection term which accounts for a minimum infectious dose
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of the pathogen V. cholerae. Unlike Jensen et al. (2006), we focused on the existence
of stable limit cycles, in order to account for the periodicity observed in outbreaks of
cholera in endemic areas. As these cycles exist in the absence of human contribution
to the bacteria and phage levels, and because the bacteria cycles peak before the
human cycles when they exist in both systems, we conclude that it is the bacteria
and phage which are driving the cycles, and not the reverse situation. If the minimum
infectious dose is less than the carrying capacity of the bacteria, then we observe that
the bacteria cycles usually fail to surpass the minimum infectious dose, so there are no
new infections and the system is disease free. However, if the natural carrying capacity
is sufficiently larger than the minimum infectious dose, then these cycles are able to
enter the human population, which highlights the importance of understanding the
relationship between the two. Additionally, as a control measure, if the phage levels
could be enhanced in some way to keep the bacteria below this minimum infectious
dose, then the cycles would remain in the bacteria and phage system alone. This idea
links back to the 1930s when the use of injections of bacteriophage was explored as a
treatment of cholera by limiting V. cholerae levels within the human host (Asheshov
and Lahiri 1931; Pasricha et al. 1936).

Additionally, a chaotic region in the parameter space was identified. The existence
of chaotic behaviour could explain the lack of clear periodicity in some endemic
areas, with seasonal or other factors increasing the height of these chaotic peaks
annually or biannually and creating a pseudo-periodic pattern. The exact role of these
external factors would be difficult to determine, given the sensitivity of such a system.
As the existence of this chaotic parameter region can be positively correlated with
the proliferation rate of V. cholerae and overall climate, it could also explain the
unpredictable nature of outbreaks in countries nearer to the equator.

Some of the work in this manuscript is part of the Master’s thesis of the second
author, Davis (2012).

Future work on the model could be to explicitly include the role of infection-
derived immunity through the use of a recovered class, even though immunity is
somewhat accounted for the value of the minimum infectious dose. Exact conditions
for the existence of limit cycles would be valuable as well as a definitive relationship
between the amplitude and period of the cycles to other parameters in the system.
This would be useful in establishing useful connections between simulations and
the data. Furthermore, including a second disease causing serogroup of V. cholerae
would increase the realism of the model for use in regions where outbreaks caused by
serogroups O1 and O139 occur simultaneously.
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