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DYNAMICS OF STOICHIOMETRIC BACTERIA-ALGAE
INTERACTIONS IN THE EPILIMNION∗
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Abstract. Bacteria-algae interaction in the epilimnion is modeled with the explicit consideration
of carbon (energy) and phosphorus (nutrient). Global qualitative analysis and bifurcation diagrams
of this model are presented. We hypothesize that there are three dynamical scenarios determined by
the basic reproductive numbers of bacteria and algae. Effects of key environmental conditions are
examined through these scenarios and from systematic and extensive simulations. It is also shown
that excessive sunlight will destroy bacterial communities. Bifurcation diagrams for the depth of
epilimnion mimic the profile of Lake Biwa, Japan. Competition of bacterial strains are modeled
to examine Nishimura’s hypothesis that in severely P-limited environments such as Lake Biwa, P-
limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid
contents, which allows low nucleic acid bacteria to be competitive.
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1. Introduction. Stoichiometry is the accounting behind chemistry. It deals
with the balance of multiple chemical elements in chemical reactions. Many chemical
processes are effectively studied and modeled with the applications of some simple yet
powerful stoichiometric constraints. Since biomass growth is a biochemical process,
ubiquitous and natural stoichiometric constraints may also be useful for modeling
species growth and interactions [15, 23, 27, 28]. This concept forms the framework of
the newly emerging research area of ecological stoichiometry, the study of the balance
of energy and multiple chemical elements in ecological interactions [37].

It is observed that plant quality can dramatically affect the growth rate of her-
bivorous grazers and may even lead to their extinction. Specifically, if the quantity
of an essential element in plant biomass is lower than the minimum threshold for
its consumer, then the consumer’s growth rate may suffer. This has been shown for
both aquatic [30, 37] and terrestrial systems [31]. Stoichiometry-based population
models explicitly model the highly varying nutritional quality of plant resources for
consumer-resource dynamics.

Solar energy (for producing organic carbon) and nutrients (phosphorus, nitrogen,
etc.) are important factors regulating ecosystem characteristics and species density.
Phosphorus is often a limiting nutrient for algal production in lakes [11]. For example,
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in Lake Biwa, Japan, phosphorus is an extremely limiting element for both algal and
bacterial growth. Lake Biwa is a large (surface area, 674km2) and deep (maximum
depth, 104m) lake located in the central part of Honshu Island, Japan. Nishimura,
Kim, and Nagata [32] used flow cytometry to examine seasonal variations in vertical
distributions of bacterioplankton in Lake Biwa. They hypothesized that in severely
phosphorus (P)-limited environments such as Lake Biwa, P-limitation exerts more
severe constraints on the growth of bacterial groups with higher nucleic acid (HNA)
contents, which allows low nucleic acid (LNA) bacteria to be competitive and become
an important component of the microbial community. A main purpose of this paper
is to examine this hypothesis theoretically.

The interaction between bacteria and algae in pelagic ecosystems is complex [6].
Bacteria are nutrient-rich organisms whose growth is easily limited by nutrient supply
and organic matter produced by plants and algae, which have very flexible stoichiom-
etry compared to bacteria [29]. Suspended algae, also called phytoplankton, live in
almost all types of aquatic environments. Algae grow in open water by taking up
nutrients such as phosphorus and nitrogen from the water and capturing energy from
sunlight. Extra energy in the form of organic carbon can be exuded from algae during
photosynthesis. Bacteria require dissolved organic carbon (DOC) as a source of en-
ergy and carbon. Hence, algae are an important source of DOC to bacteria. However,
bacteria and algae compete with each other for phosphorus if bacteria are limited by
phosphorus [18].

In temperate lakes, the water column is seasonally separated by a thermocline
into two parts, epilimnion and hypolimnion (Figure 1.1). The epilimnion is the upper
warmer layer overlying the thermocline. It is usually well mixed. The hypolimnion
is the bottom colder layer. The absorption and attenuation of sunlight by the water
itself, by dissolved substances, and by algae are major factors controlling the potential
photosynthesis and temperature. Solar energy, essential for algae, decreases rapidly
with depth. Nutrients are redistributed from epilimnion to hypolimnion as the plank-
ton detritus gradually sinks to lower depths and decomposes; the redistribution is
partially offset by the active vertical migration of the plankton and by eddy diffusion
across the thermocline [19]. In many lakes, algal DOC exudation is a prime energy
source for bacterial growth. To simplify the study of algal stimulation of bacterial
growth, we assume below that algal DOC exudation is the only source for bacterial
subsistence.

Algae dynamics in a lake system have been modeled by many researchers [2,
8, 9, 20, 21, 22]. Chemostat theory and experiments have been applied frequently to
nutrient competition of bacteria [4, 14, 34, 35]. For example, bacteria-algae interaction
was modeled by Bratbak and Thingstad [3]. Their work provides a useful framework
to develop a more realistic model. In recent years, modeling stoichiometric food web
systems has gained much attention [1, 9, 15, 17, 24, 25, 26, 27]. However, these models
are not directly applicable to the phytoplankton-bacteria interaction. Our models,
motivated by the experiments and hypotheses of Nishimura, Kim, and Nagata [32],
can be viewed as an extension as well as a variation of the work of Diehl, Berger, and
Wöhrl [9] where they modeled algal growth experiments subject to varying light and
nutrient availability, but without bacteria.

In the following, we will model the ecological stoichiometry of bacteria-algae in-
teractions in the epilimnion under the “well mixed” assumption [2, 20, 21]. We per-
form a global qualitative analysis and present bifurcation diagrams illustrating model
behavior. We discuss the implications of these bifurcation diagrams and the basic re-
productive numbers of bacteria and algae. Proofs of mathematical results are placed
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Fig. 1.1. The cartoon lake system for our mathematical modeling.

in the appendix. Competing bacterial strains are modeled to test some hypotheses of
Nishimura, Kim, and Nagata [32]. A brief discussion section concludes the paper.

2. Modeling bacteria-algae interactions. Our model consists of five highly
interconnected nonlinear differential equations, tracking the rates of change for algae,
algal cell quota, dissolved mineral phosphorus, heterotrophic bacteria, and dissolved
organic carbon (see Table 2.1). The algal growth is assumed to depend on the light
intensity and phosphorus availability. This will be modeled according to the Lambert-
Beer law and the Droop equation. The rates of change for Q,P,B are modeled
according to standard approaches. In addition, algal sinking and water exchange
between epilimnion and hypolimnion are included in the model. The challenge is to
model the algal exudation of DOC, which is needed in the DOC equation.

According to the Lambert–Beer law, the light intensity at the depth s of a water
column with algal abundance A is [20]

I(s,A) = Iin exp[−(kA + Kbg)s].

The algal carbon uptake function takes the Monod form I(s,A)
I(s,A)+H [9].

The epilimnion is well mixed overnight [9, 20]. The depth-averaged algal growth
function contains the factor (for carbon) [2, 20]

(2.1) h(A) ≡ 1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds =

1

zm(kA + Kbg)
ln

(
H + Iin

H + I(zm, A)

)

and the Droop term (for phosphorus) 1− Qm

Q , where Qm is the minimum algal phos-
phorus cell quota and Q is the actual algal phosphorus cell quota.

Algal sinking takes place at the interface between epilimnion and hypolimnion,
and its rate is negatively related to the volume of epilimnion, because with a larger
volume there is relatively less proportion of total species abundances or element con-
centrations for sinking. For convenience, we assume that the algal sinking rate is
inversely proportional to the mixing layer depth zm [2, 9]. D is the water exchange
rate across the interface between epilimnion and hypolimnion and between the epil-
imnion and the inflow and outflow (Figure 1.1). We assume that there is a constant
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Table 2.1

Variables in the bacteria-algae system (2.2).

Var. Meaning Unit

A algal carbon density mgC/m3

Q algal cell quota (P:C) gP/gC (= mgP/mgC)
P dissolved mineral phosphorus concentration mgP/m3

B heterotrophic bacterial abundance mgC/m3

C DOC concentration mgC/m3

phosphorus concentration, Pin, in the hypolimnion and in the inflow. Using the same
reasoning as for algal sinking, we assume the water exchange is inversely proportional
to zm. We assume that bacteria have a fixed stoichiometry, since compared to al-
gae, their elemental composition is relatively constant [29]. We assume that bacterial
growth functions for carbon and phosphorus take the Monod form: f(P ) = P

KP +P

and g(C) = C
KC+C , where KP , KC are half-saturation constants, respectively.

The exudation rate of DOC by algae is the difference between the potential

growth rate attained when growth is not P-limited, μAA
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds, and

the actual growth rate, μAA(1 − Qm

Q ) 1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds, which gives us the form

μAA
Qm

Q
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds. This actually assumes that algae always fix carbon at

rate μAA
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds and then have to dispose of excessive carbon. As in [9],

we assume that the algal phosphorus uptake rate is ρ(Q,P ) = ρm( QM−Q
QM−Qm

) P
M+P .

At the minimum cell quota, the specific phosphorus uptake rate is just a saturating
function of P . At the maximum cell quota, there is no uptake. The algal cell quota
dilution rate is proportional to the algal growth rate [2].

The above assumptions yield the following bacteria-algae interaction system:

dA

dt
= μAA

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds

︸ ︷︷ ︸
algal growth limited by nutrient and energy

− lmA︸︷︷︸
respiration

− ν + D

zm
A︸ ︷︷ ︸

sinking and exchange

,

dQ

dt
= ρ(Q,P )︸ ︷︷ ︸

replenishment

−μAQ

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds

︸ ︷︷ ︸
dilution due to growth

,

dP

dt
=

D

zm
(Pin − P )︸ ︷︷ ︸

P input and exchange

− ρ(Q,P )A︸ ︷︷ ︸
P consumption by algae

− θμBBf(P )g(C)︸ ︷︷ ︸
P consumption by bacteria

,(2.2)

dB

dt
= μBBf(P )g(C)︸ ︷︷ ︸

bacterial growth

− (μr + μg)B︸ ︷︷ ︸
respiration and grazing

− D

zm
B︸ ︷︷ ︸

exchange

,

dC

dt
= μAA

Qm

Q

1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds

︸ ︷︷ ︸
DOC exudation from algae

− 1

r
μBBf(P )g(C)︸ ︷︷ ︸

DOC consumption by bacteria

− D

zm
C︸ ︷︷ ︸

exchange

.

In the rest of this paper, we assume the following parameter values (with units
and sources given in Table 2.2) for numerical simulations: Iin = 300, k = 0.0004,
Kbg = 0.3, H = 120, zm = 30, Qm = 0.004, QM = 0.04, ρm = 0.2, M = 1.5, μA = 1,
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Table 2.2

Parameters in bacteria-algae system (2.2).

Par. Meaning Value Ref.

Iin light intensity at surface 300μmol(photons)/(m2 · s) [9]
k specific light attenuation coeff. of algal

biomass
0.0003–0.0004m2/mgC [2, 9]

Kbg background light attenuation coefficient 0.3–0.9/m [2, 9]
H h.s.c.1 for light-dependent algal produc-

tion
120μmol(photons)/(m2 · s) [9]

zm depth of epilimnion > 0m, 30m in Lake Biwa [32]
Qm algal cell quota at which growth ceases 0.004gP/gC [9]
QM algal cell quota at which nutrient uptake

ceases
0.04gP/gC [9]

ρm maximum specific algal nutrient uptake
rate

0.2–1gP/gC/day [2, 9]

M h.s.c. for algal nutrient uptake 1.5mgP/m3 [9]
μA maximum algal specific production rate 1.0/day [9]
lm algal specific maintenance respiration

loss
0.05–0.13/day [2, 9]

ν algal sinking velocity 0.05–0.25m/day [2, 9]
D water exchange rate 0.02m/day [2]
Pin phosphorus input 0–150mgP/m3 [2]
KP P-dependent h.s.c. for bacterial growth 0.06–0.4mgP/m3 [4]
KC C-dependent h.s.c. for bacterial growth 100–400mgC/m3 [5]
μB maximum bacterial growth rate 1.5–4.0/day [4, 5]
θ bacterial fixed cell quota 0.0063–0.1585mgP/mgC [7, 16]
μr bacterial respiration loss 0.1–2.5/day [5, 13]
μg grazing mortality rate of bacteria 0.06–0.36/day [32]
r C-dependent yield constant for bacterial

growth
0.31–0.75 [10, 13]

1“h.s.c.” stands for half-saturation constant.

lm = 0.1, ν = 0.25, D = 0.02, Pin = 120, KP = 0.06, KC = 100, μB = 3, θ = 0.1,
μr = 0.2, μg = 0.1, r = 0.5. These specific values are taken from [2, 9] or selected
from within the reasonable ranges (see Table 2.2).

Our first theorem states that there is a bounded set which all solutions of the
system (2.2) eventually enter.

Theorem 1. The system (2.2) is dissipative.

3. Algae dynamics. In order to have a comprehensive understanding of the
model (2.2), we study first the algae dynamics without bacteria (B = 0):

dA

dt
= μAA

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds− lmA− ν + D

zm
A ≡ AΨ(A,Q),

dQ

dt
= ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds,(3.1)

dP

dt
=

D

zm
(Pin − P ) − ρ(Q,P )A.

From (2.1), we recall that

(3.2) h(A) =
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds.

h(A) is decreasing in A, and 0 < h(A) < 1. Furthermore, Ah(A) is increasing in A.
Biologically meaningful initial conditions are given by A(0) > 0, Qm ≤ Q(0) ≤ QM ,
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P (0) ≥ 0. We analyze this system on the positively invariant set

Ω = {(A,Q, P ) ∈ R
3
+ | A ≥ 0, Qm ≤ Q ≤ QM , P ≥ 0}.

Obviously the set where A = 0 is invariant for the system. It is easy to see that
Qm < Q < QM whenever Qm < Q(0) < QM ; that is, the cell quota stays within the
biologically confined interval.

There can be two types of steady state solutions for system (3.1): the algae
extinction steady state E0 = (0, Q̂, Pin), where

Q̂ =
β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
> 0 with β(P ) =

ρm
QM −Qm

P

M + P
,

and positive steady state(s) E∗ = (Ā, Q̄, P̄ ) with Ψ(Ā, Q̄) = 0.
The standard computation shows that the basic reproductive number for algae is

R0 =
μAβ(Pin)(QM −Qm)h(0)

(β(Pin)QM + μAQmh(0))(lm + ν+D
zm

)
=

μAh(0)(1 −Qm/Q̂)

lm + ν+D
zm

.

Here h(0) = 1
zmKbg

ln( H+Iin
H+Iin exp(−zmKbg) ) is the potential average sunlight intensity in

the epilimnion without algal shading. Indeed, R0 is calculated from Ψ(0, Q̂) so that
R0 > 1 ⇔ Ψ(0, Q̂) > 0. R0 is the average amount of new algae produced by one unit
of algae (measured in carbon content) during the algal life span in the epilimnion. It
is an indicator of algal viability. Part of Theorem 2 states that R0 is an indicator for
the local stability of E0.

We observe that increasing sunlight input or phosphorus input enhances algal

viability, since ∂R0

∂Iin
= ∂R0

∂h(0)
∂h(0)
∂Iin

> 0 and ∂R0

∂Pin
= ∂R0

∂β(Pin)
∂β(Pin)
∂Pin

> 0. Weakening

water exchange enhances algal viability, since ∂R0

∂D < 0.
Theorem 2 is our main mathematical result. When R0 < 1, we establish the local

and global stability of E0, which is equivalent to saying that algae will die out. It
can be shown that there is no positive equilibrium E∗ when R0 < 1, in which case
the existing results of general competitive systems can be applied to prove the global
stability of E0. When R0 > 1, we prove that E0 is unstable, algae are uniformly
persistent, and there is a unique positive steady state E∗.

Theorem 2. If R0 < 1, E0 is locally asymptotically and globally asymptotically
stable. R0 > 1 implies that E0 is unstable, there exists a unique positive equilibrium
E∗, and algae uniformly persist: there exists ε > 0 such that

lim inf
t→∞

A(t) > ε

for all solutions with A(0) > 0.
In the following, we show that the global stability of E∗ is true in two special

cases. It is known that the algal cell quota changes on a much faster timescale than
the algal (carbon) biomass and the nutrient [23]. Additionally, since dQ/dt is linear
in Q, there is a unique solution to dQ/dt = 0. Hence, the fast-slow approximation is
achieved by setting dQ/dt = 0 and substituting the solution of dQ/dt = 0 into the
other equations. Then the following theorem holds.

Theorem 3. E∗ is globally asymptotically stable for the planar system obtained
from the system (3.1) by setting dQ/dt = 0, when R0 > 1.

The next theorem gives a partial result of global stability of E∗.
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Fig. 3.1. Algae dynamics phase space when R0 > 1. The algae extinction equilibrium E0 =
(0, Q̂, Pin) is globally attracting on the subspace Ω2 = {x ∈ Ω | A = 0}, but is a uniform weak
repeller for Ω1 = {x ∈ Ω | A �= 0}, and A is persistent in this case.
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Fig. 3.2. Algae dynamics without bacteria with respect to different depths of the mixing layer:
All the variables approach the positive equilibrium in about two months. The simulation benefited
from the explicit expression of h(A) given in (2.1).

Theorem 4. E∗ is globally asymptotically stable when R0 > 1 and lm = ν = 0.

The property that a locally asymptotically stable (in linear approximation) steady
state is globally attracting is an open condition in parameters [36]. Hence, E∗ is still
globally asymptotically stable for small positive lm and ν.

Our main mathematical results for the system (3.1) are briefly expressed by the
phase space diagram (Figure 3.1) for the case R0 > 1. Typical solutions are simulated
in Figure 3.2 for different depths of epilimnion. Algal abundance is negatively related
to the depth because the average sunlight intensity in the epilimnion is lower when
the epilimnion is deeper. The eventual P concentration is relatively large when the
epilimnion is deep, whereas the eventual concentration is small when it is shallow.
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Fig. 3.3. Bifurcation diagram for algae dynamics without bacteria. The shallower the better
for algae in the algae system (3.1). This bifurcation diagram confirms our mathematical findings.
When R0 > 1, the algae extinction equilibrium is unstable, and the only positive equilibrium appears
to be globally attractive. The branching point occurs at R0 = 1. When R0 < 1, there is no positive
equilibrium, and the algae extinction equilibrium is globally attracting. This numerical result is
generated by the continuation software “MatCont” in MATLAB.

Eventual concentrations at the depths 5m, 10m, 20m are similar and low, which indi-
cates that P becomes limiting in a shallow epilimnion. In contrast, the algal cell quota
is positively related to epilimnion depth. This is due to the fact that the algal cell
quota is positively related to the P concentration. Hence, epilimnion depth has two
influences on algae in our simulation: It is positively related to P (at least in Figure
3.2) and negatively related to the average sunlight intensity through the average light
uptake integral term. In the case of Figure 3.2, if C has a larger effect than P, then
algal abundance is negatively related to the depth. It is not clear whether or not
algal abundance can be positively related to depth when P is more limited than C in
some lakes. The algae-quota phase plane shows that algae and their cell quotas are
positively related in the very beginning, but they are negatively related eventually,
demonstrating a general phenomenon of “larger quantity leads to lower quality.” The
bifurcation diagram with respect to the mixing layer depth (Figure 3.3) illustrates
that algae love shallower epilimnions and also illustrates our mathematical findings.

4. Bacteria-algae interaction dynamics. We return to the original bacteria-
algae system (2.2). We analyze this system on the positively invariant set

Ω = {(A,Q, P,B,C) ∈ R
5
+ | A ≥ 0, Qm ≤ Q ≤ QM , P ≥ 0, B ≥ 0, C ≥ 0}.

The system (2.2) may have three types of equilibria: the extinction steady state
e0 = (0, Q̂, Pin, 0, 0), the bacteria extinction only steady state e1 = (Ā, Q̄, P̄ , 0, C̄),
and the coexistence steady state(s) e∗ with all components positive (see Figure 4.1).
We can calculate the basic reproductive number for bacteria, R1, by linearizing about
e1. We obtain

R1 =
μBf(P̄ )g(C̄)

μr + μg + D
zm

,
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Fig. 4.1. An abstract phase space diagram for system (2.2) when R0 > 1 and R1 > 1. Q,P
are placed on one axis (say x-axis), A,C are placed on another axis (say y-axis), and B is on

the vertical axis (z-axis). Extinction equilibrium e0 = (0, Q̂, Pin, 0, 0) is globally attracting on the
subspace {x ∈ Ω | A = B = C = 0}, but is a repeller for Ω2 = {x ∈ Ω | B = 0}. Bacteria extinction
only equilibrium e1 = (Ā, Q̄, P̄ , 0, C̄) is globally attracting on the subspace Ω2, but is a repeller for
Ω1 = {x ∈ Ω | B �= 0}. Bacteria persist, and at least one coexistence equilibrium exists.

where C̄ = μĀzm
D

Qm

Q̄
h(Ā) and P̄ , Ā, Q̄ are components of E∗ in the system (3.1). This

number is defined under the assumption R0 > 1. When R0 < 1, we have proved that
there is no positive equilibrium in system (3.1), which means at least one of P̄ , Ā, Q̄
is undefined or out of the region of interest. Biologically, R1 is the average biomass of
new bacteria produced by one unit of bacterial biomass during the bacterial life span
in epilimnion. R1 should be an indicator for the local stability of e1; hence, R1 is an
indicator for the bacterial viability when R0 > 1.

A simple sufficient condition for the extinction of both algae and bacteria is given
in the next theorem.

Theorem 5. When μAh(0) < D
zm

( ⇔ μA

Kbg
ln( H+Iin

H+Iin exp(−zmKbg) ) < D ), both al-

gae and bacteria will die out; i.e., limt→∞ A(t) = limt→∞ B(t) = 0 for all nonnegative
initial conditions.

It is easy to observe that R0 < μAh(0)
D/zm

. Hence μAh(0) < D
zm

implies R0 < 1.

Figure 4.2 confirms that both species go extinct when R0 < 1, a weaker condition
than the condition μAh(0) < D

zm
in Theorem 5. The line-filled region expands rapidly

when the sunlight increases past 800μmol(photons)/(m2 · s). This suggests that high
light intensity can negatively affect bacteria, even driving them to extinction due to
competition with algae. Hence, the balance of light and nutrient is significant for the
lake system, which is in agreement with the “light:nutrient” hypothesis [38].

Branching points in Figures 3.3 and 6.1 are identical, since all of them are deter-
mined by the same condition R0 = 1. R1 does not affect this branching point, since
R1 is defined only if R0 > 1. R0 > 1 implies R1 > 1 in the white region of Figure
4.2. Upon existent mathematical results, we hypothesize that there are three types
of dynamics: (1) R0 > 1, R1 > 1 ensure the persistence of species (white region in
Figure 4.2); (2) R0 > 1, R1 < 1 enable the persistence of algae but the extinction
of bacteria (line-filled region in Figure 4.2); (3) R0 < 1 leads to the extinction of all
species (grey region in Figure 4.2).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

512 H. WANG, H. L. SMITH, Y. KUANG, AND J. J. ELSER

Fig. 4.2. Regions of Pin versus Iin for survival and extinction of bacteria and algae. Both algae
and bacteria go extinct (R0 < 1) in the grey region. Both algae and bacteria survive (R0 > 1, R1 > 1)
in the white region. Algae survive, but bacteria go extinct (R0 > 1, R1 < 1) in the line-filled region.
We run simulations of the system (2.2) for each pair of (Iin, Pin) and then put the point in the grey
region if both A and B go to zero, in the white region if both persist, and in the line-filled region if
A persists, but B goes to zero.

5. Competing bacterial strains. In lake ecosystems, bacteria comprise the
most important trophic level for processing dissolved organic matter (DOM) and
consume almost half of the primary production [32]. Most existing studies have treated
bulk bacterial communities as a homogeneous pool, even though they consist of diverse
subgroups that differ in metabolic state, DOM use, growth rate, susceptibility to
grazing, and phylogenetic affiliations. One of the challenges for aquatic microbial
ecology is to clarify variations and regulation of different bacterial subgroups in order
to better understand the internal dynamics of the bacterioplankton “black box.”

Growth characteristics and ecological roles of LNA bacteria are controversial.
Some previous studies have claimed that LNA bacteria represent less active, dor-
mant, or even dead cells. However, Nishimura, Kim, and Nagata [32] found that the
growth rates of LNA bacteria were comparable to or even exceeded HNA bacteria
in Lake Biwa. This is probably because LNA bacteria have higher nutrient uptake
efficiencies (this means bacteria take up nutrients efficiently even at very low external
concentrations, i.e., have a low half-saturation constant for P) and lower requirements
for P (this means less P per unit carbon is needed, or a smaller cell quota). An im-
portant implication of this scenario is that LNA bacteria, under severe P-limitation
conditions, represent an “active” subgroup that outcompetes HNA bacteria and hence
may play an important role in the functioning of the microbial loop [32]. In fact, both
of these seemingly contradictory statements can be correct under different situations.
One of our main motivations for this work is to examine these statements theoretically.

To examine the statement that “LNA bacteria have lower requirements for P,”
we plot the bifurcation diagram of the bacterial variable with respect to the cell quota
parameter θ for the system (2.2). This is done in Figure 5.1(a). Clearly, this figure
supports the “P requirement” hypothesis, since a lower bacterial cell quota gives
higher bacterial abundance at equilibrium. The second statement, “LNA bacteria
have higher nutrient uptake efficiencies,” is supported by Figure 5.1(b), which has
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Fig. 5.1. We examine Nishimura’s hypotheses by system (2.2).

higher sensitivity than Figure 5.1(a). This seems to suggest that “nutrient uptake
efficiency” is probably the key factor for LNA bacteria to dominate HNA bacteria
near the surface since this is where P is most limiting.

To examine Nishimura’s hypothesis, we model the competition of two bacterial
strains, HNA bacteria (B1) and LNA bacteria (B2), and assume these two strains
are heterogeneous in P usage and the maximum growth rate, but homogeneous in C
usage. Elser et al. [12], and Sterner and Elser [37] have proposed the “growth rate
hypothesis” to explain variation among organisms in biomass C:P and N:P ratios. The
growth rate hypothesis states that differences in organismal C:N:P ratios are caused
by differential allocations to RNA necessary to meet the protein synthesis demands of
rapid rates of biomass growth and development [37, p. 144]. Due to the growth rate
hypothesis, the bacterial cell quota is strongly correlated to the maximum growth
rate; that is, θ1/θ2 = ιμ1/μ2, where ι is a positive constant. For convenience, we
assume θ1/θ2 = μ1/μ2. With these assumptions, the competition system takes the
form

dA

dt
= μAA

(
1 − Qm

Q

)
h(A) − lmA− ν + D

zm
A,

dQ

dt
= ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
h(A),

dP

dt
=

D

zm
(Pin − P ) − ρ(Q,P )A− [θ1μ1B1f1(P ) + θ2μ2B2f2(P )]g(C),(5.1)

dB1

dt
= μ1B1f1(P )g(C) − (μr + μg)B1 −

D

zm
B1,

dB2

dt
= μ2B2f2(P )g(C) − (μr + μg)B2 −

D

zm
B2,

dC

dt
= μAA

Qm

Q
h(A) − 1

r
[μ1B1f1(P ) + μ2B2f2(P )]g(C) − D

zm
C,
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Fig. 5.2. Under different lake environments, a different bacterial strain dominates. μ1 =
4, μ2 = 2,K1 = 0.15,K2 = 0.06, θ1 = 0.1, θ2 = 0.05 with the same units as in Table 2.2.

where fi(P ) = P
Ki+P , i = 1, 2. Since the maximum LNA bacteria growth rate is lower

and LNA bacteria have higher nutrient uptake efficiencies, it is biologically reasonable
to assume that μ1 > μ2, K1 > K2.

The positivity and dissipativity of the system (5.1) obviously hold, and the proof
can be formulated in a fashion similar to that of Theorem 1.

As we can see from Figure 5.2, HNA bacteria grow faster than LNA bacteria
whenever P is sufficient, simply because in such situations the maximum HNA bacteria
growth rate is greater than that of the LNA bacteria. But LNA bacteria grow faster
than HNA bacteria whenever P is severely limited (Figure 5.2), because LNA bacteria
have higher nutrient uptake efficiencies and lower requirements for P. Therefore, these
seemingly conflicting phenomena can happen under distinct nutrient conditions.

We can seek the expression of the potential positive steady state of the system
(5.1). From the bacterial equations, we have

μifi(P )g(C) = (μr + μg) +
D

zm

for the potential positive steady state. Solving it for P , we obtain

P =
aKi

μig(C) − a
,

where a = (μr + μg) + D
zm

is a constant. Assume the system (5.1) has a positive

steady state; then μig(C) > a holds for i = 1, 2. For a fixed C level, the P level
for the potential positive steady state of that bacterial strain is increasing in Ki, but
decreasing in μi. Since K2 is smaller, LNA bacteria have more chance to survive
because of the lower level of P required to reach its potential positive steady state
level. However, μ2 is also smaller, which can reduce the LNA bacteria’s chance to
survive because of the higher level of P required to obtain its potential positive steady
state level. In other words, Ki and μi work together in a nonlinear fashion. These
arguments are only true for the case when a single steady state is globally attractive,
in which case only one bacterial strain persists (see Figure 5.2). These bacterial
strains may coexist in the form of limit cycles, as periodic solutions are possible even
for system (2.2) (for example, Figure 5.3).
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Fig. 5.3. With shallow mixing layer zm = 1 and default values for other parameters, system
(2.2) exhibits complex dynamics.

6. Discussion. Mechanistically formulated mathematical models of population
dynamics are sought after since they often have advantages over phenomenologically
derived ad hoc models in generating plausible and verifiable dynamics. However, the
challenge of developing a mechanistic and predictive theory for biological systems
is daunting. Exciting progress in understanding and modeling ecological systems in
the last decade has been achieved through the application of the theory of ecological
stoichiometry [37] and the consideration of interactions between nutrient and light
availability [8, 9, 20, 21, 22]. Our models (2.2) and (5.1), hybrids of mechanistic and
phenomenological derivations and motivated by the experiments and hypotheses of
Nishimura, Kim, and Nagata [32], continue this newly established tradition. They
can be viewed as an extension as well as a variation of the work of Diehl, Berger,
and Wöhrl [9] who modeled algal growth experiments subject to varying light and
nutrient availability.

Our preliminary analytical results on system (2.2) demonstrate that it is math-
ematically interesting, and our extensive bifurcation and numerical simulation work
suggests that it is biologically sound.

We leave many mathematical questions open, including the global qualitative
result below.

Conjecture. E∗ is globally asymptotically stable when R0 > 1.
Theorems 3 and 4, together with the bifurcation diagram (Figure 3.3) and the

uniqueness of E∗, support the conjecture. This limiting case global stability result
(Theorem 3) for the positive equilibrium suggests that the conjecture is true when the
cell quota evolves on a much faster timescale than other variables. Theorem 4 and its
extension are pure mathematical results that give more credence to the conjecture.

Obviously, algae are favored by shallow epilimnia, sufficient sunlight, and P in-
puts, while bacteria are favored by medium depths of epilimnion and sunlight and suf-
ficient P input. With a larger P input, the ecosystem can thrive with more intensive
sunlight input. Alternatively, with more intensive sunlight input, the algae-bacteria
ecosystem may need more P input to be viable. When the epilimnion is very shallow
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Fig. 6.1. Bifurcation diagrams of system (2.2) with respect to depth of epilimnion.

(zm = 1), the system (2.2) may generate complicated attractors such as that shown
in Figure 5.3. It can be said that a shallower epilimnion tends to be more transient
and fragile than a deep one.

Bifurcation diagrams of bacteria and algae versus depth are shown in Figure 6.1.
From Figures 6.1(a) and (b), we observe that neither algae nor bacteria may survive in
a very deep mixing layer (> 35m). In Lake Biwa, the northern lake with mean depth
43m is much deeper than the southern lake with mean depth 4m. Our bifurcation
diagrams (Figure 6.1) try to mimic bacterial and algal abundances in Lake Biwa from
the southern site to the northern site. According to these diagrams, bacteria-to-algae
ratios in the south should be smaller than in the north. This numerical observation
may be tested in the field.

The mathematical study of the more involved system (5.1) is even more complex,
and we thus opted to perform only numerical simulations to examine the hypotheses
of Nishimura, Kim, and Nagata [32]. Our bifurcation diagrams (Figure 5.1) suggest
that higher nutrient uptake efficiencies of LNA bacteria are the key factor for LNA
bacteria to dominate HNA bacteria in severely P-limited lakes.

Appendix.
Proof of Theorem 1. Positivity obviously holds for the system. Let R = AQ +

P + θB, which is the total phosphorus in system (2.2). Then

dR

dt
=

D

zm
(Pin −R) −

(
lm +

ν

zm

)
AQ− θ(μr + μg)B ≤ D

zm
(Pin −R),

which implies

R∞ = lim sup
t→∞

R(t) ≤ Pin and R(t) ≤ max{Pin, R(0)}.

Since all the variables are positive and Qm ≤ Q ≤ QM , we have

A∞ = lim sup
t→∞

A(t) ≤ Pin

Qm
and A(t) ≤ 1

Qm
max{Pin, R(0)}.

Noting that

dC

dt
≤ μAA− D

zm
C ≤ μA

Qm
max{Pin, R(0)} − D

zm
C,
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we have

C(t) ≤ max

{
zmμA

DQm
max{Pin, R(0)}, C(0)

}
= max

{
zmμAPin

DQm
,
zmμAR(0)

DQm
, C(0)

}
.

Hence, for given initial conditions, C(t) is bounded. Therefore, all the variables are
bounded. It is easy to show that

lim sup
t→∞

C(t) = C∞ ≤ zmμA

D
A∞ ≤ zmμA

D

Pin

Qm
=

zmμAPin

DQm
.

Consequently, the bacteria-algae system (2.2) is dissipative, and

℘ =

{
(A,Q, P,B,C) ∈ Ω | AQ + P + θB ≤ Pin, C ≤ zmμAPin

DQm

}

is a global attracting region for the system.
Proof of Theorem 2. At E0, the Jacobian matrix is

J(E0) =

⎛
⎝ Ψ(0, Q̂) 0 0

+ λ1 +
− 0 λ2

⎞
⎠ ,

where λ1 and λ2 are negative numbers. It is easy to see that the eigenvalues of
J(E0) are Ψ(0, Q̂), λ1, and λ2. R0 < 1 implies Ψ(0, Q̂) < 0. Hence E0 is locally
asymptotically stable. R0 > 1 implies Ψ(0, Q̂) > 0, which implies that E0 is unstable.

For the case R0 > 1, let x = (A,Q, P ) and x′ = F (x); then F : R
3
+ −→ R

3 is
locally Lipschitzian. Let Ω1 = {(A,Q, P ) ∈ Ω | A �= 0}; Ω2 = {(A,Q, P ) ∈ Ω | A =
0}; then Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, with Ω2 being a closed invariant subset of R

3
+

and Ω1 positively invariant. E0 is the only equilibrium in Ω2. It is easy to show that
the solution that starts in Ω2 converges to {E0}.

The singleton set {E0} is a uniform weak repeller for Ω1 when R0 > 1 and an
isolated invariant set in Ω [39]. It is acyclic in Ω2. Hence Ω2 is a uniform strong
repeller for Ω1, and there exists an equilibrium x∗ ∈ Ω1, F (x∗) = 0 [40]. The first
conclusion implies that A is uniformly persistent.

We are now ready to establish the uniqueness of E∗. E∗ satisfies

μA

(
1 − Qm

Q

)
h(A) − lm − ν + D

zm
= 0,(A.1)

ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
h(A) = 0,(A.2)

D

zm
(Pin − P ) − ρ(Q,P )A = 0.(A.3)

By simple eliminations, we see that

P = Pin − zm
D

(
lm +

ν + D

zm

)
AQ = Pin −

(
zm
D

lm +
ν + D

D

)
AQ.

By substituting this into (A.1), we have

A =
M + Pin − ρm

(lm+ ν+D
zm

)Q

QM−Q
QM−Qm

Pin

( zmD (lm + ν+D
zm

)Q− ρm
zm
D

QM−Q
QM−Qm

≡ F (Q).(A.4)
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Therefore

Φ(Q) ≡ Ψ(F (Q), Q) = μA

(
1 − Qm

Q

)
h(F (Q)) − lm − ν + D

zm
= 0.

We will show that Φ(Q) = 0 has a unique positive solution. To this end, we show
that F (Q) is decreasing in Q. Notice that

F (x) =
a− ( b

x − c)

dx− (e− fx)
=

(a + c)x− b

(d + f)x2 − ex
,

where

a = M + Pin, b =
ρm

lm + ν+D
zm

QM

QM −Qm
Pin, c =

ρm

lm + ν+D
zm

1

QM −Qm
Pin,

d =
zm
D

(
lm +

ν + D

zm

)
, e = ρm

zm
D

QM

QM −Qm
, f = ρm

zm
D

1

QM −Qm
.

We have

F ′(x) =
−(a + c)(d + f)x2 + 2b(d + f)x− be

((d + f)x2 − ex)2
≡ G(x)

((d + f)x2 − ex)2
.

Observe that

Δ = [2b(d + f)]2 − 4(a + c)(d + f)be = 4b(d + f)[b(d + f) − e(a + c)] < 0

since b(d + f) − e(a + c) = −ρm
zm
D

QM

QM−Qm
M < 0. Therefore G(x) = −(a + c)(d +

f)x2 + 2b(d + f)x − be < 0. Therefore F (x) is strictly decreasing in x. As a result,
the uniqueness of E∗ holds.

Assume now that R0 < 1. If we have a positive equilibrium, then Q̄ > Q̂ since
Φ(Q̂) = Ψ(0, Q̂) < 0. Observe that since P̄ < M + P̄ , we need only

(
lm +

ν + D

zm

)
Q̄ < ρm

QM − Q̄

QM −Qm

to guarantee that P̄ > 0. To ensure Ā > 0, due to (A.4), we need the more restrictive
condition(

zm
D

lm +
ν + D

D

)
Q̄− ρm

zm
D

QM − Q̄

QM −Qm
< −M

(
zm
D

lm +
ν + D

D

)
Q̄/Pin.

Hence Ā > 0 will ensure P̄ > 0. The previous inequality implies that

Q̄ <
β(Pin)QM

β(Pin) + (lm + ν+D
zm

)
.

Recall that R0 < 1 implies that μA(1 −Qm/Q̂)h(0) < lm + ν+D
zm

and

Q̂ =
β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
.
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Fig. A.1. Graph of algae system (3.1) to check that the system is competitive. This is observed
from the Jacobian matrix of system (3.1) in the proof of Theorem 2.

Hence

Q̄− Q̂ <
β(Pin)QM

β(Pin) + (lm + ν+D
zm

)
− β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
.

Simple computation shows that

Q̄− Q̂ < − μAh(0)Qm(β(Pin) + μAh(0))

(β(Pin) + (lm + ν+D
zm

))(β(Pin) + μAh(0))
< 0,

a contradiction to Q̄ > Q̂.
We now proceed to show that E0 is globally asymptotically stable when R0 < 1.

The Jacobian matrix of system (3.1) has the structure

J =

⎛
⎝ ∗ + 0

+ ∗ +
− + ∗

⎞
⎠

which is sign-stable for the off-diagonal elements. According to the graph in Figure
A.1, every closed loop has an even number of edges with + signs; thus the system
(3.1) is monotone ([33, p. 50–51]) in Ω with respect to the order defined by

Km = {(A,Q, P ) ∈ R
3 | A ≥ 0, Q ≤ 0, P ≥ 0}.

An application of monotone dynamical system theory ([33, Prop. 4.3, p. 44]) yields the
statement that if system (3.1) has a positive periodic solution in Ω, then it contains
an equilibrium in Ω. However, we have shown that there is no positive equilibrium
E∗ when R0 < 1. Hence system (3.1) has no positive periodic solution in Ω. By the
Poincaré–Bendixson theory for the monotone algae system and the local stability of
E0, we see that E0 is globally asymptotically stable.

Proof of Theorem 3. An application of the quasi–steady state approximation for
the cell quota equation yields

Q̃ =
QMβ(P ) + QmμAh(A)

β(P ) + μAh(A)
≡ γ(A,P )

which is increasing in both A and P , with γ(A,P ) ∈ (Qm, QM ). The system (3.1) is
then reduced to a two-dimensional system:

(A.5)

⎧⎪⎨
⎪⎩

dA

dt
= μAA

(
1 − Qm

γ(A,P )

)
h(A) − lmA− ν + D

zm
A ≡ F1(A,P ),

dP

dt
=

D

zm
(Pin − P ) − μA(γ(A,P ) −Qm)h(A)A ≡ F2(A,P ).
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There are still two equilibria: Ẽ0 = (0, Pin) and Ẽ∗ = (Ā, P̄ ). All the theorems above
for system (3.1) hold for system (A.5). Choose the Dulac function δ(A,P ) = 1/A.
Then

∂(δF1)

∂A
= ∂

[
μA

(
1 − Qm

γ(A,P )

)
h(A) − lm − ν + D

zm

]
/∂A

= ∂

[
μA

(QM −Qm)β(P )h(A)

QMβ(P ) + QmμAh(A)

]
/∂A < 0,

∂(δF2)

∂P
= ∂

[
D

zm
(Pin − P )/A− μA(γ(A,P ) −Qm)h(A)

]
/∂P < 0.

Therefore ∂(δF1)
∂A + ∂(δF2)

∂P < 0. By the Poincaré–Bendixson theory, the positive equi-

librium Ẽ∗ is globally asymptotically stable for the system (A.5) when R0 > 1.
Proof of Theorem 4. The system (3.1) satisfies the conservation principle as

follows:

d(P + AQ)

dt
=

D

zm
(Pin − P ) −

(
lm +

ν + D

zm

)
AQ

=
D

zm
(Pin − P ) − D

zm
AQ =

D

zm
[Pin − (P + AQ)];

then, all solutions of system (3.1) asymptotically approach the surface P +AQ = Pin

as t → ∞. We need only show that E∗ is globally asymptotically stable on the
surface P + AQ = Pin, which is the limiting case of system (3.1). The whole system
is reduced to be a planar system on the surface; then, we can prove global stability
on the surface as Theorem 3 when R0 > 1. According to Smith and Waltman [35],
E∗ is also globally asymptotically stable for the system (3.1) when R0 > 1.

For convenience, in the following proofs we use the same notations Ω, Ω1, Ω2, ℘,
F , M , etc. for system (2.2) as we did for system (3.1). Although they are different
from those used for system (3.1), they play similar roles for system (2.2).

Proof of Theorem 5. For system (2.2), consider the total carbon T = A+B/r+C.
Then dT

dt = μAAh(A)− D
zm

T−(lm+ ν
zm

)A− μr+μg

r B ≤ μAAh(A)− D
zm

T , which gives us
dT
dt ≤ μATh(T )− D

zm
T , since Ah(A) is increasing in A. By the condition μAh(0) < D

zm

and because h(A) is decreasing in A, we have μAh(T )− D
zm

≤ μAh(0)− D
zm

< 0, which

implies T → 0 as t → ∞. Together with positivity of all the variables, we have
limt→∞ A(t) = limt→∞ B(t) = 0 for all nonnegative initial conditions; that is, both
algae and bacteria go extinct.
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