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STOICHIOMETRY-DEPENDENT FEAR EFFECT IN A FOOD
CHAIN MODEL\ast 

TIANXU WANG\dagger AND HAO WANG\ddagger 

Abstract. Evidence shows that resource quality can determine the costs and benefits of the fear
effect on consumer dynamics. However, mechanistic modeling and analysis are lacking. This paper
formulates a tritrophic level food chain model that integrates both stoichiometric food quality and
fear effect. We establish the well-posedness of the model and examine the existence and stability of
equilibria. Through extensive numerical simulations, we validate our findings and visually explore
the interactive effects of fear and food quality. Our results reveal that the fear effect from predators
stabilizes the system. Furthermore, we demonstrate that the fear effect amplifies the influence
of food quality on consumers. When food quality is favorable, the fear effect enhances consumer
production efficiency, whereas, in the case of poor food quality, the fear effect exacerbates the decline
in production efficiency caused by low-nutrient food.

Key words. producer-consumer-predator, fear effect, stoichiometric constraints, production
efficiency, asymptotic analysis
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1. Introduction. Prey are influenced by their predators not only by direct
killing but also through indirect predation risk [22]. Predation cues generated by
predators such as chemical cues can induce fear or alertness in prey [30, 17], sub-
sequently alter the behavior, physiology, and morphology of prey, such as habitat
use, foraging behavior, and reproduction rate [16, 61, 50, 19, 15]. This phenomenon
is known as fear effect (also called indirect predation risk or nonconsumptive effect).
Interestingly, the responses of different species to fear effect vary significantly [38].
Fear effects can be detrimental for some species, causing them to suffer lower mating
success, reduced reproductive success, and increased vulnerability to predators [48].
For example, Zanette et al. [68] observed that the perception of predation risk alone
led to a 40\% decrease in annual offspring production of sparrows. However, fear effects
may also positively impact some species by triggering adaptive changes in their life
history and behavior. For example, Haapakoski, Hardenbol, and Matson [20] found
that exposure to predator cues increased the litter size of voles by 50\%, through the
effect of alarm pheromones on prey individuals. Similarly, Wen and Ueno [66] demon-
strated that visual and odor cues from predators gave rise to a higher proportion
of long-winged female small brown planthoppers which were more agile in evading
predation, thereby enhancing their survival rate.
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784 TIANXU WANG AND HAO WANG

Recent studies have extensively explored the antipredator response to indirect
predation risk. For instance, Leroux and Schmitz [32] employed an ecosystem trophic
compartment model to investigate the influence of fear effects on elemental cycling
within trophic chains. Wang, Zanette, and Zou [65] proposed a two-dimensional
predator-prey model incorporating the cost of fear into prey reproduction and showed
that the antipredator response stabilized the predator-prey system. Panday et al.
[41] extended the study to a tritrophic food chain model incorporating the cost of
fear into reproductions of both prey and middle predator and also demonstrated the
stabilizing role of fear. Kaur, Sharma, and Sharma [29] assumed that zooplankton
species had developed defense mechanisms against fish predation and introduced a
tritrophic model, showing that a low level of fear can stabilize the system in the pres-
ence of a high rate of zooplankton refuge. Cong, Fan, and Zou [8], Thirthar et al.
[59], Ali [1], and Mandal et al. [36] investigated fear effects using three-dimensional
food chain models, considering different factors such as reduced production and for-
aging behavior, harvesting effect of big fish, intraspecific competition among middle
predators and top predators, and supplementary food sources, respectively. Their
findings consistently indicated that the fear effect contributed to increased stability
of the system. Chen, Takeuchi, and Zhang [6] considered a modified Leslie--Gower
model incorporating fear and Holling type IV functional response with group defence
ability of prey. Their study revealed that as the intensity of fear increased, the sys-
tem underwent multiple dynamic behaviors switching until the final extinction of the
prey population. These studies collectively demonstrate that fear effects can lead to
complex and diverse population dynamics.

In addition to the fear effect, nutrient availability is another crucial factor for
species growth. Ecological stoichiometry is a tool to explore how the balance of en-
ergy and multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus
(P) affect food-web dynamics and nutrient cycling mechanisms [55]. The proportions
of these chemical elements are typically within a certain range to maintain ecosystem
stability [18] and meet the nutrient requirement of organisms [26]. These elemental
ratios vary across species [11] and even within a single species [47], as different biolog-
ical processes have diverse nutrient requirements [27]. Variations in elemental ratios
can significantly impact the population dynamics [23]. For instance, resources with a
higher P:C ratio can be considered as a higher nutrient food, which typically promotes
the growth rate and production efficiency of species [57]. Conversely, a lower P:C ra-
tio in prey can constrain the production efficiency of predators, potentially leading to
reduced population density and even extinction [34, 10].

The influence of changing the stoichiometric balance on population dynamics has
also been widely investigated. For instance, Loladze, Kuang, and Elser [34] devel-
oped a stoichiometric producer-grazer model (LKE model) and demonstrated that
extremely high or low light intensity led to grazer extinction, while moderate light in-
tensity supported the coexistence of three species. Global analyses of the LKE model
were conducted by Li, Wang, and Kuang [33] and Xie et al. [67]. Moreover, the
classical assumptions for the LKE model were further studied by [49, 64, 63]. Addi-
tionally, several modified models based on the LKE model have been investigated. For
example, Wang, Kuang, and Loladze [62] and Peace, Wang, and Kuang [45] explicitly
tracked free nutrients in both the prey and the media by spatially homogeneous stoi-
chiometric models. Peace [43] expanded upon the LKE model to a three-dimensional
stoichiometric food chain model and predicted that food chain efficiency was reduced
when consumers were nutrient limited. Chen, Fan, and Kuang [5] formulated a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 785

similar stoichiometric model with maximal production efficiencies of consumers and
predators being less than one. Peace and Wang [44] incorporated energetic foraging
costs in stoichiometric models and concluded that optimal foraging strategies depend
on light and nutrient availability.

Since both fear effects and stoichiometric food quality can significantly influence
population dynamics, a natural follow-up question is whether there is an interactive
effect between them. In fact, the response of prey to indirect predation risk from
predators is indeed affected by their food [12, 24, 42, 9]. Bell et al. [4] investigated
the interaction between fear effects and food quality (measured as P:C) in an experi-
mental setting involving a food chain of algae, daphnia, and fish. They found that the
reduction in survival rates and population growth rates that resulted from low-nutrient
food were amplified in the presence of predator-derived cues. Conversely, when the
food quality was good, these chemical cues led to a higher population growth rate.
A potential reason is that daphnia typically responds to predator-derived chemical
cues by reproducing earlier and at a smaller size [56], which requires higher resource
investments for initial reproduction [69]. Poor food quality thus constrains the repro-
duction rate and growth rate of daphnia, while high-nutrient food may enhance its
reproduction rate, ultimately resulting in an increasing population.

Although the influence of fear effect on population dynamics is highly dependent
on food quality, most (if not all) existing predator-prey models neglect the interac-
tive effect of fear effect and food quality. This paper aims to address this limita-
tion by proposing a three-dimensional food chain model that integrates both indirect
predation risk and stoichiometric constraints. Through rigorous analysis, we try to
gain a deeper understanding of how these two factors interactively shape population
dynamics.

The remainder of this paper is organized as follows. In section 2, we provide the
mathematical model. In section 3, we present a preliminary mathematical analysis of
the model. In section 4, extensive numerical simulations are given to further prove the
analysis and delineate some interesting findings. In section 5, we provide a summary
of the results.

2. Model formulation. This study focuses on the interaction among producers,
consumers, and predators in a closed ecological system. The food chain of algae,
daphnia, and fish can be viewed as a special case. We follow a coarse outline in [5].
Recall the general form of a basic three-dimensional food chain model, similar to the
model described in [21]: \left\{           

dx

dt
= bx

\bigl( 
1 - x

K

\bigr) 
 - f(x)y,

dy

dt
= eyf(x)y - g(y)z  - dyy,

dz

dt
= ezg(y)z  - dzz,

(2.1)

where x(t), y(t), and z(t) represent the density of producers, consumers, and preda-
tors, respectively. The functions f(x) and g(y) are consumer and predator ingestion
rates, respectively. In general, f(x) and g(y) are bounded differentiable and satisfy
f(0) = 0, f \prime (x)> 0, f \prime \prime (x)< 0 for x\geq 0; g(0) = 0, g\prime (y)> 0, g\prime \prime (y)< 0 for y \geq 0. Fur-
thermore, f(x) and g(y) are saturating with limx\rightarrow \infty f(x) = \^f and limy\rightarrow \infty g(y) = \^g,
respectively. In our study, we take f(x) and g(y) as Holling type II functional
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786 TIANXU WANG AND HAO WANG

responses, i.e., f(x) = c1x
a1+x and g(y) = c2y

a2+y , where a1, a2, c1, and c2 are explained
in Table 1. The remaining parameters are provided in Table 1.

This classic food chain model assumes that producers are always provided with
ample nutrients and their growth is only limited by light intensity. However, in real
ecosystems, limited resources and nutrients are more common. Therefore, incorporat-
ing stoichiometric constraints into the model is needed. We express biomass in terms
of C since C makes up the bulk of the dry weight of most organisms. P is often a
limiting nutrient in aquatic systems [13] and all organisms require a certain species-
specific fraction of P for survival. Hence, we consider two essential elements: C and
P. Note that one can also choose other essential parameters (e.g., nitrogen, sulfur, or
calcium) [34]. In this study, the P:C ratio will be used to assess nutrient levels.

On the other hand, traditional fear effect models always assume that the fear
effect decreases the growth rate of consumer population. However, the response of
prey to fear effect has been observed to be dependent on food quality [4]. Moreover,
as the density of predators increases, the prey species typically exhibit more robust
fear responses, indicating that the fear effect becomes more pronounced with higher
predator densities.

In this study, we make the following assumptions:
(A1) The total amount of phosphorus in the ecosystem is constant, denoted by

P (mgP/l).

Table 1
The parameters for system (2.1) and (2.4).

Para. Description Value Unit Source

P total phosphorus 0.12 mgC/l [5]

ey maximal production efficiency of consumers 0.95 no unit Assumed
hm minimal production efficiency of consumers 0.4 no unit Assumed

\=ey threshold for maximal production efficiency in consumers 0.7 no unit Assumed

ez maximal production efficiency of predators 0.75 no unit [5]
b maximum growth rate of producers 1.2 day - 1 [5]

dy consumer loss rate (include respiration) 0.25 day - 1 [5]

dz predator loss rate (include respiration and predation) 0.003 day - 1 [5]
\theta y consumer constant P : C 0.03 mgP/mgC [5]

\theta z predator constant P : C 0.013 mgP/mgC [5]

Qm minimal P:C in producers 0.0008 mgP/mgC [31]
\=Q threshold value of P:C in producers 0.00079--0.09 mgP/mgC [4, 14, 31]

c1 maximal ingestion rate of the consumer 0.81 day - 1 [5]

c2 maximal ingestion rate of the predator 0.03 day - 1 [5]
a1 half-saturation of the consumer ingestion response 0.25 mgC/l [5]

a2 half-saturation of the predator ingestion response 0.75 mgC/l [5]
K producer carrying capacity limited by light 0-10 mgC/l [5]
\rho fear effect coefficient 0-4 no unit Assumed
\beta half-saturation constant of fear effect response 56 mgC/l Assumed
\gamma half-saturation constant for food quality 0.01 mgP/mgC Assumed

Notes: Most parameters correlated with producers (e.g., phytoplankton) and consumers (e.g., zooplankton)
are selected from [2, 60] and are used in [5, 46, 34, 43]. The parameters correlated with predators (e.g.,
fish) are chosen from [28, 35] and are used in [5]. For the P:C ratio in producers, the ranges recorded
in [4, 14, 31] are 0.0016--0.01, 0.04--0.09, and 0.00079--0.0295, respectively. Therefore, in this paper, we
consider the range of \=Q to be 0.00079--0.09. In particular, we use \=Q = 0.03 and 0.0033 in simulations.
To capture more dynamics, we choose the minimal P:C ratio Qm relatively low at 0.0008. The maximal
production efficiency of consumers ey is usually assumed to be higher than 0.8 in [2, 34, 46, 43, 5]; here, it
is assumed to be 0.95. The minimal production efficiency of consumers hm is chosen as 0.4. The threshold
\=ey between ey and hm is assumed to be 0.7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 787

(A2) The P:C ratio of producers varies, but never falls below a minimum value
of Qm (mgP/mgC). Consumers and predators maintain constant P:C ratios, denoted
by \theta y and \theta z (mgP/mgC), respectively.

(A3) All phosphorus in the system is divided into three pools: producers, con-
sumers, and predators. The phosphorus in producers must remain above a certain
minimum level, denoted by Pm (mgP/l).

(A4) As the predator density increases, the impact of fear becomes more pro-
nounced.

The population densities are measured in terms of carbon. From assumptions
(A1), (A2), and (A3), P available for the producer is P - \theta yy - \theta zz (mgP/l). Therefore,
the producer's P:C ratio can be represented as

Q=
P  - \theta yy - \theta zz

x
(2.2)

(mgP/mgC). Furthermore, by assumption (A2), P:C in producers has a minimum
value Qm; an upper bound for producer density thus can be expressed as

P - \theta yy - \theta zz
Qm

(mgC/l). Additionally, producer density cannot exceed K (mgC/l) due to light in-
tensity availability. Therefore, the combination of external factor (light intensity)
and internal factor (P availability) limits the carrying capacity of the producer to
min\{ K,

P - \theta yy - \theta zz
Qm

\} .
Next, we show how stoichiometric food quality affects the production efficiency

of consumers. Q indicates the nutrient level of producers. When Q is greater than
or equal to the P:C ratio required by consumers (i.e., Q \geq \theta y), the food quality
for consumers is optimal. In this scenario, consumers are able to maximize their
utilization of energy (carbon). However, a lower P:C ratio in producers (i.e., Q< \theta y)
indicates lower nutrient food quality for consumers, resulting in limited production
efficiency. The limitation of food quality to the production efficiency of consumers
thus can be represented as a minimum function, min\{ 1, Q

\theta y
\} . Similarly, the production

efficiency of predators is also limited by their food quality, which can be represented
by min\{ 1, \theta y\theta z \} .

Furthermore, we investigate the impact of fear effect induced by predators on
consumer production efficiency. The magnitude of fear effect is strongly influenced
by food quality [4] and population density of predators (assumption (A4)). As the
nutrient level of producers falls below optimal conditions, the production efficiency
of the consumer population becomes constrained. However, the presence of fear ef-
fect further exacerbates this reduction. On the other hand, when the nutrient level
of producers is optimal, there are no limitations imposed by food quality, and fear
effect from predators can potentially enhance the production efficiency of consumer
population.

Let \=Q denote the threshold value of the P:C ratio in producers. We summarize
the above analysis with the following conclusions:

1. As producer P:C ratio increases within a specific range, consumer production
efficiency also increases. However, beyond this range, further increases in P:C ratio
do not affect consumer production efficiency.

2. When the producer P:C ratio is higher than \=Q, fear effect enhances consumer
production efficiency.

3. When the producer P:C ratio is higher than \=Q, increasing predator density
intensifies the positive effect of fear on consumer production efficiency.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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788 TIANXU WANG AND HAO WANG

4. When the producer P:C ratio is lower than \=Q, fear effect reduces consumer
production efficiency.

5. When the producer P:C ratio is lower than \=Q, increasing predator density
intensifies the negative effect of fear on consumer production efficiency.

6. When the producer P:C ratio is equal to \=Q, fear effect does not influence
consumer production efficiency.

We now introduce the function h(z,Q) to capture the varying production effi-
ciency due to fear effect as follows:

h(z,Q) = \rho 
\alpha (Q)z

z + \beta 
+ \=ey, \alpha (Q) =

Q - \=Q

Q+ \gamma 
,(2.3)

where \=ey is a threshold value, representing the maximal production efficiency of con-
sumers in the absence of fear effect or when fear effect does not influence consumer
growth. Q is given in (2.2). Parameters \rho , \beta , and \gamma can be found in Table 1. Figure
1 visually depicts the function h(z,Q). Figure 1(a) shows h(z,Q) in terms of z while
keeping Q fixed, and Figure 1(b) shows h(z,Q) in terms of Q while keeping z fixed.
The system (2.4) eventually reaches a stable equilibrium, periodic state, or chaotic
state, without diverging to infinity. As a result, Figure 1(a) demonstrates distinct
finite ranges for z in each of the three cases.

The function h(z,Q) satisfies the following properties, which align with the above
conclusions:

1. h(z,Q) is an increasing function with respect to Q up to a certain point, after
which it remains constant, as shown in Figure 1(b).

2. As Q> \=Q, \=ey <h(z,Q)< ey < 1, as shown in Figure 1(a).
3. As Q> \=Q, h(z,Q) is an increasing function over z, as shown in Figure 1(a).
4. As Q < \=Q, 0 < hm < h(z,Q) < \=ey, where hm denotes the minimum value of

h(z,Q), as shown in Figure 1(a).
5. As Q< \=Q, h(z,Q) is a decreasing function over z, as shown in Figure 1(a).
6. As Q= \=Q, \alpha (Q) = 0, h(z,Q) = \=ey, as shown in Figure 1(a).
Based on the above analysis, we obtain a new food chain model incorporating

both stoichiometric food quality and fear effect as follows:

(a) (b)

Fig. 1. Function h(z,Q). (a) When Q > \=Q, h(z,Q) is an increasing function of z. When
Q < \=Q, h(z,Q) is a decreasing function of z. When Q = \=Q, h(z,Q) = \=ey. We set \=Q = 0.03 for
Q> \=Q, \=Q= 0.0033 for Q< \=Q, and \=Q= 0.024 for Q= \=Q. The value of \rho is set to 2.5. (b) h(z,Q) is
an increasing function of Q. We set \=Q= 0.03. The initial values are (x(0), y(0), z(0)) = (0.5,0.5,0.5)
and other parameters are listed in Table 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 789

\left\{                                 

dx

dt
= bx

\left(  1 - x

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} 
\right)  

\underbrace{}  \underbrace{}  
growth limited by light and nutrient

 - f(x)y\underbrace{}  \underbrace{}  
consumed by consumers

,

dy

dt
= h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x)y\underbrace{}  \underbrace{}  

growth limited by fear effect, food quality, and quantity

 - g(y)z\underbrace{}  \underbrace{}  
consumed by predators

 - dyy\underbrace{}  \underbrace{}  
death

,

dz

dt
= ez min

\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y)z\underbrace{}  \underbrace{}  

growth limited by food quality and quantity

 - dzz\underbrace{}  \underbrace{}  
death

,

(2.4)

where Q and h(z,Q) are given by (2.2) and (2.3), respectively.

3. Qualitative analysis.

3.1. Positivity and boundedness. The following theorems show that system
(2.4) is biologically well defined. The proofs for these theorems can be found in Ap-
pendix A. First, we verify the biological validity of the model when x approaches zero.

Theorem 3.1. The model (2.4) is well defined as x - \rightarrow 0.

This theorem confirms that as x approaches zero, the system does not undergo
any explosions or catastrophic failures. Next, we find a bounded positive set that all
solutions of the system (2.4) eventually enter. Let

\Omega = \{ (x, y, z) : 0\leq x\leq k, 0\leq y\leq P/\theta y, 0\leq z \leq P/\theta z, Qmx+ \theta yy+ \theta zz \leq P\} ,

where k = min\{ K, P
Qm

\} . The region \Omega is a closed triangular truncated cone (if K <
P
Qm

) or a closed triangular pyramid (if K \geq P
Qm

). It is separated into two parts by
the plane \theta yx+ \theta yy+ \theta zz = P . The inner region is denoted as region I, and the outer
region is denoted as region II, as illustrated in Figure 2. The following theorem shows
that solutions with an initial state in the set \Omega will remain in \Omega for all forward time.

Theorem 3.2. \Omega is positively invariant for semiflow generated by system (2.4).

Therefore, if the initial population densities of three species are nonnegative, they
will remain nonnegative throughout, regardless of varying environmental conditions
and disturbances.

(a) (b)

Fig. 2. The positively invariant set \Omega . (a) As K \geq P
Qm

, \Omega is a triangular pyramid. (b) As

K < P
Qm

, \Omega is a triangular truncated cone. The plane \theta yx+ \theta yy + \theta zz = P separates \Omega into two

regions.
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790 TIANXU WANG AND HAO WANG

3.2. Equilibria analysis. We further explore the long-term behavior of model
(2.4) by examining the system's equilibria. The possible equilibria consist of the
boundary equilibria E0(0,0,0), E1(k,0,0), and E2(\=x, \=y,0), as well as internal equi-
libria E\ast (x\ast , y\ast , z\ast ). Detailed mathematical analysis and proofs can be found in
Appendix B.

We begin with the stability analysis of the extinction equilibrium E0(0,0,0).

Theorem 3.3. The extinction equilibrium E0(0,0,0) is unstable.

Biologically, this implies that this ecosystem will never collapse completely. Next,
we analyze the stability of the producer-only equilibrium E1(k,0,0).

Theorem 3.4. The producer-only equilibrium E1(k,0,0) is locally asymptotically
stable (LAS) if \=ey min\{ 1, P

k\theta y
\} f(k)<dy.

Therefore, when the death rate of consumers exceeds their growth rate, both
consumers and predators will die out, leaving only producers to survive. The popula-
tion density of producers will eventually stabilize at the maximum carrying capacity
limited by the availability of light and phosphorus, i.e., k=min\{ K, P

Qm
\} .

The existence of the producer-consumer equilibrium E2(\=x, \=y,0) depends on the
growth and death rates of consumers. To ensure the survival of consumers, the growth
rate of consumers must be greater than their death rate. Conversely, the death rate of
predators should exceed their growth rate, leading to their eventual extinction. These
conditions can be captured by the following inequalities:

G(k,0,0) = \=ey min
\Bigl\{ 
1,

P

\theta y

\Bigr\} 
f(x) - dy > 0,(3.1)

H(\=x, \=ymax,0) = ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(\=ymax) - dz < 0,(3.2)

where \=y\leq \=ymax =
P
\theta y

 - f - 1(
dy

\=ey
), as discussed in Appendix B.3. Inequalities (3.1) and

(3.2) provide sufficient conditions for the existence of E2.
The stability of equilibrium E2 can be determined by analyzing the nullclines of

the producer and consumer.

Theorem 3.5. In region I (x+ y < P
\theta y
), E2 is LAS if the producer nullcline is

decreasing, and E2 is unstable if it is increasing. In region II (x+y > P
\theta y
), E2 is LAS

if the slope of the consumer nullcline is higher than the slope of the producer nullcline;
otherwise, E2 is unstable.

Biologically, this implies that when the producer's growth rate is much faster than
that of grazers, eventually, producers, grazers, and predators can all survive. If the
producer's growth rate is positive but their increasing speed is not very rapid, then
grazers can survive, but predators cannot survive.

For the coexistence equilibrium E\ast (x\ast , y\ast , z\ast ), define

L1 :=
eyx

\ast c1
a1

 - dy  - 
c2z

\ast 

a2 + P/\theta y
,

L2 :=
ez min

\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
y\ast c2

a2
 - dz,

L3 := dyez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
y\ast + dzz

\ast  - eyez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
bx\ast ,
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 791

L4 := ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} \Biggl[ \Biggl( k

min
\Bigl\{ 
K, Pm

Qm

\Bigr\}  - 1

\Biggr) 
eybx

\ast 

+

\Biggl( 
dy  - hmmin

\Bigl\{ 
1,

Qm

\theta y

\Bigr\} a1
c1 + k

k

\Biggr) 
y\ast +

\biggl( 
1 - k

K

\biggr) 
eybk

\Biggr] 
+ dzz

\ast ;

then the following theorem provides a sufficient condition for the global stability of
the internal equilibrium E\ast (x\ast , y\ast , z\ast ).

Theorem 3.6. The internal equilibrium E\ast (x\ast , y\ast , z\ast ) is globally asymptotically
stable (GAS) if Li \leq 0 for i= 1,2,3,4 and at least one of these inequalities is strictly
negative.

In subsection 4.1, we provide a numerical example to further illustrate the prac-
tical application of this theorem.

4. Numerical simulation. In this section, we study the system (2.4) with the
help of numerical simulation. The parameters are shown in Table 1. We set the initial
state as (x(0), y(0), z(0)) = (0.5,0.5,0.5) for all simulations.

4.1. Numerical analysis of internal equilibria. If the system (2.4) admits
an internal equilibrium E\ast (x\ast , y\ast , z\ast ), we can solve y\ast from H(x\ast , y\ast , z\ast ) = 0:

y\ast = g - 1

\left(  dz

ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
\right)  .

Therefore, we can degenerate the system into a two-dimensional x-z system by
fixing y = y\ast . This allows us to study the internal equilibrium of the system (2.4)
on the x-z plane, as depicted in Figure 3(a). For convenience, we denote F (x, y\ast , z)
and G(x, y\ast , z) as F0(x, z) and G0(x, z), respectively. Intersections of F0(x, z) and
G0(x, z) represent internal equilibria. Figure 3(b) illustrates that there exists at most
one internal equilibrium in all cases.

We provide an example to demonstrate the application of Theorem 3.6 using the
following parameter values: b= 0.8, dy = 0.005, dz = 0.0003, a1 = 8, a2 = 2, P = 0.06,
K = 1.25, \rho = 4, ey = 0.2, Pm = 0.001, and hm = 0.4. The remaining parameters
are specified in Table 1. With these parameter values, we obtain L1 =  - 0.0019 < 0,
L2 = 0, L3 =  - 0.0001 < 0, and L4 =  - 0.1486 < 0, which satisfy all the conditions

(a) (b) (c)

Fig. 3. (a) Stoichiometry confined feasible region \Omega in phase space. The shaded surface is
defined by y= y\ast . (b) Internal equilibrium in x-z plane as y= y\ast . The blue curves refer to F0(x, z)
for different K values, and the peak-shaped curve is defined by G0(x, z). The intersection points of
F0(x, z) and G0(x, z) are internal equilibria. The solid dot implies the stable equilibrium while the
circle denotes the unstable equilibrium. (c) E\ast is GAS.
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792 TIANXU WANG AND HAO WANG

stated in Theorem 3.6. Therefore, we can conclude that the equilibrium point E\ast =
(1.2465,0.0269,2.9515) is GAS, which is further supported by the simulation results
shown in Figure 3(c).

4.2. Sensitivity analysis. We perform the sensitivity analysis by calculating
the partial ranked correlation coefficient with respect to the consumer population
to assess the influence of different parameters as shown in Figure 4. The threshold
value for maximal production efficiency of consumers, \=ey, exhibits a relatively high
sensitivity index. From (2.3), it is obvious that \=ey directly influences the production
efficiency of consumers. In this paper, we chose a reasonable value of 0.7 for \=ey.
Another parameter that demonstrates notable sensitivity is K, which represents light
intensity input into the system. Light intensity indirectly influences the quality and
quantity of food available to consumers. Moreover, the fear effect coefficient (i.e.,
\rho ), indicating the magnitude of the fear effect, exhibits the highest sensitivity. This
suggests that even slight changes in fear effect can have a substantial impact on the
system dynamics. We will further investigate the roles of these two parameters, K
and \rho , in the following sections.

4.3. Influence of light intensity. Light intensity plays a crucial role in the
carbon synthesis of producers, subsequently affecting their nutrient levels. Inade-
quate light intensity has been shown to result in reduced carbon assimilation [58].
Conversely, strong light intensity often leads to abundant carbon, which results in a
low P:C ratio in producers. In this section, we choose K as a bifurcation parameter
to investigate how light intensity influences the system, as shown in Figure 5. Addi-
tionally, Figure 6 presents the time series of the system (2.4). Figure 7 illustrates the
corresponding trajectories in three-dimensional phase space.

Fig. 4. Sensitivity analysis for Q, \=ey, \beta , \gamma , \rho , Qm, and K.

(a) ρ = 0 (b) ρ = 1 (c) ρ = 2.7

Fig. 5. Bifurcation diagrams over K. (a) \rho = 0. (b) \rho = 1. (c) \rho = 2.7.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
24

 to
 1

37
.1

86
.1

45
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



STOICHIOMETRY-DEPENDENT FEAR EFFECT 793

(a) K = 0.1 (b) K = 0.22 (c) K = 0.4 (d) K = 0.6

(e) K = 2 (f) K = 7 (g) K = 8.6 (h) K = 10

Fig. 6. Time series of the system (2.4) without fear effect. (a) K = 0.1, producer-only equilib-
rium E1 is stable. (b) K = 0.22, producer-consumer equilibrium E2 is stable. (c) K = 0.4, coexistence
equilibrium E\ast is stable. (d) K = 0.6, system (2.4) admits a limit circle. (e) K = 2, system (2.4) is
chaotic. (f) K = 7, coexistence equilibrium E\ast is stable. (g) K = 8.6, producer-consumer equilibrium
E2 is stable. (h) K = 10, producer-only equilibrium E1 is stable. We take \=Q = 0.0033. Other
parameters are specified in Table 1.

(a) K = 0.1 (b) K = 0.22 (c) K = 0.4 (d) K = 0.6

(e) K = 2 (f) K = 7 (g) K = 8.6 (h) K = 10

Fig. 7. Trajectories of the system (2.4) in phase space without fear effect. (a)K = 0.1, producer-
only equilibrium E1 is stable. (b) K = 0.22, producer-consumer equilibrium E2 is stable. (c) K = 0.4,
coexistence equilibrium E\ast is stable. (d) K = 0.6, system (2.4) admits a limit circle. (e) K = 2,
system (2.4) is chaotic. (f) K = 7, coexistence equilibrium E\ast is stable. (g) K = 8.6, producer-
consumer equilibrium E2 is stable. (h) K = 10, producer-only equilibrium E1 is stable. We take
\=Q= 0.0033. Other parameters are specified in Table 1.

We first discuss the case when there is no fear effect, i.e., \rho =0 (Figure 5(a)).
Extremely low light intensity (0<K < 0.2) can only support the survival of producers
at very low densities. However, both consumers and predators go extinct due to the
lack of food, as depicted in Figure 5(a). A specific scenario for K = 0.1 is shown
in Figure 6(a). When the light intensity is increasing but still at a relatively low
level (0.2<K < 0.23), both producers and consumers can coexist, and the boundary
equilibrium E2 is stable (e.g., K = 0.22 in Figures 6(b) and 7(b)). As light intensity
increases further, it becomes sufficient to support the survival of the entire system. In
the range of 0.23\leq K \leq 0.52, a unique stable internal equilibrium emerges, indicating
that all three species coexist in a stable state (e.g., K = 0.4 in Figures 6(c) and 7(c)).
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794 TIANXU WANG AND HAO WANG

When light intensity reaches an intermediate threshold value (K = 0.52), a Hopf
bifurcation occurs, resulting in abrupt changes in the dynamics of the system (2.4).
As light intensity continues to increase (0.52<K < 1.1), the densities of three species
exhibit periodic variations. Figures 6(d) and 7(d) illustrate the presence of a limit
cycle when K = 0.6. However, as K surpasses 1.1, the system undergoes a transition
to chaotic dynamics (e.g., K = 2 in Figures 6(e) and 7(e)). As light intensity further
increases (3\leq K \leq 6.5), the system transitions back to a limit cycle with the amplitude
of the limit cycle gradually decreasing to zero. At K = 6.5, another Hopf bifurcation
occurs. With even higher light intensities (6.5 <K < 8.54), the system converges to
a stable internal equilibrium again (e.g., K = 7 in Figures 6(f) and 7(f)).

Note that as light intensity increases, producers are able to synthesize more car-
bon, leading to a decrease in their P:C ratio. As a result, the densities of consumers
and predators tend to decrease as their primary food source becomes less nutritious.
When the light intensity is large (8.54 < K < 8.73), food quality for consumers is
too low to sustain the survival of predators. (e.g., K = 8.6 in Figures 6(g) and 7(g)).
Further increasing light intensity (K > 8.73), extremely low nutrient food causes
consumers to perish as well (e.g., K = 10 in Figures 6(h) and 7(h)).

4.4. Fear effect stabilizes the system. In a predator-prey system, the fear
effect can significantly impact the behavior of prey, including their habitat use, for-
aging behavior, metabolic rate, and reproduction rate [16, 61, 19]. In this section, we
investigate the role of the fear effect through bifurcation diagrams.

We discussed the case when there is no fear effect in subsection 4.3. However, as
the magnitude of the fear effect increases, the previously observed chaos interval grad-
ually fades out, leading to a more stable system, as illustrated in Figure 5. Under the
presence of strong fear effects, the influence of light intensity on population dynamics
can be significantly different. For instance, when \rho = 2.7, chaos is no longer observed
as light intensity increases. Instead, a distinct pattern emerges, characterized by a
periodic oscillation followed by a stable state, and then another periodic oscillation.
This shift in behavior highlights the stabilizing effect of fear on the system.

The parameter \rho represents the magnitude of the fear effect. We further explore
the influence of the fear effect through bifurcation diagrams across varying values of \rho ,
as shown in Figure 8. We set K = 1.5, \=Q= 0.0033, and keep the remaining parameters
as specified in Table 1. When the fear effect is weak (\rho < 1.2), the system exhibits
chaotic behavior. This is also evidenced by Figure 9, where the maximum Lyapunov
exponent is positive. As the fear effect increases (1.2< \rho < 2.9), the system displays
periodic dynamics with the amplitude of the limit cycle gradually decreasing to zero.
This correlation is supported by Figure 9, where the maximum Lyapunov exponent
is negative, indicating the absence of chaos and a growing stability in the system.

(a) Producer (b) Grazer (c) Predator

Fig. 8. Bifurcation diagram over fear effect coefficient \rho .
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 795

Fig. 9. The maximum Lyapunov exponent with respect to the fear effect coefficient \rho .

Further increasing fear effect (\rho > 2.9) leads the system to converge towards a unique
stable equilibrium. These results further suggest that stronger fear effects promote
system stability.

4.5. Strong fear effect promotes trophic energy transfer efficiency. Be-
yond stability, the influence of the fear effect varies significantly among different
trophic populations. Figure 10 illustrates the mean population densities affected by
the fear effect. When the fear effect is relatively weak, the mean population density
of grazers decreases, while both producers and predators exhibit the opposite trend.
However, as the fear effect strengthens further, the populations of producers and graz-
ers stabilize at a constant level, while the predator population continues to rise. This
suggests that a low fear effect promotes producer growth, and predators consistently
benefit from the fear effect, even at higher levels.

Given the substantial variation in the effect of fear on different trophic popula-
tions, we also aim to determine the trophic energy transfer efficiency. The trophic
energy transfer efficiencies between producers and grazers, and between grazers and
predators, are defined as follows:

R1 = h(z,Q)min
\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
,(4.1)

R2 = ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
.(4.2)

The trophic transfer efficiency between producers and predators is then given
by R1R2. The mean trophic energy transfer efficiency is illustrated in Figure 10(d).
When the fear effect is in a low range, the influence of fear effect on trophic transfer
effciciency is not obvious. However, when the fear effect is relatively strong, as \rho 
increases, the mean trophic efficiency shows an increasing trend. This also aligns
with the variation in population density.

4.6. Fear effect amplifies the impact of food quality. The production effi-
ciency of consumers is given by R1 in (4.1). In this section, we aim to investigate the
interactive effect of fear effect and food nutrients on consumer production efficiency.
We consider two cases with different threshold values of nutrient level in producers
(i.e., \=Q).

In the first case, we consider a relatively low threshold value, \=Q= 0.0033. In this
scenario, the P:C ratio in producers (i.e., Q) always remains higher than \=Q.
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796 TIANXU WANG AND HAO WANG

(a) (b)

(c) (d)

Fig. 10. Impact of fear effect on mean population density across trophic levels: (a) producer,
(b) grazer, (c) predator, and on (d) mean trophic energy transfer efficiency.

When there is no fear effect present (i.e., \rho = 0), the production efficiency solely
depends on the food nutrient level, which is influenced by light intensity. When the
light intensity is relatively low (K < 0.23), the high P:C ratio in producers does not
restrict consumer growth. As a result, the production efficiency for consumers remains
constant (\=ey), as shown in Figure 11(a). As light intensity increases, producers are
capable of synthesizing more carbon, leading to a decrease in the intrinsic P:C ratio.
When the P:C ratio of producers falls below the consumer's P:C ratio \theta y, consumers
are unable to fully utilize all the nutrients available in the producers. As a result, the
production efficiency of consumers starts to decline, as depicted in Figure 11(a).

Next, we introduce the fear effect into the system. Under extremely low light
intensity (K < 0.23), predators cannot survive due to scarcity of food. Consequently,
there is no fear effect exerted by predators, and the production efficiency for consumers
remains constant (\=ey). As light intensity reaches a level that can sustain the survival
of all three species (0.23<K < 8.54), the fear effect starts to influence the production
efficiency of consumers. When the light intensity is in a moderate range where the
nutrient level of producers is optimal for consumers, the presence of indirect predation
risk from predators enhances the production efficiency of consumers, as shown in
Figures 11(b) and 11(c). This implies that when Q > \=Q, the fear effect can amplify
the positive impact of high food quality on the growth of consumers. Moreover,
stronger fear effects result in a more pronounced increase in production efficiency.

We now consider the second case where the threshold of food nutrients is relatively
high ( \=Q= 0.03). Figure 11(d) compares the maximum value of production efficiency
for consumers between \rho = 2.5 and \rho = 0. In the case of extremely low light intensity
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 797

(a) ρ = 0 (b) ρ = 0.5

(c) ρ = 2.7 (d)

Fig. 11. (a) Production efficiency for consumers as \rho = 0. (b) Production efficiency for con-
sumers as \rho = 0.5. (c) Production efficiency for consumers as \rho = 2.7. (d) The maximum value of
Production efficiency for consumers as \rho = 2.5, compared with the case \rho = 0.

(K < 0.23) or extremely high light intensity (K > 8.7), there is no fear effect generated
by predators, as predators cannot survive due to limited quantity or low-quality food
(see the discussion in subsection 4.3). Therefore, the curves of the maximum value of
production efficiency for \rho = 2.5 and \rho = 0 collapse into a single curve. When the light
intensity is in a moderate range (0.23<K < 2.26), the nutrient level in producers is
relatively high and exceeds \=Q (i.e., Q> \=Q). In this case, the presence of the fear effect
significantly promotes the maximal production efficiency of consumers, as shown in
Figure 11(d). On the other hand, when light intensity is high (2.26 < K < 8.7),
nutrient level in producers is relatively low and falls below \=Q (i.e., Q < \=Q). In this
case, the production efficiency decreases as light intensity increases, and the presence
of the fear effect further exacerbates this decline. This implies that fear effect can
amplify the impact of food quality on the growth of consumers.

5. Discussion. The response of prey to fear effect has been observed to be
dependent on food quality in a recent experimental study [4]. However, previous
studies treated fear effects and food quality as separate factors without establishing a
connection between them. To bridge this gap, we proposed a novel three-dimensional
food chain model (2.4) that integrates stoichiometric food quality and fear effects.
Notably, food quality for consumers can be indirectly influenced by light intensity.
Therefore, in this study, we conducted a rigorous analysis to explore the influence of
light intensity, fear effect, and the interactive effect of food quality and fear effect on
population dynamics.
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798 TIANXU WANG AND HAO WANG

Mathematical analysis reveals that our system is resilient and will never go ex-
tinct completely. When the death rate of consumers exceeds their growth rate, both
consumers and predators will die out, leaving only producers to survive. Conversely,
when the growth rate of consumers exceeds their death rate, while predators experi-
ence the opposite, then both producers and consumers can coexist.

Our findings also show that light intensity plays a crucial role in shaping pop-
ulation dynamics by impacting producer nutrient levels and carbon synthesis. Nu-
merical analysis reveals that as light intensity varies, the system demonstrates quasi-
symmetric dynamics. In the absence of the fear effect (\rho = 0), the system exhibits
dynamics similar to those observed in [5]. As light intensity transitions from extremely
low or extremely strong to intermediate levels, the system undergoes a sequence of
states, including a producer-only state, a producer-consumer state, a coexistence sta-
ble state, periodic oscillations, and chaos. This implies that excessively high or low
light intensity is detrimental to biodiversity, while moderate light intensity allows for
the coexistence of all three species.

However, with the magnitude of the fear effect increasing, chaos gradually di-
minishes, indicating that fear effect stabilizes the system, which aligns with previous
studies [65, 41, 52, 29, 1, 36]. Moreover, as the fear effect increases, the system un-
dergoes a transition from chaotic to periodic dynamics and eventually reaches an
equilibrium state. This further confirms our conclusion.

Beyond stability, the fear effect has diverse impacts on different trophic popu-
lations. A low fear effect promotes producer growth and decreases grazer growth;
however, predators consistently benefit from increasing fear effect, even at higher lev-
els. Additionally, at higher fear effect levels, an increase in fear promotes mean trophic
energy transfer efficiency.

Furthermore, we demonstrate that fear effect amplifies the effects of food quality
on consumers. When the food quality is high (Q> \=Q), the presence of the fear effect
enhances the production efficiency of consumers. Conversely, when food quality is
poor (Q< \=Q), the fear effect exacerbates the decline in production efficiency caused
by low-nutrient food. This finding is consistent with experimental observations [4].
The presence of indirect predation risk from predators can influence key life-history
responses in consumers, such as increased nutrient demand [53], accelerating repro-
duction at a smaller size [3], and enhancing consumer agility [66], which improves
chances of escaping actual predation. When combined with high-quality food, these
adaptations lead to higher survival rates for consumers. However, in nutrient-limited
environments, the fear effect may further exacerbate the challenges imposed by stoi-
chiometric constraints, potentially leading to population declines or even extinction.

In this paper, we focused on the stoichiometry-dependent fear effect in a simple
three-dimensional food chain. However, predator-prey interactions in natural commu-
nities are far more complex. For instance, intraspecific competition among predators
or prey is commonly observed [7], and extremely strong competition may cause the
extinction of weaker species. Several recent studies have explored the fear effect
on predator-prey systems with intraspecific competition [39, 51, 40, 1]. Additionally,
middle predators may also exert fear effects on their prey, as studied in [41, 8]. Con-
sidering that the fear effect is highly dependent on food quality, further exploration
of the influence of food quality on these intricate predator-prey interactions may pro-
vide valuable insights for better understanding population dynamics. Moreover, in
addition to food quality, the behavioral response of prey to indirect predation risk can
also be influenced by other internal factors, including their fitness state, size, and age
[54, 25, 37]. Incorporating these essential factors in future research may contribute
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 799

to a more realistic understanding of predator-prey dynamics and the role of fear in
shaping ecological communities.

Appendix A. Well definedness.

A.1. Proof of Theorem 3.1.

Proof. x\prime (t) is well defined as x - \rightarrow 0, since

dx

dt
= bx

\left(  1 - x

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} 
\right)   - f(x)y.

From system (2.4), we have

dy

dt
= h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x)y - g(y)z  - dyy

=

\left\{                 

\biggl( 
\rho 
P  - \theta yy - \theta zz  - \=Qx

P  - \theta yy - \theta zz + \gamma x

z

z + \beta 
+ \=ey

\biggr) 
f(x)y - g(y)z  - dyy,

\theta yx+ \theta yy+ \theta zz < P,\biggl( 
\rho 
P  - \theta yy - \theta zz  - \=Qx

P  - \theta yy - \theta zz + \gamma x

z

z + \beta 
+ \=ey

\biggr) 
P  - \theta yy - \theta zz

\theta y

f(x)

x
y - g(y)z  - dyy,

\theta yx+ \theta yy+ \theta zz > P.

Since f(x)
x satisfies

\Bigl( 
f(x)
x

\Bigr) \prime 
< 0 for x > 0 and limx - \rightarrow 0

f(x)
x = f \prime (0) <\infty , then y\prime (t) is

well defined at x - \rightarrow 0. This completes the proof.

A.2. Proof of Theorem 3.2.
Proof. Assume S(t) = (x(t), y(t), z(t)) is a solution of system (2.4) with S(0)\in \Omega 

and t1 is the first time that S(t) touches or crosses the boundary of \Omega . We will prove
the theorem by contradiction arguments from five cases.

Case 1. x(t1) = 0. Let f \prime (0) = limx\rightarrow 0
f(x)
x , and \=y=maxt\in [0,t1] y(t)\leq P

\theta y
.

Then \forall t\in [0, t1], we have

dx

dt
\geq  - f(x)y\geq  - max

t\in [0,t1]

f(x)

x
\=yx= \delta 1x,

where \delta 1 is a constant. Thus, x(t1) \geq x(0)e\delta 1t1 > 0 holds, which is in contradiction
with x(t1) = 0. Therefore, S(t1) cannot reach this boundary.

Case 2. y(t1) = 0.

Let g\prime (0) = limy\rightarrow 0
g(y)
y , and \=z =maxt\in [0,t1] z(t)\leq P

\theta z
.

\forall t\in [0, t1], it follows that

dy

dt
\geq  - g(y)z  - dyy\geq  - 

\biggl( 
max

t\in [0,t1]

g(y)

y
\=z + dy

\biggr) 
y= \delta 2y,

where \delta 2 is a constant. Thus, y(t1) \geq y(0)e\alpha 2t1 > 0 holds, which is in contradiction
with y(t1) = 0. Therefore, S(t1) cannot reach this boundary.

Case 3. z(t1) = 0. \forall t\in [0, t1], it follows that

dz

dt
= ez min

\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y)z  - dzz \geq  - dzz = \delta 3z,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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800 TIANXU WANG AND HAO WANG

where \delta 3 is a constant. Thus, z(t1) \geq z(0)e\delta 3t1 > 0 holds, which is in contradiction
z(t1) = 0. Therefore, S(t1) cannot reach this boundary.

Case 4. Qmx(t1) + \theta yy(t1) + \theta zz(t1) = P , i.e., Q(t1) =
P - \theta yy(t1) - \theta zz(t1)

x(t1)
=Qm. It

follows that

bx(t1)

\left(  1 - x(t1)

min
\Bigl\{ 
K,

P - \theta yy(t1) - \theta zz(t1)
Qm

\Bigr\} 
\right)  = bx(t1)

\biggl( 
1 - x(t1)

min\{ K,x(t1)\} 

\biggr) 
\leq 0.

Since ez < 1 and h(z(t1),Qm)< 1, we have

d(Qmx+ \theta yy+ \theta zz)

dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=t1

\leq y(t1)[(h(z(t1),Qm)min\{ \theta y,Qm\}  - Qm)f(x(t1)) - \theta ydy] + z(t1)[(ez min\{ \theta y, \theta z\} 
 - \theta y)g(y(t1)) - \theta zdz]\leq 0.

This implies that S(t1) cannot cross this boundary.

Case 5. x(t1) = k, where k=min
\Bigl\{ 
K, P

Qm

\Bigr\} 
. It follows that

dx

dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=t1

\leq bx(t1)

\left(  1 - x(t1)

min
\Bigl\{ 
K, P

Qm

\Bigr\} 
\right)  = bx(t1)

\biggl( 
1 - x(t1)

k

\biggr) 
= 0.

Therefore, S(t1) cannot cross this boundary.
In summary, the solution S(t) of system (2.4) starting from \Omega will stay in \Omega for

all forward time.

Appendix B. Analysis of equilibria. To simplify the analysis, we rewrite
system (2.4) in the following form:\left\{           

dx

dt
= xF (x, y, z),

dy

dt
= yG(x, y, z),

dz

dt
= zH(x, y, z),

(B.1)

where

F (x, y, z) = b

\left(  1 - x

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} 
\right)   - f(x)

x
y,

G(x, y, z) = h(z,Q)min
\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x) - g(y)

y
z  - dy,

H(x, y, z) = ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y) - dz.

The boundary equilibria are E0(0,0,0), E1(k,0,0), and E2(\=x, \=y,0). We consider the
Jacobian matrix of system (B.1) to study the local stability of the equilibria.
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 801

B.1. Proof of Theorem 3.3.

Proof. At E0(0,0,0), the Jacobian matrix is given by

J(E0) =

\left(  b 0 0
0  - dy 0
0 0  - dz

\right)  .

Since the eigenvalues have different signs, E0 is unstable.

B.2. Proof of Theorem 3.4.
Proof. At E1(k,0,0), the Jacobian matrix is given by

J(E1) =

\left(    - b kFy(k,0,0) kFz(k,0,0)

0 \=ey min
\Bigl\{ 
1, P

k\theta y

\Bigr\} 
f(k) - dy 0

0 0  - dz

\right)   .

If \=ey min
\Bigl\{ 
1, P

k\theta y

\Bigr\} 
f(k)\geq dy, then E1 is unstable; otherwise, E1 is LAS.

B.3. Complementary analysis of existence of \bfitE 2. To show conditions for
the existence of equilibrium E2, we follow the terminologies in [34, 46, 5]. The bound-
ary equilibrium E2(\=x, \=y,0) can be viewed as an internal equilibrium of the two-
dimensional subsystem without predators. Therefore, it is sufficient to study the
stability of E2 in the x-y plane. We separate region \Omega in the x-y plane into two parts
by the line x + y = P

\theta y
. The lower region and upper region are denoted as I and II,

respectively, in Figure 12.
The nullclines of consumers consist of three curves x= f - 1(

dy

\=ey
), y= - dy

\=ey
x

f(x)+
P
\theta y
,

and y = 0 as in Figure 12. Clearly, there is a peak at the intersection of x= f - 1(
dy

\=ey
)

and y= - dy

\=ey
x

f(x) +
P
\theta y
. Therefore, E2 must satisfy

\=y\leq \=ymax =
P

\theta y
 - f - 1

\biggl( 
dy
\=ey

\biggr) 
.

(a) (b)

Fig. 12. (a) The producer nullcline F (x, y,0) = 0 (parabola) and the consumer nullcline
G(x, y,0) = 0 (peak-shaped curve) the in x-y plane for the truncated triangular pyramid case. (b)
The nullclines for the producer-consumer system as K = 8. The solid circles denote stable equilibria
and open circles represent unstable equilibria.
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802 TIANXU WANG AND HAO WANG

B.4. Proof of Theorem 3.5.
Proof. To analyze the local stability of E2, we apply the method of the Jacobian

matrix as in [34]. The Jacobian matrix of E2(\=x, \=y,0) is given by

J(E2) =

\biggl( 
Jsub J1
(0,0) H(\=x, \=y,0)

\biggr) 
,

where J1 is a 2x1 matrix, and

Jsub =

\biggl( 
\=xF1x(\=x, \=y) \=xF1y (\=x, \=y)
\=yG1x(\=x, \=y) \=yG1y (\=x, \=y)

\biggr) 
.

Note that the sign of eigenvalues of matrix J(E2) depends only on the sign ofH(\=x, \=y,0)
and eigenvalues of Jsub. Therefore, we can disregard J1 when studying the stability
of E2.

Here,

F1x = - b

min\{ K,
P - \theta yy
Qm

\} 
 - 
\biggl( 
f(x)

x

\biggr) \prime 

y,

F1y =

\left\{     
 - f(x)

x
< 0, y\leq P - QmK

\theta y
,

 - bQm\theta yx

(P  - \theta yy)2
 - f(x)

x
< 0, y > P - QmK

\theta y
,

G1x =

\left\{     
\=eyf

\prime (x)> 0, x+ y < P
\theta y
,

\=ey
P  - \theta yy

\theta y

\biggl( 
f(x)

x

\biggr) \prime 

< 0, x+ y > P
\theta y
,

G1y =

\left\{   0, x+ y < P
\theta y
,

 - \=ey
f(x)

x
< 0, x+ y > P

\theta y
.

Hence, the trace and determinant of Jsub are given by

Tr(Jsub) = \=xF1x + \=yG1y ,

Det(Jsub) = \=x\=y(F1xG1y  - F1yG1x).

The slopes of the producer and consumer nullclines at (x, y) are defined by
 - F1x/F1y and  - G1x/G1y , respectively. We consider the following two cases:

Case 1: When (x, y) is in region I, i.e., x+ y < P
\theta y
.

At E2, G1x > 0, G1y = 0, and F1y < 0. It follows that

Det(Jsub)> 0,

sign(Tr(Jsub)) = sign(F1x) = sign

\biggl( 
 - F1x

F1y

\biggr) 
.

If the producer nullcline is decreasing at E2, then Tr(Jsub)< 0 and E2 is LAS. If the
producer nullcline is increasing at E2, then Tr(Jsub)> 0 and E2 is unstable.

Case 2: When (x, y) is in region II, i.e., x+ y > P
\theta y
.

At E2, G1x < 0, G1y < 0, and F1y < 0. It follows that

sign(Det(Jsub)) = sign

\biggl( 
F1xG1y  - G1xF1y

F1yG1y

\biggr) 
= sign

\biggl( 
 - G1x

G1y

 - 
\biggl( 
 - F1x

F1y

\biggr) \biggr) 
.
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STOICHIOMETRY-DEPENDENT FEAR EFFECT 803

Therefore, at E2, if the slope of the consumer nullcline is less than the slope of the
producer nullcline, i.e.,  - G1x

G1y
< - F1x

F1y
, then Det(Jsub)< 0 and E2 is unstable. If the

slope of the consumer nullcline is higher than the slope of the producer nullcline, i.e.,
0> - G1x

G1y
> - F1x

F1y
, then Det(Jsub)> 0, F1x < 0, Tr(Jsub)< 0. Hence, E2 is LAS.

B.5. Proof of Theorem 3.6.
Proof. We prove this theorem by constructing a Lyapunov function. Consider

L(x, y, z) = \alpha 1

\Bigl( 
x - x\ast  - x\ast ln

\Bigl( x

x\ast 

\Bigr) \Bigr) 
+ \alpha 2

\biggl( 
y - y\ast  - y\ast ln

\biggl( 
y

y\ast 

\biggr) \biggr) 
+ \alpha 3

\Bigl( 
z  - z\ast  - z\ast ln

\Bigl( z

z\ast 

\Bigr) \Bigr) 
for any (x, y, z) \in \Omega . It is easy to prove that L is positive definite. Differentiating L
with respect to t, we have

dL(x(t), y(t), z(t))

dt

= \alpha 1

\biggl( 
1 - x\ast 

x

\biggr) 
dx

dt
+ \alpha 2

\biggl( 
1 - y\ast 

y

\biggr) 
dy

dt
+ \alpha 3

\biggl( 
1 - z\ast 

z

\biggr) 
dz

dt

=

\Biggl[ 
\alpha 1bx - \alpha 1bx

2

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\}  - \alpha 1f(x)y - \alpha 1bx
\ast +

\alpha 1bx
\ast x

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} 
+ \alpha 1

x\ast 

x
f(x)y

\Biggr] 
+

\biggl[ 
\alpha 2h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x)y - \alpha 2g(y)z  - dy\alpha 2y

 - \alpha 2y
\ast h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x) + \alpha 2

y\ast 

y
g(y)z + dy\alpha 2y

\ast 
\biggr] 

+

\biggl[ 
\alpha 3ez min

\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y)z  - \alpha 3dzz  - \alpha 3z

\ast ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y) + \alpha 3dzz

\ast 
\biggr] 

=

\biggl[ 
\alpha 2h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x)y - \alpha 1f(x)y

\biggr] 
+

\biggl[ 
\alpha 3ez min

\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y)z  - \alpha 2g(y)z

\biggr] 
+

\biggl[ 
\alpha 1

x\ast 

x
f(x)y - dy\alpha 2y - \alpha 3z

\ast ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
g(y)

\biggr] 
+

\biggl[ 
\alpha 2

y\ast 

y
g(y)z  - \alpha 3dzz

\biggr] 
+

\Biggl[ 
\alpha 1b(x - x\ast ) - \alpha 1b(x

2  - x\ast x)

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\}  - \alpha 2y
\ast h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
f(x)

+ dy\alpha 2y
\ast + \alpha 3dzz

\ast 

\Biggr] 
=:\scrJ 1 +\scrJ 2 +\scrJ 3 +\scrJ 4 +\scrJ 5.

Let \alpha 3 = 1, \alpha 2 = ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
, and \alpha 1 = ey\alpha 2. It follows that

\scrJ 1 = \alpha 2

\biggl( 
h(z,Q)min

\Bigl\{ 
1,

Q

\theta y

\Bigr\} 
 - ey

\biggr) 
f(x)y\leq 0,

\scrJ 2 = \alpha 2g(y)z  - \alpha 2g(y)z = 0,

\scrJ 3 = \alpha 2

\biggl( 
eyx

\ast c1
a1 + x

 - dy  - 
c2z

\ast 

a2 + y

\biggr) 
y\leq \alpha 2

\biggl( 
eyx

\ast c1
a1

 - dy  - 
c2z

\ast 

a2 + P/\theta y

\biggr) 
y.
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804 TIANXU WANG AND HAO WANG

Thus, if L1 \leq 0, then \scrJ 3 \leq 0 holds.
Furthermore, \scrJ 4 satisfies

\scrJ 4 = \alpha 2
y\ast 

y

c2y

a2 + y
z  - dzz \leq 

\biggl( 
\alpha 2y

\ast c2
a2

 - dz

\biggr) 
z =

\left(  ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} 
y\ast c2

a2
 - dz

\right)  z.

Thus if L2 \leq 0, then \scrJ 4 \leq 0 holds.
For \scrJ 5, we have

\scrJ 5 = - \alpha 1b

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} x2 +

\Biggl[ 
\alpha 1b+

\alpha 1bx
\ast 

min
\Bigl\{ 
K,

P - \theta yy - \theta zz
Qm

\Bigr\} 
 - \alpha 2y

\ast h(z,Q)min
\Bigl\{ 
1,

Q

\theta y

\Bigr\} a1
c1 + x

\Biggr] 
x+ ( - \alpha 1bx

\ast + dy\alpha 2y
\ast + \alpha 3dzz

\ast )

= : - Ax2 +Bx+C.

Note that if A> 0, then \scrJ 5 \leq 0 for all x\in \Omega if and only if C \leq 0 and  - Ak2+Bk+C \leq 0.
Apparently, C \leq 0 if and only if L3 \leq 0.
Moreover, by assumption (A3), we have

 - Ak2 +Bk+C

\leq  - \alpha 1bk
2

K
+

\left[  \alpha 1b+
\alpha 1bx

\ast 

min
\Bigl\{ 
K, Pm

Qm

\Bigr\}  - \alpha 2y
\ast hmmin

\Bigl\{ 
1,

Qm

\theta y

\Bigr\} a1
c1 + k

\right]  k+ ( - \alpha 1bx
\ast 

+ dy\alpha 2y
\ast + \alpha 3dzz

\ast )

= ez min
\Bigl\{ 
1,

\theta y
\theta z

\Bigr\} \Biggl[ \Biggl( k

min
\Bigl\{ 
K, Pm

Qm

\Bigr\}  - 1

\Biggr) 
eybx

\ast +

\Biggl( 
dy  - hmmin

\Bigl\{ 
1,

Qm

\theta y

\Bigr\} a1
c1 + k

k

\Biggr) 
y\ast 

+

\biggl( 
1 - k

K

\biggr) 
eybk

\Biggr] 
+ dzz

\ast .

Thus, if L4 \leq 0, then  - Ak2 +Bk+C \leq 0.
Therefore, if conditions Li \leq 0 for i= 1,2,3,4 hold, with at least one of these in-

equalities being strictly negative, then dL
dt < 0. It follows that the internal equilibrium

E\ast is GAS. This completes the proof.

Data availability statement. The data that support the findings of this study
are available from the authors upon reasonable request.
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