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Abstract
Accurate prediction of the number of daily or weekly confirmed cases of COVID-19 is
critical to the control of the pandemic. Existing mechanistic models nicely capture the
disease dynamics. However, to forecast the future, they require the transmission rate to
be known, limiting their prediction power. Typically, a hypothesis is made on the form
of the transmission rate with respect to time. Yet the real form is too complex to be
mechanisticallymodeled due to the unknown dynamics ofmany influential factors.We
tackle this problem by using a hypothesis-free machine-learning algorithm to estimate
the transmission rate from data on non-pharmaceutical policies, and in turn forecast
the confirmed cases using a mechanistic disease model. More specifically, we build a
hybrid model consisting of a mechanistic ordinary differential equation (ODE) model
and a gradient boosting model (GBM). To calibrate the parameters, we develop an
“inverse method” that obtains the transmission rate inversely from the other variables
in the ODE model and then feed it into the GBM to connect with the policy data. The
resulting model forecasted the number of daily confirmed cases up to 35 days in the
future in the USA with an averaged mean absolute percentage error of 27%. It can
identify the most informative predictive variables, which can be helpful in designing
improved forecasters as well as informing policymakers.
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1 Introduction

The world has experienced a devastating pandemic of COVID-19, a novel coronavirus
disease caused by SARS-CoV-2. As of November 16, 2021, the COVID-19 pandemic
is still affecting 224 countries and territories, causing about 254,901,115 cases and
5,127,051 deaths worldwide (Worldometers 2021). The first case in the USA was
reported on January 23, 2020 (Wikipedia 2021), and the first death in the USA was
reported on February 29, 2020 (Worldometers 2021). The confirmed cases and deaths
kept increasing in the USA in 2020, making it the epicenter. In the beginning several
months of the pandemic, pharmaceutical interventions such as vaccination and drugs
are not available, and containing the spread of SARS-CoV-2 largely depends on gov-
ernment policies including school closing, workplace closing, cancellation of public
events, restrictions on gatherings, public transport closing, stay at home requirements,
international travel controls, public information campaigns, testing, contact tracing,
facial coverings, protection of elderly people, etc. (Ritchie et al. 2021). Most of these
policies directly affect human mobility which further influence the transmission of
the virus. Revealing the quantitative relationship between the transmission rate and
policies and human mobilities is critical in forecasting the pandemic.

There has been an overwhelming number of research papers about the transmission
dynamics of COVID-19 (e.g., Coletti et al. 2021; Mukandavire et al. 2020; Sun et al.
2020; Liu et al. 2020; IHME 2020; Serina et al. 2021; Calvetti et al. 2020; Ramazi
et al. 2021a). Nonetheless, intuitive modeling and accurate forecasting of the spread
of COVID-19 remain a challenge. On the one hand, the traditional epidemiological
models are fully mechanistic and intuitive. They nicely capture the disease spread yet
heavily rely on the transmission rate parameter which in turn depends on variables
such as preventive policies and human mobility, whose relation to the disease dynam-
ics is too complex to be accurately modelled mechanistically. Therefore, to forecast
the future, the transmission rate is considered constant or piecewise linear, or some
restrictive hypothesis is made about its future values. The mechanistic models are,
thus, often not competent enough in prediction. On the other hand, the data-based
machine learning models are powerful in prediction but typically non-intuitive, and
perhaps less reliable, especially if trained with few data instances. We bridge the gap
by developing a hybrid model combining a compartmental epidemiological model
that captures the disease spread with a time-varying transmission rate and a machine-
learning model that links the transmission rate to data on preventive policies whose
future values are known a priori. The epidemiological model consists of an ordinary
differential equations (ODE) and a machine-learning algorithm—a gradient boosting
model (GBM).We use part of the available data to train the GBM, by first, developing
an “inverse method” that estimates the values of the transmission rate from the other
variables of the ODE, and next, fitting the estimated transmission rate values to the
policy data using the GBM. The trained hybrid model can then be used to generate
predictions of the number of daily confirmed cases by using the future values of the
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preventive policies to estimate the transmission rate by the GBM and in turn, the daily
cases using the ODE. To examine the role of human mobility on the disease spread,
we run a separate series of simulations where in addition to the preventive policies,
human mobility data are used to estimate the transmission rate. We apply the model to
the case study of COVID-19 in the USA and then find those variables whose inclusion
improved the model performance most.

The rest of the paper is organized as follows. Section 2 explains the data used in this
study. In Sect. 3, we develop the compartmental epidemiological model for COVID-
19 and introduce the inverse method to estimate the transmission rate. In Sect. 4, we
formulate the generalized boosting model, show the training and testing results and
make predictions of daily confirmed cases using the ordinary differential equation
(ODE) model. We also explore the relative importance of each variable in training the
model. In Sect. 5, we investigate the prediction performance when mobility and part
of the policies are additionally included as the predictor variables. Section 6 provides
a brief summary of the method and results as well as suggestions for future work.

2 Data Availability

The data used in this study include the total number of daily confirmed cases of
COVID-19 in the USA and policy indices in each state collected from the official
website of the flagship project Our World in Data of Global Change Data Lab Ritchie
et al. (2021) (https://ourworldindata.org/coronavirus), the six categories of human
mobility data in the USA from the official website of Google Team (2021) (https://
www.google.com/covid19/mobility/), and deaths, recovered and active cases in the
USAfrom theworldometerwebsiteWorldometers (2021) (https://www.worldometers.
info/coronavirus/country/us/), on a daily basis from April 4, 2020, to December 19,
2020.

We obtain the time-series indices for school closing (denoted by C1), workplace
closing (C2), cancel public events (C3), restrictions on gatherings (C4), close public
transport (C5), stay at home requirements (C6), restrictions on internal movement
(C7), international travel controls (C8), public information campaigns (H1), testing
policies (H2), contact tracing (H3), facial coverings (H6), and protection of elderly
people (H8) in the USA by taking an average of the corresponding policy indices
over all the 50 US states as well as Washington D.C., weighted by their populations.
Here the policies beginning with “C” represent containment policies, whereas those
beginning with “H” represent health policies. The emergency investment in healthcare
(H4) and investment in vaccines (H5) are not available. Since we focus on the pre-
vaccination case in this paper, we do not take into account the vaccination delivery
policy (H7) either. Human mobility data include changes of mobility trends (%) in
retail and recreation (M1), grocery and pharmacy (M2), parks (M3), transit stations
(M4), workplaces (M5), and residential (M6), compared to the baseline level (0).
These policy and mobility data are shown in Fig. 1.
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Fig. 1 Policy and mobility data in the USA from April 4, 2020, to December 19, 2020 (Color figure online)

3 Mechanistic Model and Inverse Method

We use a susceptible-exposed-infectious-recovered framework to model the trans-
mission dynamics of COVID-19. The model divides the human population into five
compartments: the susceptible (denoted by S), the exposed (E), the symptomatic
infected (I ), the asymptomatic infected (A), and the recovered individuals (R). Our
SEIAR model is described by the following system of differential equations:

dS(t)

dt
= − β(t)S(t)(I (t) + θEE(t) + θAA(t))

N
,

dE(t)

dt
=β(t)S(t)(I (t) + θEE(t) + θAA(t))

N
− δE(t),

dI (t)

dt
=(1 − p)δE(t) − (μ(t) + rI)I (t),

dA(t)

dt
=pδE(t) − rAA(t),

dR(t)

dt
=rI I (t) + rAA(t).

(1)

The susceptible individuals enter the incubation period if they are infectedwith SARS-
CoV-2. The incubation period has an average duration of 1/δ days.Upon the incubation
period ends, the exposed individuals enter either the symptomatic infected com-
partment (I) or the asymptomatic infected compartment (A), depending on whether
symptoms occur or not. We assume that a proportion p of all the infectives are asymp-
tomatic and hence the symptomatic infections account for a proportion of 1− p. The
transmission rate is β(t). As exposed individuals and asymptomatic infected indi-
viduals can also spread the virus at reduced probabilities compared to symptomatic
infected individuals (Zhang et al. 2020), we assume that the relative transmissibil-
ity of exposed and asymptomatic infected individuals are θE and θA, respectively
(0 ≤ θE ≤ 1, 0 ≤ θA ≤ 1). The disease induced death rate is μ(t). It takes an average
of 1/rI days and 1/rA days for symptomatic and asymptomatic infected individuals
to recover, respectively.
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We obtain the values of the constant parameters from the literature. The total
US population N is taken as 331,449,281 which is estimated on April 1, 2020,
by US Census Bureau (Bureau 2021). The incubation period could vary greatly
among patients. The current official estimated range for the incubation period is
2 to 14 days. However, more recent reports show that the incubation period can
extend beyond 14 days (https://www.news-medical.net/news/20201025/COVID-19-
incubation-period-potentially-much-longer-than-previously-thought.aspx ). We take
δ = 1/14 per day. The time to recover from COVID-19 may vary from 1.5 to 30 days
among different patients Kumar et al. (2021), depending on their infection severity,
overall health and age. We assume the average recovery period for both symptomatic
and asymptomatic infected individuals is 14 days, which leads to rI = rA = 1/14
per day. Asymptomatic infections contribute substantially to community transmission
together with presymptomatic ones. Even if asymptomatic infections transmit poorly,
presymptomatic and asymptomatic cases together comprise at least 50% of the force
of infection (Subramanian et al. 2021). We set p = 0.7 to represent that approxi-
mately 70% of the infections are asymptomatic in our model. We estimate the relative
transmissibilities of exposed and asymptomatic infected individuals as θE = 0.1 and
θA = 0.5, respectively. The values and interpretations of all constant parameters are
given in Table 1.

The time-varying death rate is estimated using the following formula where μ[k]
represents the disease induced death rate of symptomatic infected individuals on day k:

μ[k] = #new deaths on day k

#currently infected individuals on day k
.

Motivated byKong et al. (2015), Pollicott et al. (2012), we create an inverse method
to estimate the time-varying transmission rate. The starting point is to derive the time
series E(t) by utilizing the notification data. The real incidence data will be between
δE(t) and (1 − p)δE(t), but most asymptomatic individuals are not tested due to
unawareness of their infections. Although some special individuals such as sports
players or frontline health workers may be forced to be tested, this accounts for a

Table 1 Parameter interpretation and values

Parameter Interpretation Value

β(t) Transmission rate See Fig. 3

N Total population of USA 331,449,281

θE Relative transmissibility of exposed individuals 0.1

θA Relative transmissibility of asymptomatic individuals 0.5

1/δ Incubation period 14 days

p Proportion of asymptomatic infections 0.7

μ(t) Death rate of symptomatic infected individuals See Fig. 2

rI Recovery rate of symptomatic infected individuals 1/14 day−1

rA Recovery rate of asymptomatic infected individuals 1/14 day−1
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tiny portion of the total population. Some regions in China (e.g., Wuhan, Shenyang,
Guangzhou) tested everyone once several new cases were reported locally. However,
this never happened in the USA. Hence, we use the values of (1 − p)δE(t) as an
approximation of the notification data.

We use S[k], E[k], I [k], A[k] and R[k] to represent the values of variables in model
(1) and y[k] to be the notification data on the kth day of study. In addition, we use
D[k] to represent the cumulative death number on the kth day. Then, we have

E[k] = y[k]
(1 − p)δ

, k = 1, 2, 3, ..., K ,

where K is the length of the vector of the notification data. We estimate the initial
values I [1], R[1] and D[1] from reporting data (Ritchie et al. 2021; Worldometers
2021): I [1] = 21,637, R[1] = 14,813, D[1] = 10,595. Moreover, we assume that
A[1] = 2I [1] considering that most infected people are asymptomatic (Subramanian
et al. 2021). Then, S[1] = N − E[1] − I [1] − A[1] − R[1] − D[1]. It follows that

I [k] = I [k − 1] + (1 − p)δE[k − 1] − (μ[k − 1] + rI)I [k − 1],
A[k] = A[k − 1] + pδE[k − 1] − rAA[k − 1],
R[k] = R[k − 1] + rI I [k − 1] + rAA[k − 1],
D[k] = D[k − 1] + μ[k − 1]I [k − 1],
S[k] = N − E[k] − I [k] − A[k] − R[k] − D[k],

β[k − 1] = − N (S[k] − S[k − 1])
(S[k − 1](θEE[k − 1] + θAA[k − 1] + I [k − 1])) ,

for k = 2, 3, ...K . Approximately, we have β[K ] ≈ β[K − 1]. The idea is that once
we get the time series values of E(t), we are able to obtain the time series values of
I (t), A(t), R(t), and hence, S(t). Then, from the first equation of system (1), we can
solve for β(t). Note that the inverse method used in this study is different from that in
Kong et al. (2015), Pollicott et al. (2012), although the essential idea is similar, that
is, to solve for the transmission rate inversely.

4 Machine Learning and Prediction

Human mobility can affect the transmission rate, and policies from the government
may affect human mobility. Therefore, the transmission rate can be indirectly affected
by the policies. Indeed, some policies such as facial coverings may even directly affect
the transmission rate. We use a GBM to estimate the transmission rate from the policy
predictor variables: C1 ∼ C8, H1, H2, H3, H6, H8.

Having estimated the transmission rate in Sect. 3, we can fit log(β(t))withmobility
and policy data using the GBM. We partition the data into a training dataset, used to
calibrate the parameters, and a testing dataset, used to test the model performance in
making predictions. The partitioning should be temporal: Since the model is supposed
to make predictions in the future, it should be tested on a dataset that is “in the future”
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compared to the dataset used for estimating the model parameters, where the values of
the number of confirmed cases are unavailable. More specifically, the data instances
from time 0 to T are used for training and from time T + 1 to T + T ′, for some
T , T ′ > 0, is used for testing the model. We may, otherwise, obtain misleadingly
high-performance results (Ramazi et al. 2021a, c).

We fix the start date of the training at April 4, 2020, and let the training duration
increase from 105 to 224 days by a step size of 7 days (see Table 2). The training
dataset consists of the transmission rate on each day obtained by the inverse method
as the response variable and all the 13 types of policy data C1 ∼ C8, H1, H2, H3, H6
and H8 on each day as predictor variables for the GBM. We fix the test duration at 35
days right after each training duration (see Table 2). The trained GBMs will predict
the transmission rate based on the policy data provided during the test duration. The
gbm package and the predict function in R are used.

Then we can plot the curve of (1 − p)δE(t) of the SEIAR model (1) by using the
time series of trained and tested daily transmission rates to compare with notification
data of COVID-19 confirmed cases. To evaluate the fitting results, we use the mean
absolute error (MAE) and the mean absolute percentage error (MAPE) to compute the
differences between the transmission rates predicted by the GBM and those obtained
by the inverse method as well as the differences between the predicted and actual
numbers of daily COVID-19 confirmed cases. The formulas of MAE and MAPE are

Table 2 Training and testing durations

Train length (days) Train duration Test duration

105 Apr 4, 2020 to Jul 17, 2020 Jul 18, 2020 to Aug 21, 2020

112 Apr 4, 2020 to Jul 24, 2020 Jul 25, 2020 to Aug 28, 2020

119 Apr 4, 2020 to Jul 31, 2020 Aug 1, 2020 to Sept 4, 2020

126 Apr 4, 2020 to Aug 7, 2020 Aug 8, 2020 to Sept 11, 2020

133 Apr 4, 2020 to Aug 14, 2020 Aug 15, 2020 to Sept 18, 2020

140 Apr 4, 2020 to Aug 21, 2020 Aug 22, 2020 to Sept 25, 2020

147 Apr 4, 2020 to Aug 28, 2020 Aug 29, 2020 to Oct 2, 2020

154 Apr 4, 2020 to Sept 4, 2020 Sept 5, 2020 to Oct 9, 2020

161 Apr 4, 2020 to Sept 11, 2020 Sept 12, 2020 to Oct 16, 2020

168 Apr 4, 2020 to Sept 18, 2020 Sept 19, 2020 to Oct 23, 2020

175 Apr 4, 2020 to Sept 25, 2020 Sept 26, 2020 to Oct 30, 2020

182 Apr 4, 2020 to Oct 2, 2020 Oct 3, 2020 to Nov 6, 2020

189 Apr 4, 2020 to Oct 9, 2020 Oct 10, 2020 to Nov 13, 2020

196 Apr 4, 2020 to Oct 16, 2020 Oct 17, 2020 to Nov 20, 2020

203 Apr 4, 2020 to Oct 23, 2020 Oct 24, 2020 to Nov 27, 2020

210 Apr 4, 2020 to Oct 30, 2020 Oct 31, 2020 to Dec 4, 2020

217 Apr 4, 2020 to Nov 6, 2020 Nov 7, 2020 to Dec 11, 2020

224 Apr 4, 2020 to Nov 13, 2020 Nov 14, 2020 to Dec 18, 2020
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given by

MAE = 1

n

n∑

i=1

|yi − xi |, MAPE = 1

n

n∑

i=1

∣∣∣∣
yi − xi
xi

∣∣∣∣ ,

where xi is the i th component of the vector of actual values, yi is the i th component
of the vector of prediction values, and n is the total number of data instances.

Gradient boosting trains models gradually, additively, and sequentially by mini-
mizing the loss function via the number of trees. Alongside with the number of trees,
the other parameters including the distribution of response variable, the stochastic
gradient descent, the learning rate, the depth of interaction, and the minimum number
of observations allowed in the trees’ terminal nodes can all directly affect the perfor-
mance of the model (Mayr et al. 2014; Zhang et al. 2019). We select the parameter
values for GBM based on the averaged MAE and MAPE over the different training
durations in Table 2. We apply the summary function with the default method of
relative influence in R to investigate the variable importance in training the model.

After trying different combinations of the GBM parameters, we decide to employ
1000 treeswith aGaussian distribution of the response variable, 0.9 stochastic gradient
descent, 0.01 learning rate, 30 depth of interaction and a minimum number of 10
observations allowed in the trees’ terminal nodes, which results in a smaller averaged
MAE and MAPE for predictions based on the various training durations in Table 2
(Figs. 2, 3).

The prediction performance of the GBM for the daily confirmed cases of COVID-
19 is summarized in Tables 3 and 4. We can see that small MAE and MAPE are
obtained when the GBM is trained for 126 days, 147 days, 154 days and 175 days.
The corresponding training and testing (prediction) results of the transmission rate
together with those of confirmed cases are presented in Fig. 4, supplementary Figs.
10, 12 and 14 (see “Appendix”). The trained transmission rates (i.e., the orange curves
in the left panels of these figures) generally fit well with the ones obtained from the
inverse method (i.e., the blue curves in the left panels of these figures). However, the

Fig. 2 Disease induced death
rate from April 4, 2020, to
December 19, 2020 (Color
figure online)
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Fig. 3 Transmission rate obtained by the inverse method and the fitting with notification data from April 4,
2020, to December 19, 2020 (Color figure online)

Table 3 MAE and MAPE of predictions of notification data based on model (1) and the GBM in Sect. 4
corresponding to different training durations

Train length (days) Train duration MAE MAPE (%)

105 Apr 4, 2020 to Jul 17, 2020 36616.64 70.07

112 Apr 4, 2020 to Jul 24, 2020 27423.54 58.03

119 Apr 4, 2020 to Jul 31, 2020 17786.35 39.88

126 Apr 4, 2020 to Aug 7, 2020 2059.83 4.92

133 Apr 4, 2020 to Aug 14, 2020 6063.13 15.61

140 Apr 4, 2020 to Aug 21, 2020 5714.62 13.85

147 Apr 4, 2020 to Aug 28, 2020 2451.90 6.47

154 Apr 4, 2020 to Sept 4, 2020 2540.38 6.45

161 Apr 4, 2020 to Sept 11, 2020 11753.02 26.39

168 Apr 4, 2020 to Sept 18, 2020 9150.12 17.76

175 Apr 4, 2020 to Sept 25, 2020 4268.39 8.53

182 Apr 4, 2020 to Oct 2, 2020 19195.41 24.87

189 Apr 4, 2020 to Oct 9, 2020 25871.46 25.30

196 Apr 4, 2020 to Oct 16, 2020 41907.22 33.51

203 Apr 4, 2020 to Oct 23, 2020 35601.46 23.23

210 Apr 4, 2020 to Oct 30, 2020 59973.39 37.70

217 Apr 4, 2020 to Nov 6, 2020 56162.49 30.63

224 Apr 4, 2020 to Nov 13, 2020 70696.84 36.14

tested transmission rate (i.e., the yellow curves in the left panels of these figures) do
not fit well with the peaks or troughs of the blue curves of the transmission rate. In
the right panels of Fig. 4 and supplementary Figs. 10, 12, 14, the orange curves (i.e.,
trained part) fit almost perfectly with the real notification data of confirmed cases. The
yellow curve of prediction in the right panel of Fig. 4 also fits well with the blue circles
of real data, with the MAPE equal to 4.92%. In the right panel of supplementary Figs.
10 and 12, the yellow prediction curve does not show a good fitting with the local
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Table 4 Averaged MAE and MAPE for the prediction of daily confirmed cases by using model (1) and the
GBM in Sect. 4

Data used in GBM Averaged MAE Averaged MAPE

Policy data C1 ∼ C8, H1, H2, H3, H6, H8 24179.79 26.63%

Fig. 4 Using policy data C1 ∼ C8, H1, H2, H3, H6 and H8, train 126 days from April 4, 2020, to August
7, 2020; test 35 days from August 8, 2020, to September 11, 2020 (Color figure online)

minimum point around September 11 although the MAPE is as small as 6.47% and
6.45%, respectively.

The relative influence of a variable in a single tree is the sum of the empirical
improvement by splitting on the variable at those points. Friedman extended it to
boosting models by averaging the relative influence of each variable across all the
trees generated by the boosting algorithm (Friedman 2001). The relative influence of
mobility and policy variables for the GBM based on the different training durations
of 126 days, 147 days, 154 days and 175 days are shown in Table 5, supplementary
Tables 9, 10 and 11, respectively. Among these policies, restrictions on gatherings
always have the highest weight of relative influence which is as large as 42.46% when
trained for 154 days. Other important predictors are testing policies, facial coverings,
school closing, protection of elderly people andworkplace closing. Public information
campaigns and international travel controls are the least important policies with a
weight of at most 0.43% for public information campaigns when trained for 147
days and zero influence from international travel controls (see Table 5, supplementary
Tables 9, 10 and 11). As can be seen from Fig. 5 and supplementary Figs. 11, 13
and 15, the rankings of the relative influence of some policy variables have changed
when trained for different lengths of days.

5 Machine Learning with Policy andMobility Data

While fitting the transmission rate with policy data is helpful for prediction, it would
be interesting to see how the transmission rate can be affected bymobility as well since
human mobility is considered to have direct impact on the transmission rate. Among
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Table 5 Relative influence of policy variables when trained for 126 days from April 4, 2020, to August 7,
2020

Variable Relative influence (%)

Restrictions on gatherings 31.0489157

Testing policies 16.7287051

Protection of elderly people 15.2217062

School closing 7.9329945

Facial coverings 6.0243431

Workplace closing 5.0720110

Restrictions on internal movement 4.5464197

Close public transport 4.0595600

Cancel public events 3.4738417

Stay at home requirements 3.2881507

Contact tracing 2.4412499

Public information campaigns 0.1621026

International travel controls 0.0000000

Fig. 5 Relative influence of
policy variables when trained for
126 days from April 4, 2020, to
August 7, 2020 (Color figure
online)

all the policies that we have investigated in Sect. 4, testing policies (H2), contact
tracing (H3) and facial coverings (H6) normally do not affect human mobility. Thus,
it is reasonable to set H2, H3, H6 and mobility variables M1 ∼ M6 as the predictor
variables and to keep all the mobility variables unchanged while changing some of
these policies when we explore the effects of these three policies on the transmission
rate. In this section,We useGBM to connect the transmission rate withmobility data in
the presence or absence of policy data.We perform twoGBMswith different predictor
variables: one involves the mobility variables M1 ∼ M6 only; the other consists of
both the mobility variables M1 ∼ M6 and the policy variables H2, H3, H6.

We use the same values of parameters as those in Sect. 4, train the two GBMs
for different training durations increasing from 105 days to 224 days by 7 days,
and test the models for 35 days following each training duration (see Table 2).
The training dataset consists of the transmission rate on each day obtained by the
inverse method as the response variable and all the six types of mobility data M1
∼ M6 on each day as predictor variables for both GBMs. Additionally, the train-
ing dataset of the GBM involving both mobility and policy variables includes the
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Table 6 Averaged MAE and MAPE for the prediction of daily confirmed cases by using model (1) + the
GBM with mobility only and model (1) + the GBM with mobility and policy as predictors

Data used in GBM Averaged MAE Averaged MAPE

Mobility data 26188.58 36.22%

Mobility data + policy data H2, H3, H6 20408.11 25.67%

Fig. 6 Using mobility data M1 ∼ M6 and policy data H2, H3, H6, train 126 days from April 4, 2020, to
August 7, 2020; test 35 days from August 8, 2020, to September 11, 2020 (Color figure online)

Fig. 7 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 126
days from April 4, 2020, to
August 7, 2020 (Color figure
online)

three types of policy data H2, H3 and H6 on each day as predictor variables as
well. The trained GBMs will give a prediction for the transmission rate based on
the mobility and/or policy data provided during the test duration. Then, we can plot
the curve of (1− p)δE(t) of the SEIAR model (1) by using the time series of trained
and tested daily transmission rates to compare with notification data of confirmed
cases.

The prediction performance for the confirmed cases of COVID-19 is summa-
rized in Table 6. We can see that the averaged MAE and MAPE of the GBM
with both mobility and policy predictors are smaller than those of the GBM with
mobility predictors only, which indicates that involving policy data can produce
better prediction results. In particular, very small MAEs and MAPEs are obtained
for the prediction results of daily confirmed cases when the GBM involving both
mobility and policy variables is trained for 126 days, 133 days, and 217 days.
The corresponding training and testing (prediction) results of the transmission rate
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Table 7 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 126
days from April 4, 2020, to
August 7, 2020

Variable Relative influence (%)

Testing policies 38.370821

Facial coverings 19.574882

Transit stations 19.215391

Contact tracing 5.093295

Workplaces 4.396082

parks 4.316401

Retail and recreation 3.614830

Grocery and pharmacy 3.556656

Residential 1.861642

together with the fitted curves of confirmed cases are presented in Fig. 6, supple-
mentary Figs. 16 and 18. The trained transmission rates (i.e., the orange curves
in the left panels of these figures) generally fit well with the ones obtained from
the inverse method (i.e., the blue curves in the left panels of these figures). How-
ever, the tested transmission rate (i.e., the yellow curves in the left panels of these
figures) do not fit well with the peaks or troughs of the blue curves of the transmis-
sion rate. In the right panels of Fig. 6 and supplementary Figs. 16, 18, the orange
curves (i.e., trained part) fit almost perfectly with the real notification data of con-
firmed cases. The yellow curves of prediction in the right panels of Fig. 6 and
supplementary Fig. 16 also fit quite well with the blue circles of real data, with the
MAPE equal to 2.86% and 4.66%, respectively. In the right panel of supplementary
Fig. 18, the yellow prediction curve does not show a good fitting with the local mini-
mum point around November 30 although the MAPE is as small as 5.64%. This may
be because it is near the Thanksgiving holiday during which people get together and
may not havemany testings as usual (Fig. 7). For the GBMwhich involves onlymobil-
ity variables as predictors, smaller MAE and MAPE are obtained when the model is
trained for 224 days as shown in Fig. 8. In this case, the predicted result is able to
show the local minimumof daily confirmed cases aroundNovember 30 (see the yellow
curve in the right panel of Fig. 8).

The relative influence of the variables for the GBM involving both mobility and
policy based on the different training durations of 126 days, 133 days, and 217 days
are shown in Table 7, supplementary Tables 12, 13, and Fig. 7, supplementary Figs.
17, 19, respectively. Among the three policies, the testing policy H2 always has
the highest weight of relative influence which is as large as 38.37% when trained
for 126 days. The second most important predictor is the facial covering policy H6
which weighs from about 18.36% to 21.50% corresponding to the above three train-
ing durations. The contact tracing policy H3 is the least important, with a weight
ranging from about 5.09% to 13.64%. As can be seen from Fig. 7 and supple-
mentary Figs. 17, 19, the rankings of the relative influence of the mobility and
policy variables have changed when trained for different lengths of days. When the
policy variables are dropped, the ranking of the relative influence of mobility vari-
ables in Fig. 9 is also different from those in Fig. 7, supplementary Figs. 17 and
19.
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Fig. 8 Using mobility data M1 ∼ M6, train 224 days from April 4, 2020, to November 13, 2020; test 35
days from November 14, 2020, to December 18, 2020 (Color figure online)

Table 8 Relative influence of
mobility variables when trained
for 224 days from April 4, 2020,
to November 13, 2020

Variable Relative influence (%)

Parks 29.631102

Workplaces 16.835859

Grocery and pharmacy 16.086562

Transit stations 14.995899

Retail and recreation 12.799867

Residential 9.650711

Fig. 9 Relative influence of
mobility variables when trained
for 224 days from April 4, 2020,
to November 13, 2020 (Color
figure online)

6 Discussion

Weproposed a new framework for making predictions, that is, a hybridmodel combin-
ing a mechanistic SEIARmodel and gradient boosting models (GBM)with policy and
mobility variables as predictors. We created an inverse method to estimate the time-
varying transmission rate of COVID-19. This inverse method allows us to directly deal
with time series data of daily confirmed cases without needing to get a smooth curve
of the notification data at first or to substitute the integral form of any compartmental
variables as the authors did in Kong et al. (2015), Pollicott et al. (2012), which greatly
simplifies the process of deriving the transmission rate. Using the transmission rate
obtained by the inverse method can give an almost perfect fit with the notification data,
which obviously outcompetes the traditionally used method of least squares. The tree-
based method used by GBM increases the accuracy of prediction by turning “weak
learners” into “strong learners” in a gradual, additive and sequential way (Friedman
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2001). BothMAE andMAPE are used for evaluating the prediction performance of the
GBMs on the transmission rate as well as the fitting result of the number of confirmed
cases by the SEIAR model. The selected GBM is capable of capturing the correlation
between the transmission rate obtained from the inverse method and the policy as well
as mobility variables so that accurate predictions of daily confirmed cases are made
based on the SEIAR model and notification data. The bar plots of relative influence
show that the most important policy is always restrictions on gatherings.

The method presented in this paper for connecting policy/mobility and transmis-
sion rate is data-driven and hypothesis-free. This is different from some other methods
such as the least-squares methodwhere one needs tomake simplifying assumptions on
the form of the transmission rate in the future, e.g., it is constant, piecewise constant,
or a combination of sigmoid functions (López and Rodo 2021; Balcha 2020; Sahoo
and Sapra 2020; Tátrai and Várallyay 2020; Ianni and Rossi 2020; Choi and Ki 2020;
Pluchino et al. 2021; Zhou et al. 2020). The least-squares method makes future predic-
tions based on either a pre-assumed form of the transmission rate function with respect
to time or the “current” (i.e., using the transmission rate on the last day of the training
set as the transmission rate on each day of the prediction period), whereas machine-
learning models make predictions based on the “past” (i.e., the trained experience),
and typically without making restrictively simplifying assumptions. In particular, our
hybrid model that is based on only preventive policies and/or mobilities, is trained on
“past” data to link the policies/mobilities to transmission rate, and uses “future” data
on policies/mobilities to estimate the future values of the transmission rate. Given a set
of “future” policy/mobility data for the 35-day test window, we can get corresponding
predicted values of the transmission rate during that window. As such, the model can
be used to compare the dynamics under different future NPIs or mobility trends. Non-
pharmaceutical preventive policies are often a priori known and available for making
predictions. In situations where the data are unavailable regularly or contains missing
values, Bayesian networks can be used instead of GBM (Ramazi et al. 2021b).

Strikingly 90% of the world’s data have been generated in the past several years;
thus, machine learning has become more efficient in making predictions; how-
ever, mechanistic models can provide the causality missing from machine-learning
approaches (Baker et al. 2018). Our hybrid model could provide more reliable predic-
tions, especially when future policies have dramatic changes and enough amount of
data are provided for training. Logically, our method has similar accuracy as machine
learning approaches, but the disease spread compartment of our method includes
a mechanistic model that captures established epidemiological causal relationships
between the disease variables. In addition, there is no need to compare our method
with the least-squares method because the inverse method has perfect data fitting for
transmissibility without making any assumptions.

Sincemachine learning requires sufficient amount of data in order to obtain effective
training, our hybrid model may not be competent in making predictions in the initial
stage of an epidemic/pandemic caused by a novel pathogen. In addition, in our model
we simply assume that human individuals in the USA are homogeneously mixed and
obtain policy data by averaging the policy data over different states together with
Washington D.C. weighted by their populations. Indeed, different states or regions
usually have different epidemic progress and different preventive and control policies.
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Even within a small region, different people may have different immunity abilities and
hence different recovery or death rates, etc. To incorporate the role of heterogeneity in
disease transmission, we can either apply our model and method to different smaller
regions with region-specific parameters and then compare the prediction results or
develop a patchy ODE model or PDE model with nonlocal dispersal. We can also
divide the population into more compartments according to their ages, health states or
activity levels such as in different exposed periods, hospitalized, quarantined, on travel,
working in medical frontlines, etc., and assume parameter values to be group-specific
accordingly.

Our method can be applied to the study of other infectious diseases or future newly
emerged pandemics in early stages. It can identify the most influential variables in
predicting the disease spread and predict disease dynamics under different policies,
which may guide policy makers to design mitigation measures. Our next step is to
apply the inverse method plus machine learning approach to make predictions on
daily new cases for the post-vaccination period and uncover the role of vaccination
policies in future pandemic waves (Table 8).
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Appendix: Supplementary figures and tables

In this Appendix, we present supplementary figures and tables. The selected training
and testing results about the transmission rates and the fittings with notification data
of daily confirmed cases are displayed in Figs. 10, 12 and 14 for the model with policy
as the only predictors, in Figs. 16 and 18 for the model with both policy and mobility
as the predictors. After each of these figures, we present a table and a figure of the
relative influence of the involved predictor variables in training the model. Tables 9,
10, 11 and Figs. 11, 13, 15 show the relative influence of the policy variables when
the model is trained for 147 days, 154 days, 175 days, respectively. Tables 12, 13 and
Figs. 17, 19 give the relative influence of the mobility and part of policy variables
when the model is trained for 133 days and 217 days, respectively.
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Fig. 10 Using policy data C1 ∼ C8, H1, H2, H3, H6 and H8, train 147 days from April 4, 2020, to August
28, 2020; test 35 days from August 29, 2020, to October 2, 2020 (Color figure online)

Table 9 Relative influence of policy variables when trained for 147 days from April 4, 2020, to August 28,
2020

Variable Relative influence (%)

Restrictions on gatherings 42.3668084

Testing policies 11.9967018

Facial coverings 9.4461173

school closing 8.7000103

Protection of elderly people 7.8984697

workplace closing 4.6655947

Cancel public events 3.9032770

Close public transport 3.7699113

Restrictions on internal movement 3.1179248

Stay at home requirements 2.8130527

Contact tracing 0.8900337

Public information campaigns 0.4320982

International travel controls 0.0000000

Fig. 11 Relative influence of
policy variables when trained for
147 days from April 4, 2020, to
August 28, 2020 (Color figure
online)
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Fig. 12 Using policy data C1∼C8,H1, H2, H3, H6 andH8, train 154 days fromApril 4, 2020, to September
4, 2020; test 35 days from September 5, 2020, to October 9, 2020 (Color figure online)

Table 10 Relative influence of policy variables when trained for 154 days fromApril 4, 2020, to September
4, 2020

Variable Relative influence (%)

Restrictions on gatherings 42.4561382

Testing policies 12.8734097

School closing 8.5351249

Facial coverings 8.0608618

Protection of elderly people 6.6531206

Workplace closing 5.6067289

Cancel public events 4.3324652

Close public transport 3.4850619

Restrictions on internal movement 3.4346518

Stay at home requirements 3.1492062

Contact tracing 1.0979493

Public information campaigns 0.3152815

International travel controls 0.0000000

Fig. 13 Relative influence of
policy variables when trained for
154 days from April 4, 2020, to
September 4, 2020 (Color figure
online)
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Fig. 14 Using policy data C1∼C8,H1, H2, H3, H6 andH8, train 175 days fromApril 4, 2020, to September
25, 2020; test 35 days from September 26, 2020, to October 30, 2020 (Color figure online)

Table 11 Relative influence of policy variables when trained for 175 days fromApril 4, 2020, to September
25, 2020

Variable Relative influence (%)

Restrictions on gatherings 38.0716839

Testing policies 12.3025438

School closing 8.4113758

Facial coverings 8.4021886

Workplace closing 7.9880485

Close public transport 6.1772695

Protection of elderly people 5.9374740

Cancel public events 4.4452982

Stay at home requirements 3.1632396

Restrictions on internal movement 2.9548620

Contact tracing 1.9726367

public information campaigns 0.1733794

International travel controls 0.0000000

Fig. 15 Relative influence of
policy variables when trained for
175 days from April 4, 2020, to
September 25, 2020 (Color
figure online)
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Fig. 16 Using mobility data and H2, H3, H6 policy data, train 133 days from April 4, 2020, to August 14,
2020; test 35 days from August 15, 2020, to September 18, 2020 (Color figure online)

Table 12 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 133
days from April 4, 2020, to
August 14, 2020

Variable Relative influence (%)

Testing policies 29.935771

Facial coverings 21.503403

Transit stations 19.706089

contact tracing 10.468970

Parks 4.930258

Workplaces 4.243045

Grocery and pharmacy 3.940721

Retail and recreation 3.599258

Residential 1.672485

Fig. 17 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 133
days from April 4, 2020, to
August 14, 2020 (Color figure
online)
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Fig. 18 Using mobility data and H2, H3, H6 policy data, train 217 days from April 4, 2020, to November
6, 2020; test 35 days from November 7, 2020, to December 11, 2020 (Color figure online)

Table 13 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 217
days from April 4, 2020, to
November 6, 2020

Variable Relative influence (%)

Testing policies 35.148781

Facial coverings 18.359430

Contact tracing 13.641922

Parks 9.487232

transit stations 7.922605

Workplaces 6.320635

Grocery and pharmacy 3.452438

Residential 3.007597

Retail and recreation 2.659359

Fig. 19 Relative influence of
mobility and H2, H3, H6 policy
variables when trained for 217
days from April 4, 2020, to
November 6, 2020 (Color figure
online)
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