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a b s t r a c t 

In this paper, we investigate the spatiotemporal dynamics of a single-species model with 

spatiotemporal delays characterizing spatial memory and maturation. Through stability and 

bifurcation analysis, we find that the spatial memory-based diffusion coefficient, the spa- 

tiotemporal diffusive delay and spatiotemporal reaction delay have important effects on 

the dynamics of the model and their combined impact can cause the destabilization of the 

positive constant steady state and give rise to steady state and Hopf bifurcations. Taking 

the coefficient of spatial memory diffusion as the bifurcation parameter, the critical val- 

ues of steady state and Hopf bifurcations are rigorously determined. Furthermore, we ap- 

ply the theoretical results to a modified diffusive logistic model with predation and obtain 

spatially inhomogeneous steady states and spatially homogeneous and inhomogeneous pe- 

riodic solutions via numerical simulations. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

In the past few decades, the reaction-diffusion equations have been used by many investigators to model the movement 

of animals. In particular, the Fickian diffusion is commonly applied to describe the random walk of mobile animals. As for

the directional movement, the advection term is additionally introduced to the typical reaction-diffusion equation to de- 

scribe the movement in an advective environment like a river or a slope. Different from the physical process, the cognition

and memory of animals play a significant role in their movements [1] , which implies that the directional movement is com-

mon for the highly developed animals. Considering the episodic-like spatial memory of animals, Shi et al. [14] incorporated 

a delayed diffusion term into the reaction-diffusion model, which has the form { 

∂u 
∂t 

= d 1 �u + d 2 di v (u ∇u (x, t − τ )) + f (u ) , x ∈ �, t > 0 , 

∂u 
∂ν

= 0 , x ∈ ∂�, t > 0 , 
(1.1) 

where d 1 > 0 and d 2 ∈ R denote the diffusion rates corresponding to random movement and memory-based movement, re-

spectively; τ is the averaged memory period (also known as the memory delay); f (u ) stands for the chemical reaction such

as birth/death of a species; � is a connected open region in R 

N (N ≥ 1) with a smooth boundary ∂� and ν is the outward
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unit normal vector of the boundary ∂�. The homogeneous Neumann boundary condition describes the circumstance when 

there is no animals cross the boundary. Comparing with the classical reaction-diffusion equation, there is a directed move- 

ment toward the negative or positive gradient of the density distribution function at past time in model (1.1) . As for the

biological meaning, d 2 > 0 indicates that animals leave away from high density to low density, which is converse for d 2 < 0 ,

while d 2 = 0 means that there is no spatial memory diffusion. In addition, it was revealed that the stability of the positive

constant steady state completely relies on the property of the reaction term f and the relation between the diffusion rates 

d 1 and d 2 but is independent of the time delay τ [14] . 

In [13] , Shi et al. considered that the reaction term does not occur instantaneously and introduced the time delay, say σ
(also known as the maturation delay), into the reaction term f of model (1.1) and proposed the following model: { 

∂u 
∂t 

= d 1 �u + d 2 di v ( u ∇u (x, t − τ ) ) + f ( u, u (x, t − σ ) ) , x ∈ �, t > 0 , 

∂u 
∂ν

= 0 , x ∈ ∂�, t > 0 . 
(1.2) 

In [13] , the influence of the memory delay and the maturation delay on the constant steady state was investigated, and it

was shown that the boundaries of the stable region in the two-delay parameter plane consist of Hopf bifurcation curves. 

In model (1.2) , the spatial memory diffusion and the reaction term are based on the memory (or history) of a particular

past time density distribution. As a matter of fact, the information on the space and the previous time is also essential in the

population of a species. Since the animals are moving, they may be anywhere in the past time. Based on the assumption

that the population at any previous time makes a contribution to the current growth rate, the spatiotemporal delay was 

firstly introduced by Britton [3] for the unbounded domain and by Gourley and So [8] for the bounded domain. Moreover,

the influence of the spatiotemporal delay on the population dynamics has recently been a hot topic of research in the field

of applied mathematics. The periodic solutions and travelling waves induced by the spatiotemporal delay were studied in 

[2,6,7,18] for the case of the unbounded domain, and Hopf bifurcation induced by the spatiotemporal delay were discussed 

in [4,9,10,17,21] for the case of the bounded domain. All the above spatiotemporal delays were incorporated in the reaction 

term only. For the spatial memory delay, it is more realistic to use spatiotemporal delay because the gain and loss of the

knowledge are accumulated over time, and the cognition depends on the distance due to the range of vision if there exists

no knowledge transfer among animals. 

In this paper, we restrict model (1.2) to one dimensional domain � = (0 , �π ) and incorporate the spatiotemporal delays

into the spatial memory diffusion and the reaction term by replacing u (x, t − τ ) and u (x, t − σ ) , respectively, with 

g 1 ∗ ∗u (x, t) = 

∫ t 

−∞ 

∫ �π

0 

G (x, y, t − s ) h 1 (t − s, τ ) u (y, s ) d yd s, (1.3)

and 

g 2 ∗ ∗u (x, t) = 

∫ t 

−∞ 

∫ �π

0 

G (x, y, t − s ) h 2 (t − s, σ ) u (y, s ) d yd s, (1.4)

and then obtain the following equation: { 

∂u 
∂t 

= d 1 u xx + d 2 (u v x ) x + f (u, w ) , x ∈ (0 , �π ) , t > 0 , 

u x (0 , t) = u x (�π, t) = 0 , t > 0 , 
(1.5) 

where v = g 1 ∗ ∗u (x, t) and w = g 2 ∗ ∗u (x, t) . According to [8] , the spatial kernel G (x, y, t) in (1.3) (or (1.4) ) can be chosen

as the fundamental solution of the heat equation G t = d 1 G yy with the homogeneous Neumann boundary condition and the

initial condition G (x, y, 0) = δ(x − y ) , i.e. 

G (x, y, t) = 

1 

�π
+ 

2 

�π

∞ ∑ 

n =1 

e 
− d 1 n 

2 

� 2 
t 

cos 
n 

� 
x cos 

n 

� 
y, (1.6) 

while the temporal kernel h 1 (t, τ ) in (1.3) measures the effect of the memory before the present time on the spatial dif-

fusion and the temporal kernel h 2 (t, σ ) in (1.4) often reflects the effect of the past population density on the present

birth and/or death rate. In the literature, the temporal kernels are often chosen as the “weak” or “strong” delay kernel, 

i.e., h 1 (t, τ ) = 

t m 

τ (m +1) m ! 
e −

t 
τ and h 2 (t, σ ) = 

t m 

σ (m +1) m ! 
e −

t 
σ , m = 0 , 1 , where τ and σ are identified as the average delay, respec-

tively, since 
∫ + ∞ 

0 th 1 (t, τ ) dt = (m + 1) τ and 

∫ + ∞ 

0 th 2 (t, σ ) dt = (m + 1) σ . Actually, the temporal kernels h 1 (t, τ ) and h 2 (t, σ )

have different underlying mechanisms. The first temporal kernel represents the gain and loss of the knowledge: the ”weak”

kernel h 1 (t, τ ) = 

1 
τ e −

t 
τ only describes loss due to memory waning, while the strong kernel h 1 (t, τ ) = 

t 
τ2 e 

− t 
τ describes both

gain due to learning and loss due to memory waning. The second temporal kernel represents maturation process. In this 

paper, for the two temporal kernels, we consider the following four cases: 

(I) weak/weak; (II) strong/weak; (III) weak/strong; (IV) strong/strong. 

In addition, we are interested in the effects of the spatial memory-based diffusion coefficient and the average delays 

on the stability of the positive constant steady state and the spatiotemporal dynamics induced by steady state and Hopf 

bifurcations. 
2 
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There has recently been an increasing activity and interest on the study of the spatial movement with memory. In [11] ,

Shi et al. investigated a modified version of model (1.1) that contains a memory-based spatiotemporal delay, and they found

that steady state and Hopf bifurcations can occur under certain assumptions. Moreover, the effect of the nonlocal reaction 

on the dynamics of model (1.1) was studied in [16] , where the existence of Turing-Hopf bifurcation was proved. 

The rest of this paper is organized as follows. In Section 2 , the stability and bifurcation analysis of the positive constant

steady state of model (1.5) are discussed. In Section 3 , a modified logistic model with predation and Neumann bound-

ary condition is investigated to illustrate our theoretical results. Finally, we conclude and discuss our results in Section 4 .

Throughout this paper, N 0 represents the set of the nonnegative integers, while N denotes the set of the positive integers. 

2. Stability and bifurcation analysis 

As for model (1.5) , we suppose there exists a positive constant u ∗ such that f (u ∗, u ∗) = 0 . Then linearization of model

(1.5) about u ∗ is given by { 

∂u 
∂t 

= d 1 u xx + d 2 u ∗v xx + Au + Bw, x ∈ (0 , �π ) , t > 0 , 

u x (0 , t) = u x (�π, t) = 0 , t > 0 , 
(2.1) 

where A = f u (u ∗, u ∗) , and B = f w 

(u ∗, u ∗) . When A + B < 0 , the positive constant steady state of u ′ (t) = f (u (t ) , u (t )) is

asymptotically stable. 

For x ∈ (0 , �π ) and � = 

∂ 2 

∂x 2 
, cos nx 

� 
is the eigenfunction corresponding to the eigenvalue − n 2 

� 2 
. Then, by setting u =

e λt cos nx 
� 

, we obtain the characteristic equations associated with (2.1) 

λ + d 1 
n 

2 

� 2 
+ d 2 u ∗

n 

2 

� 2 
ḡ 1 ( τ, m, λ) − A − B ̄g 2 ( σ, m, λ) = 0 , n ∈ N 0 , (2.2) 

where 

ḡ 1 ( τ, m, λ) = 

1 (
1 + τd 1 

n 2 

� 2 
+ τλ

)(m +1) 
, m = 0 , 1 , (2.3) 

and 

ḡ 2 ( σ, m, λ) = 

1 (
1 + σd 1 

n 2 

� 2 
+ σλ

)(m +1) 
, m = 0 , 1 , (2.4) 

with m = 0 , 1 corresponding to the “weak” or “strong” temporal kernels, respectively. For n = 0 , Eq. (2.2) becomes { 

λ − A − B 
1+ σλ

= 0 , for Cases (I) or (II) , 

λ − A − B 

( 1+ σλ) 
2 = 0 , for Cases (III) or (IV) . 

(2.5) 

If B = 0 , then λ = A < 0 . Moreover, if B � = 0 , then assuming that λ is a root of Eq. (2.5) with nonnegative real part, we have

1 + σλ � = 0 . Thus, when B � = 0 , the distribution of roots with nonnegative real parts of Eq. (2.5) is the same as that of the

following equation {
σλ2 + (1 − σA ) λ − (A + B ) = 0 , for Cases (I) or (II) , 

σ 2 λ3 + σ (2 − σA ) λ2 + (1 − 2 σA ) λ − (A + B ) = 0 , for Cases (III) or (IV) . 
(2.6) 

Notice that the corresponding ordinary differential system of system (1.5) is 

u 

′ (t) = f 

(
u (t) , 

∫ t 

−∞ 

h 2 (t − s, σ ) u (s ) ds 

)
, (2.7) 

and the characteristic equation of the linearized system of (2.7) at u ∗ is also Eq. (2.5) , which has been studied by Zuo and

Song [20] . We first introduce the following results from [20] with a minor revision. 

Lemma 2.1. Assume that A + B < 0 . 

(I) For the weak temporal kernel h 2 (t, σ ) = 

1 
σ e −

t 
σ , we have 

(i ) if either B ≥ 0 , or B < 0 and σ ≤ − 1 
B , then all roots of Eq. (2.6) have negative real parts; 

(ii ) if B < 0 and σ > − 1 
B , then all roots of Eq. (2.6) have negative real parts for σA < 1 , and Eq. (2.6) has at least one root

with positive real part for σA > 1 and a pair of purely imaginary roots for σA = 1 . 

(I I ) For the strong temporal kernel h 2 (t, σ ) = 

t 
σ 2 e 

− t 
σ , we have 

(i ) if either B ≥ 0 , or B < 0 and σ ≤ − 1 , then all roots of Eq. (2.6) have negative real parts; 
2 B 

3 
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(ii ) if B < 0 and σ > − 1 
2 B , then all roots of Eq. (2.6) have negative real parts for A < 

1 
σ −

√ 

− B 
2 σ , and Eq. (2.6) has at

least one root with positive real part for A > 

1 
σ −

√ 

− B 
2 σ and a pair of purely imaginary roots for A = 

1 
σ −

√ 

− B 
2 σ . 

Lemma 2.2. 

(I) When A + B < 0 and h 2 (t, σ ) = 

1 
σ e −

t 
σ , we have 

(i ) if either B ≥ 0 , or B < 0 and σ ≤ − 1 
B , then the positive steady state u ∗ of system (2.7) is asymptotically stable; 

(ii ) if B < 0 and σ > − 1 
B , then the positive steady state u ∗ of system (2.7) is asymptotically stable for σA < 1 and unstable

for σA > 1 , and system (2.7) undergoes Hopf bifurcation at σ = 

1 
A 

. 

(I I ) When A + B < 0 and h 2 (t, σ ) = 

t 
σ 2 e 

− t 
σ , we have 

(i ) if either B ≥ 0 , or B < 0 and σ ≤ − 1 
2 B , then the positive steady state u ∗ of system (2.7) is asymptotically stable; 

(ii ) if B < 0 and σ > − 1 
2 B , then the positive steady state u ∗ of system (2.7) is asymptotically stable for A < 

1 
σ −

√ 

− B 
2 σ

and unstable for A > 

1 
σ −

√ 

− B 
2 σ , and system (2.7) undergoes Hopf bifurcation at σ = σ 0 

H 
, where σ 0 

H 
is the positive root

of the equation A = 

1 
σ −

√ 

− B 
2 σ . 

Remark 2.1. From Lemma 2.2 , we know that for B ≥ 0 , the stability of the positive steady state u ∗ of system (2.7) is in-

dependent of the type of the kernel function, i.e., the stability region in the A − σ plane is the same no matter what the

kernel function is considered. But, for B < 0 , the type of the kernel functions can affect the stability of u ∗ and the stability

region for the weak kernel is less than that for the strong kernel in the A − σ plane. 

Notice the fact that the periodic solution of system (2.7) is also the spatially homogeneous periodic solution of system 

(1.5) . Thus, by Lemma 2.2 , we obtain the following theorem for system (1.5) . 

Theorem 2.1. Assume that A + B < 0 . 

(I) When h 2 (t, σ ) = 

1 
σ e −

t 
σ , B < 0 and σ > − 1 

B , the positive constant steady state u ∗ is unstable provided that σA > 1 , and

system (1.5) undergoes spatially homogeneous Hopf bifurcation at σ = 

1 
A 

. 

(II) When h 2 (t, σ ) = 

t 
σ 2 e 

− t 
σ , B < 0 and σ > − 1 

2 B , the positive constant steady state u ∗ is unstable provided that A > 

1 
σ −√ 

− B 
2 σ , and system (1.5) undergoes spatially homogeneous Hopf bifurcation at σ = σ 0 

H 
, where σ 0 

H 
is the positive root of 

the equation A = 

1 
σ −

√ 

− B 
2 σ . 

In the following, we consider the distribution of roots of Eq. (2.2) for n ∈ N and discuss the conditions under which

Eq. (2.2) has roots with zero real parts or has no roots with positive real parts. Notice that if λ is a root of Eq. (2.2) with

Re λ ≥ 0 , then 

1 + τd 1 
n 

2 

� 2 
+ τλ � = 0 , (2.8) 

and 

1 + σd 1 
n 

2 

� 2 
+ σλ � = 0 , (2.9) 

which will be useful later on. 

2.1. Two weak temporal kernels: h 1 (t, τ ) = 

1 
τ e −

t 
τ , h 2 (t, σ ) = 

1 
σ e −

t 
σ

It follows from Lemma 2.1 that for n = 0 , all roots of Eq. (2.2) have negative real parts if one of the following two

conditions is satisfied: 

(H1) B ≥ 0 , A < −B ;
(H2) B < 0 and (σ, A ) ∈ 

{
(σ, A ) 

∣∣ 0 < σ ≤ − 1 
B 
, A < −B 

}
∪ 

{
( σ, A ) 

∣∣ σ > − 1 
B 
, A < 

1 
σ

}
. 

In this subsection, we suppose (H1) or (H2) holds. For d 2 = 0 and B = 0 , we have 

λ + d 1 
n 

2 

� 2 
− A = 0 , n ∈ N . (2.10) 

Moreover, using (2.8) and (2.9) , we find that for d 2 � = 0 and B = 0 , Eq. (2.2) becomes (
λ + d 1 

n 

2 

� 2 
− A 

)(
1 + τd 1 

n 

2 

� 2 
+ τλ

)
+ d 2 u ∗

n 

2 

� 2 
= 0 , n ∈ N ; (2.11) 
4 
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for d 2 = 0 and B � = 0 , Eq. (2.2) reads as (
λ + d 1 

n 

2 

� 2 
− A 

)(
1 + σd 1 

n 

2 

� 2 
+ σλ

)
− B = 0 , n ∈ N ; (2.12) 

and for d 2 � = 0 and B � = 0 , Eq. (2.2) can be written as 

στλ3 + P n λ
2 + Q n λ + R n = 0 , n ∈ N , (2.13) 

where 

P n = 3 στd 1 
n 

2 

� 2 
+ σ + τ − τσA > 0 , (2.14) 

Q n = 3 στ

(
d 1 

n 

2 

� 2 

)2 

+ 2(σ + τ − τσA ) d 1 
n 

2 

� 2 
+ 1 − σA − (A + B ) τ + d 2 σu ∗

n 

2 

� 2 
, (2.15)

and 

R n = στ
(
d 1 

n 2 

� 2 

)3 + (σ + τ − τσA ) 
(
d 1 

n 2 

� 2 

)2 

+(1 − σA − τA − τB ) d 1 
n 2 

� 2 
− (A + B ) + d 2 u ∗ n 2 

� 2 

(
σd 1 

n 2 

� 2 
+ 1 

)
. 

(2.16) 

Since (H1) or (H2) holds, it is easy to see that P n > 0 . In addition, it follows from Eq. (2.13) that 

στλ3 + P n λ2 + Q n λ + R n 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
λ + d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 
+ σλ

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)
, d 2 = 0 , B = 0 , ((

λ + d 1 
n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)
+ d 2 u ∗ n 2 

� 2 

)(
1 + σd 1 

n 2 

� 2 
+ σλ

)
, d 2 � = 0 , B = 0 , ((

λ + d 1 
n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 
+ σλ

)
− B 

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)
, d 2 = 0 , B � = 0 . 

Thus, when d 2 = 0 and B � = 0 , the roots of Eq. (2.13) except λ = − 1+ τd 1 
n 2 

� 2 

τ < 0 are the same as those of Eq. (2.12) . Simi-

larly, for d 2 = 0 and B = 0 , the roots of Eq. (2.13) except λ = − 1+ τd 1 
n 2 

� 2 

τ < 0 and λ = − 1+ σd 1 
n 2 

� 2 

σ < 0 are the same as those of

Eq. (2.10) , while for d 2 � = 0 and B = 0 , the roots of Eq. (2.13) except λ = − 1+ σd 1 
n 2 

� 2 

σ < 0 are the same as those of Eq. (2.11) .

Then, we can analyze the distribution of roots of Eq. (2.13) for all cases. 

Applying the Routh-Hurwitz criterion, we have the following result on the distribution of roots of Eq. (2.13) . 

Lemma 2.3. Assume that (H1) or (H2) holds. 

(I) All roots of Eq. (2.13) have negative real parts if and only if R n > 0 and P n Q n − στR n > 0 . 

(I I ) If R n = 0 and Q n = 0 , then Eq. (2.13) has a zero root of multiplicity 2 and a negative real root. 

(I I I ) If R n = 0 and Q n > 0 , then Eq. (2.13) has a simple zero root and two roots with negative real parts. 

(IV ) If R n = 0 and Q n < 0 , then Eq. (2.13) has a simple zero root, a positive real root and a negative real root. 

(V ) Eq. (2.13) has a pair of purely imaginary roots ±i 

√ 

Q n 
στ and a negative real root if and only if Q n > 0 and P n Q n − στR n = 0 .

In what follows, we take d 2 as a parameter. When either (H1) or (H2) holds, we have 1 − σA > 0 and A + B < 0 . Then, a

direct computation yields the following lemma for R n . 

Lemma 2.4. Assume that (H1) or (H2) holds. For R n , we have 

(I) if d 2 ≥ 0 , then R n > 0 for any n ∈ N ; 

(I I ) if d 2 < 0 , then 

R n 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 , d 2 > d T 2 , 1 (σ, n 

2 ) , 

= 0 , d 2 = d T 2 , 1 (σ, n 

2 ) , 

< 0 , d 2 < d T 2 , 1 (σ, n 

2 ) , 

(2.17) 

where 

d T 2 , 1 (σ, n 

2 ) 

= −
στ

(
d 1 

n 2 

� 2 

)3 

+(σ+ τ−τσA ) 
(

d 1 
n 2 

� 2 

)2 

+(1 −σA −τA −τB ) d 1 
n 2 

� 2 
−(A + B ) 

n 2 
(

n 2 
) < 0 , n ∈ N . 

(2.18) 
u ∗
� 2 

σd 1 
� 2 

+1 

5 
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According to Lemma 2.4 , we have the following result on zero roots of Eq. (2.13) . 

Lemma 2.5. Assume that (H1) or (H2) holds, and d T 
2 , 1 

(σ, n 2 ) is defined by (2.18) . Denote 

N T = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 , if z ∗ ≤ 1 , [√ 

z ∗
]
, if z ∗ > 1 and d T 2 , 1 

(
σ, 

([√ 

z ∗
])2 

)
≥ d T 2 , 1 

(
σ, 

([√ 

z ∗
]

+ 1 

)2 
)
, 

[√ 

z ∗
]

+ 1 , if z ∗ > 1 and d T 2 , 1 

(
σ, 

([√ 

z ∗
])2 

)
< d T 2 , 1 

(
σ, 

([√ 

z ∗
]

+ 1 

)2 
)
, 

(2.19) 

where z ∗ > 0 is the root of the equation 
∂d T 2 , 1 (σ, z) 

∂z 
= 0 . Then we have the following statements. 

(I) If d 2 ≥ 0 , then Eq. (2.13) has no zero roots for any n ∈ N . 

(II) If d 2 < 0 , then 

(i) if d 2 > d T 
2 , 1 

(σ, N 

2 
T 
) , then Eq. (2.13) has no zero roots for any n ∈ N ; 

(ii) if d 2 < d T 
2 , 1 

(σ, N 

2 
T 
) , then Eq. (2.13) has at least one root with positive real part for n = N T . 

Proof. It is clear that λ = 0 is a root of Eq. (2.13) if and only if R n = 0 . Thus, the conclusion of (I) follows directly from (I)

of Lemma 2.4 . 

Next, we restrict our attention to d 2 < 0 . It follows from (I I ) of Lemma 2.4 that for any n ∈ N , Eq. (2.13) has a zero root

provided that d 2 = d T 2 , 1 (σ, n 2 ) < 0 . 

Letting z = n 2 , we have 

∂d T 2 , 1 (σ, z) 

∂z 
= 

ζ (σ, z) 

u ∗
� 2 

(
σ d 1 

� 2 
z 2 + z 

)2 
, (2.20) 

where 

ζ (σ, z) = −σ 2 τ

(
d 1 
� 2 

z 

)4 

− 2 στ

(
d 1 
� 2 

z 

)3 

− (σ 2 A + στB + τ ) 

(
d 1 
� 2 

z 

)2 

− 2 σ (A + B ) 
d 1 
� 2 

z − (A + B ) . 

Then, it is easy to verify that 

∂ζ (σ, z) 

∂z 
= −4 σ 2 τ

(
d 1 
� 2 

)4 

z 3 − 6 στ

(
d 1 
� 2 

)3 

z 2 − 2(σ 2 A + στB + τ ) 

(
d 1 
� 2 

)2 

z − 2 σ (A + B ) 
d 1 
� 2 

, (2.21) 

and 

∂ 2 ζ (σ, z) 

∂z 2 
= −12 σ 2 τ

(
d 1 
� 2 

)4 

z 2 − 12 στ

(
d 1 
� 2 

)3 

z − 2(σ 2 A + στB + τ ) 

(
d 1 
� 2 

)2 

. (2.22) 

Since −12 σ 2 τ
(

d 1 
� 2 

)4 

< 0 and −12 στ
(

d 1 
� 2 

)3 

< 0 , we see that if σ 2 A + στB + τ ≥ 0 , then 

∂ 2 ζ (σ, z) 

∂z 2 
< 0 for z > 0 , while if

σ 2 A + στB + τ < 0 , then there exists z ∗
1 

> 0 such that 
∂ 2 ζ (σ, z) 

∂z 2 
> 0 for 0 < z < z ∗

1 
and 

∂ 2 ζ (σ, z) 

∂z 2 
< 0 for z > z ∗

1 
. Hence,

using (2.21) and 

∂ζ (σ, 0) 

∂z 
= −2 σ (A + B ) 

d 1 
� 2 

> 0 , we find that there exists z ∗2 > 0 such that 

∂ζ (σ, z) 

∂z 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 , 0 < z < z ∗2 , 

= 0 , z = z ∗2 , 

< 0 , z > z ∗2 , 

which, together with ζ (σ, 0) = −(A + B ) > 0 and (2.20) , implies that there exists z ∗ > 0 such that 

∂d T 2 , 1 (σ, z) 

∂z 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 , 0 < z < z ∗, 

= 0 , z = z ∗, 

< 0 , z > z ∗. 

This, along with (2.17) , proves (I I ) . This completes the proof. �

Under the hypotheses of the above lemma, it follows from (2.17) that 0 is a root of Eq. (2.13) if and only if d 2 =
d T 

2 , 1 
(σ, n 2 ) . Then, assuming that 0 is a simple root of Eq. (2.13) and taking d 2 as a bifurcation parameter, we have 

dλ(d 2 ) 

dd 2 

∣∣∣∣
d 2 = d T 2 , 1 (σ,n 2 ) 

= −u ∗n 

2 (σd 1 n 

2 + � 2 ) 

� 4 Q n 
� = 0 . (2.23) 
6 
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We next investigate the existence of the purely imaginary roots of Eq. (2.13) , which is determined by the signs of Q n and

P n Q n − στR n , where Q n is defined by (2.15) and 

P n Q n − στR n = 8 σ 2 τ 2 
(
d 1 

n 2 

� 2 

)3 + 8 στ (σ + τ − τσA ) 
(
d 1 

n 2 

� 2 

)2 

+2 στ (1 − σA − Aτ − Bτ ) d 1 
n 2 

� 2 

+2 ( σ + τ − τσA ) 
2 d 1 

n 2 

� 2 
+ (1 − σA ) 

(
σ + τ − τσA − (A + B ) τ 2 

)
+ d 2 u ∗σ 2 n 2 

� 2 

(
2 τd 1 

n 2 

� 2 
+ 1 − τA 

)
. 

(2.24) 

Recall that when either (H1) or (H2) holds, we see that 1 − σA > 0 and A + B < 0 . Then, we obtain the following results

that will be useful later on. 

Lemma 2.6. Assume that (H1) or (H2) holds. For Q n , we have 

(I) if d 2 ≥ 0 , then Q n > 0 for any n ∈ N ; 

(I I ) if d 2 < 0 , then 

Q n 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 , d 2 > β(σ, n 

2 ) , 

= 0 , d 2 = β(σ, n 

2 ) , 

< 0 , d 2 < β(σ, n 

2 ) , 

(2.25) 

where 

β(σ, n 

2 ) = −
3 στ

(
d 1 

n 2 

� 2 

)2 + 2(σ + τ − τσA ) d 1 
n 2 

� 2 
+ 1 − σA − (A + B ) τ

σu ∗ n 2 

� 2 

< 0 , n ∈ N . (2.26) 

Lemma 2.7. For P n Q n − στR n , we have 

(I) if (H1) holds and d 2 ≥ 0 , then P n Q n − στR n > 0 for any n ∈ N ; 

(II) if (H2) holds, d 2 ≥ 0 and 1 
τ ≥ A − 2 d 1 

� 2 
, then P n Q n − στR n > 0 for any n ∈ N ; 

(III) if the assumptions of (I) or (II) are not satisfied, then for n = � 

√ 

τA −1 
2 τd 1 

, P n Q n − στR n > 0 , while for n � = � 

√ 

τA −1 
2 τd 1 

, 

P n Q n − στR n = 0 ⇐⇒ d 2 = d H 2 (σ, n 

2 ) , (2.27) 

where 

d H 2 (σ, n 

2 ) 

= −
8 σ 2 τ 2 

(
d 1 

n 2 

� 2 

)3 

+8 στ (σ+ τ−τσA ) 
(

d 1 
n 2 

� 2 

)2 

+2 ( στ (1 −σA −Aτ−Bτ )+(σ+ τ−τσA ) 2 ) d 1 n 
2 

� 2 

u ∗σ 2 n 2 

� 2 

(
2 τd 1 

n 2 

� 2 
+1 −τA 

)

− (1 −σA )(σ+ τ−τσA −(A + B ) τ 2 ) 

u ∗σ 2 n 2 

� 2 

(
2 τd 1 

n 2 

� 2 
+1 −τA 

) . 

(2.28) 

Now, we can derive the conditions under which Eq. (2.13) has purely imaginary roots. 

Lemma 2.8. Assume that d H 
2 
(σ, n 2 ) is defined by (2.28) and 

κ(σ, n 

2 ) 

= −
2 σ 2 τ 2 

(
d 1 

n 2 

� 2 

)3 

+ στ ( σ (1 −τA )+4 τ ) 

(
d 1 

n 2 

� 2 

)2 

+2 τ ( σ+ τ−τσA ) d 1 
n 2 

� 2 
+ τ ( σB +1 −(A + B ) τ ) 

u ∗σ 2 n 2 

� 2 

(
2 τd 1 

n 2 

� 2 
+1 −τA 

) . 
(2.29) 

(I) When d 2 ≥ 0 , ±iω n are roots of Eq. (2.13) if and only if n � = � 

√ 

τA −1 
2 τd 1 

, d 2 = d H 
2 
(σ, n 2 ) . 

(I I ) When d 2 < 0 , ±iω n are roots of Eq. (2.13) if and only if n � = � 

√ 

τA −1 
2 τd 1 

, d 2 = d H 
2 
(σ, n 2 ) and κ(σ, n 2 ) > 0 . 

Proof. From Lemma 2.6 , we have Q n > 0 for d 2 ≥ 0 . This, together with Lemma 2.3 , proves (I) . 

We next focus on d 2 < 0 . Note that κ(σ, n 2 ) = d H 
2 
(σ, n 2 ) − β(σ, n 2 ) . It therefore follows from (2.25) and (2.27) that Q n >

0 and P n Q n − στR n = 0 if and only if κ(σ, n 2 ) > 0 and d 2 = d H 2 (σ, n 2 ) . Then, using Lemma 2.3 , we complete the proof of

(I I ) . �

Lemma 2.9. When (H1) holds, Eq. 2.13 has no purely imaginary roots for any n ∈ N . 
7 
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Proof. From (I) of Lemma 2.7 , we see that when d 2 ≥ 0 and (H1) holds, Eq. 2.13 has no purely imaginary roots for any

n ∈ N . Next, we focus on d 2 < 0 . When (H1) holds, we have A < 0 , which implies n � = � 

√ 

τA −1 
2 τd 1 

for any n ∈ N . Since (H1)

holds and A < 0 , it then follows from (2.29) that κ(σ, n 2 ) < 0 for any n ∈ N . This, together with Lemma 2.8 , completes the

proof. �

Lemma 2.10. Assume that (H2) holds and d 2 ≥ 0 . 

(I) If 1 
τ ≥ A − 2 d 1 

� 2 
, then Eq. (2.13) has no purely imaginary roots for any n ∈ N . 

(I I ) If 1 
τ < A − 2 d 1 

� 2 
, then Eq. (2.13) has a pair of purely imaginary roots at d 2 = d H 

2 
(σ, n 2 ) for 1 ≤ n ≤ N H − 1 and no purely

imaginary roots for n ≥ N H , where d H 
2 
(σ, n 2 ) is defined by (2.28) and 

N H = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

� 

√ 

τA −1 
2 τd 1 

, if � 

√ 

τA −1 
2 τd 1 

is an integer , 

[ 
� 

√ 

τA −1 
2 τd 1 

] 
+ 1 , if � 

√ 

τA −1 
2 τd 1 

is not an integer . 

(2.30) 

Proof. (I) follows directly from (I I ) of Lemma 2.7 . Next, we turn our attention to the proof of (I I ) . It is easy to show that 

2 τd 1 
n 

2 

� 2 
+ 1 − τA 

{
< 0 , 1 ≤ n ≤ N H − 1 , 

≥ 0 , n ≥ N H , 
(2.31) 

where N H is defined by (2.30) and N H ≥ 2 since 1 
τ < A − 2 d 1 

� 2 
. Noting that (H2) holds and d 2 ≥ 0 and using (2.24), (2.27) and

(2.31) , we conclude that P n Q n − στR n > 0 for n ≥ N H , while for 1 ≤ n ≤ N H − 1 , 

P n Q n − στR n 

⎧ ⎪ ⎨ 

⎪ ⎩ 

> 0 , 0 ≤ d 2 < d H 2 (σ, n 

2 ) , 

= 0 , d 2 = d H 2 (σ, n 

2 ) , 

< 0 , d 2 > d H 2 (σ, n 

2 ) , 

where d H 2 (σ, n 2 ) is defined by (2.28) . Then, by Lemma 2.8 , we proves (I I ) . This completes the proof. �

Lemma 2.11. Assume that (H2) holds and d 2 < 0 . 

(I) If 1 
τ ≤ A, then Eq. (2.13) has no purely imaginary roots for any n ∈ N . 

(I I ) If 1 
τ > A, 

σ∗ = 

(A + B ) τ − 1 

B 

> 0 , (2.32) 

and 

ξ
(
σ, n 

2 
)

= 2 d 1 
n 

2 

� 2 
+ 

1 

τ
+ 

B ( σ − τ ) 

τ
(
σd 1 

n 2 

� 2 
+ 1 

)2 
, n ∈ N , (2.33) 

then we have: 

(i ) if either 0 < σ ≤ σ∗, or σ > σ∗ and A ≤ ξ (σ, 1) , then Eq. (2.13) has no purely imaginary roots for any n ∈ N ; 

(ii ) if σ > σ∗ and ξ (σ, N 

2 ∗ ) < A ≤ ξ (σ, (N ∗ + 1) 2 ) for some N ∗ ∈ N , then for n ≥ N ∗ + 1 , Eq. (2.13) has no purely imagi-

nary roots, while for 1 ≤ n ≤ N ∗, Eq. (2.13) has a pair of purely imaginary roots if and only if d 2 = d H 
2 
(σ, n 2 ) , where

d H 
2 
(σ, n 2 ) is defined by (2.28) . 

Proof. We first consider 1 
τ ≤ A . When (H2) holds, we see that 1 

σ > A and A + B < 0 , which implies that 

σ + τ − τσA > 0 , (2.34) 

and 

σ (1 − τA ) + 4 τ = σ + τ (1 − σA ) + 3 τ > 0 . (2.35) 

Moreover, using 1 
τ ≤ A and 

1 
σ > A, we have τ > σ and thus obtain 

σB + 1 − (A + B ) τ > σB + σA − (A + B ) τ = (σ − τ )(B + A ) > 0 . (2.36)

If A − 2 d 1 
� 2 

< 

1 
τ ≤ A, then we find that for any n ∈ N , 

2 τd 1 
n 

2 

� 2 
+ 1 − τA > 0 and n � = � 

√ 

τA − 1 

2 τd 1 
, (2.37) 

which, together with (2.29) and (2.34) –(2.36) , indicate κ(σ, n 2 ) < 0 for any n ∈ N . 
8 
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Similarly, if 1 
τ ≤ A − 2 d 1 

� 2 
, then we also have κ(σ, n 2 ) < 0 for n > � 

√ 

τA −1 
2 τd 1 

. Moreover, it follows from (2.24) , (H2) and

d 2 < 0 that P n Q n − στR n > 0 for n ≤ � 

√ 

τA −1 
2 τd 1 

. In terms of Lemma 2.8 and the above discussion, we can conclude that when

1 
τ ≤ A, Eq. (2.13) has no purely imaginary roots for any n ∈ N . 

Next, we focus on 

1 
τ > A . Note that (2.37) still holds for any n ∈ N . Hence, the sign of κ(σ, n 2 ) is determined by its

numerator. Then, a simple calculation yields 

κ(σ, n 

2 ) > 0 ⇐⇒ σ > σ∗ and A > ξ (σ, n 

2 ) , (2.38) 

where σ∗ and ξ (σ, n 2 ) are defined by (2.32) and (2.33) , respectively. This, combined with Lemma 2.8 , implies that when

0 < σ ≤ σ∗, Eq. (2.13) has no purely imaginary roots for any n ∈ N . 

When σ > σ∗, it is easy to verify that ξ (σ, n 2 ) < ξ (σ, (n + 1) 2 ) for n ∈ N . Consequently, if A ≤ ξ (σ, 1) , then A ≤ ξ (σ, n )

for any n ∈ N . It therefore follows from (2.38) and Lemma 2.8 that Eq. (2.13) has no purely imaginary roots for any n ∈ N .

This concludes (I I )(i ) . 

When σ > σ∗, if there exists some N ∗ ∈ N such that ξ (σ, N 

2 ∗ ) < A ≤ ξ (σ, (N ∗ + 1) 2 ) , then A > ξ (σ, n 2 ) for any 1 ≤ n ≤ N ∗
and A ≤ ξ (σ, n 2 ) for any n ≥ N ∗ + 1 , which, along with (2.38) and Lemma 2.8 , proves (I I )(ii ) . This completes the proof. �

Remark 2.2. When B = 0 , Eq. (2.13) has also been studied in [11] . Lemmas 2.5 and 2.9 contain the results in [11] for the

case of the weak kernel. 

From the above lemma, we know that when (H2) and the assumptions of (I I ) of Lemma 2.10 or (I I )(ii ) of Lemma 2.11 are

satisfied, Eq. (2.13) has a pair of purely imaginary roots provided that d 2 = d H 2 (σ, n 2 ) . Then, taking d 2 as a bifurcation pa-

rameter and assuming that λ(d 2 ) is the root of Eq. (2.13) , we have 

d Re λ(d 2 ) 

dd 2 

∣∣∣∣
d 2 = d H 2 

(σ,n 2 ) 

= −u ∗n 

2 σ 2 (2 τd 1 
n 2 

� 2 
+ 1 − τA ) 

2 � 2 (σ 2 τ 2 ω 

2 
n + P 2 n ) 

{
> 0 , d 2 ≥ 0 , 1 ≤ n ≤ N H − 1 , 

< 0 , d 2 < 0 , 1 ≤ n ≤ N ∗. 
(2.39) 

Using Lemmas 2.5, 2.9 –2.11 and the transversality conditions (2.23) and (2.39) , we arrive at the following theorems. 

Theorem 2.2. Assume that (H1) holds, h 1 (t, τ ) = 

1 
τ e −

t 
τ , h 2 (t, σ ) = 

1 
σ e −

t 
σ , and, d T 

2 , 1 
(σ, n 2 ) and N T are defined by (2.18) and

(2.19) , respectively. For system (1.5) , we have 

(I) if d 2 ≥ 0 , then the positive constant steady state u ∗ is asymptotically stable; 

(I I ) if d 2 < 0 , then the positive constant steady state u ∗ is asymptotically stable for d T 2 , 1 (σ, N 

2 
T ) < d 2 < 0 and unstable for d 2 <

d T 
2 , 1 

(σ, N 

2 
T 
) ; moreover, there is no Hopf bifurcation and system (1.5) undergoes steady state bifurcation at d 2 = d T 

2 , 1 
(σ, N 

2 
T 
)

provided that d T 
2 , 1 

(σ, N 

2 
T 
) � = d T 

2 , 1 
(σ, (N T + 1) 2 ) . 

Theorem 2.3. Assume that (H2) holds, h 1 (t, τ ) = 

1 
τ e −

t 
τ , h 2 (t, σ ) = 

1 
σ e −

t 
σ , and, d T 

2 , 1 
(σ, n 2 ) , d H 

2 
(σ, n 2 ) , ξ (σ, n 2 ) , N T , N H and

σ∗ are defined by (2.18) , (2.28) , (2.33) , (2.19) , (2.30) and (2.32) , respectively. For system (1.5) , we have the following statements. 

(I) When d 2 ≥ 0 , we have 

(i ) if 1 
τ ≥ A − 2 d 1 

� 2 
, then the positive constant steady state u ∗ is asymptotically stable; 

(ii ) if 1 
τ < A − 2 d 1 

� 2 
, then the positive constant steady state u ∗ is asymptotically stable for 0 ≤ d 2 < min 

1 ≤n ≤N H −1 

{
d H 

2 
(σ, n 2 ) 

}
and unstable for d 2 > min 

1 ≤n ≤N H −1 

{
d H 

2 
(σ, n 2 ) 

}
; moreover, there is no steady state bifurcation and system (1.5) undergoes 

Hopf bifurcation at d 2 = d H 
2 
(σ, n 2 ) , 1 ≤ n ≤ N H − 1 , provided that d H 

2 
(σ, n 2 ) � = d H 

2 
(σ, m 

2 ) for m � = n and 1 ≤ m ≤ N H −
1 . 

(I I ) When d 2 < 0 , we have 

(i ) if 1 
τ ≤ A, then the positive constant steady state u ∗ is asymptotically stable for d T 2 , 1 (σ, N 

2 
T ) < d 2 < 0 and unstable for

d 2 < d T 
2 , 1 

(σ, N 

2 
T 
) ; moreover, there is no Hopf bifurcation and system (1.5) undergoes steady state bifurcation at d 2 =

d T 
2 , 1 

(σ, N 

2 
T 
) provided that d T 

2 , 1 
(σ, N 

2 
T 
) � = d T 

2 , 1 
(σ, (N T + 1) 2 ) ; 

(ii ) if 1 
τ > A, then we have: 

(a ) if either 0 < σ ≤ σ∗, or σ > σ∗ and A ≤ ξ (σ, 1) , then the positive constant steady state u ∗ is asymptotically sta-

ble for d T 2 , 1 (σ, N 

2 
T ) < d 2 < 0 and unstable for d 2 < d T 2 , 1 (σ, N 

2 
T ) ; moreover, there is no Hopf bifurcation and system

(1.5) undergoes steady state bifurcation at d 2 = d T 
2 , 1 

(σ, N 

2 
T 
) provided that d T 

2 , 1 
(σ, N 

2 
T 
) � = d T 

2 , 1 
(σ, (N T + 1) 2 ) ; 

(b) if σ > σ∗ and ξ (σ, N 

2 ∗ ) < A ≤ ξ (σ, (N ∗ + 1) 2 ) for some N ∗ ∈ N , then the positive constant steady

state u ∗ is asymptotically stable for max 

{
d T 

2 , 1 
(σ, N 

2 
T 
) , max 

1 ≤n ≤N ∗
d H 

2 
(σ, n 2 ) 

}
< d 2 < 0 and unstable for d 2 < 

max 

{
d T 

2 , 1 
(σ, N 

2 
T 
) , max 

1 ≤n ≤N ∗
d H 

2 
(σ, n 2 ) 

}
; moreover, system (1.5) undergoes steady state bifurcation at d 2 = d T 

2 , 1 
(σ, N 

2 
T 
) 
9 
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Table 1 

Stability of the positive steady state u ∗ and possible bifurcations for Case (I) 

d 2 ≥ 0 d 2 < 0 

Conditions for τ Stability and bifurcations Conditions for τ Stability and bifurcations 

(H1) holds τ > 0 stable τ > 0 SSB 

(H2) 

holds 

1 
τ ≥ A − 2 d 1 

� 2 
stable 1 

τ > A SSB, HB 
1 
τ < A − 2 d 1 

� 2 
HB 1 

τ ≤ A SSB 

“ SSB” and “HB” denote steady state bifurcation and Hopf bifurcation, respectively. 

 

 

 

 

 

 

provided that d T 2 , 1 (σ, N 

2 
T ) � = d T 2 , 1 (σ, (N T + 1) 2 ) and d T 2 , 1 (σ, N 

2 
T ) � = d H 2 (σ, n 2 ) , 1 ≤ n ≤ N ∗, and Hopf bifurcation at

d 2 = d H 2 (σ, n 2 ) , 1 ≤ n ≤ N ∗, provided that d H 2 (σ, n 2 ) � = d T 2 , 1 (σ, k 2 ) for k ∈ N and d H 2 (σ, n 2 ) � = d H 2 (σ, m 

2 ) for m � = n

and 1 ≤ m ≤ N ∗. 

Based on Theorems 2.2 and 2.3 , the influence of d 2 and τ on the stability of the positive steady state of (1.5) for Case (I)

is shown in Table 1 . 

2.2. Other temporal kernels 

For other three cases: (II) strong/weak; (III) weak/strong; (IV) strong/strong, one can analyze the stability and bifurcation 

using the similar method as for Case (I), but the specific analysis is very complicated. Here, instead of the comprehensive

and cumbersome analysis, we only give some preliminary results for these three types of temporal kernels. For Cases (II), 

(III) and (IV), the corresponding characteristic equation can be written as (
λ + d 1 

n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)2 (
1 + σd 1 

n 2 

� 2 
+ σλ

)
+ d 2 u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 
+ σλ

)
−B 

(
1 + τd 1 

n 2 

� 2 
+ τλ

)2 = 0 , 

(2.40) 

(
λ + d 1 

n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)(
1 + σd 1 

n 2 

� 2 
+ σλ

)2 + d 2 u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 
+ σλ

)2 

−B 

(
1 + τd 1 

n 2 

� 2 
+ τλ

)
= 0 , 

(2.41) 

and (
λ + d 1 

n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 
+ τλ

)2 (
1 + σd 1 

n 2 

� 2 
+ σλ

)2 + d 2 u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 
+ σλ

)2 

−B 

(
1 + τd 1 

n 2 

� 2 
+ τλ

)2 = 0 , 

(2.42) 

respectively. 

By Lemma 2.1 , we find that for n = 0 , all roots of Eq. (2.40) have negative real parts provided that (H1) or (H2) holds,

and all roots of Eq. (2.41) or Eq. (2.42) have negative real parts provided that either (H1) or (H3) holds, where 

(H3) B < 0 and (σ, A ) ∈ 

{ 

(σ, A ) 

∣∣∣0 < σ ≤ − 1 

2 B 

, A < −B 

} 

∪ 

{ 

( σ, A ) 

∣∣∣∣∣σ > − 1 

2 B 

, A < 

1 

σ
−

√ 

− B 

2 σ

} 

. 

According to Lemma 2.1 , these hypotheses imply that the positive steady state u ∗ of system (2.7) is asymptotically stable.

Under these hypotheses, we investigate possible bifurcations induced by d 2 and τ . Note that steady state bifurcation is 

related to zero roots. In fact, 0 is a root of (2.40) –(2.42) , respectively, provided that (
d 1 

n 

2 

� 2 
− A 

)(
1 + τd 1 

n 

2 

� 2 

)2 (
1 + σd 1 

n 

2 

� 2 

)
+ d 2 u ∗

n 

2 

� 2 

(
1 + σd 1 

n 

2 

� 2 

)
− B 

(
1 + τd 1 

n 

2 

� 2 

)2 

= 0 , (2.43) 

(
d 1 

n 

2 

� 2 
− A 

)(
1 + τd 1 

n 

2 

� 2 

)(
1 + σd 1 

n 

2 

� 2 

)2 

+ d 2 u ∗
n 

2 

� 2 

(
1 + σd 1 

n 

2 

� 2 

)2 

− B 

(
1 + τd 1 

n 

2 

� 2 

)
= 0 , (2.44) 

or (
d 1 

n 

2 

� 2 
− A 

)(
1 + τd 1 

n 

2 

� 2 

)2 (
1 + σd 1 

n 

2 

� 2 

)2 

+ d 2 u ∗
n 

2 

� 2 

(
1 + σd 1 

n 

2 

� 2 

)2 

− B 

(
1 + τd 1 

n 

2 

� 2 

)2 

= 0 . (2.45) 

Furthermore, (2.43) –(2.45) are equivalent to d 2 = d T 
2 , 2 

(σ, n 2 ) , d 2 = d T 
2 , 3 

(σ, n 2 ) and d 2 = d T 
2 , 4 

(σ, n 2 ) , respectively, where 

d T 2 , 2 (σ, n 

2 ) = 

(
1 + τd 1 

n 2 

� 2 

)2 (
B −

(
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

))
u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

) , n ∈ N , (2.46) 
10 
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d T 2 , 3 (σ, n 

2 ) = 

(
1 + τd 1 

n 2 

� 2 

)(
B −

(
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

)2 
)

u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

)2 
, n ∈ N , (2.47) 

and 

d T 2 , 4 (σ, n 

2 ) = 

(
1 + τd 1 

n 2 

� 2 

)2 
(

B −
(
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

)2 
)

u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

)2 
, n ∈ N . (2.48) 

Utilizing (H1) or (H2) , we obtain d T 2 , 2 (σ, n 2 ) < 0 , while applying (H1) or (H3) , we find that d T 2 , 3 (σ, n 2 ) < 0 and

d T 2 , 4 (σ, n 2 ) < 0 . 

Assuming that 0 is a simple root of (2.40) –(2.42) , respectively, we have 

dλ

dd 2 

∣∣∣∣
d 2 = d T 2 , 2 (σ,n 2 ) 

= 

−u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

)
(
1 + τd 1 

n 2 

� 2 

)2 (
1 − σA + 2 σd 1 

n 2 

� 2 

)
+ 2 τ

(
1 + τd 1 

n 2 

� 2 

)((
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

)
− B 

)
+ σd 2 u ∗ n 2 

� 2 

� = 0 , 

dλ

dd 2 

∣∣∣∣
d 2 = d T 2 , 3 (σ,n 2 ) 

= 

−u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

)2 

(
1 + σd 1 

n 2 

� 2 

)2 (
1 − τA + 2 τd 1 

n 2 

� 2 

)
+ 2 σ

(
1 + σd 1 

n 2 

� 2 

)((
d 1 

n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 

)
+ d 2 u ∗ n 2 

� 2 

)
− Bτ

� = 0 , 

or 

dλ

dd 2 

∣∣∣∣
d 2 = d T 2 , 4 (σ,n 2 ) 

= 

−u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

)2 

χ
� = 0 , 

where 

χ = 

(
1 + τd 1 

n 2 

� 2 

)2 (
1 + σd 1 

n 2 

� 2 

)2 + 2 τ
(
1 + τd 1 

n 2 

� 2 

)((
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

)2 − B 

)
+2 σ

(
1 + σd 1 

n 2 

� 2 

)((
d 1 

n 2 

� 2 
− A 

)(
1 + τd 1 

n 2 

� 2 

)2 + d 2 u ∗ n 2 

� 2 

)
. 

To summarize the above, we obtain the following result on steady state bifurcation. 

Theorem 2.4. Assume that the positive steady state u ∗ of system (2.7) is asymptotically stable and d T 2 , 2 (σ, n 2 ) , d T 2 , 3 (σ, n 2 ) and

d T 
2 , 4 

(σ, n 2 ) are defined by (2.46) –(2.48) , respectively. 

(I) If d 2 ≥ 0 , then there is no steady state bifurcation for Cases (II), (III) and (IV). 

(I I ) If d 2 < 0 , then system (1.5) undergoes steady state bifurcation at d 2 = d T 
2 , j 

(σ, n 2 ) provided that d T 
2 , j 

(σ, n 2 
1 
) � = d T 

2 , j 
(σ, n 2 

2 
)

for n 1 , n 2 ∈ N and n 1 � = n 2 . Here, d T 
2 , j 

(σ, n 2 ) with j = 2 , 3 , 4 , correspond to the bifurcation values of Cases (II), (III) and

(IV), respectively. 

By Theorems 2.2 –2.4 , it is easy to see that as far as steady state bifurcation is concerned, the influence of these types of

temporal kernels is very similar and the main difference is that the critical values of steady state bifurcation are different.

Notice that d T 2 , 1 (σ, n 2 ) can be rewritten as follows 

d T 2 , 1 (σ, n 

2 ) = 

(
1 + τd 1 

n 2 

� 2 

)(
B −

(
d 1 

n 2 

� 2 
− A 

)(
1 + σd 1 

n 2 

� 2 

))
u ∗ n 2 

� 2 

(
1 + σd 1 

n 2 

� 2 

) < 0 , n ∈ N , 

which, together with (2.46) and 0 < 

(
1 + τd 1 

n 2 

� 2 

)
< 

(
1 + τd 1 

n 2 

� 2 

)2 

, implies that 

d T 2 , 2 (σ, n 

2 ) < d T 2 , 1 (σ, n 

2 ) < 0 . (2.49) 
11 
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Moreover, using (2.47) , (2.48) and 0 < 

(
1 + τd 1 

n 2 

� 2 

)
< 

(
1 + τd 1 

n 2 

� 2 

)2 

, we have 

d T 2 , 4 (σ, n 

2 ) < d T 2 , 3 (σ, n 

2 ) < 0 . (2.50) 

By (2.49) and (2.50) , we can conclude that for the same temporal kernel in reaction and the same wave number n, the

critical value of steady state bifurcation of system (1.5) with the ”weak” memory-based temporal kernel is larger than that 

of system (1.5) with the ”strong” memory-based temporal kernel. 

The Hopf bifurcation analysis for Cases (II)-(IV) is very complicated, although the method is very similar to Case (I). 

Therefore, we do not make the specific theoretical analysis. The numerical simulations in Section 3.2 show that when (H2)

holds, d 2 ≥ 0 and 

1 
τ ≥ A − 2 d 1 

� 2 
, the positive steady state u ∗ is asymptotically stable in Case (I) and Hopf bifurcation will occur

in other three cases. 

3. Applications 

In [12] , Shi and Shivaji considered a diffusive logistic model with predation and Dirichlet boundary condition, which has 

the form ⎧ ⎨ 

⎩ 

∂u 

∂t 
= d�u + ru 

(
1 − u 

k 

)
− Eu 

1 + F u 

, x ∈ �, t > 0 , 

u (x, t) = 0 , x ∈ ∂�, t > 0 , 

(3.1) 

where d, r, k > 0 , and d, r and k stand for the diffusion rate, the intrinsic growth rate and the carrying capacity, respectively.

The term 

Eu 

1 + F u 
with E ≥ 0 , F > 0 reflects the influence of a satiating generalist predator, or the behaviour of seeking a

mate [12] . Spatially homogeneous and inhomogeneous steady states and global bifurcation were discussed in [12] . 

In this section, we introduce the spatial memory and spatiotemporal delays into (3.1) and consider the following revised 

version of (3.1) under Neumann boundary condition on one dimensional spatial domain � = (0 , �π ) : ⎧ ⎨ 

⎩ 

∂u 

∂t 
= d 1 u xx + d 2 (u v x ) x + u (1 − w ) − Eu 

1 + F u 

, x ∈ (0 , �π ) , t > 0 , 

u x (0 , t) = u x (�π, t) = 0 , t > 0 , 

(3.2) 

where d 1 > 0 , d 2 ∈ R , and v = g 1 ∗ ∗u and w = g 2 ∗ ∗u are defined as in (1.3) and (1.4) , respectively. 

3.1. Two weak temporal kernels: h 1 (t, τ ) = 

1 
τ e −

t 
τ and h 2 (t, σ ) = 

1 
σ e −

t 
σ

3.1.1. E = 0 

When E = 0 , it is easy to verify that system (3.2) possesses two constant steady states: u 0 ≡ 0 and u ∗ ≡ 1 . It is easy to

show that u 0 ≡ 0 is always unstable. For u ∗ ≡ 1 , we have A = 0 and B = −1 . Thus, (H2) holds, and A − 2 d 1 
� 2 

< A < 

1 
τ for any

�, d 1 , τ > 0 . It then follows from (I)(i ) of Theorem 2.3 that when d 2 ≥ 0 , u ∗ ≡ 1 is asymptotically stable for any �, d 1 , σ, τ >

0 . On the other hand, when d 2 < 0 , the stability of u ∗ ≡ 1 is dependent of the choice of parameters. 

When d 2 < 0 , taking d 1 = 0 . 5 , � = 2 , τ = 1 , restricting the range of σ to 0 < σ ≤ 20 and noting 1 
τ > A = 0 , we discuss

the stability of u ∗ ≡ 1 in terms of ( II )( ii ) of Theorem 2.3 . It follows from (2.32), (2.19) and (2.33) that σ∗ = 2 , 

N T = 

{
3 , for 0 < σ < 4 . 3431 , 

2 , for 4 . 3431 < σ ≤ 20 , 

and 

ξ (σ, 1) = 

{≥ 0 , for 0 < σ ≤ 3 . 6515 , 

< 0 , for 3 . 6515 < σ ≤ 20 . 
(3.3) 

Notice that for each n ∈ N , ξ (σ, n 2 ) attains its minimum at σ � 
n = 2 τ + 

� 2 

d 1 n 
2 . Therefore, we have ξ (σ, 2 2 ) ≥ ξ (σ � 

2 
, 2 2 ) = 

5 
3 > 0 .

This, together with (3.3) and A = 0 , implies that A ≤ ξ (σ, 1) for σ∗ < σ ≤ 3 . 6515 , while for 3 . 6515 < σ ≤ 20 , ξ (σ, 1) < A ≤
ξ (σ, 2 2 ) and then 

N ∗ = 1 . 

The numerical calculation shows that d H 
2 
(σ, 1) < min 

{
d T 

2 , 1 
(σ, 2 2 ) , d T 

2 , 1 
(σ, 3 2 ) 

}
for 3 . 6515 < σ ≤ 20 . Then, by ( II )( ii ) of

Theorem 2.3 , we have the following stability results on u ∗ ≡ 1 . 

Proposition 3.1. Assume that E = 0 , d 1 = 0 . 5 , � = 2 , τ = 1 and 0 < σ ≤ 20 . 

(I) For 0 < σ ≤ 4 . 3413 , u ∗ ≡ 1 is asymptotically stable for any d 2 > d T 
2 , 1 

(σ, 3 2 ) . 
12 
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Fig. 1. (a) Stability region and bifurcation curves for the positive constant steady state u ∗ ≡ 1 of system (3.2) with d 1 = 0 . 5 , � = 2 , τ = 1 , E = 0 and 

0 < σ ≤ 20 in the σ − d 2 plane. T 2 and T 3 are steady state bifurcation curves and H 1 is Hopf bifurcation curve. (b) The enlargement of (a) for 2 . 5 ≤ σ ≤ 5 . 5 

and −1 . 35 ≤ d 2 ≤ −0 . 95 , and the points P 1 T − P 4 T are chosen for numerical simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

(II) For 4 . 3413 < σ ≤ 20 , u ∗ ≡ 1 is asymptotically stable for any d 2 > d T 
2 , 1 

(σ, 2 2 ) . 

In σ − d 2 plane, we display graphically steady state bifurcation curves T 3 : d 2 = d T 
2 , 1 

(σ, 3 2 ) , T 2 : d 2 = d T 
2 , 1 

(σ, 2 2 ) and Hopf

bifurcation curve H 1 : d 2 = d H 
2 
(σ, 1) , σ > 3 . 6515 , as shown in Fig. 1 (a). As we can see from Fig. 1 (a), when 0 < σ ≤ 20 , the

boundaries of the stable region consist of steady state bifurcation curves T 3 and T 2 . 

Furthermore, steady state bifurcation curves T 3 and T 2 intersect at P T = (4 . 3431 , −1 . 2230) , which is a codimension-2

spatial resonance bifurcation point. We numerically investigate the dynamics of system (3.2) near P T . Fig. 1 (b) is the en-

largement of the region near P T of Fig. 1 (a) and we numerically describe the solutions of system (3.2) for different points

P 1 
T 

− P 4 
T 
, where 

P 1 T = ( 3 . 5 , −1 ) , P 2 T = ( 3 . 5 , −1 . 28 ) , P 3 T = ( 4 . 5 , −1 . 25 ) , P 4 T = ( 5 , −1 . 19 ) . 

Fig. 2 (a)–(d) illustrate the solutions for P 1 T − P 4 T , respectively. Fig. 2 (a) shows the stable positive constant steady state, while

Fig. 2 (b) and Fig. 2 (d) display the spatially inhomogeneous steady states shaped like cos 3 x 2 and cos x, respectively. It is

observed in Fig. 2 (c) that the solution with an initial shape of cos 3 x 2 converges to the solution with a different shape as

time increases. For the fixed time t = 500 , Fig. 3 describes the spatial shape of the solutions of Fig. 2 . 

3.1.2. E > 0 

When E > 0 , u 0 ≡ 0 is still a constant steady state of system (3.2) and the existence of the positive constant steady state

depends on the relationship between E and F . The following proposition is concerned with the existence of the positive 

constant steady state. 

Proposition 3.2. Assume that E > 0 . 

(I) If E < 1 , then system (3.2) has a unique positive constant steady state u (1) 
∗ , where 

u 

(1) 
∗ = 

F − 1 + 

√ 

(F − 1) 2 + 4 F (1 − E) 

2 F 
. (3.4) 

(II) If E = 1 , then system (3.2) has no positive constant steady states for F ≤ 1 and has a unique positive constant steady state

u (1) 
∗ for F > 1 , where u (1) 

∗ is defined by (3.4) . 

(III) If E > 1 , then system (3.2) has no positive constant steady states for F ≤ 1 , or for F > 1 and (F + 1) 2 / (4 F ) < E, and has

two positive constant steady states u (1) 
∗ and u (2) 

∗ for F > 1 and (F + 1) 2 / (4 F ) ≥ E, where u (1) 
∗ is defined by (3.4) and 

u 

(2) 
∗ = 

F − 1 −
√ 

(F − 1) 2 + 4 F (1 − E) 

2 F 
. (3.5) 

Moreover, if F > 1 and (F + 1) 2 / (4 F ) = E, then u (1) 
∗ = u (2) 

∗ . 

We can graphically describe Proposition 3.2 in Fig. 4 , where the existence of the positive constant steady state is shown

in F − E plane. It is easy to verify that u 0 ≡ 0 is unstable for E < 1 and asymptotically stable for E > 1 . In addition, if u (2) 
∗

exists, then it is always unstable. 
13 
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Fig. 2. (a)–(d) illustrate the projection of the solutions of system (3.2) in the x − t plane, respectively, for P 1 T − P 4 T that are near P T and shown in Fig. 1 (b). 

 

 

 

 

 

 

 

 

 

 

Taking d 1 = 0 . 5 , � = 5 , τ = 10 , E = 1 and F = 2 , system (3.2) admits a unique positive steady state u (1) 
∗ = 0 . 5 . Then, it is

easily shown that A = 0 . 25 , B = −0 . 5 < 0 and A − 2 d 1 
� 2 

= 0 . 21 . Moreover, u (1) 
∗ is unstable for σ > 4 according to Theorem 2.1 .

When 0 < σ < 

1 
A 

= 4 , (H2) holds. Then, we have 

� 

√ 

τA − 1 

2 τd 1 
= 1 . 9365 , 

which, together with (2.30) , gives N H = 2 . Furthermore, from (2.19) , numerical computation shows that N T = 3 for 0 < σ < 4 .

Note that 1 
τ = 0 . 1 < A − 2 d 1 

� 2 
< A . Therefore, using Theorem 2.3 , we have the following result. 

Proposition 3.3. Assume that d 1 = 0 . 5 , � = 5 , τ = 10 , E = 1 , F = 2 and 0 < σ < 4 . The positive constant steady state u (1) 
∗ of

system (3.2) is asymptotically stable for d T 2 , 1 (σ, 3 2 ) < d 2 < d H 2 (σ, 1) and unstable for d 2 ∈ 

(
−∞ , d T 2 , 1 (σ, 3 2 ) 

)
∪ 

(
d H 2 (σ, 1) , + ∞ 

)
. 

Proposition 3.3 implies that the boundaries of the stable region of u (1) 
∗ in the σ − d 2 plane consist of steady state bifur-

cation curve T 3 : d 2 = d T 
2 , 1 

(σ, 3 2 ) , Hopf bifurcation curve H 1 : d 2 = d H 
2 
(σ, 1) and Hopf bifurcation line H 0 : σ = 4 , as shown

in Fig. 5 (a). As we can see from Fig. 5 (a), the intersection of Hopf bifurcation curve H 1 and Hopf bifurcation line H 0 is

P H = (4 , 14 . 9273) , which is a double Hopf bifurcation point, while the intersection of steady state bifurcation curve T 3 and

Hopf bifurcation line H 0 is P T H = (4 , −3 . 4331) , which is a steady state-Hopf bifurcation point. 

Since we are interested in the spatiotemporal dynamics of system (3.2) near the double Hopf bifurcation point P H and

steady state-Hopf bifurcation point P T H , the regions near these two codimension-two point are magnified in Figs. 5 (b) and

(c), respectively. We next choose the points P 1 
H 

− P 6 
H 

in Fig. 5 (b) and P 1 
T H 

− P 5 
T H 

in Fig. 5 (c) for numerical simulations, where 

P 1 H = (4 . 01 , 14 . 1) , P 2 H = (3 . 8 , 15) , P 3 H = (3 . 95 , 16 . 8) , 
P 4 H = (4 . 03 , 15 . 5) , P 5 H = (4 . 03 , 15) , P 6 H = (4 . 03 , 14 . 5) , 

and 

P 1 T H = (3 . 9 , −3 . 5) , P 2 T H = (3 . 9 , −3 . 2) , P 3 T H = (4 . 05 , −3 . 2) , 
P 4 = (4 . 05 , −3 . 45) , P 5 = (4 . 05 , −3 . 6) . 
T H T H 

14 
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Fig. 3. (a)–(d) are the truncated curves of u (x, t) of Fig. 2 (a)–(d) in the direction of space for the fixed time t = 500 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 6 , (a)–(f) depict the solutions of system (3.2) for P 1 H − P 6 
H 
, respectively. More specifically, Figs. 6 (a) and (c) illus-

trate the spatially homogeneous periodic solution and the spatially inhomogeneous periodic solution with a spatial shape 

like cos x 
5 , respectively, while (b) shows the stable positive constant steady state. As we can see from Fig. 6 (d)–(f), system

(3.2) possesses spatially inhomogeneous quasi-periodic solutions. For the fixed spatial variable x = π, Fig. 7 (a)–(f) show the

evolution of the solution u (x, t) of Fig. 6 (a)–(f) in the direction of time t, respectively. 

In Fig. 8 , (a)–(d) describe the respective solutions of system (3.2) for P 1 
T H 

− P 4 
T H 

, respectively. More specifically, Figs. 8 (a)

and (b) depict the spatially inhomogeneous steady state shaped like cos 3 x 5 and the stable positive constant steady state, 

respectively, while Figs. 8 (c) and (d) illustrate the spatially homogeneous periodic solution and the spatially inhomogeneous 

periodic solution with a spatial mode like cos 3 x 5 , respectively. When (σ, d 2 ) is chosen to be P 5 
T H 

, there exists a spatially

inhomogeneous quasi-periodic solution with a drift of the maximum of the solution in the spatial direction along with the 

increasing of time, as shown in Fig. 9 . We would like to mention that when the parameters are very close to the Turing

bifurcation curve, the spatial profile of the solution is very similar to the eigenfunction of the linear problem. Although 

P 4 
T H 

and P 5 
T H 

are located in the same region near the bifurcation point in Fig. 5 (c), but the solutions look different. Since 

the point P 4 
T H 

is close to the steady state bifurcation curve T 3 , the spatial profile of the solution seems to look like cos 3 x 5 .

However, the P 5 
T H 

is far away from the steady state bifurcation curve T 3 , we do not predict what the spatial profile of the

solution looks like. 

3.2. Other temporal kernels 

In this subsection, we numerically investigate the influence of different temporal kernels on the dynamics of system 

(3.2) for E = 0 , d 1 = 0 . 5 , � = 2 , τ = 1 , σ = 2 and d 2 = 15 . It follows from the discussion of Section 3.1.1 that for Case (I), the

positive steady state u ∗ ≡ 1 of system (3.2) with E = 0 is asymptotically stable. However, for other three cases, spatially ho-

mogeneous/inhomogeneous periodic solutions may occur. Fig. 10 (a)–(c) are the solutions of system (3.2) for Cases (II)–(IV), 

respectively. In Fig. 10 , (a) and (c) show the spatially inhomogeneous periodic solutions, while (b) illustrates the spatially 

homogeneous periodic solution. Note that in Fig. 10 , (a) and (c) are related to the strong kernel in the spatial memory dif-

fusion, while (b) is related to the weak kernel in the spatial memory diffusion. This indicates that the strong kernel in the

spatial memory diffusion can intensify the diversity of the spatial distribution of the population. Moreover, Fig. 11 (a)–(c) are

the truncated curves of u (π, t) of Fig. 10 (a)–(c) in the direction of time t, respectively. 
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Fig. 4. The existence and nonexistence of the positive constant steady states of system (3.2) for E > 0 . 

Fig. 5. (a) Stability region and bifurcation curves for the positive constant steady state u (1) 
∗ of system (3.2) with d 1 = 0 . 5 , � = 5 , τ = 10 , E = 1 and F = 2 in 

the σ − d 2 plane. T 3 is steady state bifurcation curve, H 0 is Hopf bifurcation line and H 1 is Hopf bifurcation curve. (b) The enlargement of the region near 

the double Hopf bifurcation point P H of (a). (c) The enlargement of the region near the steady state-Hopf bifurcation point P TH of (a). 

 

 

 

 

4. Discussion 

Spatial memory naturally exists and is inevitable in any animal movement model. Delay is the most explicit way to 

incorporate the memory effect, and furthermore distributed delay is more realistic than discrete delay to describe the accu- 

mulated memory. The delay in reaction represents factors like gestation, food digestion or maturation period, and obviously 

the distributed format is also more realistic. Hence, in this paper we propose a general diffusive single-species model with 

spatiotemporal distributed delays in diffusion and reaction. 

We explore the dynamics for different tem poral kernels in spatiotemporal delays. Through stability and bifurcation anal- 

ysis, we investigate the effects of the spatial memory-based diffusion coefficient and the spatiotemporal delays on the sta- 

bility of the positive constant steady state of model (1.5) and possible bifurcations. We find that no matter which kernel is

considered, steady state bifurcation occurs for d 2 < 0 and cannot occur for d 2 ≥ 0 . Thus, we can conclude that the behaviour

of the animals leaving away from low density to high density (corresponding to d 2 < 0 ) is beneficial to the diversity of the

spatial distribution of the population. 

In particular, if the memory-based temporal kernel and the maturation-based temporal kernel are both “weak”, i.e., 

h 1 (t, τ ) = 

1 e −
t 
τ and h 2 (t, σ ) = 

1 e −
t 
σ , then the conditions for the occurrence of steady state and Hopf bifurcations are
τ σ
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Fig. 6. (a)-(f) are the projection of the solutions of system (3.2) in the x − t plane, respectively, for the points P 1 H − P 6 H . 

 

 

 

 

 

 

determined according to the coefficient d 2 of the spatial memory-based diffusion and the average delay τ in the spatial 

memory-based diffusion (see Theorems 2.2 and 2.3 and Table 1 ). The theoretical results show that the dynamics for d 2 > 0

is similar to the case of d 2 = 0 . This implies that when the animals leave away from high density to low density (corre-

sponding to d 2 > 0 ), the spatial memory-based diffusion has nearly no obvious effects on the evolution of the population.

However, when d 2 < 0 , the dynamics are different from the case of d 2 = 0 , and whatever the average delay τ is small or

large, the positive constant steady state always loses its stability via the occurrence of steady state or Hopf bifurcations as

the spatial memory-based diffusion coefficient d 2 decreases. 

As an application of the theoretical results, we investigate a modified diffusive logistic model with predation (model 

(3.2) ). When the memory-based temporal kernel and the maturation-based temporal kernel are both “weak”, we treat σ
and d 2 as bifurcation parameters and sketch the bifurcation diagram of the positive constant steady state in Figs. 1 and 5 ,

where the codimension-2 spatial resonance, double Hopf and steady state-Hopf bifurcations are observed. We numerically 

investigate the dynamics near these codimension-2 points, and obtain the stable spatially inhomogeneous steady states, 

spatially homogeneous and inhomogeneous periodic solutions, and spatially inhomogeneous quasi-periodic solutions. For the 
17 
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Fig. 7. (a)–(f) are the truncated curves of u (x, t) of Fig. 6 (a)–(f) in the direction of time t for the fixed spatial variable x = π, respectively. 

Fig. 8. (a)-(d) are the projection of the solutions of system (3.2) in the x − t plane, respectively, for the points P 1 TH − P 4 TH . 
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Fig. 9. (a) The spatially inhomogeneous quasi-periodic solution of system (3.2) for P 5 TH . (b) The projection of the solution of (a) on the x − t plane. 

Fig. 10. (a)-(c) are the projection of the solutions of system (3.2) in the x − t plane, respectively, for Cases (II)-(IV). Here, d 1 = 0 . 5 , � = 2 , τ = 1 , E = 0 , 

σ = 2 and d 2 = 15 . 

Fig. 11. (a)-(c) are the truncated curves of u (π, t) of Fig. 10 (a)–(c) in the direction of time t, respectively. 

 

 

 

 

parameter far away from the steady state-Hopf bifurcation point, the numerical simulation shows the existence of a spatially 

inhomogeneous quasi-periodic solution with a drift of the maximum of the solution in the spatial direction. Numerical 

results for other temporal kernels indicate that the strong kernel in the spatial memory diffusion can intensify the diversity 

of the spatial distribution of the population. 

The reaction-diffusion equations with discrete delay have been widely investigated in the literature. As far as bifurcations 

are concerned, the discrete delay leads to the occurrence of Hopf bifurcation and there is no steady state bifurcation for the

reaction-diffusion equations with discrete delay regardless of whether the spatial memory-based diffusion exists or not 

(see, for example, [13,14,19] and references therein). A reaction-diffusion equation with spatiotemporal delay or distributed 

delay in reaction only without the spatial memory-based diffusion has been investigated in [20,21] , where there is still no

steady state bifurcation. In [11] , Shi et al. investigated a single-species model with a memory-based spatiotemporal delay 

but without maturation-based delay. They found that if the temporal kernel is “weak”, then steady state bifurcation occurs 

for d 2 < 0 and there is no Hopf bifurcation, while if the temporal kernel is “strong”, then steady state and Hopf bifurcations

occur for d 2 > 0 and d 2 < 0 , respectively, and there is no interaction of these two bifurcations. In this paper, our theoretical

and numerical results suggest that in the presence of maturation-based delay, the “weak” kernel even induces the complex 

dynamics, such as steady state, Hopf, double Hopf and steady state-Hopf bifurcations. 
19 
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The theoretical analysis of the present paper focuses on the case when the memory-based temporal kernel and the 

maturation-based temporal kernel are both “weak”. Even for this simple case, to understand the dynamical classification 

near the obtained codimension-two double Hopf and steady state-Hopf bifurcations, the associated norm forms should be 

calculated. Although the theory of the normal form for the reaction-diffusion equations and the algorithm for calculating 

the normal form of Turing-Hopf bifurcation have been developed in [5,15] , they cannot be directly applied to differential

equations with memory-based diffusion and spatiotemporal delay. In addition, when there is at least one strong temporal 

kernel, the associated characteristic equations are complicated and the Hopf bifurcation analysis is fairly difficult. These tasks 

would be challenging and intriguing to study in future. 
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