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Abstract
To explore the influence of spatial heterogeneity on mosquito-borne diseases, we for-
mulate a reaction–diffusionmodelwith general incidence rates. The basic reproduction
ratio R0 for this model is introduced and the threshold dynamics in terms of R0 are
obtained. In the case where the model is spatially homogeneous, the global asymp-
totic stability of the endemic equilibrium is proved when R0 > 1. Under appropriate
conditions, we establish the asymptotic profiles of R0 in the case of small or large
diffusion rates, and investigate the monotonicity of R0 with respect to the hetero-
geneous diffusion coefficients. Numerically, the proposed model is applied to study
the dengue fever transmission. Via performing simulations on the impacts of certain
factors on R0 and disease dynamics, we find some novel and interesting phenomena
which can provide valuable information for the targeted implementation of disease
control measures.
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1 Introduction

Mosquito-borne disease is an insect-borne disease transmitted by mosquitoes. Some
such common diseases include malaria, chikungunya and dengue fever. Dengue fever,
for example, is a mosquito-borne disease caused by five different serotypes of dengue
virus, of which Aedes aegypti and Aedes albopictus are the main vectors Zhang and
Wang (2020). As reported in Bhatt et al. (2013), about 390 million people around
the world are at risk of dengue infection annually, which has become one of the
public health problems in tropical and subtropical regions. Mosquito-borne disease
has turned into a major concern due to environmental change and urbanization. It
seems thus imperative to explore the disease transmission.

Mathematical models are a powerful tool for studying the mosquito-borne dis-
eases. So far, most mosquito-borne diseasemodels are usually spatially homogeneous.
However, there is growing evidence that many factors, such as the natural landscape,
urbanity, and human and vector activities, can cause spatial heterogeneity (Allen et al.
2008; Ruan 2007; Wang et al. 2021b; Wu and Zhao 2019). In fact, mosquito-borne
diseases are often affected by the spatial structure of environment, and the environ-
ment for disease spreading has heterogeneity (Chen and Shi 2021). In addition, the
environmental temperature has a great influence onmosquito-borne disease dynamics,
and temperature can be characterized by spatial heterogeneity (Vaidya et al. 2019). On
the other hand, it is known that the mosquito-borne disease transmission can be signif-
icantly shaped by the mobility of humans and mosquitoes. In particular, as mentioned
in Pakhare et al. (2016), the flight ability of mosquitoes affects the disease transmis-
sion ability, and even from the numerical results of Wang et al. (2021a), it can also be
seen that, in some circumstances, the mosquito flight has a greater impact on the speed
of disease transmission. Therefore, it is reasonable and necessary to incorporate the
spatial heterogeneity and the diffusion of humans and mosquitoes into the mosquito-
borne diseases modeling. Moreover, epidemic models with constant diffusion rate in
which susceptible and infected populations have the same diffusion ability have been
extensively investigated (Wu and Zhao 2019; Zhu et al. 2020). Although themosquito-
borne disease models with different heterogeneous diffusion rates may be more in line
with biological significance, there are few theoretical studies on suchmodels (Cai et al.
2019; De Araujo et al. 2016; Fang et al. 2020; Li and Zhao 2021; Magal et al. 2018,
2019; Zhang and Wang 2022). Note that a fair amount of mosquito-borne disease
models mainly adopted bilinear (Wu and Zhao 2019) or standard incidence (Wang
and Zhao 2011). In some cases, however, the general incidence rates are better to give
a sensible qualitative description for disease dynamics (Capasso and Serio 1978).

In epidemiology, the basic reproduction ratioR0 is one of the most important con-
cepts, and it is a crucial threshold of disease outbreak or not Wang and Zhao (2012).
For autonomous epidemic models, a general method to computeR0 was proposed by
Diekmann et al. (1990) with the aid of next generation operator approach . For ordi-
nary differential compartmental models, an approach to computeR0 was established
by Van den Driessche and Watmough (2002). For general reaction–diffusion (R–D)
models with compartmental structure, Wang and Zhao (2012) developed a theory of
R0 applying the concept of principal eigenvalue. There are many researches on R0
of various infectious disease models, and readers can refer to Bacaër and Guernaoui
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(2006), Inaba (2012), Liang et al. (2017) and references therein. According to Wang
and Zhao (2012),R0 of R–D epidemic models with constant coefficients in a bounded
region has the same form as that of the corresponding kinetic system. Nevertheless,
for R–D models with spatial heterogeneity,R0 is inevitably associated with diffusion
rate(s).

A diffusive SISmodel with spatial heterogeneity was considered and the variational
expression ofR0 was given byAllen et al. Allen et al. (2008). Furthermore, the authors
studied the asymptotic profiles and monotonicity of R0 in terms of the diffusion rate
of the infected. Chen and Shi (2021) generalized the results of asymptotic behaviors
forR0 on large or small diffusion rates to a more general R–D compartmental models.
Zhang and Zhao (2021) discussed the asymptotic behavior of R0 for periodic R–D
systems. In Magal et al. (2019), Magal et al. explored a vector-host R–D model with
spatial heterogeneity and analyzed the asymptotic profiles and monotonicity of R0
with respect to (w.r.t) constant diffusion rates of humans and mosquitoes. A spatial
SEIRS model in heterogeneous environment was considered by Song et al. (2019),
and the properties of R0 were studied. In Gao (2020), Gao investigated the affect of
dispersal on infection size and monotonicity of R0 for patch models. Although the
asymptotic profiles and monotonicity ofR0 w.r.t constant diffusion rate(s) have been
intensively investigated, there are few literatures to focus on the properties of R0 for
mosquito-borne disease models when the diffusion rates are spatially heterogeneous.

The present paper aims to explore the effects of spatial heterogeneity and non-
constant dispersal rates onR0 and disease dynamics by developing a mosquito-borne
disease model, thereby improving our understanding of the transmission mechanism
of mosquito-borne diseases and proposing targeted disease control measures.

The remainder of the paper is organized as follows. In Sect. 2, we establish our R–D
model that incorporates environmental heterogeneity, non-constant dispersal rates and
general incidence rates. In Sect. 3, we present the main results of this article, including
the well-posedness, threshold dynamics and asymptotic profiles and monotonicity of
R0, and reveal the corresponding biological interpretations. Section 4 performs some
numerical simulations to substantiate the theoretical results and explores the impacts
of several factors on R0 and disease dynamics. Section 5 states a brief discussion to
conclude the paper. The proof of the main results is given in Sect. 6.

2 Mathematical model

Motivated by the aforementioned analysis, this work aims to consider the following
R–D model with spatial heterogeneity and general incidence rates:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t Sh = ∇ · [DS(x)∇Sh] +Λ(x)− f1(x, Sh, Iv)− μ1(x)Sh,

∂t Ih = ∇ · [DI (x)∇ Ih] + f1(x, Sh, Iv)− [μ1(x)+ e1(x)+ α1(x)]Ih,
∂t Rh = ∇ · [DR(x)∇Rh] + α1(x)Ih − μ1(x)Rh,

∂t Sv = ∇ · [dS(x)∇Sv] + M(x)− f2(x, Sv, Ih)− μ2(x)Sv,

∂t Iv = ∇ · [dI (x)∇ Iv] + f2(x, Sv, Ih)− [μ2(x)+ e2(x)]Iv,

(1)
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where t ≥ 0, x ∈ Ω and Ω is a bounded domain of R
l (l is any positive inte-

ger) with smooth boundary ∂Ω . ∇ = (∂/∂x1, . . . , ∂/∂xl) is the gradient operator.
Sh(t, x), Ih(t, x) and Rh(t, x) are the spatial densities of susceptible, infected and
recovered individuals, and Sv(t, x) and Iv(t, x) are the spatial densities of suscep-
tible and infected mosquitoes at time t and location x , respectively. The diffusion
rates of humans and mosquitoes at x are denoted by DS(x), DI (x), DR(x) and dS(x),
dI (x), respectively. f1(x, Sh, Iv) and f2(x, Sv, Ih) signify the virus transmission func-
tions. The recruitment of humans and mosquitoes at x are represented by Λ(x) and
M(x) respectively. μ1(x) (μ2(x)) and e1(x) (e2(x)) indicate the natural and disease-
induced death rates of humans (mosquitoes) at x , respectively. α1(x) denotes the
recovery rate of humans at x . For simplicity, let γ1(·) := μ1(·) + e1(·) + α1(·) and
γ1(·) := μ2(·) + e2(·), and impose the initial and homogeneous Neumann boundary
conditions of (1) as follows:

{
S0h(x) ≥ 0, I 0h (x) ≥ 0, R0

h(x) ≥ 0, S0v (x) ≥ 0, I 0v (x) ≥ 0, x ∈ Ω,
∂nSh = ∂n Ih = ∂nRh = ∂nSv = ∂n Iv = 0, t > 0, x ∈ ∂Ω,

wherein S0h(·) := Sh(0, ·), I 0h (·) := Ih(0, ·), R0
h(·) := Rh(0, ·), S0v (·) := Sv(0, ·) and

I 0v (·) := Iv(0, ·) are smooth functions which are not identically zero, and n denotes
the outward normal unit vector on ∂Ω . By the decoupling, it is sufficient to discuss
the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t Sh = ∇ · [DS(x)∇Sh] +Λ(x)− f1(x, Sh, Iv)− μ1(x)Sh, t > 0, x ∈ Ω,
∂t Ih = ∇ · [DI (x)∇ Ih] + f1(x, Sh, Iv)− γ1(x)Ih, t > 0, x ∈ Ω,
∂t Sv = ∇ · [dS(x)∇Sv] + M(x)− f2(x, Sv, Ih)− μ2(x)Sv, t > 0, x ∈ Ω,
∂t Iv = ∇ · [dI (x)∇ Iv] + f2(x, Sv, Ih)− γ2(x)Iv, t > 0, x ∈ Ω,
S0h(x) ≥ 0, I 0h (x) ≥ 0, S0v (x) ≥ 0, I 0v (x) ≥ 0, x ∈ Ω,
∂nSh = ∂n Ih = ∂nSv = ∂n Iv = 0, t > 0, x ∈ ∂Ω.

(2)

Throughout this paper, we make the following assumptions:

(P1)All coefficients of (1) are spatially heterogeneous and positive; The diffusion
rates areC1+ν(Ω̄) and other parameters areHölder continuous functions inCν(Ω̄)
with ν ∈ (0, 1);
(P2) fi (x, S, I ) ∈ C2(Ω × R+ × R+), and ∂S fi (x, S, I ) and ∂I fi (x, S, I ) are
positive for all x ∈ Ω , S, I > 0; fi (x, S, I ) = 0 if and only if (iff) SI = 0;
∂2I fi (x, S, I ) ≤ 0 for all x ∈ Ω , S, I ≥ 0, i = 1, 2.

Remark 1 Some frequently used incidence rates satisfy (P2). For example,

(i) The bilinear incidence rate fi (·, S, I ) = ki (·)SI , ki (·) > 0, i = 1, 2 (see Wu
and Zhao 2019);

(ii) The saturated incidence rate fi (·, S, I ) = ki (·)SI
1+ρi (·)I , ki (·), ρi (·) > 0, i = 1, 2

(see Capasso and Serio 1978; Heesterbeek and Metz 1993);
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(iii) The mixture of bilinear and saturated incidence rates f1(·, S, I ) = k1(·)SI and
f2(·, S, I ) = k2(·)SI

1+ρ2(·)I or f1(·, S, I ) = k1(·)SI
1+ρ1(·)I and f2(·, S, I ) = k2(·)SI , ki (·),

ρi (·) > 0, i = 1, 2.

Inspired by above analysis, we in this paper first study the threshold dynamics of
(2). From epidemiological perspective, by investigating the properties of R0, we can
clarify the effects of population mobility on the persistence of epidemic. Thus, we
further investigate the limit ofR0 as DI (·) and dI (·) go arbitrarily small or large, and
discuss the monotonicity of R0 w.r.t DI (·) and dI (·) under appropriate conditions.
Furthermore, through numerically exploring the influence of some important factors
(such as heterogeneity, diffusion rates, parameter sensitivity, temperature) onR0 and
dynamics of (2), we discover some interesting and crucial phenomena, which not only
help the disease control, but also improve the understanding of the impacts of spatial
heterogeneity and human and mosquito movement on disease dynamics.

It should be pointed out that since mosquito-borne disease contains two infection
pathways, the complexity of model (2) leads to several difficulties: (i) Since the diffu-
sion rates of (2) are not necessarily equal, we cannot study the ultimate boundedness
by adding the equations of (2). To overcome the challenging, motivated by literatures
(Dung 1997, 1998; Wu and Zou 2018), we apply a well known induction method to
solve the issue; (ii) In general, the global asymptotic stability of disease-free steady
state when R0 = 1 are rarely addressed. Fortunately, by constructing an appropriate
Lyapunov functional and employing the LaSalle’s invariance principle and the meth-
ods of Shu et al. (2021), we obtain the global asymptotic stability whenR0 = 1; (iii)
Although the ideas of Chen and Shi (2021), Magal et al. (2019) cannot be directly
used to deal with the properties ofR0, which is mainly because the diffusion rates of
(2) depend on spatial variable, we can address it by improving the approaches (Song
et al. 2019). In fact, the process is more complicated due to the general incidence rates
but the results are more profound. This also implies that the conclusions of this paper
can be applied to some other deterministic models.

3 Main results

In this section, we present the main results of this work, whose proofs are given in
Sect. 6.

3.1 Well-posedness

To proceed, we first give some definitions. Let X := C(Ω̄,R4) be endowed with
the supreme norm, and X+ := C(Ω̄,R4+) be the positive cone of X . In what follows,
denote ‖·‖p := ‖·‖L p(Ω), p ∈ Z

+ (the set of positive integers) and ‖·‖ := ‖·‖L∞(Ω).
Set h∗ := max{h(x) : x ∈ Ω̄} and h∗ := min{h(x) : x ∈ Ω̄}, here h(·) represents the
coefficients of (2).

Define A1ψ := ∇ · [DS(·)∇ψ], A2ψ := ∇ · [DI (·)∇ψ], A3ψ := ∇ ·
[dS(·)∇ψ] and A4ψ := ∇ · [dI (·)∇ψ] for Ai : O(Ai ) → C(Ω̄,R) where
O(Ai ) = {ψ ∈ ∩p∈Z+W 2

p(Ω) : ∂nψ = 0 on ∂Ω, Aiψ ∈ C(Ω̄,R)}. Let
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A := diag{A1, A2, A3, A4}. ThenA is the infinitesimal generator of theC0-semigroup
{etA}t≥0 in X . Moreover, define the nonlinear operator F : X → X by

F(
)(·) =

⎛

⎜
⎜
⎝

Λ(·)− f1(·, 
1, 
4)− μ1(·)
1
f1(·, 
1, 
4)− γ1(·)
2

M(·)− f2(·, 
3, 
2)− μ2(·)
3
f2(·, 
3, 
2)− γ2(·)
4

⎞

⎟
⎟
⎠ , 
 = (
1, 
2, 
3, 
4)T ∈ X+,

here T denotes the transposition. Thus, system (2) is transformed into the following
abstract differential system:

⎧
⎨

⎩

d

dt
u(t, ·;u0) = Au(t, ·;u0)+ F(u(t, ·;u0)),

u(0, ·;u0) = u0,
(3)

wherein u = (u1, u2, u3, u4)T := (Sh, Ih, Sv, Iv)T and u0 := (S0h , I
0
h , S

0
v , I

0
v )

T .
Then the well-posedness statements are as follows:

Theorem 1 For any u0(·) ∈ X+, system (3) possesses a unique nonnegative solution
u(t, ·;u0) on [0,∞)× Ω̄ . Furthermore, the solution semiflow Φ(t)u0 := u(t, ·;u0)
admits a global compact attractor in X+.

3.2 Threshold dynamics

To derive the basic reproduction ratio of (2). Set Y := C(Ω̄,R2) and Y+ :=
C(Ω̄,R2+). By the proof of Theorem (1), the disease-free steady state of (2) is
E0 = (H(x), 0,W (x), 0). Linearizing system (2) at E0 to obtain

⎧
⎨

⎩

∂t Īh = ∇ · [DI (x)∇ Īh] + k1(x, H) Īv − γ1(x) Īh, t > 0, x ∈ Ω,
∂t Īv = ∇ · [dI (x)∇ Īv] + k2(x,W ) Īh − γ2(x) Īv, t > 0, x ∈ Ω,
∂n Īh = ∂n Īv = 0, t > 0, x ∈ ∂Ω,

(4)

where k1(x, H) := ∂Iv f1(x, H , 0) and k2(x,W ) := ∂Ih f2(x,W , 0). For υ :=
(υ1, υ2)

T ∈ Y+, define the operators F, B : Y → Y by

F(x)υ =
(
k1(x, H)υ2
k2(x,W )υ1

)

, −B(x)υ =
(∇ · [DI (x)∇υ1] − γ1(x)υ1

∇ · [dI (x)∇υ2] − γ2(x)υ2
)

.

Then F is positive in Y+ in the sense that F(x)Y+ ⊂ Y+. Let T̂ (t) be the semigroup
generated by dυ/dt = −B(x)υ subject to the Neumann boundary condition. One can
see that T̂ (t) is a positive C0-semigroup in Y+. Suppose υ(x) is the initial density
distribution of infected humans and mosquitoes at x . Then T̂ (t)v(x) represents the
density distribution for infected at t . Thus,

∫∞
0 F(x)T̂ (t)υ(x)dt means the density

distribution of the accumulative new infections. Let L[υ](x) := ∫∞
0 F(x)T̂ (t)υ(x)dt .

By employing the next generation operator approach in Wang and Zhao (2012) (see
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also Diekmann et al. 1990), the spectral radius ofL is defined as the basic reproduction
ratio of (2), i.e.,R0 := r(L).

Hence, there are the global dynamic results of (2) in terms of R0 as follows:

Theorem 2 Assume that (P1)–(P2) hold. Then

(i) IfR0 ≤ 1, then the disease-free steady state E0 is globally asymptotically stable,
and unstable ifR0 > 1;

(ii) IfR0 > 1, then there exists a δ0 > 0, such that the solution of (2) satisfies

lim inf
t→∞ ‖(Sh(t, x), Ih(t, x), Sv(t, x), Iv(t, x))− (H(x), 0,W (x), 0)‖ > δ0 (5)

uniformly for x ∈ Ω̄ . Moreover, system (2) admits at least one endemic steady
state.

Remark 2 Biologically, the conclusions of Theorem 2 show that the mosquito-borne
disease will disappear when R0 ≤ 1 and will persist when R0 > 1.

When all coefficients of (2) are positive constants, system (2) is rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t Sh = DSΔSh +Λ− f1(Sh, Iv)− μ1Sh, t > 0, x ∈ Ω,
∂t Ih = DIΔIh + f1(Sh, Iv)− γ1 Ih, t > 0, x ∈ Ω,
∂t Sv = dSΔSv + M − f2(Sv, Ih)− μ2Sv, t > 0, x ∈ Ω,
∂t Iv = dIΔIv + f2(Sv, Ih)− γ2 Iv, t > 0, x ∈ Ω,
∂nSh = ∂n Ih = ∂nSv = ∂n Iv = 0, t > 0, x ∈ ∂Ω.

(6)

IfR0 > 1, then Theorem2 (ii) indicates that system (6) admits an endemic equilibrium
E∗
1 = (S∗

h , I
∗
h , S

∗
v , I

∗
v ). Thus, the global stability results of E

∗
1 read as follows:

Theorem 3 Assume that (P1)–(P2) hold, and f1(Sh, Iv) = Shg1(Iv) and f2(Sv, Ih) =
Svg2(Ih) for some positive function gi (·), i = 1, 2. If R0 > 1, then the endemic
equilibrium E∗

1 is globally asymptotically stable.

Remark 3 It is not difficult to see that the function fi (·, ·) can take the forms of (i),
(ii) and (iii) in Remark 1.

3.3 Asymptotic profiles in terms ofR0

In Sects. 3.3 and 3.4, without loss of generality, we assume that DI (x) = DI0 · D̄I (x),
dI (x) = dI0 · d̄I (x), where DI0, dI0 and D̄I (x), d̄I (x) are positive constants andC1+ν
functions in Ω̄ , respectively. Actually, DI0 and dI0 can be interpreted as diffusion
magnitude of infected humans and mosquitoes.

Denote k̄(·) := k1(·, H)k2(·,W ) and γ̄ (·) := γ1(·)γ2(·). We have the following
asymptotic profiles statements:
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Theorem 4 Assume that (P1)–(P2) hold. Then

(i) Fix dI (·) > 0. If γ1(·) ∈ C2(Ω̄) and ∂nγ1(·) = 0 on ∂Ω , then R0 → 1
λ1

as
DI0 → 0, where λ1 is the smallest eigenvalue of the problem

⎧
⎨

⎩

−∇ · [dI (x)∇φ∗
2 ] + γ2(x)φ∗

2 = λ21
k̄(x)

γ1(x)
φ∗
2 , x ∈ Ω,

∂nφ
∗
2 = 0, x ∈ ∂Ω.

(7)

Moreover, if γ2(·) ≡ γ 02 and k1(·, H) ≡ k01 are positive constants in Ω , then

R0 →
√

k01
∫

Ω k2(x,W )dx

γ 02

∫

Ω γ1(x)dx
as DI0 → ∞;

(ii) Fix DI (·) > 0. If γ2(·) ∈ C2(Ω̄) and ∂nγ2(·) = 0 on ∂Ω , then R0 → 1
λ2

as
dI0 → 0, where λ2 is the smallest eigenvalue of the problem

⎧
⎨

⎩

−∇ · [DI (x)∇φ∗
1 ] + γ1(x)φ∗

1 = λ22
k̄(x)

γ2(x)
φ∗
1 , x ∈ Ω,

∂nφ
∗
1 = 0, x ∈ ∂Ω.

(8)

Moreover, if γ1(·) ≡ γ 01 and k2(·,W ) ≡ k02 are positive constants in Ω , then

R0 →
√

k02
∫

Ω k1(x,H)dx

γ 01

∫

Ω γ2(x)dx
as dI0 → ∞;

(iii) As DI0 → 0 and dI0 → 0, then R0 → Rloc
0 :=max

{√
k̄(x)/γ̄ (x) : x ∈ Ω̄

}
;

(iv) As DI0 → ∞ and dI0 → 0, then R0 → Ra1
0 :=
√∫

Ω k̄(x)γ−1
2 (x)dx

∫

Ω γ1(x)dx
; As DI0 → 0

and dI0 → ∞, then R0 → Ra2
0 :=
√∫

Ω k̄(x)γ−1
1 (x)dx

∫

Ω γ2(x)dx
;

(v) As DI0 → ∞ and dI0 → ∞, then R0 → Ra
0 :=
√∫

Ω k1(x,H)dx
∫

Ω k2(x,W )dx∫

Ω γ1(x)dx
∫

Ω γ2(x)dx
.

Remark 4 (a) For Theorem 4 (i), multiplying the first equation of (7) by φ∗
2 and then

integrating by parts over Ω , we get

λ1 = inf
φ∗
2∈W 1

2 (Ω),φ
∗
2 =0

{√∫

Ω
dI (x)|∇φ∗

2 |2dx + ∫
Ω
γ2(x)(φ∗

2 )
2dx

∫

Ω
k̄(x)γ−1

1 (x)(φ∗
2 )

2dx

}

which is due to the variational method in Cantrell and Cosner (2003). Thus,

R0 → 1

λ1
= sup
φ∗
2∈W 1

2 (Ω),φ
∗
2 =0

⎧
⎨

⎩

√ ∫

Ω
k̄(x)γ−1

1 (x)(φ∗
2 )

2dx
∫

Ω
dI (x)|∇φ∗

2 |2dx + ∫
Ω
γ2(x)(φ∗

2 )
2dx

⎫
⎬

⎭
,

as DI0 goes arbitrarily small for dI (x) > 0. If γ2 and k1 are constants, then R0
tends toRa

0 (the product of the average of k1 and the average of k2 divided by the
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product of the average of γ1 and the average of γ2) as DI0 goes arbitrarily large.
For Theorem 4 (ii), by (8), one similarly gets

R0 → 1

λ2
= sup
φ∗
1∈W 1

2 (Ω),φ
∗
2 =0

⎧
⎨

⎩

√ ∫

Ω
k̄(x)γ−1

2 (x)(φ∗
1 )

2dx
∫

Ω
DI (x)|∇φ∗

1 |2dx + ∫
Ω
γ1(x)(φ∗

1 )
2dx

⎫
⎬

⎭
,

as dI0 goes arbitrarily small for DI (x) > 0. If γ1 and k2 are constants, then R0
tends to Ra

0 as dI0 goes arbitrarily large; When both DI0 and dI0 go arbitrarily
small, R0 tends to the maximum local basic reproduction ratio Rloc

0 as shown in
Theorem 4 (iii) (see, e.g., Allen et al. 2008); When both DI0 and dI0 go arbitrarily
large, R0 tends toRa

0 as given by Theorem 4 (v);
(b) It can be seen from (i), (ii) and (iv) in Theorem 4 that, if DI and dI have different

scales, thenR0 tends to different forms. More precisely, when dI goes arbitrarily
small for fixed DI ,R0 is a monotone nonincreasing function of DI which implies
thatR0 depends on the infected human mobility; When DI goes arbitrarily small
for fixed dI ,R0 is a monotone nonincreasing function of dI which means thatR0
depends on the infected mosquito flight ability; When DI and dI go arbitrarily
large and small, respectively,R0 tends toRa1

0 (the average of k̄γ−1
2 divided by the

average of γ−1
1 ); When DI and dI go arbitrarily small and large, respectively,R0

tends toRa2
0 (the average of k̄γ−1

1 divided by the average of γ−1
2 );

(c) To verify the conditions of Theorem 4 (i). Let α1(x) = 1 + 0.3 cos x , μ1(x) =
0.5 − 0.1 cos x and e1(x) = 1 − 0.1 cos x , x ∈ Ω := (0, π). Then γ1(x) =
2.5+0.1 cos x and γ ′

1(x) = −0.1 sin x which yields that γ ′
1(0) = γ ′

1(π) = 0. The
conditions of (ii) can be similarly testified.

3.4 Monotonicity in terms ofR0

In this subsection, for convenience, we assume the domain Ω is one-dimensional.
Then the conclusions about the monotonicity ofR0 read as follows:

Theorem 5 Assume that (P1)–(P2) hold, and γ1(·) and γ2(·) are positive constants in
Ω , and D̄I (·), d̄I (·) ∈ C2(Ω̄) satisfying

D̄′
I (x)

D̄I (x)
= d̄ ′

I (x)

d̄I (x)
, for all x ∈ Ω,

where ′ denotes the first derivative w.r.t x. Then
(i) If k2(·,W ) is a constant and d̄ ′′

I (·)dI0 < γ2 in Ω , then R0 is a monotone non-
increasing function of DI0. Furthermore, if k1(·, H) is non-constant, then R0
decreases monotonically in respect of DI0;

(ii) If k1(·, H) is a constant and D̄′′
I (·)DI0 < γ1 in Ω , then R0 is a monotone non-

increasing function of dI0. Furthermore, if k2(·,W ) is non-constant, then R0
decreases monotonically w.r.t dI0;

where ′′ denotes the second derivative w.r.t x.
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Remark 5 (a) The results of Theorem 5 show that the rapid movement of infected
humans or mosquitoes is conducive to disease control under certain conditions,
perhaps because this will reduce the contact with susceptible individuals or obtain
more medical resources;

(b) The hypothesis D̄′
I (·)/D̄I (·) = d̄ ′

I (·)/d̄I (·), mathematically, is a technical condi-
tion. In the biological sense, inspired by the explanation in Zhou and Xiao (2018),
this indicates that the movement strategies of infected humans and mosquitoes are
proportional inΩ , i.e., D̄′

I (·)/D̄I (·) and d̄ ′
I (·)/d̄I (·)have the same scale.Moreover,

the hypothesises D̄′′
I (·)DI0 < γ1 and d̄ ′′

I (·)dI0 < γ2 are also technical conditions
which mean that the second derivatives of DI and dI have upper bounds γ1 and
γ2, respectively;

(c) To verify the conditions of Theorem 5. Let D̄I (x) = 2(1+ x) and d̄I (x) = 1+ x ,
x ∈ Ω := (0, π) and DI0 = dI0 = 1. Then D̄′

I (x)/D̄I (x) = d̄ ′
I (x)/d̄I (x) =

(1 + x)−1, and 0 = D̄′′
I (x)DI0 < γ1 and 0 = d̄ ′′

I (x)dI0 < γ2, x ∈ (0, π).

In what follows, we discuss the monotonicity of R0 w.r.t DI (·) and dI (·). Denote
D̃I (·) := D′′

I (·)/D′
I (·) and d̃I (·) := d ′′

I (·)/d ′
I (·), here D′

I (·) = 0 and d ′
I (·) = 0. There

are the following results:

Theorem 6 Assume that (P1)–(P2) hold, and DI (x), dI (x) ∈ C3(Ω̄) and k1(x, H) ≡
k2(x,W ) for all x ∈ Ω̄ . Then

(i) If D̃I (·)φ21(·)|∂Ω ≤ 0 and D̃′
I (·) ≥ 0 in Ω , then R0 is a monotone nonincreasing

function of DI ;
(ii) If d̃I (·)φ22(·)|∂Ω ≤ 0 and d̃ ′

I (·) ≥ 0 in Ω , then R0 is a monotone nonincreasing
function of dI .

Remark 6 (a) Similar to the interpretation of Theorem 5 in Remark 5 (a), the conclu-
sions of Theorem 6 mean thatR0 is a monotonic nonincreasing function of DI (x)
and dI (x), respectively, under some conditions;

(b) Mathematically, the hypothesises in Theorem 6 are technical conditions. To verify
them, letting DI (x) = 2 + x and dI (x) = 1 + x , x ∈ Ω := (0, π). Then
D̃I (x)φ21(x) ≡ 0, x ∈ {0, π} and D̃′

I (x) ≡ 0, x ∈ (0, π).

Above, we investigate the monotonicity ofR0 in terms of diffusion rates. However,
this monotonicity does not always hold. The following results illustrate this situation.

Theorem 7 Assume that (P1)–(P2) hold. Then

(i) If

∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ2(x)dx

>

∫

Ω

k̄(x)

γ2(x)
dx, (9)

then there are positive constants D∗
I0, d1I0 and d2I0, such that R0(D∗

I , d
1
I )

< R0(D∗
I , d

2
I ), wherein D∗

I := D∗
I0 D̄I (x), diI := diI0d̄I (x) and d1I0 < d2I0;
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(ii) If

∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ1(x)dx

>

∫

Ω

k̄(x)

γ1(x)
dx, (10)

then there are positive constants D1
I0, D2

I0 and d∗
I0, such that R0(D1

I , d
∗
I )

< R0(D2
I , d

∗
I ), wherein Di

I0 := Di
I0 D̄I (x), D1

I0 < D2
I0 and d∗

I := d∗
I0d̄I (x).

Remark 7 (a) The conclusions of Theorem 7 indicate that when the coefficients of (2)
satisfy (9) or (10),R0 no longer has monotonicity w.r.t DI or dI , which is in sharp
contrast with Theorems 5 and 6;

(b) To testify the conditions of Theorem7. LetΩ = (0, 1), k1(x, H) = sin(πx/2)+α,
k2(x,W ) = cos(πx/2)+α and γ2(x) = 1, here α represents any positive constant
greater than 1. Then

(

α + 2

π

)2

=
∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ2(x)dx

>

∫

Ω

k̄(x)

γ2(x)
dx = 1

π
+ 4

π
α + α2.

The verification of condition (10) is analogous;
(c) Combining Theorems 5–7, it can seen that, due to the heterogeneity diffusion of

humans and mosquitoes, the monotonicity of R0 becomes more complicated. In
other words, the heterogeneous mobility of individuals has important impacts on
mosquito-borne disease dynamics.

4 Numerical simulations

We in this section apply model (1) to the dengue fever transmission and then pro-
vide simulations to substantiate the theoretical results and study the effects of some
factors on R0 and disease dynamics. For convenience, we assume Ω := (0, π),
f1(·, Sh, Iv) = k1(·)Sh Iv and f2(·, Sv, Ih) = k2(·)Sv Ih , where ki (·) denotes the dis-
ease transmission rate and is positive function in Ω , i = 1, 2.

4.1 Long term behavior

In this subsection, numerical simulations are presented to testify the conclusions
obtained in Sect. 3.2. All parameters and their definitions as well as their values
are listed in Table 1.

To reflect the fact the transmission capacity of dengue fever in urban area (around the
center of the spatial domain) is smaller than that in rural area (boundary of the spatial
domain) since there are fewermosquitoes in urban area, we fix k1(x) = 0.00682(1.5+
0.8 sin 3x) and k2(x) = 0.015(1 + 0.8 sin 3x), x ∈ (0, π). In addition, taking α1 =
0.00168month−1 (see Wu and Zhao 2019) and other parameters are determined by
Table 1. ThenR0 = 1.91 > 1. Figure1 shows the corresponding long term behaviors
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Fig. 1 The spatial–temporal evolution of system (2) when R0 = 1.91

of (2) in the case of R0 = 1.91, fulfilling the following initial conditions:

⎛

⎜
⎜
⎝

Sh(0, x)
Ih(0, x)
Sv(0, x)
Iv(0, x)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

10 − cos 2x
3 + 2 cos 2x

200 + 20 cos 2x
40 + 20 cos 2x

⎞

⎟
⎟
⎠ , x ∈ [0, π ]. (11)

From Fig. 1, one can see that system (2) is persistent when R0 = 1.91 which is
coincident with Theorem 2 (ii). Furthermore, in order to present the shape of Ih and
Iv more clearly, the cross section curves at different times are depicted in Fig. 2. It is
noted that the densities of infected humans and mosquitoes in urban area are lower
than that in rural area from Fig. 2, which suggests that it should pay more attention to
the impact of heterogeneity on dengue fever.

To control dengue fever, the human mortality rate is reduced to 0.5e1 via increasing
the medical resources and improving cure rate, and the mosquito recruitment rate is
decreased to 0.5M and natural death rate is increased to 3.5μ2 through utilizing bed
nets and spraying insecticides. ThenR0 = 0.76 < 1. By Theorem 2 (i), the densities
of infected humans and mosquitoes tend to zero, which means that the disease will
eventually be eliminated (as shown in Fig. 3).
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Fig. 2 The cross section curves of Ih and Iv at different times in Fig. 1

Fig. 3 The spatial–temporal evolution of infected humans and mosquitoes when R0 = 0.76

4.2 Sensitivity analysis ofR0 on parameters

To identify which parameters are sensitive toR0, we perform a sensitivity analysis by
evaluating the partial rank correlation coefficients (PRCCs) for all input parameters
against R0 (Marino et al. 2008). In this subsection, we take k1 = 0.00682 and k2 =
0.075 and other parameters are shown in Table 1. In Fig. 4a–i, the abscissa represents a
uniform distribution for all input parameters with the minimum and maximum values
and the ordinate represents R0. It can be seen from Fig. 4 that Λ, M , k1 and k2
have positive effects on R0, while α1, μ1 and μ2 have negative effects on R0. Other
parameters e1 and e2 have insignificant influences onR0. The results depicted in Fig. 4j
suggest that relative toμ1,α1 andμ2 aremore sensitive. Biologically, it is interesting to
note that the human recovery rate and the mosquito natural death rate have significant
impacts on dengue fever which indicate that inhibiting mosquito reproduction and
improving the cure rate are the preferred measures to control dengue fever.

The sensitivity of R0 has been illustrated in Fig. 4. However, the sensitivity may
vary with some parameters (Wang et al. 2019). Based on this, we next discuss the
sensitivity to some parameters in different parameter domains. From Fig. 5a, it can
be found thatR0 increases with the increase of k1 when μ2 is small, butR0 does not
vary significantly whenμ2 is large. Similarly,R0 increases asμ2 decreases when k1 is
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Fig. 4 Sensitivity ofR0 to parameters of system (2)

large, whileR0 does not vary significantly when k1 is small. In Fig. 5b,R0 increases
with the decrease of α1 when μ2 is small, but R0 does not vary significantly as μ2 is
large. On the other hand, R0 increases as μ2 decreases when α1 is small, while R0
does not vary significantly when α1 is large. The phenomena shown in Figs. 4 and 5
picture that sensitivity analysis of R0 is meaningful so as to do a better prevention
against dengue fever.

4.3 The effects of parameters on disease dynamics

This subsection explores the control measures of dengue fever by studying the effects
of transmission rate k1 and recovery rateα1 on dynamic behaviors of (2) whenR0 > 1.

Firstly, we fix k2 = 0.3 and spatial location x = π/2, and vary k1 from 0.1 to 1.
The values of other parameters are shown in Table 1 and the initial values satisfy (11).
Figure 6 illustrates the influence of k1 on solutions. Some noteworthy phenomena are
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Fig. 5 Sensitivity ofR0 to k1, α1 and μ2

Fig. 6 The effects of k1 on dynamics of humans and mosquitoes when R0 > 1

found from Fig. 6. More precisely, the increase of k1 will not only increase the time
for the densities of infected humans and mosquitoes to reach the peak, but also lead to
the increase of the peak (Fig. 6b, d). These findings suggest that necessary measures,
such as spraying insecticides and using bed nets, should be taken at the beginning of
dengue fever to reduce the biting rate and thus the disease transmission rate.

Secondly, we let k1 = 0.5, k2 = 1 and x = π/2, andmakeα1 from 2.5333month−1

to 10.1333month−1. The values of other coefficients are shown in Table 1. From
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Fig. 7 The effects of α1 on dynamics of humans and mosquitoes when R0 > 1

Fig. 7b, d, the increase of α1 will not only decrease the time for the densities of infected
humans and mosquitoes to reach the peak, but also decrease the peak. In addition, the
impact of α1 becomes significant with the passage of time. It thus seems imperative
to improve the cure rate of patients and implement mosquito control measures.

4.4 The effects of spatial heterogeneity onR0

In this subsection, we discuss the influence of spatial heterogeneity on dengue fever
by investigating the dependence of R0 on disease transmission rate ki , i = 1, 2. To
do this, we first let k1(x) = 0.00682(1.5 + 0.8 sin 3x + r1), r1 ∈ [0, 1], k2 = 0.075
and other parameters are the same as Table 1. Then the average of k1(·) onΩ is ka1 :=
1
Ω

∫

Ω
k1(x)dx = 0.01139+ 0.00682r1. By Fig. 8a,R0 increases with the increase of

r1, and the pink curve is always below the brown curve, wherein the brown and the
pink curves represent the effects of k1 and ka1 on R0. Moreover, we set k1 = 0.0682,
k2(x) = 0.015(0.5 + 0.3 cos 3x + r2), r2 ∈ [0, 1], and other parameters are given in
Table 1. Thus, the average of k2(·) onΩ is ka2 := 1

Ω

∫

Ω
k2(x)dx = 0.01295+0.015r2.

FromFig. 8b,R0 is an increasing function of r2, and the pink curve is always below the
brown curve, where the brown and the pink curves denote the effects of k2 and ka2 on
R0. Consequently, it can be seen from Fig. 8 that (i) the use of spatial-averaged disease
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Fig. 8 The influence of spatial heterogeneity onR0

transmission rate may underestimate disease infection level; (ii) spatial heterogeneity
has an important impact on dengue fever and therefore cannot be ignored in modeling.

4.5 The impacts of temperature onR0

As mentioned in Sect. 1, spatial heterogeneity is closely related to environmental
temperature inmosquito-borne diseases. AsAedes aegypti is themain vector of dengue
fever and its living environment is deeply affected by temperature (Li et al. 2019;
Vaidya et al. 2019; Yang et al. 2009), temperature is a factor that cannot be ignored
in the study of dengue fever. To explore the effect of temperature, according to Wang
and Zhao (2021), Yang et al. (2009), we take the natural death rate of mosquitoes μ2
as

μ2 = 30.4167(0.8692 − 0.1599T̃ + 0.01116T̃ 2 − 3.408 × 10−4T̃ 3 + 3.809

× 10−6T̃ 4)month−1,

here T̃ represents the temperature in Celsius. Fix k1 = 0.00282, k2 = 0.0085. And,
other parameters are shown in Table 1. Introducing two temperature indexes: Ta (mean
temperature) andΔT (augmenter temperature which is increasing or decreasing tem-
perature from mean temperature), then T̃ = Ta +ΔT , where ΔT varies from −5 to
5. Thus, by (Wang and Zhao (2012), Theorem 3.4), R0 = √

k1k2ΛM/(μ1μ2γ1γ2)

since the coefficients of (2) are positive constants.
The dependence of Ta and ΔT on R0 is depicted in Fig. 9 which is helpful for

examining the joint effects of Ta and ΔT . To study the impacts of Ta in more detail,
fixing ΔT = 0.5 and changing Ta from 25 to 32. Figure10a gives that μ2 decreases
as Ta increases when Ta < T ∗

a , and increases when Ta > T ∗
a . By Fig. 10a, too

high or low average temperature is not conducive to mosquito survival. Hence, R0
increases as Ta increases when Ta < T ∗

a , and decreases when Ta > T ∗
a , and R0 > 1

when Ta1 < Ta < Ta2 (see Fig. 10a). To explore the impacts of ΔT in more detail,
fixing Ta = 28.5 and changing ΔT from −5 to 5. From Fig. 10b, μ2 decreases with
the increase of ΔT as ΔT < ΔT ∗, and increases as ΔT > ΔT ∗. According to
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Fig. 9 Contour plot ofR0:
mean temperature Ta versus
augmenter temperature ΔT

Fig. 10 The dependence of μ2 andR0 on Ta and ΔT

Fig. 10b, too high or low augmenter temperature increase mosquito mortality. Thus,
R0 increases with the increase of ΔT as ΔT < ΔT ∗, and decreases as ΔT > ΔT ∗,
and R0 > 1 as Δ1T < Ta < Δ2T (see Fig. 10b). In conclusion, too high or low
average (or augmenter) temperature can inhibit the mosquito survival which reduces
R0 and henceforth helping to reduce the risk level of dengue fever.

4.6 The impacts of individual mobility on disease dynamics

We in this subsection investigate the effects of heterogeneous and homogeneous dif-
fusion rates of human and mosquito on R0 and dengue fever. Assuming k1(x) =
0.00682(2.5x2+0.1), k2(x) = 0.02(1.5x2+0.1), x ∈ (0, π), and α1 = 0.2month−1,
and other parameters are determined by Table 1. Motivated by the ideas of Allen et al.
(2008), we define

Ph := {x ∈ Ω | k̄(x) > γ̄ (x)} and Pl := {x ∈ Ω | k̄(x) < γ̄ (x)}

as high- and low-risk sites, respectively, wherein k̄1(·) = k1(·)k2(·)ΛM/(μ1μ2) and
γ̄ (·) = γ1(·)γ2(·). By Fig. 11a, Ph = (0, 0.24) and Pl = (0.24, π).
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Fig. 11 Graphs of (k̄(x), γ̄ (x)) and (DS(x), DI (x)) in (0, π)

To compare the effects of different dispersal mechanisms on dengue fever, we
consider model (2) with constant diffusion coefficients as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t Sh = D̂SΔSh +Λ(x)− k1(x)Sh Iv − μ1(x)Sh, t > 0, x ∈ Ω,
∂t Ih = D̂IΔIh + k1(x)Sh Iv − γ1(x)Ih, t > 0, x ∈ Ω,
∂t Sv = d̂SΔSv + M(x)− k2(x)Sv Ih − μ2(x)Sv, t > 0, x ∈ Ω,
∂t Iv = d̂IΔIv + k2(x)Sv Ih − γ2(x)Iv, t > 0, x ∈ Ω,
∂nSh = ∂n Ih = ∂nSv = ∂n Iv = 0, t > 0, x ∈ ∂Ω,

(12)

fulfilling the initial conditions (11), where D̂S , D̂I , d̂S and d̂I are the average of DS(·),
DI (·), dS(·) and dI (·) on Ω , respectively, that is,

D̂S = 1

|Ω|
∫

Ω

DS(x)dx, D̂I = 1

|Ω|
∫

Ω

DI (x)dx,

d̂S = 1

|Ω|
∫

Ω

dS(x)dx, d̂I = 1

|Ω|
∫

Ω

dI (x)dx .

First, we suppose the diffusion rates of human for model (2) are

DS(x) = 0.4e−100(x−0.01)2 + 0.002, DI = 0.2e−100(x−0.01)2 + 0.001, x ∈ (0, π),

which indicate that people move fast in low-risk areas and slowly in high-risk areas,
as shown in Fig. 11b, since people have their own dispersal strategies based on their
cognition (Wang et al. 2022). Moreover, assume the diffusion rates of mosquito for
(2) are

dS(x) = 0.0125 − 0.00125 cos 3x, dI (x) = 0.005 − 0.0005 cos 3x, x ∈ (0, π).
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Fig. 12 Evolutions of infected humans and mosquitoes of (2) and (12) at location x = 1

Then the diffusion coefficients of model (12) are

D̂S = 0.01455, D̂I = 0.00728, d̂S = 0.0125, d̂I = 0.005.

Therefore, the basic reproduction ratio R0 of (2) and (12) are 1.48 and 1.40,
respectively, which suggests that the infection scale may be underestimated if the
spatial-averaged diffusion rate is used in modeling. Fig. 12 shows the evolution trend
of infected individuals under homogeneous and heterogeneous diffusion mechanisms
at location x = 1. It can be found from 12 that, with the passage of time, the densities
of infected humans and mosquitoes in model (12) are ultimately smaller than that in
model (2), which indicate that the use of homogeneous diffusion can underestimate
the risk level of dengue fever to a certain extent. Furthermore, the density distribution
of infected individuals under the two diffusion mechanisms at time t = 80 is shown
in Fig. 13. On the one hand, by Fig. 13a, one finds that the density of infected humans
in models (2) and (12) reach the peak at different locations, and the peak of infected
human density in (12) is greater than that in (2). On the other hand, as can be seen
from Fig. 13, in areas Ωx0 and Ωx2 , the densities of infected individuals in (12) are
higher than that in (2). These are because people have cognition that they move slowly
in high-risk sites and fast in low-risk sites, which can reduce the contact probability
with mosquitoes. However, in areaΩx1 , the densities of infected individuals in (12) is
lower than that in (2), which implies that the heterogeneous movement may increase
the infection level.

Next, to study the impact of different mobility strategy of infected humans onR0.
Fix dI (x) = 0.005 − 0.0005 cos 3x and assume the diffusion rate of Ih in model (2)
is

DI = 0.2e−100(x−0.01)2 + 0.001 + c1, x ∈ (0, π),

where c1 changes from 0 to 0.15. Hence, D̂I = 0.00728 + c1 and d̂I = 0.005 in
model (12). From Fig. 14a, one finds that R0 is a decreasing function of c1, and the
red curve is always below the blue curve, wherein the blue and the red curves represent

123



   32 Page 22 of 51 H. Zhao et al.

Fig. 13 Distribution of infected humans and mosquitoes of (2) and (12) at time t = 80

Fig. 14 Dependence ofR0 on diffusion rates

the effects of heterogeneous diffusion DI (x) and homogeneous diffusion D̂I on R0,
respectively.

To discuss the influence of different flight strategy of infected mosquitoes on R0.
Let DI = 0.2e−100(x−0.01)2 + 0.001 and assume the diffusion rate of Iv in model (2)
is

dI = 0.005 − 0.0005 cos 3x + c2, x ∈ (0, π),

where c2 varies from 0 to 0.003. Then D̂I = 0.00728 and d̂I = 0.005 + c2 in model
(12). By Fig. 14b, it follows that R0 decreases with the increase of c2, and the red
curve is always below the blue curve, where the blue and the red curves represent
the effects of heterogeneous diffusion dI (x) and homogeneous diffusion d̂I on R0,
respectively. It can be summarized from Fig. 14 that the heterogeneous diffusion of
humans and mosquitoes may increase the transmission risk of dengue fever.

In summary, it can be concluded from Figs. 12, 13 and 14 that (i) the use of homo-
geneous diffusion mechanism may underestimate the disease risk; (ii) the cognitive
movement of populations contributes to dengue fever control to a certain extent.
Accordingly, it is plausible and necessary to take the heterogeneous diffusion into
account in the mosquito-borne disease modeling.
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5 Discussion

To study the effect of spatial heterogeneity on mosquito-borne diseases, in this work,
we investigated a R–D model with general incidence rates. We introduced the basic
reproduction ratioR0 of the model and then established the threshold dynamic results
in terms ofR0. Specifically, the disease-free steady state E0 is globally asymptotically
stable whenR0 ≤ 1, and unstable whenR0 > 1 (see Theorem 1). It should be pointed
out that the global attractivity of E0 can also be solved by applying the methods of Cui
et al. (2017), Shu et al. (2021) asR0 ≤ 1.WhenR0 > 1, we proved that the system (2)
is uniformly persistent and admits at least one endemic steady state (see Theorem 2).
In addition, if all coefficients are constants, then the endemic equilibrium is globally
asymptotically stable in the case of R0 > 1 (see Theorem 3). Moreover, to clarify
the effects of human and mosquito mobility on disease persistence, we discussed
the asymptotic profiles and monotonicity of R0 w.r.t heterogeneous diffusion rates
(see Theorems 4–7). To our knowledge, there are few studies on the monotonicity and
asymptotic behaviors for mosquito-borne disease models with heterogeneity diffusion
mechanism.

In the part of simulation, we utilized the model (1) to study dengue fever. Firstly,
we investigated the long term dynamics of (2) (see Figs. 1, 2 and 3). In order to detect
which parameters are sensitive to R0, we used the PRCCs for sensitivity analysis on
R0 (see Fig. 4), and found that the human recovery rate and the mosquito natural
death rate have crucial effects on dengue fever which implies that inhibiting mosquito
reproduction and increasing medical resources to improve cure rate are the preferred
measures to control the disease. Since the sensitivity may vary with some parameters,
the joint effects of parameters on R0 were carried out (see Fig. 5). The conclusions
show that sensitivity analysis of R0 can help develop targeted strategies to control
dengue fever. Secondly, we analyzed the influence of parameters on dynamics of (2)
which suggests that the measures should be taken in time to reduce biting rate at the
beginning of the disease and improve recovery rate (see Figs. 6 and7). By probing
the impacts of spatial heterogeneity on R0, we observe that the disease transmission
capacity may be underestimated if the heterogeneity is ignored (see Fig. 8). In Figs. 9
and10, we explored the effects of temperature onR0 and observed that it is conducive
to reducing the risk of disease transmission by adjusting the environmental temperature
to inhibit mosquito survival. Through comparing the effects of heterogeneous and
homogeneous diffusion rates on disease dynamics and R0 (see Figs. 12, 13 and14),
we found that it is crucial to incorporate the heterogeneous diffusion mechanism into
the mosquito-borne diseases modeling, and the cognitive movement of populations
may contribute to disease control to a certain extent.

As we all know, many infectious diseases, including mosquito-borne diseases, have
incubation periods (Wang et al. 2021a; Wu and Zhao 2019). It is reasonable to take
the incubation period into account in model (1). One natural question is how the
incubation period affects asymptotic behavior and monotonicity of R0. On the other
hand, from Figs. 9 and 10, R0 is highly associated with environmental temperature,
which is closely correlated with seasonality. Thus, another interesting question is how
asymptotic profiles and monotonicity of R0 respond to the change of heterogeneous
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diffusion rates in a seasonal case. We leave these interesting directions for future
investigation.

6 Proofs

6.1 Proof of Theorem 1

To prove Theorem 1, the following lemma is needed. The proof is standard (see for
Webb (1985), Proposition 4.16) and so the details are omitted.

Lemma 1 For any u0 ∈ X+, there exists a positive constant Tm = Tm(u0), such that
system (3) has a unique nonnegative solution

u(t, ·;u0) = etAu0 +
∫ t

0
e(t−s)A

F(u(s, ·;u0))ds,

for all t ∈ [0, Tm), and either Tm = ∞ or limt→T−
m

‖u(t, ·;u0)‖ = ∞.

Proof of Theorem 1 For any initial data u0 ∈ X+, it follows from Lemma 1 that system
(2) admits a unique nonnegative solution u(t, ·;u0) on [0, Tm).

According to the first and third equations of (2), one gets

⎧
⎨

⎩

∂t Sh ≤ ∇ · [DS(x)∇Sh] +Λ(x)− μ1(x)Sh, t > 0, x ∈ Ω,
∂t Sv ≤ ∇ · [dS(x)∇Sv] + M(x)− μ2(x)Sv, t > 0, x ∈ Ω,
∂nSh = ∂nSv = 0, t > 0, x ∈ ∂Ω.

Consider the system

{
∂t S̃h = ∇ · [DS(x)∇ S̃h] +Λ(x)− μ1(x)S̃h, t > 0, x ∈ Ω,
∂n S̃h = 0, t > 0, x ∈ ∂Ω. (13)

Then, by (Zhang et al. (2015), Lemma 2.1), system (13) has a unique positive solution
H(·) which is globally attractive in C(Ω̄,R). Using the comparison principle to give

lim sup
t→∞

Sh(t, ·) ≤ lim sup
t→∞

S̃h(t, ·) = H(·) uniformly in Ω̄,

which means that there is a constant C1 > 0, independent of u0, such that

‖Sh(t, ·)‖ ≤ C1, for any u0 ∈ X+, t ∈ [0, Tm). (14)

In the similar fashion, there exists a function W (·) > 0 such that

lim sup
t→∞

Sv(t, ·) ≤ lim sup
t→∞

S̃v(t, ·) = W (·) uniformly in Ω̄,
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where W (·) is the steady state of the system

{
∂t S̃v = ∇ · [dS(x)∇ S̃v] + M(x)− μ2(x)S̃v, t > 0, x ∈ Ω,
∂n S̃v = 0, t > 0, x ∈ ∂Ω. (15)

Hence,

‖Sv(t, ·)‖ ≤ C2, for any u0 ∈ X+, t ∈ [0, Tm), (16)

for some C2 > 0 independent of u0.
From the assumption (P2), one gets f1(x, Sh, Iv) ≤ ∂Iv f1(x,C1, 0)Iv and

f2(x, Sv, Ih) ≤ ∂Ih f2(x,C2, 0)Ih , for all x ∈ Ω . It then follows from the second
and fourth equations of (2) that

⎧
⎪⎪⎨

⎪⎪⎩

∂t Ih ≤ ∇ · [DI (x)∇ Ih] + f ∗
1Iv

Iv − γ1∗ Ih, t > 0, x ∈ Ω,
∂t Iv ≤ ∇ · [dI (x)∇ Iv] + f ∗

2Ih
Ih − γ2∗ Iv, t > 0, x ∈ Ω,

I 0h (x) ≥ 0, I 0v (x) ≥ 0, x ∈ Ω,
∂n Ih = ∂n Iv = 0, t > 0, x ∈ ∂Ω,

where f ∗
1Iv

:= maxx∈Ω̄ ∂Iv f1(x,C1, 0) and f ∗
2Ih

:= maxx∈Ω̄ ∂Ih f2(x,C2, 0). Let
Nh(t) := ∫

Ω
[Sh(t, x)+ Ih(t, x)+ Rh(t, x)]dx , Nv(t) := ∫

Ω
[Sv(t, x)+ Iv(t, x)]dx .

Adding the first three equations of (1), and then integrating the resulting equation over
Ω to give dNh(t)/dt ≤ Λ0 − μ1∗Nh(t) where Λ0 := ∫

Ω
Λ(x)dx . Therefore, there

exists a constant C3 > 0, depending on Nh(0), such that

∫

Ω

[Sh(t, x)+ Ih(t, x)+ Rh(t, x)]dx ≤ C3, t ∈ [0, Tm). (17)

Similarly,

∫

Ω

[Sv(t, x)+ Iv(t, x)]dx ≤ C4, t ∈ [0, Tm), (18)

for some C4 > 0, depending on Nv(0). Then, in view of (Dung (1997), Theorem 1),
there is a constant C5 > 0, depending on I 0h (·) and I 0v (·), such that

‖Ih(t, ·)‖ + ‖Iv(t, ·)‖ ≤ C5, t ∈ [0, Tm). (19)

Together with (14), (16) and (19), the solution of (2) is bounded on [0, Tm) × Ω̄ .
Hence, the solution of (2) exists globally on [0,∞)× Ω̄ .

Next, we show the ultimate boundedness of Ih(t, ·) and Iv(t, ·). To this end, one
needs to verify the following claim. ��
Claim. There exists a constant B2m > 0, independent of u0, such that

lim sup
t→∞

(‖Ih(t, ·)‖2m + ‖Iv(t, ·)‖2m ) ≤ B2m , m ∈ N, (20)
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where N represents the set of natural numbers.
For m = 0, the inequality (20) holds thanks to (17) and (18). Assume (20) is true

for m − 1, i.e., there exists a constant B2m−1 > 0 such that

lim sup
t→∞

(‖Ih(t, ·)‖2m−1 + ‖Iv(t, ·)‖2m−1) ≤ B2m−1 . (21)

Multiplying the second equation of (2) by I 2
m−1

h and integrating by parts yield

1

2m
∂t

∫

Ω

I 2
m

h dx = −2m − 1

22m−2

∫

Ω

DI (x)|∇ I 2
m−1

h |2dx +
∫

Ω

f1(x, Sh, Iv)I
2m−1
h dx

−
∫

Ω

γ1(x)I
2m
h dx .

Following from(14) that there exists a point t̂ > 0 such that
∫

Ω
f1(x, Sh, Iv)I

2m−1
h dx ≤

( f ∗
1Iv

+ 1)
∫

Ω
Iv I

2m−1
h dx , for any t ≥ t̂ . Using the Young inequality, we have

∫

Ω
Iv I

2m−1
h dx ≤ γ ∗

2 ( f
∗
1Iv

+1)−1
∫

Ω
I 2

m

v dx+Kε
∫

Ω
I 2

m

h dx ,where Kε = (εp)−q/pq−1,
ε = γ ∗

2 /[4( f ∗
1Iv

+ 1)], p = 2m and q = 2m/(2m − 1). Hence,

1

2m
∂t

∫

Ω

I 2
m

h dx ≤ −Dm

∫

Ω

|∇ I 2
m−1

h |2dx + γ ∗
2

4

∫

Ω

I 2
m

v dx + K ′
ε

∫

Ω

I 2
m

h dx, (22)

where Dm = (2m − 1)DI∗/22m−2 and K ′
ε = Kε( f ∗

1Iv
+ 1).

Similarly,

1

2m
∂t

∫

Ω

I 2
m

v dx ≤ −dm

∫

Ω

|∇ I 2
m−1

v |2dx + γ ∗
1

4

∫

Ω

I 2
m

h dx + K ′
ε′

∫

Ω

I 2
m

v dx, (23)

wherein dm = (2m − 1)dI∗/22m−2, K ′
ε′ = Kε′( f ∗

2Ih
+ 1) and ε′ = γ ∗

1 /[4( f ∗
2Ih

+ 1)].
Denote I 2

m := I 2
m

h + I 2
m

v . Adding (22) and (23) to get

1

2m
∂t

∫

Ω

I 2
m
dx ≤ −Dm

∫

Ω

|∇ I 2
m−1

h |2dx − dm

∫

Ω

|∇ I 2
m−1

v |2dx

+
(

K ′
ε + γ ∗

1

4

)∫

Ω

I 2
m

h dx +
(

K ′
ε′ + γ ∗

2

4

)∫

Ω

I 2
m

v dx .

Let χ1 := Dm/(2K ′
ε + γ ∗

1 /2) and χ2 := dm/(2K ′
ε′ + γ ∗

2 /2). By the interpolation
inequality, there are constants Cχ1 , Cχ2 > 0 such that

−Dm

∫

Ω
|∇ I 2

m−1

h |2dx ≤ −
(

2K ′
ε + γ ∗

1
2

)∫

Ω
I 2

m

h dx + Cχ1

(

2K ′
ε + γ ∗

1
2

)(∫

Ω
I 2

m−1

h dx

)2
,

and

−dm

∫

Ω
|∇ I 2

m−1
v |2dx ≤ −

(

2K ′
ε′ + γ ∗

2
2

)∫

Ω
I 2

m
v dx + Cχ2

(

2K ′
ε′ + γ ∗

2
2

)(∫

Ω
I 2

m−1
v dx

)2
.
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Therefore,

1

2m
∂t

∫

Ω
I 2

m
dx ≤ −γ∗

∫

Ω
I 2

m
dx + 2γ ∗

[(∫

Ω
I 2

m−1

h dx

)2
+
(∫

Ω
I 2

m−1
v dx

)2
]

, (24)

where t ≥ t̂ , γ∗ = min{K ′
ε + γ ∗

1 /4, K
′
ε′ + γ ∗

2 /4} and γ ∗ = max{Cχ1(K ′
ε +

γ ∗
1 /4),Cχ2(K

′
ε′ + γ ∗

2 /4)}. From (21), we get

lim sup
t→∞

[(∫

Ω

I 2
m−1

h dx

)2

+
(∫

Ω

I 2
m−1

v dx

)2
]

≤ 2B2m

2m−1 .

Substituting the above inequality into (24) to get

lim sup
t→∞

[(∫

Ω

I 2
m

h dx

) 1
2m +
(∫

Ω

I 2
m

v dx

) 1
2m
]

≤ B2m := 2 · 2m

√
4γ ∗
γ∗

B2m−1 ,

which implies that the claim holds. The embedding theorem Lq ↪→ L p, q ≥ p ≥ 1
yields that there is a constant Bp > 0 independent u0 such that

lim sup
t→∞

(‖Ih(t, ·)‖p + ‖Iv(t, ·)‖p) ≤ Bp, for any p ∈ Z
+.

It then follows from (Dung (1997), Theorem 1) (or see Dung 1998, Theorem 2.6 , Wu
and Zou 2018, Lemma 2.4) that Ih(t, ·) and Iv(t, ·) are ultimately bounded, i.e., there
is a constant C6 > 0 such that

lim sup
t→∞

(‖Ih(t, ·)‖ + ‖Iv(t, ·)‖) ≤ C6. (25)

Moreover, Sh(t, ·) and Sv(t, ·) are ultimately bounded owing to (14) and (16). Thus,
system (2) is point dissipative andΦ(t) is compact according to the proof of Corollary
3.6 inDung (1998). Bymeans of Theorem 3.4.8 inHale (1988),Φ(t) admits a compact
global attractor in X+. This finishes the proof. ��

6.2 Proof of Theorem 2 (i)

Before proving Theorem 2, we first give some preliminaries.

Lemma 2 Assume that (P1)–(P2) hold. Then the eigenvalue problem

⎧
⎨

⎩

−∇ · [DI (x)∇φ1] + γ1(x)φ1 = κk1(x, H)φ2, x ∈ Ω,
−∇ · [dI (x)∇φ2] + γ2(x)φ2 = κk2(x,W )φ1, x ∈ Ω,
∂nφ1 = ∂nφ2 = 0, x ∈ ∂Ω,

(26)

admits a unique positive eigenvalue κ0 with a positive eigenfunction. Moreover, the
basic reproduction ratioR0 of (2) fulfills R0 = 1/κ0.
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Proof We apply the idea of (Mitidieri and Sweers (1995), Theorem 5.1) to prove the
existence of κ0. By the definitions of operators B and F in Sect. 3.2, problem (26) can
be rewritten as

{
Bφ = κFφ, x ∈ Ω,
∂nφ = 0, x ∈ ∂Ω, (27)

where φ := (φ1, φ2)T . According to Mitidieri and Sweers (1995), operator B is coop-
erative and fully coupled. SinceB andF are invertible and strictly positive, respectively,
we consider the eigenvalue problem

Θ = κB−1FΘ. (28)

Following from (Sweers (1992), Lemma 1.4) thatB−1 is positive, irreducible and com-
pact operator, which leads to B−1F being positive, irreducible and compact. Applying
the Krein-Rutman theoremKrein and Rutman (1962) thereby yields that problem (28)
has a unique positive eigenvalue κ̃0 with a positive eigenfunction Θ̃ . More precisely,
κ̃0 = (r(B−1F))−1 (the inverse of the spectral radius of B−1F) and Θ̃ = κ̃0B−1FΘ̃ .
Hence, from (Mitidieri and Sweers (1995), Theorem 5.1), problem (27) admits a pos-
itive eigenvalue κ0 = κ̃0 with a positive eigenfunction φ = κ̃0B−1FΘ̃ .

To proveR0 = 1/κ0, inspired by the arguments of Theorem 3.2 in Wang and Zhao
(2012), it is necessary to show that κ0 is unique. By inspection of (Song et al. (2019),
Lemma 2.2), we assume that there exists another eigenvalue κ̂0 > 0 with a positive
eigenfunction (φ̂1, φ̂2)T , such that

⎧
⎨

⎩

−∇ · [DI (x)∇φ̂1] + γ1(x)φ̂1 = κ̂0k2(x,W )φ̂2, x ∈ Ω,
−∇ · [dI (x)∇φ̂2] + γ2(x)φ̂2 = κ̂0k1(x, H)φ̂1, x ∈ Ω,
∂nφ̂1 = ∂nφ̂2 = 0, x ∈ ∂Ω.

(29)

Multiplying the two equations of (26) and (29) by φ̂1, φ̂2 and φ1, φ2 respectively, and
then integrating by parts over Ω , one obtains

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

DI (x)∇φ1∇φ̂1dx +
∫

Ω

γ1(x)φ1φ̂1dx = κ0
∫

Ω

k1(x, H)φ2φ̂1dx,
∫

Ω

dI (x)∇φ2∇φ̂2dx +
∫

Ω

γ2(x)φ2φ̂2dx = κ0
∫

Ω

k2(x,W )φ1φ̂2dx,

and

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

DI (x)∇φ1∇φ̂1dx +
∫

Ω

γ1(x)φ1φ̂1dx = κ̂0
∫

Ω

k2(x,W )φ1φ̂2dx,
∫

Ω

dI (x)∇φ2∇φ̂2dx +
∫

Ω

γ2(x)φ2φ̂2dx = κ̂0
∫

Ω

k1(x, H)φ2φ̂1dx .
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Hence,

(κ0 − κ̂0)
∫

Ω

[k1(x, H)φ2φ̂1 + k2(x,W )φ1φ̂2]dx = 0.

Then κ0 = κ̂0 due to the positivity of ki , φi and φ̂i on Ω̄ , i = 1, 2, which means that κ0
is unique. Combining the uniqueness of κ0 and (Wang and Zhao (2012), Theorem 3.2),
one has R0 = 1/κ0. This ends the proof. ��

Let ( Īh(t, ·), Īv(t, ·)) = e−κt (ψ1(·), ψ2(·)) in (4). Then (ψ1, ψ2)
T satisfies

⎧
⎨

⎩

∇ · [DI (x)∇ψ1] + k1(x, H)ψ2 − γ1(x)ψ1 + κψ1 = 0, x ∈ Ω,
∇ · [dI (x)∇ψ2] + k2(x,W )ψ1 − γ2(x)ψ2 + κψ2 = 0, x ∈ Ω,
∂nψ1 = ∂nψ2 = 0, x ∈ ∂Ω.

(30)

According to the Krein-Rutman theorem, problem (30) has a unique principal eigen-
value κ1, i.e., κ1 is real and simple with positive eigenfunction (ψ1, ψ2)

T and the real
parts of other eigenvalues are strictly greater than κ1.

Lemma 3 1 − R0 has the same sign as κ1, i.e., sign(1 − R0) = sign(κ1).

Proof Let (ψ̂1, ψ̂2)
T be a positive eigenfunction of the corresponding eigenvalue κ1

of the adjoint problem of (30). Thus, (ψ̂1, ψ̂2)
T fulfills

⎧
⎨

⎩

∇ · [DI (x)∇ψ̂1] + k2(x,W )ψ̂2 − γ1(x)ψ̂1 + κ1ψ̂1 = 0, x ∈ Ω,
∇ · [dI (x)∇ψ̂2] + k1(x, H)ψ̂1 − γ2(x)ψ̂2 + κ1ψ̂2 = 0, x ∈ Ω,
∂nψ̂1 = ∂nψ̂2 = 0, x ∈ ∂Ω.

(31)

Multiplying thefirst equations of (26) and (31) by ψ̂1 andφ1 respectively, integrating
by parts and then subtracting the two equations to yield

κ1

∫

Ω

ψ̂1φ1dx = 1

R0

∫

Ω

k1(x, H)φ2ψ̂1dx −
∫

Ω

k2(x,W )φ1ψ̂2dx .

In the similar fashion, we get

κ1

∫

Ω

ψ̂2φ2dx = 1

R0

∫

Ω

k2(x,W )φ1ψ̂2dx −
∫

Ω

k1(x, H)φ2ψ̂1dx .

Thus, by adding above two equalities, it follows that

κ1

∫

Ω

(ψ̂1φ1 + ψ̂2φ2)dx =
(

1

R0
− 1

)∫

Ω

[k1(x, H)φ2ψ̂1 + k2(x,W )φ1ψ̂2]dx .

Thanks to the positivity of φi and ψ̂i , i = 1, 2, sign(1 − R0) = sign(κ1). This
completes the proof. ��
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By Lemma 4.2 in Zhang et al. (2015) (or see Wu and Zhao 2019), we have the
following result:

Lemma 4 Let u = (Sh, Ih, Sv, Iv)T be the solution of (2) satisfying u0 ∈ X+.

(i) If there exist some t̃0 ≥ 0, such that Ih(t̃0, ·) = 0 and Iv(t̃0, ·) = 0, then Ih(t, x) >
0 and Iv(t, x) > 0, for any t > t̃0 and x ∈ Ω̄;

(ii) For any u0 ∈ X+, then Sh(t, x) > 0, Sv(t, x) > 0 and there exists a positive
constant ζ0, independent of u0, such that

lim inf
t→∞ Sh(t, x) > ζ0, lim inf

t→∞ Sv(t, x) > ζ0, uniformly for x ∈ Ω̄.

Proof Following from system (2) that

⎧
⎨

⎩

∂t Ih ≥ ∇ · [DI (x)∇ Ih] − γ1(x)Ih, t > 0, x ∈ Ω,
∂t Iv ≥ ∇ · [dI (x)∇ Iv] − γ2(x)Iv, t > 0, x ∈ Ω,
∂n Ih = ∂n Iv = 0, t > 0, x ∈ ∂Ω.

Since Ih(t̃0, ·) = 0 and Iv(t̃0, ·) = 0, with the help of the maximum principle, it
follows that Ih(t, x) > 0 and Iv(t, x) > 0, for any t > t̃0, x ∈ Ω̄ .

In view of the proof of Theorem 1, there is a constant C9 > 0 such that |Ih(t, x)|+
|Iv(t, x)| ≤ C9, for any t > 0, x ∈ Ω̄ . Denote

f ∗
1Sh := max

x∈Ω̄, 0<Sh≤C1

∂Sh f1(x, Sh,C9), f ∗
2Sv := max

x∈Ω̄, 0<Sv≤C2

∂Sv f2(x, Sv,C9).

Then f1(·, Sh, Iv) ≤ f ∗
1Sh

Sh and f2(·, Sv, Ih) ≤ f ∗
2Sv

Sv by the assumption (P2).

Assume that (Ŝh(·, ·), Ŝv(·, ·))T is a solution of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t Ŝh = ∇ · [DS(x)∇ Ŝh] +Λ(x)− [ f ∗
1Sh

+ μ1(x)]Ŝh, t > 0, x ∈ Ω,
∂t Ŝv = ∇ · [dS(x)∇ Ŝv] + M(x)− [ f ∗

2Sv
+ μ2(x)]Ŝv, t > 0, x ∈ Ω,

Ŝh(0, x) = S0h(x), Ŝv(0, x) = S0v (x), x ∈ Ω,
∂n Ŝh = ∂n Ŝv = 0, t > 0, x ∈ ∂Ω.

(32)

By the comparison principle, we have Sh(t, x) ≥ Ŝh(t, x) > 0 and Sv(t, x) ≥
Ŝv(t, x) > 0, for any t > 0, x ∈ Ω̄ . Notice that system (32) possesses a unique
steady state, denoted by (Ĥ(·), Ŵ (·)), from the proof of Theorem 1. Thus,

lim inf
t→∞ Sh(t, x) ≥ inf

x∈Ω̄
Ĥ(x) := ζ 10 and lim inf

t→∞ Sv(t, x) ≥ inf
x∈Ω̄

Ŵ (x) := ζ 20 .

Choose ζ0 = min{ζ 10 , ζ 20 }. This ends the proof. ��
In the following, we start to prove the Theorem 2 (i).
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Proof of Theorem 2 (i). Todealwith the global asymptotic stability of E0 whenR0 ≤ 1,
we divided it into three steps.
Step 1 We show that (Ih(t, ·), Iv(t, ·))T → (0, 0)T as t → ∞ uniformly in Ω .

Define the set P := X+ ∩ X0, where

X0 :=
{
u0 ∈ X | ‖S0h‖ + ‖I 0h ‖ + ‖S0v‖ + ‖I 0v ‖ ≤ C∗

}
,

here C∗ = C1 + C2 + C5. Let Φ(t)u0 = (Sh(t, ·), Ih(t, ·), Sv(t, ·), Iv(t, ·))T be the
unique solution of (2) with u0 ∈ P . By the Sobolev inequalities and L p estimates, for
any β ∈ (0, 1), there is a constant C7 > 0 such that

‖(Sh, Ih, Sv, Iv)T ‖
C
β
2 ,β ([t∗−1,t∗+1]×Ω̄)

≤ C7‖(Sh, Ih, Sv, Iv)T ‖L∞([t∗−1,t∗+1]×Ω̄),

for each t∗ ≥ 1. It then follows from (14), (16) and (19) that there is a constantC8 > 0
such that

‖(Sh, Ih, Sv, Iv)T ‖Cβ(Ω̄) ≤ C7C8, for any t ≥ 1.

Hence,Φ(t) is compact, and for each u0 ∈ P , the orbit ofΦ(t)u0 under the dynamical
system generated by (2) has a compact closure in P .

To study the convergence of (Ih(t, ·), Iv(t, ·))T as t → ∞, we define the following
Lyapunov functional:

V[u](t) =
∫

Ω

(Ihψ̂1 + Ivψ̂2)dx, u = (Sh, Ih, Sv, Iv)T ∈ P,

wherein (ψ̂1, ψ̂2)
T is a positive eigenfunction corresponding to κ1 of (31). By direct

calculating and applying the assumption (P2), we obtain

V̇[u](t) =
∫

Ω

(
ψ̂1∂t Ih + ψ̂2∂t Iv

)
dx

=
∫

Ω

{[∇ · (DI∇ Ih)+ f1(x, Sh, Iv)− γ1 Ih]ψ̂1

+ [∇ · (dI∇ Iv)+ f2(x, Sv, Ih)− γ2 Iv]ψ̂2}dx
=
∫

Ω

{−[k2(x,W )ψ̂2 + κ1ψ̂1]Ih − [k1(x, H)ψ̂1 + κ1ψ̂2]Iv}dx

+
∫

Ω

f1(x, Sh, Iv)ψ̂1 + f2(x, Sv, Ih)ψ̂2dx

=−κ1
∫

Ω

(ψ̂1 Ih + ψ̂2 Iv)dx −
∫

Ω

[k1(x, H)Iv − f1(x, Sh, Iv)]ψ̂1dx

−
∫

Ω

[k2(x,W )Ih − f2(x, Sv, Ih)]ψ̂2dx

≤ −κ1
∫

Ω

(ψ̂1 Ih + ψ̂2 Iv)dx −
∫

Ω

[k1(x, H)− ∂Iv f1(x, Sh, 0)]Ivψ̂1dx
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−
∫

Ω

[k2(x,W )− ∂Ih f2(x, Sv, 0)]Ihψ̂2dx,

where V̇[u](t) = dV[u](t)/dt . SinceR0 ≤ 1, κ1 ≥ 0 due to Lemma 3. From (P2) and
the facts u ∈ P , Sh(t, ·) ≤ H(·), Sv(t, ·) ≤ W (·), we have k1(·, H) ≥ ∂Iv f1(·, Sh, 0)
and k2(·,W ) ≥ ∂Ih f2(·, Sv, 0). Then V̇[u](t) ≤ 0 because of the positivity of ψ̂i . Let
V̇[u0] := V̇[u](t) |t=0 and E := {u0 ∈ P | V̇[u0] ≡ 0}.

If κ1 > 0 (i.e.,R0 < 1), then

V̇[u](t) = −κ1
∫

Ω

(ψ̂1 Ih + ψ̂2 Iv)dx −
∫

Ω

[k1(x, H)Iv − f1(x, Sh, Iv)]ψ̂1dx

−
∫

Ω

[k2(x,W )Ih − f2(x, Sv, Ih)]ψ̂2dx .

Thus, from V̇[u0] ≡ 0, one gets I 0h = 0 and I 0v = 0. Then the maximal invariant set
of E is EM = {u0 ∈ P|I 0h = 0, I 0v = 0} when κ1 > 0.

If κ1 = 0 (i.e.,R0 = 1), then

V̇[u](t) = −
∫

Ω
[k1(x, H)Iv − f1(x, Sh , Iv)]ψ̂1dx −

∫

Ω
[k2(x,W )Ih − f2(x, Sv, Ih)]ψ̂2dx .

Following from V̇[u0] ≡ 0 that

0 = −
∫

Ω
[k1(x, H)I 0v − f1(x, S

0
h , I

0
v )]ψ̂1dx −

∫

Ω
[k2(x,W )I 0h − f2(x, S

0
v , I

0
h )]ψ̂2dx

≤ −
∫

Ω
[k1(x, H)− ∂Iv f1(x, S0h , 0)]I 0v ψ̂1dx −

∫

Ω
[k2(x,W )− ∂Ih f2(x, S

0
v , 0)]I 0h ψ̂2dx ≤ 0.

Hence,

∫

Ω
[k1(x, H)− ∂Iv f1(x, S0h , 0)]I 0v ψ̂1dx +

∫

Ω
[k2(x,W )− ∂Ih f2(x, S

0
v , 0)]I 0h ψ̂2dx = 0.

Note that k1(·, H) = ∂Iv f1(·, H , 0) and k2(·,W ) = ∂Ih f2(·,W , 0). Then, from the
above equality, we have

∂Iv f1(x, H , 0)I
0
v = ∂Iv f1(x, S0h , 0)I 0v and ∂Ih f2(x,W , 0)I

0
h = ∂Ih f2(x, S0v , 0)I 0h .

To show I 0v (·) ≡ 0 inΩ . Suppose not. From ∂Iv f1(·, H , 0)I 0v = ∂Iv f1(·, S0h , 0)I 0v , we
assume that there exist two subsets Ω1 and Ω2 of Ω satisfying Ω1 ∪ Ω2 = Ω and
Ω1 ∩Ω2 = ∅ such that

S0h(·) = H(·) and I 0v (·) = 0 in Ω1, and S0h(·) = H(·) and I 0v (·) = 0 in Ω2.

Substituting S0h(·) = H(·) in Ω1 into system (2) to yield f1(·, H , I 0v ) = 0 which
implies that I 0v (·) ≡ 0 inΩ1 from the assumption (P2). Then I 0v (·) ≡ 0 inΩ . Similarly,
I 0h (·) ≡ 0 in Ω . Thus, the maximal invariant set is EM = {u0 ∈ P|I 0h = 0, I 0v = 0}
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when κ1 = 0. Based on above discussions, EM = {u0 ∈ P|I 0h = 0, I 0v = 0} when
κ1 ≥ 0 (i.e.,R0 ≤ 1).

Accordingly, the LaSalle’s invariance principle for infinite dimensional dynamical
systems (Hale 1969, Theorem 1) implies that

‖(Ih(t, ·), Iv(t, ·))T ‖ → (0, 0)T , as t → ∞.

��

Step 2 We prove that, when R0 ≤ 1,

lim
t→∞ ‖(Sh(t, ·), Sv(t, ·))T − (H(·),W (·))T ‖ = 0 uniformly in Ω. (33)

We apply the theory of internally chain transitive sets established in Zhao (2017)
to show (33). It is obvious that Sh and Sv in (2) are asymptotic to systems (13) and
(15). Recall that H(·) and W (·) are global attractive steady states of (13) and (15),
respectively. Set J := ωX+(u0) be the omega limit of u0 ∈ X+ for Φ(t). From
Step 1 and Lemma 4, it follows that J = Jh,v × {(0, 0)T } and {(0, 0)T } /∈ Jh,v .
Then J is an internally chain transitive set of Φ(t) (see Lemma 1.2.1 in Zhao 2017).
As Φ(J ) = J , we get Φ(J ) = Φ̃(Jh,v) × {(0, 0)T } = Jh,v × {(0, 0)T } and so
Φ̃(Jh,v) = Jh,v , where Φ̃(t) is the semiflow generated by (13) and (15). Hence,
Jh,v is an internally chain transitive set of Φ̃(t). Let (S0h(·), S0v (·)) = (H(·),W (·)).
Therefore, Jh,v ∩ WS({(S0h , S0v )T }) = ∅ owing to the attractivity of (S0h , S

0
v )

T and
the fact Jh,v = {(0, 0)T }, here WS({(S0h , S0v )T }) is the stable set of {(S0h , S0v )T } for
Φ̃(t). By (Zhao (2017), Theorem 1.2.1), Jh,v = {(S0h , S0v )T }which indicates that (33)
holds. Combining Step 1 and Step 2, E0 is globally attractive in the case of R0 ≤ 1.

Step 3 In what follows, we deal with the stability of E0 when R0 ≤ 1.
Through utilizing the ideas of Cui et al. (2017), Shu et al. (2021), we letΨ (t) be the

solution semigroup generated by the system (4) and �(Ψ ) be the exponential growth
bound of Ψ . With the aid of (Thieme (2009), Theorem 3.14) and (Wang and Zhao
(2012), Theorem 3.1) �(Ψ ) = −κ1 ≤ 0 which means that there exists a constant
C9 > 0 such that ‖Ψ (t)‖ ≤ C9. Set u(t, ·) be a solution of (2) satisfying the following
initial value condition

u0 ∈ Qσ :=
{
u0 ∈ X+ | ‖S0h − H‖ + ‖I 0h ‖ + ‖S0v − W‖ + ‖I 0v ‖ ≤ σ

}
,

for any σ > 0. On account of the proof of Theorem 1, u(t, ·) fulfils

‖Sh(t, ·)‖ + ‖Ih(t, ·)‖ + ‖Sv(t, ·)‖ + ‖Iv(t, ·)‖ ≤ C∗, t ≥ 0, (34)

where C∗ = C1 + C2 + C5.
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Noticing that H(·) andW (·) are the steady states of (13) and (15), respectively, and
by means of (2), one has

⎧
⎪⎪⎨

⎪⎪⎩

∂tU1 = ∇ · [DS(x)∇U1] − f1(x, Sh, Iv)− μ1(x)U1, t > 0, x ∈ Ω,
∂t V1 = ∇ · [dS(x)∇V1] − f2(x, Sv, Ih)− μ2(x)V1, t > 0, x ∈ Ω,
S0h(x) ∈ Qσ , S0v (x) ∈ Qσ , x ∈ Ω,
∂nU1 = ∂nV1 = 0, t > 0, x ∈ ∂Ω,

(35)

where U1(t, ·) = Sh(t, ·) − H(·) and V1(t, ·) = Sv(t, ·) − W (·). Thanks to the
comparison principle and (Wang and Zhao (2011), (1.10)), we have

Sh(t, x)− H(x) ≤ σe−μ1∗t and Sv(t, x)− W (x) ≤ σe−μ3∗t , (36)

for all t > 0 and x ∈ Ω .
By the assumption (P2) and (34), it follows that

f1(·, Sh, Iv) ≤ k1(·, H)Iv + C∗σe−μ1∗t , f2(·, Sv, Ih) ≤ k2(·,W )Ih + C∗σe−μ3∗t ,

in (0,∞)×Ω . Then following from (2) that

⎧
⎪⎪⎨

⎪⎪⎩

∂t Ih ≤ ∇ · [DI (x)∇ Ih] + k1(x, H)Iv − γ1(x)Ih + C∗σe−μ1∗t , t > 0, x ∈ Ω,
∂t Iv ≤ ∇ · [dI (x)∇ Iv] + k2(x,W )Ih − γ2(x)Iv + C∗σe−μ3∗t , t > 0, x ∈ Ω,
I 0h (x) ∈ Qσ , I 0v (x) ∈ Qσ , x ∈ Ω,
∂n Ih = ∂n Iv = 0, t > 0, x ∈ ∂Ω.

Since ‖Ψ (t)‖ ≤ C9, applying the comparison principle yields that

‖Ih(t, ·)‖ ≤ C9σ +
∫ t

0
C9C∗σe−μ1∗τdτ ≤ σC9

(

1 + C∗
μ1∗

)

, (37)

and

‖Iv(t, ·)‖ ≤ C9σ +
∫ t

0
C9C∗σe−μ3∗τdτ ≤ σC9

(

1 + C∗
μ3∗

)

, t > 0. (38)

Moreover, similar to the arguments of (35), we have

⎧
⎪⎪⎨

⎪⎪⎩

∂tU2 = ∇ · [DS(x)∇U2] + f1(x, Sh, Iv)− μ1(x)U2, t > 0, x ∈ Ω,
∂t V2 = ∇ · [dS(x)∇V2] + f2(x, Sv, Ih)− μ2(x)V2, t > 0, x ∈ Ω,
S0h(x) ∈ Qσ , S0v (x) ∈ Qσ , x ∈ Ω,
∂nU2 = ∂nV2 = 0, t > 0, x ∈ ∂Ω,

(39)
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whereU2(t, ·) = H(·)−Sh(t, ·) andV2(t, ·) = W (·)−Sv(t, ·). According to (37)–(38)
and the assumption (P2), there are constants C10,C ′

10 > 0 such that

f1(x, Sh, Iv) ≤ C10σ and f2(x, Sv, Ih) ≤ C ′
10σ, for all t > 0, x ∈ Ω.

Thus, the comparison principle is applied to system (39) to give

H(x)− Sh(t, x) ≤ C10σ

μ1∗
and W (x)− Sv(t, x) ≤ C ′

10σ

μ3∗
, (40)

for any t > 0, x ∈ Ω .
Consequently, together with (36), (37), (38) and (40), we get

‖Sh(t, ·)− H(·)‖ + ‖Ih(t, ·)‖ + ‖Sv(t, ·)− W (·)‖ + ‖Iv(t, ·)‖ ≤ C11σ,

where

C11 = 2 + C9

(

2 + C∗
μ1∗

+ C∗
μ3∗

)

+ C10

μ1∗
+ C ′

10

μ3∗
> 1

which implies that the selection of C11 does not depend on σ . Accordingly, for any
initial value u0 ∈ Qσ , the solution u(t, ·) of (2) lies in C11Qσ which establishes the
stability of E0. In view of Step 1–Step 3, we obtain that E0 is globally asymptotically
stable in the case of R0 ≤ 1.

To show the instability of E0 when R0 > 1. Consider the spectrum problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · [DS(x)∇�1] − k1(x, H)�4 − μ1(x)�1 + κ�1 = 0, x ∈ Ω,
∇ · [DI (x)∇�2] + k1(x, H)�4 − γ1(x)�2 + κ�2 = 0, x ∈ Ω,
∇ · [dS(x)∇�3] − k2(x,W )�2 − μ2(x)�3 + κ�3 = 0, x ∈ Ω,
∇ · [dI (x)∇�4] + k2(x,W )�2 − γ2(x)�4 + κ�4 = 0, x ∈ Ω,
∂n�1 = ∂n�2 = ∂n�3 = ∂n�4 = 0, x ∈ ∂Ω,

(41)

By inspection of Theorem 5.1.3 in Henry (1981), it is sufficient to prove system (41)
has a nontrivial solution satisfying Reκ < 0. By Lemma 3, κ1 is the eigenvalue
of (41). Without loss of generality, one can choose (� ∗

2 ,�
∗
4 ) as the corresponding

eigenfunction of κ1. Furthermore, there is a unique (� ∗
1 ,�

∗
3 ) of (41). Then E0 is

unstable. This ends the proof. ��

6.3 Proof of Theorem 2 (ii)

Proof of Theorem 2 (ii) In order to use the persistence theory developed by Magal and
Zhao (2005) and Zhao (2017), let

P0 := {u0 ∈ P|I 0h = 0 and I 0v = 0} and ∂P0 := {u0 ∈ P|I 0h = 0 or I 0v = 0},
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where u0 = (S0h , I 0h , S0v , I 0v )T . It is easy to know that P = P0 ∪ ∂P0, and P0 and ∂P0
are relatively open and closed subsets of P , respectively. Moreover, P0 is a convex set.
Recall that Φ(t)u0 be the unique solution of (2) with u0 ∈ P . By Theorem 1, Φ(t)
admits a global compact attractor. To complete the proof, we first prove the following
claims. ��
Claim 1. Φ(t)P0 ⊂ P0. This is obvious due to the strong maximum principle Evans
(1986).

Let U∂ be the maximum positive invariant set of Φ(t) in ∂P0, that is, U∂ := {u0 ∈
P |Φ(t)u0 ∈ ∂P0}. One can verify that U∂ = {u0 ∈ P | I 0h = I 0v = 0}. Denote ω(u0)
as the omega limit set of u0 in P . Set

U ∂ :=
⋃

{u0∈U∂ }
ω(u0).

Claim 2. U ∂ = {E0}.
Indeed, for any u0 ∈ U∂ , from the definition of U∂ , one obtains Ih(t, x) =

Ih(t, x) = 0, for all t ≥ 0, x ∈ Ω̄ . Therefore, substituting it into (2) to give

⎧
⎨

⎩

∂t Sh = ∇ · [DS(x)∇Sh] +Λ(x)− μ1(x)Sh, t > 0, x ∈ Ω,
∂t Sv = ∇ · [dS(x)∇Sv] + M(x)− μ2(x)Sv, t > 0, x ∈ Ω,
∂nSh = ∂nSv = 0, t > 0, x ∈ ∂Ω.

From (13) and (15), it follows that U ∂ = {E0}, and then {E0} is an isolated and
compact invariant set for Φ(t) restricted in U∂ .
Claim 3. There is a constant δ1 > 0, independent of u0, such that

lim sup
t→∞

‖Φ(t)u0 − (H(·), 0,W (·), 0)T ‖ > δ1.

Arguing by contradiction, we assume that, for any δ̂1 > 0, there exists û0 =
(Ŝ0h , Î

0
h , Ŝ

0
v , Î

0
v )

T such that

lim sup
t→∞

‖Φ(t)û0 − (H(·), 0,W (·), 0)T ‖ ≤ δ̂1, (42)

where Φ(t)û0 = (Ŝh(t, ·), Îh(t, ·), Ŝv(t, ·), Îv(t, ·))T . Take a δ2 > 0 small enough.
Let κ1(δ2) be the principal eigenvalue of the eigenvalue problem

⎧
⎨

⎩

∇ · [DI (x)∇ψ1] + ∂Iv f1(x, H − δ2, δ2)ψ2 − γ1(x)ψ1 + κψ1 = 0, x ∈ Ω,
∇ · [dI (x)∇ψ2] + ∂Ih f2(x,W − δ2, δ2)ψ1 − γ2(x)ψ2 + κψ2 = 0, x ∈ Ω,
∂nψ1 = ∂nψ2 = 0, x ∈ ∂Ω,

wherein (ψ1, ψ2)
T is the corresponding positive eigenfunction. SinceR0 > 1, κ1 < 0

by Lemma 3, here κ1 is the eigenvalue of (30). Note that κ1(δ2)→ κ1 < 0 as δ2 → 0.
Thus, one can choose a sufficiently small δ2 such that κ1(δ2) < 0. According to
the arbitrariness of δ̂1, we let δ̂1 = δ2. By (42), there is a point t∗0 > 0 such that
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Ŝh(t, ·) ≥ H(·) − δ2, Ŝv(t, ·) ≥ W (·) − δ2, Îh(t, ·) ≤ δ2 and Îv(t, ·) ≤ δ2 in Ω̄ , for
any t ≥ t∗0 . Hence, from the assumption (P2), we have

f1(x, Ŝh, Îv) ≥ f1(x, H − δ2, Îv) ≥ ∂ Îv f1(x, H − δ2, δ2) Îv,

and

f2(x, Ŝv, Îh) ≥ f2(x,W − δ2, Îh) ≥ ∂ Îh f2(x,W − δ2, δ2) Îh,

for all t ≥ t∗0 and x ∈ Ω̄ .
In addition, it follows from Theorem 1 and the strong maximum principle that

(Ŝh, Îh, Ŝv, Îv)T ∈ I nt(X+) (interior of X+). Then, there exists a constant ρ0 > 0
small enough, such that Îh(t∗0 , ·) ≥ ρ0ψ1(·), Îv(t∗0 , ·) ≥ ρ0ψ2(·). We can testify that
( Îh(t, ·), Îv(t, ·))T is a super-solution of the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t Ĩh = ∇ · [DI∇ Ĩh] + ∂ Ĩv f1(x, H − δ2, δ2) Ĩv − γ1 Ĩh, t > t∗0 , x ∈ Ω,
∂t Ĩv = ∇ · [dI∇ Ĩv] + ∂ Ĩh f2(x,W − δ2, δ2) Ĩh − γ2 Ĩv, t > t∗0 , x ∈ Ω,
∂n Ĩh = ∂n Ĩv = 0, t > t∗0 , x ∈ ∂Ω.
Ĩh(t∗0 , x) = ρ0ψ1(x), Ĩv(t∗0 , x) = ρ0ψ2(x), x ∈ Ω.

Noticing that (ρ0e−κ1(δ2)(t−t∗0 )ψ1, ρ0e−κ1(δ2)(t−t∗0 )ψ2)
T is a solution of above system

and κ1 (δ2) < 0, one has

Îh(t, ·) ≥ ρ0e−κ1(δ2)(t−t∗0 )ψ1(·)→ ∞ and Îv(t, ·) ≥ ρ0e−κ1(δ2)(t−t∗0 )ψ2(·)→ ∞,

as t → ∞, which contradicts (42) and so Claim 3 is valid. Claim 3 indicates that {E0}
is an isolated invariant set for Φ(t) restricted in P , and WS({E0}) ∩ P0 = ∅, where
WS({E0}) is the stable set of {E0} w.r.t Φ(t).

Combining Claims 1-3 and Theorem 1.3.1 in Zhao (2017), Φ(t) is uniformly per-
sistent for (P, ∂P0) and then (5) is true. Moreover, Theorem 1.3.7 in Zhao (2017)
(see also Magal and Zhao 2005, Theorem 4.7) implies that system (2) has at least one
endemic steady state. This completes the proof. ��

6.4 Proof of Theorem 3

Proof of Theorem 3 Denote q(z) = z−1− ln z which satisfies that q(z) ≥ 0 for z > 0,
and q(z) = 0 iff z = 1. We first deal with the global attractivity of E∗

1 by constructing
a Lyapunov functional and applying the LaSalle’s invariance principle. Define

L[u](t) := 1

f1(S∗
h , I

∗
v )

[L1(t)+ L2(t)] + 1

f2(S∗
v , I

∗
h )

[L3(t)+ L4(t)],

123



   32 Page 38 of 51 H. Zhao et al.

wherein

L1(t) :=
∫

Ω

(

Sh − S∗
h − S∗

h ln
Sh
S∗
h

)

dx, L2(t) :=
∫

Ω

(

Ih − I ∗
h − I ∗

h ln
Ih
I ∗
h

)

dx,

and

L3(t) :=
∫

Ω

(

Sv − S∗
v − S∗

v ln
Sv
S∗
v

)

dx, L4(t) :=
∫

Ω

(

Iv − I ∗
v − I ∗

v ln
Iv
I ∗
v

)

dx .

Noting that f1(S∗
h , I

∗
v ) + μ1S∗

h = Λ, γ1 I ∗
h = f1(S∗

h , I
∗
v ), f2(S∗

v , I
∗
h ) + μ2S∗

v = M
and γ2 I ∗

v = f2(S∗
v , I

∗
h ), after elementary but tedious computations, we obtain

L̇[u](t) = − μ1

f1(S∗
h , I

∗
v )

∫

Ω

(Sh − S∗
h )

2

Sh
dx − DSS∗

h

f1(S∗
h , I

∗
v )

∫

Ω

|∇Sh |2
S2h

dx

− μ2

f2(S∗
v , I

∗
h )

∫

Ω

(Sv − S∗
v )

2

Sv
dx − dSS∗

v

f2(S∗
v , I

∗
h )

∫

Ω

|∇Sv|2
S2v

dx

− DI I ∗
h

f1(S∗
h , I

∗
v )

∫

Ω

|∇ Ih |2
I 2h

dx − dI I ∗
v

f2(S∗
v , I

∗
h )

∫

Ω

|∇ Iv|2
I 2v

dx + Q,

where L̇[u](t) = dL[u](t)/dt and

Q =
∫

Ω

[

2 − S∗
h

Sh
− f1(Sh, Iv)I ∗

h

f1(S∗
h , I

∗
v )Ih

− Ih
I ∗
h

+ S∗
h f1(Sh, Iv)

Sh f1(S∗
h , I

∗
v )

]

dx

+
∫

Ω

[

2 − S∗
v

Sv
− f2(Sv, Ih)I ∗

v

f2(S∗
v , I

∗
h )Iv

− Iv
I ∗
v

+ S∗
v f2(Sv, Ih)

Sv f2(S∗
v , I

∗
h )

]

dx

=
∫

Ω

[

2 − S∗
h

Sh
− f1(Sh, Iv)I ∗

h

f1(S∗
h , I

∗
v )Ih

− Ih
I ∗
h

+ S∗
h f1(Sh, Iv)

Sh f1(S∗
h , I

∗
v )

]

dx

+
∫

Ω

[

2 − S∗
v

Sv
− f2(Sv, Ih)I ∗

v

f2(S∗
v , I

∗
h )Iv

− Iv
I ∗
v

+ S∗
v f2(Sv, Ih)

Sv f2(S∗
v , I

∗
h )

]

dx

+ ln
f1(Sh, Iv)I ∗

h

f1(S∗
h , I

∗
v )Ih

+ ln
Sh f1(S∗

h , I
∗
v )

S∗
h f1(Sh, Iv)

+ ln
f2(Sv, Ih)I ∗

v

f2(S∗
v , I

∗
h )Iv

+ ln
Sv f1(S∗

v , I
∗
h )

S∗
v f2(Sv, Ih)

+ ln
S∗
h

Sh
+ ln

S∗
v

Sv
+ ln

Ih
I ∗
h

+ ln
Iv
I ∗
v

+ Sh f1(S∗
h , I

∗
v )Iv

S∗
h f1(Sh, Iv)I ∗

v

− Sh f1(S∗
h , I

∗
v )Iv

S∗
h f1(Sh, Iv)I ∗

v

+ Sv f2(S∗
v , I

∗
h )Ih

S∗
v f2(Sv, Ih)I

∗
h

− Sv f2(S∗
v , I

∗
h )Ih

S∗
v f2(Sv, Ih)I

∗
h

= −q

(
S∗
h

Sh

)

− q

(
S∗
v

Sv

)

− q

(
f1(Sh, Iv)I ∗

h

f1(S∗
h , I

∗
v )Ih

)

− q

(
f2(Sv, Ih)I ∗

v

f2(S∗
v , I

∗
h )Iv

)

− q

(
Sh f1(S∗

h , I
∗
v )Iv

S∗
h f1(Sh, Iv)I ∗

v

)

− q

(
Sv f2(S∗

v , I
∗
h )Ih

S∗
v f2(Sv, Ih)I

∗
h

)

+ B1 + B2,
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wherein

B1 =
[

1 − Sh f1(S∗
h , I

∗
v )

S∗
h f1(Sh, Iv)

] [
S∗
h f1(Sh, Iv)

Sh f1(S∗
h , I

∗
v )

− Iv
I ∗
v

]

,

B2 =
[

1 − Sv f2(S∗
v , I

∗
h )

S∗
v f2(Sv, Ih)

] [
S∗
v f2(Sv, Ih)

Sv f2(S∗
v , I

∗
h )

− Ih
I ∗
h

]

.

It follows from fi (S, I ) = Sgi (I ) that B1 and B2 can be simplified as

B1 =
[

1 − g1(I ∗
v )

g1(Iv)

] [
g1(Iv)

g1(I ∗
v )

− Iv
I ∗
v

]

, B2 =
[

1 − g2(I ∗
h )

g2(Ih)

] [
g2(Ih)

g2(I ∗
h )

− Ih
I ∗
h

]

.

Similar to the arguments of (Shu et al. 2020, Theorem 5.6), we obtain Bi ≤ 0 since
gi (I ) is strictly increasing and concave down w.r.t I by means of the assumption
(P2), i = 1, 2. Thus, L̇[u](t) ≤ 0 and L̇[u](t) ≡ 0 iff Sh(t, ·) ≡ S∗

h , Ih(t, ·) ≡ I ∗
h ,

Sv(t, ·) ≡ S∗
v and Iv(t, ·) ≡ I ∗

v . Denote L̇[u0] =: L̇[u](t)|t=0. Consequently, the
largest compact invariant set is

Γ = {u0 ∈ P | L̇[u0] = 0
} ≡ {E∗

1 } = {(S∗
h , I

∗
h , S

∗
v , I

∗
v )}.

Then the LaSalle’s invariance principle implies that

lim
t→+∞(Sh(t, x), Ih(t, x), Sv(t, x), Iv(t, x)) = (S∗

h , I
∗
h , S

∗
v , I

∗
v ), for all x ∈ Ω̄,

which means that E∗
1 is globally attractive.

In the following, we shall cope with the locally asymptotic stability of E∗
1 . With

the aid of ideas of Shu et al. (2021), linearizing (6) at E∗
1 to gives

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t S̄h = DSΔS̄h − g1(I ∗
v )S̄h − S∗

h g
′
1(I

∗
v ) Īv − μ1 S̄h, t > 0, x ∈ Ω,

∂t Īh = DIΔ Īh + g1(I ∗
v )S̄h + S∗

h g
′
1(I

∗
v ) Īv − γ1 Īh, t > 0, x ∈ Ω,

∂t S̄v = dSΔS̄v − g2(I ∗
h )S̄v − S∗

v g
′
2(I

∗
h ) Īh − μ2 S̄v, t > 0, x ∈ Ω,

∂t Īv = dIΔ Īv + g2(I ∗
h )S̄v + S∗

v g
′
2(I

∗
h ) Īh − γ2 Īv, t > 0, x ∈ Ω,

∂n S̄h = ∂n Īh = ∂n S̄v = ∂n Īv = 0, t > 0, x ∈ ∂Ω.

Let (S̄h, Īh, S̄v, Īv)T = eκt (w1, w2, w3, w4)
T := eκtw. Then, we have

{
Π(κ)w = 0, x ∈ Ω,
∂nw = 0, x ∈ ∂Ω, (43)

where

Π(κ) =

⎛

⎜
⎜
⎝

−g1(I
∗
v )− μ1 − κ + DSΔ 0 0 −S∗

h g
′
1(I

∗
v )

g1(I
∗
v ) −γ1 − κ + DIΔ 0 S∗

h g
′
1(I

∗
v )

0 −S∗
v g

′
2(I

∗
h ) −g2(I

∗
h )− μ2 − κ + dSΔ 0

0 S∗
v g

′
2(I

∗
h ) g2(I

∗
h ) −γ2 − κ + dIΔ

⎞

⎟
⎟
⎠ .
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If any eigenvalue of system (43) has a negative real part, then E∗
1 is locally asymptot-

ically stable. Suppose not. Assume that there exists an eigenvalue κ∗ ∈ C (the set of
complex numbers) of (43) satisfying Re κ∗ ≥ 0 (the real part of κ∗), then the opera-
tor −Δ with homogeneous Neumann boundary condition in Ω admits an eigenvalue
� ≥ 0 such that the determinant of matrix Π(κ∗) vanishes, that is,
∣
∣
∣
∣
∣
∣
∣
∣

−g1(I
∗
v )− μ1 − κ∗ − DS� 0 0 −S∗

h g
′
1(I

∗
v )

g1(I
∗
v ) −γ1 − κ∗ − DI � 0 S∗

h g
′
1(I

∗
v )

0 −S∗
v g

′
2(I

∗
h ) −g2(I

∗
h )− μ2 − κ∗ − dS� 0

0 S∗
v g

′
2(I

∗
h ) g2(I

∗
h ) −γ2 − κ∗ − dI �

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Through a direct calculations, one obtains

g1(I
∗
v )g2(I

∗
h )(κ

∗ + DI� + γ1)(κ∗ + dI� + γ2)
+ g1(I

∗
v )(κ

∗ + dS� + μ2)(κ
∗ + DI� + γ1)(κ∗ + dI� + γ2)

+ g2(I
∗
h )(κ

∗ + DS� + μ1)(κ
∗ + DI� + γ1)(κ∗ + dI� + γ2)+ B3

= S∗
h S

∗
v g

′
1(I

∗
v )g

′
2(I

∗
h )(κ

∗ + DS� + μ1)(κ
∗ + dS� + μ2).

where B3 = (κ∗ + DS� + μ1)(κ
∗ + dS� + μ2)(κ

∗ + DI� + γ1)(κ∗ + dI� + γ2)
satisfying |B3| > 0. Since S∗

h g1(I
∗
v ) = γ1 I ∗

h and S∗
v g2(I

∗
h ) = γ2 I ∗

v , one gets
S∗
h S

∗
v g

′
1(I

∗
v )g

′
2(I

∗
h ) ≤ γ1γ2 due to the concavity of gi (I ) w.r.t I in view of (P2),

i = 1, 2. Then dividing the above equality by B3 to yield

A1(κ
∗, �) =:

∣
∣
∣
∣

g1(I ∗
v )g2(I

∗
h )

(κ∗ + DS� + μ1)(κ∗ + dS� + μ2)
+ g1(I ∗

v )

(κ∗ + DS� + μ1)

+ g2(I ∗
h )

(κ∗ + dS� + μ2)
+ 1

∣
∣
∣
∣

≤
∣
∣
∣
∣

γ1γ2

(κ∗ + DI� + γ1)(κ∗ + dI� + γ2)
∣
∣
∣
∣ := A2(κ

∗, �).

Then A1(κ
∗, �) is greater than one, whereas A2(κ

∗, �) less than or equal to one owing
to Re κ∗ ≥ 0 and � ≥ 0 which is a contradiction. Accordingly, all eigenvalues of sys-
tem (43) have negative real parts which yields that E∗

1 is locally asymptotically stable.
Combining the global attractivity of E∗

1 , it follows that E
∗
1 is globally asymptotically

stable. This finishes the proof. ��

6.5 Proof of Theorem 4

Denote ki∗ := min{ki (x, ·) : x ∈ Ω̄} and k∗
i := max{ki (x, ·) : x ∈ Ω̄}. The following

results are necessary before completing the proof of Theorem 4.

Lemma 5 For each DI (x) > 0 and dI (x) > 0, x ∈ Ω̄ , then R0 satisfies

√
k1∗k2∗
γ ∗
1 γ

∗
2

≤ R0 ≤
√

k∗
1k

∗
2

γ1∗γ2∗
. (44)
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Proof By Lemma 2, 1/R0 is the unique principal eigenvalue of (26). Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

R0
k1(x, H)φ2 = −∇ · [DI (x)∇φ1] + γ1(x)φ1, x ∈ Ω,

1

R0
k2(x,W )φ1 = −∇ · [dI (x)∇φ2] + γ2(x)φ2, x ∈ Ω,

∂nφ1 = ∂nφ2 = 0, x ∈ ∂Ω.
(45)

Integrating two equations of (45) overΩ and then multiplying two resulting equalities
to give

R2
0

∫

Ω

γ1(x)φ1dx
∫

Ω

γ2(x)φ2dx =
∫

Ω

k1(x, H)φ2dx
∫

Ω

k2(x,W )φ1dx .

Hence, (44) holds due to the positivity of φi , i = 1, 2. This ends the proof. ��
Remark 8 The result of Lemma5 suggests thatR0 is bounded, and if k1(·, H), k2(·,W )
and γi (·) are constants, then R0 is independent of DI (·) and dI (·).
Proof of Theorem 4 To address (i). From (29), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−DI0∇ · [D̄I (x)∇φ̂1] + γ1(x)φ̂1 = 1

R0
k2(x,W )φ̂2, x ∈ Ω,

−dI0∇ · [d̄I (x)∇φ̂2] + γ2(x)φ̂2 = 1

R0
k1(x, H)φ̂1, x ∈ Ω,

∂nφ̂1 = ∂nφ̂2 = 0, x ∈ ∂Ω.
(46)

For the case DI0 → 0. Choosing ϑ ∈ (0, 1), by using the density of Σ := {u ∈
C2(Ω̄) | ∂nu = 0 on ∂Ω} in C(Ω̄), there exist two positive functions k̂1(x), k̃1(x) ∈
Σ such that

k1(x, H)

1 + ϑ < k̂1(x) < k1(x, H) < k̃1(x) <
k1(x, H)

1 − ϑ . (47)

Let (φ̆1, φ̆2) := ( λ1k̂1
γ1
φ∗
2 , φ

∗
2 ) and (φ̃1, φ̃2) := ( λ1k̃1

γ1
φ∗
2 , φ

∗
2 ), here φ

∗
2 is the positive

eigenfunction of (7). By (47), for any ϑ > 0, there is a constant τ > 0 small enough
such that

⎧
⎨

⎩

−DI0∇ · [D̄I (x)∇φ̆1] + γ1(x)
[

1 − k1(x, H)

k̂1(1 + ϑ)
]

φ̆1 ≥ 0, x ∈ Ω,
∂nφ̆1 = 0, x ∈ ∂Ω,

(48)

and

⎧
⎨

⎩

−DI0∇ · [D̄I (x)∇φ̃1] + γ1(x)
[

1 − k1(x, H)

k̃1(1 − ϑ)
]

φ̃1 ≤ 0, x ∈ Ω,
∂nφ̃1 = 0, x ∈ ∂Ω,

(49)
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for 0 < DI0 < τ . Furthermore, it follows from (7) and (48) that

−dI0∇ · [d̄I (x)∇φ̆2]+γ2(x)φ̆2−λ1k2(x,W )φ̆1≥−dI0∇ · [d̄I (x)∇φ̆2]+γ2(x)φ̆2−λ21 · k̄(x)

γ1(x)
φ̆2=0,

and

−DI0∇ · [D̄I (x)∇φ̆1] + γ1(x)φ̆1 ≥ γ1(x) k1(x, H)
k̂1(1 + ϑ) φ̆1 = λ1 k1(x, H)

1 + ϑ φ̆2.

Thus,

⎧
⎪⎪⎨

⎪⎪⎩

−DI0∇ · [D̄I (x)∇φ̆1] + γ1(x)φ̆1 ≥ λ1 k1(x, H)
1 + ϑ φ̆2, x ∈ Ω,

−dI0∇ · [d̄I (x)∇φ̆2] + γ2(x)φ̆2 − λ1k2(x,W )φ̆1 ≥ 0, x ∈ Ω,
∂nφ̆1 = ∂nφ̆2 = 0, x ∈ ∂Ω.

(50)

Multiplying the first inequality of (50) and (46) by φ̂1 and φ̆1 respectively, and then
integrating by parts over Ω to yield

⎧
⎪⎪⎨

⎪⎪⎩

DI0

∫

Ω

D̄I (x)∇φ̆1∇φ̂1dx +
∫

Ω

γ1(x)φ̆1φ̂1dx ≥ λ1
∫

Ω

k1(x, H)

1 + ϑ φ̆2φ̂1dx,

DI0

∫

Ω

D̄I (x)∇φ̂1∇φ̆1 +
∫

Ω

γ1(x)φ̂1φ̆1dx = 1

R0

∫

Ω

k2(x,W )φ̂2φ̆1dx .

Hence,

∫

Ω

[
1

R0
k2(x,W )φ̂2φ̆1 − λ1

1 + ϑ k1(x, H)φ̂1φ̆2
]

dx ≥ 0. (51)

In the similar way,

∫

Ω

[
1

R0
k1(x, H)φ̂1φ̆2 − λ1k2(x,W )φ̂2φ̆1

]

dx ≥ 0. (52)

Together with (51) and (52), we get

1

R0

∫

Ω

k1(x, H)φ̂1φ̆2dx ≥ λ1
∫

Ω

k2(x,W )φ̂2φ̆1 ≥ λ1 · R0λ1

1 + ϑ
∫

Ω

k1(x, H)φ̂1φ̆2dx,

that is,

(
1

R2
0

− λ21

1 + ϑ

)∫

Ω

k1(x, H)φ̂1φ̆2dx ≥ 0.
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Then R0 ≤ √
1 + ϑ/λ1 owing to λ1 > 0. In addition, we can similarly obtain R0 ≥√

1 − ϑ/λ1 with the help of (49). Thus,
√
1 − ϑ/λ1 ≤ R0 ≤ √

1 + ϑ/λ1 which
induces R0 → 1/λ1 as DI0 → 0 due to the arbitrariness of ϑ .

For the case DI0 → ∞. By means of Lemma 5, passing to a sequence if necessary,
there is a constant R̂0 > 0 such thatR0 → R̂0 as DI0 → ∞. Without loss of gener-
ality, set ‖φ1‖ + ‖φ2‖ = 1. By (45) and L p estimates, ‖φ1‖W 2

p(Ω)
and ‖φ2‖W 2

p(Ω)
are

uniformly bounded, for any integer p > 1. Via applying the Sobolev embedding the-
orem, ‖φ1‖C1(Ω) and ‖φ2‖C1(Ω) are also uniformly bounded. Then there are positive
functions φ̄1 and φ̄2 ∈ C1(Ω̄) such that (φ1, φ2)→ (φ̄1, φ̄2) inC1(Ω̄), as DI0 → ∞.
Then φ̄2 satisfies

⎧
⎨

⎩

−dI0∇ · [d̄I (x)∇φ̄2] + γ 02 φ̄2 − k2(x,W )

R̂0
φ̄1 = 0, x ∈ Ω,

∂nφ̄2 = 0, x ∈ ∂Ω.
(53)

Applying the elliptic regularity estimate to the first equation of (45), φ̄1 is a constant

and so φ̄1 = k01
∫

Ω φ̄2dx

R̂0
∫

Ω γ1(x)dx
since k1(x, H) ≡ k01. Thus,

⎧
⎨

⎩

−dI0∇ · [d̄I (x)∇φ̄2] + γ 02 φ̄2 − k2(x,W )

R̂0
· k01

∫

Ω
φ̄2dx

R̂0
∫

Ω
γ1(x)dx

= 0, x ∈ Ω,
∂nφ̄2 = 0, x ∈ ∂Ω.

Then R2
0 → R̂2

0 = k01
∫

Ω k2(x,W )dx

γ 02

∫

Ω γ1(x)dx
as DI0 → ∞. The proof of (ii) is analogous.

To prove (iii). By Lemma 5, passing to a sequence if necessary, there is a constant
R̃0 > 0 such thatR0 → R̃0 as DI0 → 0 and dI0 → 0. Thus, for any ϑ̃ > 0, there is
a sufficiently small constant τ̃ > 0 such that

|R0 − R̃0| < ϑ̃, for all DI0, dI0 ∈ (0, τ̃ ). (54)

Consider the eigenvalue problem

{

B� − 1

θ
F� = κ1(θ)�, x ∈ Ω,

∂n� = 0, x ∈ ∂Ω,
(55)

wherein � = (�2,�4)
T , θ > 0, κ1(θ) is the principal eigenvalue of (55), and

operators B and F are given by Sect. 3.2. From (45), Bφ − 1
R̃0
Fφ = 0, x ∈ Ω ,

φ = (φ1, φ2)T . It then follows from (54) that

Bφ − 1

R̃0 + ϑ̃ Fφ ≥ 0 ≥ Bφ − 1

R̃0 − ϑ̃ Fφ, x ∈ Ω.
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Utilizing Proposition 3.4 in Lam and Lou (2016) yields that

κ1(R̃0 + ϑ̃) ≥ κ1(R0) = 0 ≥ κ1(R̃0 − ϑ̃), (56)

and, by Theorem 1.4 in Lam and Lou (2016), we get

lim
DI0→0, dI0→0

κ1(θ) = κ̂1(θ) := −max
x∈Ω̄

Q(V (x)),

where

V (x) =
(

−γ1(x) k1(x,H)
θ

k2(x,W )
θ

−γ2(x)

)

,

and Q(V (x)) is the principal eigenvalue of cooperative matrix V (x) at x , i.e.,

Q(V (x)) = −[γ1(x)+γ2(x)]+
√

[γ1(x)+γ2(x)]2+4[k̄(x)/θ2−γ̄ (x)]
2 . Hence,

κ̂1(θ) = −max
x∈Ω̄

Q(V (x))

⎧
⎪⎪⎨

⎪⎪⎩

> 0, θ > θ̂,

= 0, θ = θ̂ ,
< 0, θ < θ̂,

where θ̂ := max
x∈Ω̄

√

k̄(x)/γ̄ (x).

Then sign(κ̂1(θ)) = sign(θ − θ̂ ). Combining with (56), one obtains θ̂ − ϑ̃ ≤ R̃0 ≤
θ̂ + ϑ̃ . By the arbitrariness of ϑ̃ ,R0 → maxx∈Ω̄

√
k̄(x)/γ̄ (x)when both DI0 and dI0

tend to zero.
To deal with (iv). Similar to the proof of (ii). Let ‖φ1‖ + ‖φ2‖ = 1. Passing to a

sequence if necessary, φ1 → φ̄$1 in C1(Ω̄) as DI0 → ∞ and dI0 → 0, here φ̄$1 is a
nonnegative constant. Thus, for any ϑ > 0, there is a constant τ̄ > 0 such that

⎧
⎨

⎩

k2(x,W )

R0
(φ̄$1 − ϑ) < −dI0∇ · [d̄I (x)∇φ2] + γ2(x)φ2 < k2(x,W )

R0
(φ̄$1 + ϑ), x ∈ Ω,

∂nφ2 = 0, x ∈ ∂Ω,

for any 0 < dI0,
1

DI0
< τ̄ , which implies that limdI0→0 φ2 = k2(x,W )φ̄$1

γ2(x)R0
. Thus, φ̄$1 > 0

owing to ‖φ1‖+‖φ2‖ = 1. Integrating the first equation of (45) inΩ , and then letting

DI0 → ∞ and dI0 → 0 to give R2
0 →

∫

Ω k̄(x)/γ2(x)dx∫

Ω γ1(x)dx
. Similarly, one can obtain

R2
0 →

∫

Ω k̄(x)/γ1(x)dx∫

Ω γ2(x)dx
as DI0 → 0 and dI0 → ∞. By applying the ideas of (i) and

(iv), we can prove (v). This ends the proof. ��
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6.6 Proof of Theorem 5

Proof of Theorem 5 To prove (i). Since the domain Ω is one-dimensional, we rewrite
system (45) as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−DI0[D̄I (x)φ1x ]x + γ1φ1 = 1

R0
k1(x, H)φ2, x ∈ Ω,

−dI0[d̄I (x)φ2x ]x + γ2φ2 = 1

R0
k2φ1, x ∈ Ω,

φ1x = φ2x = 0, x ∈ ∂Ω,
(57)

where ux and uxx denote the first and second partial derivatives of u w.r.t x ,
respectively, u ∈ {φ1, φ2}. Similar to the discussion in (Cantrell and Cosner 2003,
Proposition 2.20) and (Hess 1991, Lemma 15.1), one obtains that R0 and the cor-
responding eigenfunctions (φ1, φ2)T are analytic functions of DI0 and dI0. Hence,
differentiating problem (57) by DI0 yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−DI0[D̄I (x)φ̇1x ]x − [D̄I (x)φ1x ]x + γ1φ̇1 = k1(x, H)

R0
φ̇2 − Ṙ0

R2
0

k1(x, H)φ2, x ∈ Ω,

−dI0[d̄I (x)φ̇2x ]x + γ2φ̇2 = k2
R0
φ̇1 − Ṙ0

R2
0

k2φ1, x ∈ Ω,
φ̇1x = φ̇2x = 0, x ∈ ∂Ω,

(58)

where · represents the derivative of DI0. From the second equations of (58) and (57),
we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̇1 = R0

k2

{

−[dI (x)φ̇2x ]x + γ2φ̇2 + Ṙ0

R2
0

k2φ1

}

,

φ1 = R0

k2
{−[dI (x)φ2]x + γ2φ2} .

(59)

Multiplying the first equation of (58) by φ2 and then integrating by parts in Ω , by
(59), we obtain

Ṙ0

R2
0

∫

Ω
k1(x, H)φ

2
2dx

=
∫

Ω

[
DI (x)φ̇1x

]

x φ2dx +
∫

Ω
[D̄I (x)φ1x ]xφ2dx − γ1

∫

Ω
φ̇1φ2 + 1

R0

∫

Ω
k1(x, H)φ̇2φ2dx

= R0

k2

∫

Ω
{[DI (x)φ2x ]x − γ1φ2}

{

−[dI (x)φ̇2x ]x + γ2φ̇2 + Ṙ0

R2
0

k2φ1

}

dx

+ R0

k2

∫

Ω
{−[dI (x)φ2x ]x + γ2φ2} [D̄I (x)φ2x ]xdx + 1

R0

∫

Ω
k1(x, H)φ̇2φ2dx

= G1 + G2 + G3,

(60)

123



   32 Page 46 of 51 H. Zhao et al.

where

G1 = R0

k2

∫

Ω
{−[dI (x)φ2x ]x + γ2φ2} [D̄I (x)φ2x ]xdx,

G2 = Ṙ0

R0

∫

Ω
{[DI (x)φ2x ]x − γ1φ2}φ1dx,

G3 = 1

R0

∫

Ω
k1(x, H)φ2φ̇2dx − R0

k2

∫

Ω
{−[DI (x)φ2x ]x + γ1φ2} {−[dI (x)φ̇2x ]x + γ2φ̇2}dx .

From the first equation of (57), one obtains G2 = − Ṙ0
R2

0

∫

Ω
k1(x, H)φ22dx by integrat-

ing by parts. Direct calculating yields that

G1 = − R0dI0
k2

∫

Ω

[
D̄′

I (x)d̄
′
I (x)φ

2
2x + D̄I (x)d̄I (x)φ

2
2xx

]
dx − R0γ2

k2

∫

Ω

D̄Iφ
2
2xdx

− R0dI0
k2

∫

Ω

[
D̄I (x)d̄

′
I (x)+ D̄′

I (x)d̄I (x)
]
φ2xφ2xxdx .

Since D̄′
I (x)d̄I (x) = D̄I (x)d̄ ′

I (x) for x ∈ Ω , and

∫

Ω

D̄I (x)d̄
′
I (x)φ2xφ2xxdx = −1

2

∫

Ω

[D̄I (x)d̄
′′
I (x)+ D̄′

I (x)d̄
′
I (x)]φ22xdx,

∫

Ω

D̄′
I (x)d̄I (x)φ2xφ2xxdx = −1

2

∫

Ω

[D̄′′
I (x)d̄I (x)+ D̄′

I (x)d̄
′
I (x)]φ22xdx,

we obtain

G1 = R0

k2

{∫

Ω

[dI0d̄ ′′
I (x)− γ2]D̄I (x)φ

2
2xdx − dI0

∫

Ω

D̄I (x)d̄I (x)φ
2
2xxdx

}

.

Multiplying the first equation of (58) by φ̇2 and integrating by parts over Ω , and
then together with (59), one has

1

R0

∫

Ω
k1(x, H)φ2φ̇2dx = R0

k2

∫

Ω
{−DI0[D̄I (x)φ̇2x ]x + γ1φ̇2}{−dI0[d̄I (x)∇φ2x ]x + γ2φ2}dx .

To show
∫

Ω

{−DI0[D̄I (x)φ̇2x ]x + γ1φ̇2}{−dI0[d̄I (x)φ2x ]x + γ2φ2}dx

=
∫

Ω

[−DI0[D̄I (x)φ2x ]x + γ1φ2][−dI0[d̄I (x)φ̇2x ]x + γ2φ̇2]dx, (61)

we only need to verify

∫

Ω

[D̄I (x)φ2x ]x [d̄I (x)φ̇2x ]xdx =
∫

Ω

[D̄I (x)φ̇2x ]x [d̄I (x)φ2x ]xdx,
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which is equivalent to

∫

Ω
[D̄′

I (x)d̄I (x)− D̄I (x)d̄
′
I (x)]φ2x φ̇2xxdx +

∫

Ω
[D̄I (x)d̄

′
I (x)− D̄′

I (x)d̄I (x)]φ̇2xφ2xxdx = 0.

Note that D̄′
I (·)d̄I (·) = D̄I (·)d̄ ′

I (·) inΩ . It thus follows that (61) holds. Then we have
G3 = 0. Substituting G1, G2 and G3 into (60) to yield

Ṙ0

R3
0

∫

Ω
k1(x, H)φ

2
2dx = − 1

2k2

{∫

Ω
[γ2 − dI0d̄

′′
I (x)]D̄I (x)φ

2
2xdx +

∫

Ω
D̄I dI φ

2
2xxdx

}

.

Thus, Ṙ0 ≤ 0 since dI0d̄ ′′
I < γ2, i.e.,R0 is amonotone nonincreasing function of DI0.

In addition, Ṙ0 = 0 iff φ2 is a constant in Ω . Following from the second equation of
(57) that φ1 is also a constant inΩ . So, k1(·, H) is constant inΩ by the first equation of
(57). In conclusion,R0 decreases monotonically w.r.t DI0 if k1(·, H) is non-constant
in Ω . In the similar fashion, we can deal with (ii). This finishes the proof. ��

6.7 Proof of Theorem 6

Proof of Theorem 6 We first show (i). From system (45), one has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−DI (x)φ1xx − D′
I (x)φ1x + γ1(x)φ1 = 1

R0
k1(x, H)φ2, x ∈ Ω,

−dI (x)φ2xx − d ′
I (x)φ2x + γ2(x)φ2 = 1

R0
k2(x,W )φ1, x ∈ Ω,

φ1x = φ2x = 0, x ∈ ∂Ω.
(62)

Differentiating system (62) by DI yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−φ1xx − DI (x)φ̀1xx − D̃I (x)φ1x − D′
I (x)φ̀1x + γ1(x)φ̀1 = k1(x, H)

R0
φ̀2 − R̀0

R2
0

k1(x, H)φ2, x ∈ Ω,

−dI (x)φ̀2xx − d ′
I (x)φ̀2x + γ2(x)φ̀2 = k2(x,W )

R0
φ̀1 − R̀0

R2
0

k2(x,W )φ1, x ∈ Ω,
φ̀1x = φ̀2x = 0, x ∈ ∂Ω,

(63)

where`denotes the derivative of DI and D̃I (·) = D′′
I (·)/D′

I (·). Multiplying φ1 and φ̀1
by the first equations of (63) and (62), respectively, and integrating by parts and then
subtracting the two equalities, we get

R̀0

R2
0

∫

Ω
k1(x, H)φ1φ2dx = −

∫

Ω
φ21xdx + 1

2

{

[D̃I (x)φ
2
1 ]|∂Ω −

∫

Ω
D̃′
I (x)φ

2
1dx

}

+ 1

R0

∫

Ω
k1(x, H)(φ1φ̀2 − φ̀1φ2)dx . (64)
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Similarly,

R̀0

R2
0

∫

Ω

k2(x,W )φ1φ2dx = 1

R0

∫

Ω

k2(x,W )(φ̀1φ2 − φ1φ̀2)dx . (65)

Adding (64) and (65), and by k1(·, H) ≡ k2(·,W ) in Ω̄ , one has

R̀0

R2
0

∫

Ω
[k1(x, H)+ k2(x,W )]φ1φ2dx = −

∫

Ω
φ21xdx + 1

2

{

[D̃I (x)φ
2
1 ]|∂Ω −

∫

Ω
D̃′
I (x)φ

2
1dx

}

≤ 0

(66)

since D̃I (x)φ21(x)|∂Ω ≤ 0 and D̃′
I (x) ≥ 0, x ∈ Ω . ThenR0 is monotone nonincreas-

ing w.r.t DI . The proof of (ii) resembles that of (i), so we skip the details. This ends
the proof. ��

6.8 Proof of Theorem 7

Proof of Theorem 7 By Theorem 4 (iv), we have

R0 →
√∫

Ω
k̄(x)γ−1

2 (x)dx
∫

Ω
γ1(x)dx

, as DI0 → ∞ and dI0 → 0.

Then, for any 0 < ε � 1, there is a constant C12 = C12(ε) > 0 large enough, such
that

R0(DI , d
1
I ) ≤ (1 + ε)

√∫

Ω
k̄(x)γ−1

2 (x)dx
∫

Ω
γ1(x)dx

, for DI0,
1

d1I0
≥ C12.

Since

R0 →
√∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ1(x)dx

∫

Ω
γ2(x)dx

, when DI0 → ∞ and dI0 → ∞,

there is a constant C13 = C13(ε, DI0) > 0 large enough, such that

R0(DI , d
2
I ) ≥ (1 − ε)

√∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ1(x)dx

∫

Ω
γ2(x)dx

,

for any d2I0 ≥ C13. By (9), there is a constant 0 < ε∗ � 1 such that

(1 − ε∗)2
∫

Ω
k1(x, H)dx

∫

Ω
k2(x,W )dx

∫

Ω
γ1(x)dx

∫

Ω
γ2(x)dx

> (1 + ε∗)2
∫

Ω
k̄(x)/γ2(x)dx
∫

Ω
γ1(x)dx

.
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Let D∗
I0 = C12(ε

∗), d1I0 = C−1
12 (ε

∗) and d2I0 = C13(ε
∗, D∗

I ). Then R0(D∗
I , d

1
I )

< R0(D∗
I , d

2
I ). The proof of (ii) is analogous. This completes the proof. ��
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