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Abstract
Amathematicalmodel connecting epilimnion and hypolimnion is proposed to describe
the competition of phytoplankton for nutrients and light in a stratified lake. The exis-
tence and stability of nonnegative steady-state solutions are completely characterized
for all possible parameter ranges by means of stability analysis, bifurcation theory,
and extensive simulations. The critical thresholds for settling speed of phytoplank-
ton cells in the thermocline and the loss rate of phytoplankton are established, which
determine the survival or extirpation of phytoplankton in epilimnion and hypolimnion.
In particular, it is shown that in two extreme cases, the principle of competitive exclu-
sion always holds in a stratified lake. We also consider the influence of environmental
parameters on the vertical distribution and biomass density of phytoplankton via a
systematic sensitivity analysis, and investigate their roles in phytoplankton blooms.
These results can be used for the prediction of phytoplankton competition and blooms
in a stratified lake.
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1 Introduction

Lakes are an important part of global water resources. They have special functions
of regulating regional climate, recording regional environmental changes, protect-
ing biodiversity, and recreation. Most deep lakes on Earth are stratified (Boehrer and
Schultze 2008). Stratification separates the lake with a horizontal plane called thermo-
cline into two zones : epilimnion and hypolimnion (Boehrer and Schultze 2008). The
epilimnion is the upper zonewhich is warm (lighter) andwell mixed. The hypolimnion
is the bottom colder zone which is usually dark and relatively undisturbed.

Phytoplankton are the primary producer and the basis of energy flow and material
circulation of the whole aquatic ecosystem. The growth of phytoplankton depends on
two essential resources: nutrients and light. In oligotrophic aquatic ecosystems with
ample supply of light, phytoplankton compete only for nutrients (Hsu et al. 2013; Nie
et al. 2019; Wang et al. 2015; Zhang et al. 2018). In eutrophic ecosystems with ample
nutrient supply, phytoplankton compete only for light (Du and Hsu 2010; Hsu and
Lou 2010; Jiang et al. 2019; Peng and Zhao 2016). In some aquatic environments,
phytoplankton compete for nutrients and light simultaneously (Du and Hsu 2008a;
Mei and Zhang 2012; Ryabov et al. 2010; Yoshiyama and Nakajima 2002; Zagaris
and Doelman 2011). Because the hypolimnion is not well mixed, the change in the
phytoplankton density and nutrient concentration in it depends on time and depth in the
water column. Phytoplankton can be moved from their position by turbulent mixing
(diffusion) or by sinking (advection). The change in the phytoplankton density in the
epilimnion is independent of the depth (since it is well mixed overnight).

Phytoplankton in epilimnion andhypolimnion compete for nutrients and light. Light
from water surface first passes through epilimnion and then enters hypolimnion. This
means that phytoplankton in epilimnion can absorb more light, and control the growth
of phytoplankton in hypolimnion by shading. In contrast, nutrients from the benthos
of the lake reach the epilimnion via the hypolimnion. As a consequence, phytoplank-
ton in the hypolimnion have a dominant advantage for nutrients over their epilimnion
counterparts. By reducing the nutrients input from hypolimnion to epilimnion, phy-
toplankton in the hypolimnion suppress the growth of epilimnion phytoplankton.
Therefore, phytoplankton in epilimnion and hypolimnion form a spatially asymmetric
competition for nutrients and light.

Due to the difficulty of measuring phytoplankton biomass, mathematical model-
ing of phytoplankton population is an important alternative method of improving our
knowledge of the physical and biological processes relating to phytoplankton ecology
(Edwards and Brindley 1999). Various mathematical models have been developed to
examine phytoplankton competition for nutrients and light in a well-mixed surface
layer (Wang et al. 2007; Alijani et al. 2015; Song et al. 2019; Jiang et al. 2019; Heg-
gerud et al. 2020) and a poorly mixed deep layer (Hsu and Lou 2010; Du and Hsu
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2008a; Yoshiyama et al. 2009; Du and Hsu 2008b; Klausmeier and Litchman 2001).
To our knowledge, none of these models couple both the well-mixed and poorly mixed
layers. However, to better understanding phytoplankton competition for nutrients and
light in a stratified water column, it is essential to couple the dynamics of both layers.
This can effectively be achieved using a hybrid of highly interconnected nonlinear
partial and ordinary differential equations. Here we formulate and analyze a mathe-
matical model of phytoplankton competition for nutrients and light in a stratified water
column that couples both the well-mixed and poorly mixed layers. Using the model,
we characterize all possibilities for the survival and extinction of phytoplankton in
epilimnion and hypolimnion under the asymmetric competition mechanism between
the epilimnion and hypolimnion phytoplankton. In particular, we show that in two
extreme cases, the principle of competitive exclusion always holds no matter what
the value of phytoplankton loss rate is. The mathematical model of phytoplankton
and nutrients in epilimnion and hypolimnion (see (2.1)) that we propose here is a
hybrid system of two ordinary differential equations and two diffusive partial differ-
ential equationswith nonlocal terms, and the exchanges of phytoplankton and nutrients
through the interface between epilimnion and hypolimnion make the system a coupled
ODE-PDE system which is also called bulk-surface or bulk-membrane system. Such
systems couple the boundary ODE and interior PDE through the boundary condition,
and they appeared frequently in the study of cell polarization models (Cusseddu et al.
2019; Gomez et al. 2019; Paquin-Lefebvre et al. 2020a, b). Mathematical analysis of
these systems is a newly emerging challenge, and we develop some new techniques
in stability analysis which may be useful for other similar problems.

The vertical distribution and biomass density of phytoplankton are two important
indices in evaluating phytoplankton blooms and protecting water quality (Yoshiyama
et al. 2009; Huisman et al. 2006; Jäger et al. 2010; Klausmeier and Litchman 2001;
Vasconcelos et al. 2016). Phytoplankton are highly heterogeneous in vertical spa-
tial distribution and exhibit the phenomenon of vertical aggregation in poorly mixed
water columns (Du and Hsu 2008a; Ryabov et al. 2010; Yoshiyama and Nakajima
2002; Du and Hsu 2008b; Klausmeier and Litchman 2001). This vertical aggregation
is influenced by biological and abiotic factors, and the aggregation layer is constantly
changing. In particular, when phytoplankton gather in the epilimnion of the lake, it is
easy to induce the occurrence of phytoplankton blooms. The surge of phytoplankton
biomass is an important manifestation of phytoplankton blooms, which seriously dam-
ages the water quality and leads to the death of a large number of aquatic organisms.
Another objective of this present paper is to explore the influence of environmen-
tal parameters on the vertical distribution and biomass density of phytoplankton and
investigate their roles in phytoplankton blooms.

The rest of the paper is organized as follows. In Sect. 2, we derive a mathematical
model to describe the competition of phytoplankton for nutrients and light in the
epilimnion and hypolimnion.We then investigate the existence and stability of all non-
negative steady-state solutions for thismodel by using stability analysis and bifurcation
theory in Sect. 3. In Sect. 4, according to realistic environmental parameters, we use
some numerical simulations to illustrate and supplement theoretical analysis, and
give a complete characterization for the distribution region of steady-state solutions
based on settling speed of phytoplankton cells in the thermocline and the loss rate of
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phytoplankton. In Sect. 5, we consider the influence of environmental parameters on
the vertical distribution and biomass density of phytoplankton, and it indicates their
roles in phytoplankton blooms. Finally, we summarize our findings and state some
questions for future study in Sect. 6.

2 Derivation of theModel

We propose a mathematical model of epilimnion and hypolimnion ecosystem to
describe the interactions of phytoplankton, nutrients (i.e., phosphorus or nitrogen)
and light in a stratified lake. Let x denote the depth coordinate of the lake. The epil-
imnion as a completely mixed layer is located in the upper layer of the lake and is
assumed to have depth xe. The hypolimnion, the poorly mixed layer, is located in the
lower part of the lake and has depth xh . There is a seasonal zone called thermocline
between them, and its thickness is very thin compared to the maximum depth of the
lake. Hence, we ignore the thickness of the thermocline in our model. Let x = −xe be
the surface of the lake, let x = 0 be the interface between epilimnion and hypolimnion,
and let x = xh be the bottom of hypolimnion, see Fig. 1.

Phytoplankton and nutrients are divided into twoparts: biomass density A(t) of phy-
toplankton and concentration N (t) of dissolved nutrients in epilimnion, and biomass
density B(x, t) of phytoplankton and concentration M(x, t) of dissolved nutrients in
hypolimnion with 0 ≤ x ≤ xh . The growth of phytoplankton is assumed to depend on
two resources: light intensity I and nutrients N , M . The light intensity at each depth
x of the lake is described by the Lambert–Beer law (Huisman and Weissing 1994) as

I (x, A) = Iin exp
(−Kbg(x + xe) − l(x + xe)A

)
, − xe ≤ x ≤ 0,

Fig. 1 Epilimnion and hypolimnion ecosystem in a stratified lake. Adapted from Wang et al. (2007)
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in epilimnion and

I (x, A, B) = Iin exp

(
−Kbg(x + xe) − lxe A − l

∫ x

0
B(z)dz

)
, 0 ≤ x ≤ xh,

in hypolimnion.
From Yoshiyama and Nakajima (2002), Etemad-Shahidi and Imberger (2001),

Wüest and Lorke (2003), the thermocline between epilimnion and hypolimnion is
a non-turbulent layer. The diffusive transport of nutrients across the thermocline is
vertical diffusion with Brownian motion. While the diffusive transport of phytoplank-
ton across the thermocline is much smaller (almost negligible) than that of nutrients.
Therefore, in this paper we assume that phytoplankton exchange between epilimnion
and hypolimnion is only affected by buoyancy and gravity of phytoplankton cells
and nutrient exchange between them is dominated by Brownian motion. In the non-
turbulent layer, phytoplankton will sink since the density of phytoplankton protoplasm
is generally higher than that of water. Phytoplankton have amechanism to self-regulate
their sinking speed, such as the production of gas vesicle and the storage of lipids with
lower density, so that they stay in the bright zone for a longer time and get a greater
growth chance. We denote a to be the settling speed of phytoplankton cells in the ther-
mocline, and b be the diffusion rate of nutrients/exchange rate (caused by Brownian
motion in the thermocline).

The epilimnion is usually well mixed because of its large turbulent diffusion effect
(Yoshiyama and Nakajima 2002; Huisman and Weissing 1994). Therefore, here we
assume that phytoplankton and dissolved nutrients in epilimnion are spatially uni-
formly distributed. The intrinsic growth rate of phytoplankton depends on the light
density I (x, A) and nutrients N (t). Define Monod functions:

f (N ) = N

N + γ1
, g(I ) = I

I + γ2
.

Then, the phytoplankton intrinsic growth rate is proportional to the product of f (N )

and the average light intensity g(I ) in the epilimnion:

f (N )
1

xe

∫ 0

−xe
g(I (x, A))dx = f (N )

1

xe(Kbg + l A)
ln

Iin + γ2

Iin exp(−xe(Kbg + l A)) + γ2
.

This form ofmultiplication of two resource functions has been used in previous studies
(see Wang et al. 2007; Zagaris and Doelman 2011; Alijani et al. 2015; Heggerud
et al. 2020). The other commonly used algebraic form for modeling two irreplaceable
resources is the minimum value of two resource functions min{ f (N ), g(I )} based
on Liebig’s law of the minimum (see for example, Du and Hsu 2008a, b; Klausmeier
and Litchman 2001). The two functions are qualitatively similar in the sense that
f · g ≤ min{ f , g} ≤ √

f · g as 0 ≤ f , g ≤ 1 while the value of the multiplicative
function is smaller than the one of the minimum functions. Here we use the product
form as it is a differentiable function which is more mathematically convenient. As
a result of death, respiration and predation, the biomass density of phytoplankton in
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epilimnion is lost at a density-independent rate δ. Phytoplankton sinking takes place
at the interface between epilimnion and hypolimnion, and its rate is negatively related
to the volume of epilimnion, because with a larger volume there is relatively less
proportion of total species abundances or element concentrations for sinking. The
change of the nutrients N (t) in epilimnion is due to consumption by phytoplankton
with the nutrients to carbon quota θ , nutrient recycling from the loss of phytoplankton
with proportion p ∈ [0, 1] andnutrient exchange between epilimnion andhypolimnion
with the exchange rate b.

The hypolimnion is a poorly mixed layer (Yoshiyama and Nakajima 2002; Wüest
andLorke 2003). Let B(x, t) andM(x, t) denote the biomass density of phytoplankton
and concentration of dissolved nutrients at depth x ∈ [0, xh] and time t in hypolimnion,
respectively. Phytoplankton transport in hypolimnion is governed by random move-
ment owing to turbulencewith a diffusion coefficient Db and directionalmovement due
to gravity with a speed v. The intrinsic growth rate of phytoplankton in hypolimnion
also depends on the light density I (x, A, B) and nutrientsM(x, t) in themultiplicative
form of f (M)g(I (x, A, B)).The biomass density of phytoplankton is lost at the rate δ.
There is a phytoplankton input from epilimnion at x = 0 and a no-flux boundary con-
dition at x = xh . The change of dissolved nutrients M(x, t) in hypolimnion depends
on turbulent diffusion with a diffusion coefficient Dm , consumption by phytoplank-
ton, nutrient recycling from the loss of phytoplankton biomass. There is a nutrient
exchange between epilimnion and hypolimnion at x = 0 and a fixed nutrient input
Mb at x = xh .

According to the above discussions, we have the following phytoplankton-light-
nutrients model in epilimnion and hypolimnion, which is a hybrid system of two
ordinary differential equations and two partial differential equations with nonlocal
terms. All the variables and parameters of the model and their biological meanings
are listed in Table 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d A

dt
= r A f (N )

1

xe

∫ 0

−xe
g(I (x, A))dx − a

xe
A − δA, t > 0,

dN

dt
= b

xe
(M(0, t) − N ) + θ pδA − θr A f (N )

1

xe

∫ 0

−xe
g(I (x, A))dx, t > 0,

∂B

∂t
=Db

∂2B

∂x2
−v

∂B

∂x
+r B f (M)g(I (x, A, B))−δB, 0< x< xh, t>0,

∂M

∂t
=Dm

∂2M

∂x2
+θ pδB−θr B f (M)g(I (x, A, B)), 0< x< xh, t>0,

Db
∂B(0, t)

∂x
− vB(0, t) = −aA, Db

∂B(xh, t)

∂x
− vB(xh, t) = 0, t > 0,

Dm
∂M(0, t)

∂x
= b(M(0, t) − N (t)), M(xh, t) = Mb, t > 0,

I (x, A) = Iin exp
(−Kbg(x + xe) − l(x + xe)A

)
, −xe ≤ x ≤ 0,

I (x, A, B) = Iin exp

(
−Kbg(x + xe) − xel A − l

∫ x

0
B(z, t)dz

)
, 0 < x < xh .

(2.1)

Here we assume that v ∈ R, a ≥ 0, 0 ≤ p ≤ 1 and the remaining parameters are
all positive constants. Considering the biological meaning of model (2.1), we will deal
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Table 1 Variables and parameters of model (2.1) with biological meanings

Symbol Meaning Symbol Meaning

t Time x Depth

xe Depth of epilimnion xh Depth of hypolimnion

A Biomass density of phytoplankton in
epilimnion

N Concentration of dissolved nutrients
in epilimnion

B Biomass density of phytoplankton in
hypolimnion

M Concentration of dissolved nutrients
in hypolimnion

Db, Dm Vertical turbulent diffusivity of
phytoplankton and dissolved
nutrients in hypolimnion,
respectively

v Sinking or buoyant velocity of
phytoplankton in hypolimnion

r Maximum specific production rate of
phytoplankton

Iin Light intensity at the water surface

Kbg Background light attenuation
coefficient

δ Loss rate of phytoplankton

l Light attenuation coefficient of
phytoplankton

θ Average cell quota of phytoplankton

p Proportion of nutrients in
phytoplankton losses that is
recycled

γ1 Half-saturation constant for
light-limited production of
phytoplankton

γ2 Half saturation constant for
nutrient-limited production of
phytoplankton

b Nutrient exchange rate between
epilimnion and hypolimnion

a Settling speed of phytoplankton cells
in the thermocline

Mb Concentration of dissolved nutrients
at the bottom of hypolimnion

with the solutions of (2.1) with nonnegative initial values, i.e.,

A(0)= A0 > 0, N (0)=N0>0, B(x, 0)= B0(x) ≥�≡ 0, M(x, 0)=M0(x) ≥�≡ 0.

Model (2.1) is a very complex system. It contains nonlocal terms and the coupling
of ODE and PDE though boundary conditions, which makes it extremely challenging
to analyze the dynamic properties of the system. In order to clarify phytoplankton
competition in a stratified lake, we will analyze steady-state solutions of model (2.1)
in the next section by using the stability analysis and bifurcation theory.

3 Existence and Stability of Steady States

In this section, we investigate the existence and stability of nonnegative steady state
solutions of (2.1). A steady state E = (A, N , B(x), M(x)) is a semi-trivial one if at
least one component of E is zero, and it is a coexistence steady state if each component
is positive.
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3.1 Semi-Trivial Steady States

This subsection focuses on the existence and stability of semi-trivial steady state
solutions of (2.1). The possible nonnegative semi-trivial steady states of (2.1) are
listed below:

1. Nutrient-only semi-trivial steady state E1 : (0, N∗
1 , 0, M∗

1 (x)), where N∗
1 and

M∗
1 (x) satisfy

⎧
⎪⎨

⎪⎩

M(0) − N = 0,

M ′′(x) = 0, 0 < x < xh,

DmM ′(0) = b(M(0) − N ), M(xh) = Mb;
(3.1)

2. Phytoplankton in epilimnion semi-trivial steady state E2 : (A∗
2, N

∗
2 , 0, M∗

2 (x)) for
a = 0, where A∗

2, N
∗
2 and M∗

2 (x) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r f (N )
1

xe

∫ 0

−xe
g(I (x, A))dx − δ = 0,

b

xe
(M(0) − N ) + θ(p − 1)δA = 0,

M ′′(x) = 0, 0 < x < xh,

DmM ′(0) = b(M(0) − N ), M(xh) = Mb;

(3.2)

3. Phytoplankton in hypolimnion semi-trivial steady state E3 : (0, N∗
3 , B∗

3 (x),
M∗

3 (x)), where N∗
3 , B

∗
3 (x) and M∗

3 (x) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M(0) − N = 0,

DbB ′′(x) − vB ′(x) + r B f (M)g(I (x, 0, B)) − δB = 0, 0 < x < xh,

DmM ′′(x) + θ pδB − θr B f (M)g(I (x, 0, B)) = 0, 0 < x < xh,

DbB ′(0) − vB(0) = DbB ′(xh) − vB(xh) = 0,

DmM ′(0) = b(M(0) − N ), M(xh) = Mb.

(3.3)

In the following we discuss the existence, uniqueness and stability of each type
of semi-trivial steady-state solutions listed above for different loss rate δ and settling
speed a, and also discuss the implication of such steady states to the whole dynamics
of (2.1).

For the convenience of the following discussion, for any given D > 0, v ≥ 0
and q ∈ L∞([0, xh]), we denote λ1(D, v, q(x)) to be the principal eigenvalue of
eigenvalue problem

{
Dφ′′(x) − vφ′(x) + q(x)φ = λφ, x ∈ (0, xh),

Dφ′(0) − vφ(0) = Dφ′(xh) − vφ(xh) = 0.
(3.4)
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From Proposition 3.1 inWang et al. (2019), the principal eigenvalue λ1(D, v, q(x)) of
(3.4) exists and it is unique, and λ1(D, v, q1(x)) ≥ λ1(D, v, q2(x)) if q1(x) ≥ q2(x).
We define the following critical death rates:

δ∗
0 = f (Mb)

r

xe

∫ 0

−xe
g(I (x, 0))dx, δ∗

a = δ∗
0 − a

xe
,

δ∗ = λ1 (Db, v, r f (Mb)g(I (x, 0, 0))) ,

δ∗∗
a = r

xe

∫ 0

−xe
g(I (x, 0))dx − a

xe
, δ∗∗ = λ1(Db, v, rg(I (0, 0, 0))).

(3.5)

The thresholds δ∗
0 , δ

∗
a , respectively, represent the intrinsic growth rate of the epilimnion

phytoplankton when its growth depends only on the nutrients from the hypolimnion
and the average light intensity on [−xe, 0] (that is independent of the total biomass
above it). Observe that if there is no turbulent upward transport of nutrients to the
photic zone, δ∗

0 = 0 and δ∗
a = −a/xe. Turbulent upward transport of nutrients to

the photic zone is usually the most strongly limiting process in deep waters. A direct
calculation gives

1

xe

∫ 0

−xe
g(I (z, A))dz > g(I (x, A, B)) for any x ∈ [0, xh], A, B ≥ 0,

δ∗
a > δ∗ if 0 ≤ a < xe(δ

∗
0 − δ∗), and δ∗ > δ∗

a if a > xe(δ
∗
0 − δ∗).

In the following discussion, it is shown that δ∗
a and δ∗ are two threshold loss rates for

phytoplankton to invade aquatic ecosystems.
For any parameter value, (2.1) always has a unique nutrient-only semi-trivial steady

state E1, and it is also stable if the phytoplankton loss rate is high. The following result
precisely determines the stability of E1 in terms of the loss rate δ. The proof is given
in “Appendix A.”

Theorem 3.1 System (2.1) has a unique nutrients-only semi-trivial steady-state solu-
tion E1 ≡ (0, Mb, 0, Mb). If

δ > max
{
δ∗
a , δ∗

}
, (3.6)

then E1 is locally asymptotically stable with respect to (2.1), while E1 is unstable if

δ < max
{
δ∗
a , δ∗

}
. (3.7)

Moreover, if

δ > max
{
δ∗∗
a , δ∗∗

}
, (3.8)

then E1 is globally asymptotically stable for (2.1) with respect to any nonnegative
initial value.
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Remark 3.2 The condition (3.6) shows that the large phytoplankton loss rate in epil-
imnion and hypolimnion causes extinction of phytoplankton and the existence of only
nutrients. This means that max

{
δ∗
a , δ∗

}
is a critical value for phytoplankton to invade

a stratified lake. The condition (3.8) implies that in this case, phytoplankton extinction
is inevitable for all initial conditions. The threshold δ∗∗

a represents the light dependent
per capita growth rate of phytoplankton assuming that the light intensity reaching
each phytoplankton in the epilimnion is independent of the phytoplankton biomass
above it. The threshold δ∗∗ represents the light intensity dependent per capita growth
rate of phytoplankton in the thermocline. Phytoplankton biomass is lost via excretion,
respiration or grazing. Thus, if grazing is high, E1 will be stable. Also, if either the
turbulent upward transport of nutrients to the photic zone or light intensity is low, E1
will be locally asymptotically stable. This means that high nutrient input concentration
and light intensity are conducive to phytoplankton invasion.

From an intuitive point of view, if the sinking speed a is not zero and not very
large, the existence of phytoplankton in epilimnion will certainly lead to the existence
of phytoplankton in hypolimnion, and both will coexist in the stratified lake. If the
sinking speed a is greater than a certain threshold, only phytoplankton in hypolimnion
will exist. Therefore, it can be seen that E2 exists only when the settling speed a of
phytoplankton cells in the thermocline is zero. The following results show that δ∗

0 is
a critical value for phytoplankton in epilimnion to invade the aquatic ecosystem, and
the proof is given in “Appendix A.”

Theorem 3.3 Assume that a = 0 and p ∈ [0, 1]. Then
(i) System (2.1) has a unique positive phytoplankton in epilimnion semi-trivial steady

state

E2 ≡ (A∗
2, N

∗
2 , 0, M∗

2 (x))

=
(
A∗
2, Mb −

(
xh
Dm

+ 1

b

)
(1 − p)θδxe A

∗
2, 0, Mb − xh − x

Dm
(1 − p)θδxe A

∗
2

)

if and only if

0 < δ < δ∗
0 , (3.9)

where A∗
2 satisfies

f (N∗
2 )

r

xe

∫ 0

−xe
g(I (x, A∗

2))dx = δ; (3.10)

(ii) If in addition to (3.9), we also have

δ > λ1
(
Db, v, r f (M∗

2 )g(I (x, A∗
2, 0))

)
, (3.11)
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then E2 is locally asymptotically stable with respect to (2.1), while E2 is unstable
if

δ < λ1
(
Db, v, r f (M∗

2 )g(I (x, A∗
2, 0))

)
. (3.12)

In particular, there exists ε > 0 such that E2 is locally asymptotically stable
with respect to (2.1) if δ∗

0 − ε < δ < δ∗
0 . Moreover when p = 1, E2 is locally

asymptotically stable with respect to (2.1) if 0 < δ < δ∗
0 .

Remark 3.4 1. The condition (3.9) indicates that δ∗
0 is a critical value for phytoplank-

ton in epilimnion to invade a stratified lake. If the condition (3.11) also holds, then
phytoplankton in epilimnion win the competition, that is, the stratified lake has
most phytoplankton in the top layer. When phytoplankton mainly concentrate in
epilimnion, phytoplankton blooms can very likely occur.

2. When p = 1, nutrients in dead phytoplankton are completely recycled back to
media, then phytoplankton in epilimnion have more nutrients to use and thus
become a stronger competitor than phytoplankton in hypolimnion. Numerical sim-
ulations indicate that E2 is globally asymptotically stable for (2.1) in this situation.
This shows that the competition exclusion principle also holds for this extreme
case.

3. When 0 ≤ p < 1, numerical simulations suggest that there exists a positive δ∗∗∗
0 <

δ∗
0 such that E2 is unstable and a coexistence steady state exists for 0 < δ < δ∗∗∗

0 .
This critical death rate δ∗∗∗

0 is a threshold value for phytoplankton in hypolimnion
to invade the aquatic ecosystem in this situation, and phytoplankton in epilimnion
and hypolimnion coexist in the stratified lake when 0 < δ < δ∗∗∗

0 and a = 0.
4. From (3.5), the threshold death rate δ∗

0 = δ∗
0(Mb, Iin, xe) depends on the nutrient

input concentration Mb, the light intensity Iin and the depth of epilimnion xe. One
can observe that δ∗

0 is strictly increasing with respect to Mb and Iin . Hence for
any fixed δ ∈ (0, δ∗∗

0 ), there exists a unique critical nutrient input concentration
M∗∗

b > 0 such that δ = δ∗
0(M

∗∗
b , Iin, xe), and similarly for any fixed δ > 0 there

exists a unique critical light intensity I ∗∗
in > 0 such that δ = δ∗

0(Mb, I ∗∗
in , xe).

When Mb > M∗∗
b or Iin > I ∗∗

in , phytoplankton in epilimnion persist; and when
0 < Mb < M∗∗

b or 0 < Iin < I ∗∗
in , phytoplankton in epilimnion will be extirpated.

Note that

dδ∗
0

dxe
= r f (Mb)

xeKbg

(
g(I (0, 0)) − 1

xe

∫ 0

−xe
g(I (x, 0))dx

)
< 0,

which implies that δ∗
0 is strictly decreasing with respect to xe. This means that

there is a unique critical epilimnion depth x∗∗
e > 0 such that δ = δ∗

0(Mb, Iin, x∗∗
e ).

Phytoplankton in epilimnion persist if 0 < xe < x∗∗
e , and phytoplankton in

epilimnion become extirpated if xe > x∗∗
e . Similar observations also hold for

δ∗
a = δ∗

a(Mb, Iin, xe) with respect to Mb and Iin.

Next we show the existence of phytoplankton in hypolimnion semi-trivial steady
state E3 when a > xe(δ∗

0 − δ∗) by using bifurcation theory with δ as the bifurcation
parameter. In this case, for the two threshold death rates δ∗

a and δ∗, we have δ∗ > δ∗
a ;
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thus, phytoplankton in epilimnion can invade the stratified lake but phytoplankton
in hypolimnion cannot. A solution E3 for a given parameter value δ is in a form of
(δ, N , B(x), M(x)), where δ, N > 0, B ∈ X1, and M ∈ X2 where

X1 : = {u ∈ C2([0, xh]) : Dbu
′(0) − vu(0) = Dbu

′(xh) − vu(xh) = 0},
X2 : = C2([0, xh]).

(3.13)

Define 	 to be the set of all positive solutions (δ, N , B, M) ∈ (R+)2 × X1 × X2 of
(3.3). The existence of E3 is as follows and the proof is given in “Appendix A.”

Theorem 3.5 Assume that a > xe(δ∗
0 − δ∗) (i.e., δ∗ > δ∗

a ) holds. Then

(i) System (2.1) has at least one positive phytoplankton in hypolimnion semi-trivial
steady state solution E3 (with A = 0) for 0 < δ < δ∗;

(ii) There exists a connected component 	+ of 	 such that the closure of 	+
contains the bifurcation point (δ∗, Mb, 0, Mb) where 	+ connects to the line
of nutrient-only solutions 
1 = {(δ, Mb, 0, Mb) : δ > 0}, and the projection of
	+ onto δ-axis contains the interval (0, δ∗);

(iii) Near (δ∗, Mb, 0, Mb),	+ is a smooth curve in a form {(δ3(s), N∗
3 (s), B∗

3 (s, x),
M∗

3 (s, x)) : 0 < s < ε3} for some ε3 > 0 with δ′
3(0) < 0.

Remark 3.6 1. Theorem3.5 shows that E3 exists in (0, δ∗), and δ∗ is a critical value for
the existence/nonexistence of phytoplankton in hypolimnion. For the stability of
E3, we cannot get any results from the theoretical analysis since (3.3) is a nonlocal
predator-prey system. By using realistic environmental parameters, our numerical
simulations show that if δ∗

a < δ < δ∗, then all solutions of (2.1) converge to E3.
In this case, phytoplankton in hypolimnion win the competition and the stratified
lake has most phytoplankton in the bottom layer. Moreover, when 0 < δ < δ∗

a and
xe(δ∗

0 − δ∗) < a < xeδ∗
0 , phytoplankton in epilimnion and hypolimnion coexist in

a stratified lake.
2. It can be seen from the first equation in (2.1) that if a > xeδ∗

0 , A → 0 as t → ∞
when N ≤ Mb. Our numerical simulations also indicate that when a > xeδ∗

0 , E3
is globally asymptotically stable on (0, δ∗). This means that if the settling speed
is large enough, then the competition exclusion principle holds and phytoplankton
mainly concentrate in hypolimnion. The above results show that the settling speed
of phytoplankton cells in the thermocline is beneficial to reduce the probability of
phytoplankton blooms.

3. From (3.5), the threshold death rate δ∗ = δ∗(Mb, Iin, xh, Db, v) depends on vertical
turbulent diffusivity Db, sinking/buoyant velocity v, the nutrient input concentra-
tion Mb, the light intensity Iin and the depth of hypolimnion xh . It is clear that
δ∗ is strictly increasing with respect to Mb and Iin . This implies that for fixed δ

there exist unique critical nutrient input concentration M∗
b (when δ < δ∗∗) and

critical light intensity I ∗
in (when δ > 0) such that δ = δ∗(Db, v, M∗

b , Iin, xh) and
δ = δ∗(Db, v, Mb, I ∗

in, xh), respectively; phytoplankton in hypolimnion persist if
Mb > M∗

b (or Iin > I ∗
in), and phytoplankton in hypolimnion become extirpated

if 0 < Mb < M∗
b (or 0 < Iin < I ∗

in). On the other hand, according to Theorems
3.2-3.9 in Hsu and Lou (2010), δ∗ is strictly decreasing in v and xh , and there
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exist unique critical sinking/buoyant velocity v∗ and critical hypolimnion depth
x∗
h such that δ = δ∗(Db, v

∗, Mb, Iin, xh) and δ = δ∗(Db, v, Mb, Iin, x∗
h ) with

persistence/extirpation threshold behavior. The dependence of δ∗ on Db is more
complicated, and there are possibly one or more critical turbulent diffusivity that
affect the survival and extirpation of phytoplankton in hypolimnion.

3.2 Coexistence Steady States

A coexistence steady-state solution E4 : (A∗
4, N

∗
4 , B∗

4 (x), M∗
4 (x)) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r f (N )
1

xe

∫ 0

−xe
g(I (x, A))dx − δ − a

xe
= 0,

b

xe
(M(0) − N ) +

(
θ pδ − θr f (N )

1

xe

∫ 0

−xe
g(I (x, A))dx

)
A = 0,

DbB ′′(x) − vB ′(x)+r B f (M)g(I (x, A, B)) − δB=0, 0< x< xh,

DmM ′′(x) + (θ pδ − θr f (M)g(I (x, A, B))) B = 0, 0 < x < xh,

DbB ′(0) − vB(0) = −aA, DbB ′(xh) − vB(xh) = 0,

DmM ′(0) = b(M(0) − N ), M(xh) = Mb.

(3.14)

We now show the bifurcation of the coexistence steady state E4 from the nutrients-
only semi-trivial steady state E1 at δ = δ∗

a for 0 < a < xe(δ∗
0−δ∗). Note that a solution

E4 for a given bifurcation parameter value δ is in a form of (δ, A, N , B(x), M(x)),
where δ, A, N > 0, B ∈ X1, and M ∈ X2. We define ϒ to be the set of all positive
solutions (δ, A, N , B, M) ∈ (R+)3 × X1 × X2 of (3.14).

Theorem 3.7 Assume that 0 < a < xe(δ∗
0 − δ∗) (i.e., δ∗ < δ∗

a ). Then

(i) System (2.1) has at least one positive coexistence steady-state solution E4 for
0 < δ < δ∗

a ;
(ii) There exists a connected component ϒ+ of ϒ such that the closure of ϒ+

contains the bifurcation point (δ∗
a , Mb, 0, Mb) where ϒ+ connects to the line

of nutrient-only solutions 
1 = {(δ, Mb, 0, Mb) : δ > 0}, and the projection of
ϒ+ onto δ-axis contains the interval (0, δ∗

a);
(iii) Near (δ∗

a , 0, Mb, 0, Mb),ϒ+ is a smooth curve in a form {(δ4(s), A∗
4(s), N

∗
4 (s),

B∗
4 (s, x), M∗

4 (s, x)) : 0 < s < ε4} for some ε4 > 0 with δ′
4(0) < 0.

Remark 3.8 1. The above theorem shows that phytoplankton in epilimnion and
hypolimnion can coexist in the stratified lake when 0 < a < xe(δ∗

0 − δ∗). From the
perspective of competition, phytoplankton in epilimnion have a dominant advan-
tage for light from the water surface, while phytoplankton in hypolimnion have
a dominant advantage for nutrients from the sediment. This mechanism forms an
asymmetric competition for light and nutrients, which leads to the coexistence of
competitive populations to a certain extent.

2. Here we only establish the bifurcation of the coexistence steady-state E4 from E1
at δ = δ∗

a for 0 < a < xe(δ∗
0 − δ∗). In fact, our numerical simulations show that
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E4 can also bifurcate from E2 at δ = δ∗∗∗
0 for a = 0 and from E3 at δ = δ∗

a for
xe(δ∗

0 − δ∗) < a < xeδ∗
0 .

4 Simulations

To illustrate and supplement our above theoretical analysis, we do some numerical
simulations according to the values of biologically reasonable parameters listed in
Table 2. A detailed statement of the numerical methods is found in “Appendix B.”

For the convenience of the following discussion, we take (δ, a) as the parameters
and divide the positive (δ, a) quadrant into subregions as follows:

11 := {(δ, a) : δ∗
0 < δ, a = 0},

12 := {(δ, a) : δ∗
a < δ, 0 < a < xe(δ

∗
0 − δ∗)},

13 := {(δ, a) : δ∗ < δ, xe(δ
∗
0 − δ∗) < a},

21 := {
(δ, a) : 0 < δ < δ∗

0 , a = 0, p = 1
}
,

22 := {
(δ, a) : δ∗∗∗

0 < δ < δ∗
0 , a = 0, p ∈ [0, 1)} ,

31 := {
(δ, a) : δ∗

a < δ < δ∗, xe(δ
∗
0 − δ∗) < a < xeδ

∗
0

}
,

32 := {
(δ, a) : 0 < δ < δ∗, xeδ

∗
0 < a

}
,

41 := {
(δ, a) : 0 < δ < δ∗∗∗

0 , a = 0, p ∈ [0, 1)} ,

42 := {
(δ, a) : 0 < δ < δ∗

a , 0 < a < xe(δ
∗
0 − δ∗)

}
,

43 := {
(δ, a) : 0 < δ < δ∗

a , xe(δ
∗
0 − δ∗) < a < xeδ

∗
0

}
.

(4.1)

A total extinction of the system will never occur because of the presence of the
fixed external dissolved nutrients Mb at the bottom of hypolimnion. The extinction
of phytoplankton in the epilimnion and hypolimnion can occur if the phytoplankton
loss rate is very large (see Theorem 3.1 and 1i , i = 1, 2, 3 in Figs. 2 and 3 ). If this
happens, the concentration of dissolved nutrients in epilimnion and hypolimnion will
both be the same as the concentration of dissolved nutrients Mb at the bottom of the
hypolimnion. This means that in the absence of phytoplankton, dissolved nutrients in
the epilimnion and hypolimnion are distributed evenly.

Phytoplankton and dissolved nutrients in the epilimnion can coexist in a stratified
lake if the settling speed of phytoplankton cells in the thermocline is zero (see The-
orem 3.3 and 2i , i = 1, 2 in Fig. 2). If nutrients are completely recycling (p = 1),
then the phytoplankton in the epilimnion will be a stronger competitor compared to
phytoplankton in hypolimnion. In this situation, the semi-trivial steady of epilimnion
phytoplankton E2 exists and it is stable in 21, while the hypolimnion phytoplankton
goes to extinction (see Theorem 3.3 and Figs. 2 and 4a). This means that the principle
of competition exclusion holds in this extreme case, and it is likely to cause phy-
toplankton blooms. Another different scenario is when nutrients are only recycling
partially (0 ≤ p < 1). In this situation, the parameter region where E2 exists and is
stable is 22 (see Theorem 3.3 and Figs. 2 and 4b). If the loss rate of phytoplank-
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Fig. 2 Parameter ranges in the δ-line from extinction to existence of phytoplankton for a = 0 as defined in
(4.1). Other parameters are shown in Table 2
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Fig. 3 Parameter ranges in the (δ, a)-plane from extinction to existence of phytoplankton as defined in
(4.1). Other parameters are shown in Table 2

ton is further reduced, then E2 loses its stability, and phytoplankton exist in both the
epilimnion and hypolimnion layers of the lake.

Phytoplankton and dissolved nutrients in hypolimnion can also coexist indepen-
dently in a stratified lake if the settling speed of phytoplankton cells in the thermocline
is large (see Theorem 3.5 and 3i , i = 1, 2 in Fig. 3). When xe(δ∗

0 − δ∗) < a < xeδ∗
0 ,

the phytoplankton in hypolimnion semi-trivial steady state E3 exists and it is stable
in 31 (see Theorem 3.5 and Fig. 5b). The phytoplankton in hypolimnion control
the growth of the phytoplankton in epilimnion by limiting nutrients from the water
bottom. In particular, if the settling speed is large enough (a > xeδ∗

0), the phytoplank-
ton in epilimnion goes to extinction, and the phytoplankton concentrates only in the
hypolimnion, which prevents the occurrence of phytoplankton blooms (see Fig. 5c).
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Fig. 5 Bifurcation diagram of phytoplankton for δ ∈ (0, 1). Here a a = 0.1, b a = 2.5, c a = 4 and other
parameters are shown in Table 2

This also indicates that the settling speed of phytoplankton cells in the thermocline is
an important parameter in the assessment of phytoplankton blooms.

Phytoplankton in epilimnion and hypolimnion can appear together in the stratified
lake for three different cases. The first case is that if a = 0 and p ∈ [0, 1), then they
coexist in41 (see Figs. 2 and 4b). The second case is that they appear together in42
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Table 3 Existence and local stability of steady states for model (2.1)

Regions E1 E2 E3 E4

1i (i = 1, 2, 3) E(T) and S(T) – – –

2i (i = 1, 2) E(T) and US(T) E(T) and S(T) – –

3i (i = 1, 2) E(T) and US(T) – E(T) and S(N) –

41 E(T) and US(T) E(T) and US(T) – E(N) and S(N)

42 E(T) and US(T) – – E(T) and S(N)

43 E(T) and US(T) – E(T) and US(N) E(N) and S(N)

E Existence, – non-existence, S locally stable, US unstable, T results of theoretical analysis, N results of
numerical simulation

when 0 < a < xe(δ∗
0 − δ∗) (see Theorem 3.7 and Figs. 3 and 5a). The third case is

that they coexist in43 if xe(δ∗
0 − δ∗) < a < xeδ∗

0 (see Figs. 3 and 5b). Light from the
water surface and nutrients from thewater bottom form an asymmetric resource supply
mechanism for the phytoplankton growth. Phytoplankton in epilimnion located in the
upper layer have a light dominance, while phytoplankton in hypolimnion located
in the lower layer have a nutrient dominance. Hence phytoplankton in epilimnion
and hypolimnion constitute an asymmetric competition for nutrients and light. This
mechanism leads to the coexistence of phytoplankton in epilimnion and hypolimnion
in the stratified lake.

From the above discussion, we identify threshold loss rates of phytoplankton
δ∗
0 , δ

∗
a , δ∗, δ∗∗∗

0 and threshold settling speeds of phytoplankton cells in the thermo-
cline 0, xe(δ∗

0 −δ∗), xeδ∗
0 , which describe persistence and extinction of phytoplankton

in epilimnion and hypolimnion. In particular, there are two extreme cases. One is that
the settling speed rate is zero (a = 0) and nutrients are completely recycling (p = 1),
and the other one is when the settling speed rate is large enough (a > xeδ∗

0). In these
two extreme cases, the principle of competitive exclusion always holds.

We summarize the results of the above theoretical analysis and numerical simu-
lations on the existence and local stability of nonnegative steady-state solutions of
model (2.1) shown in Table 3.

5 Phytoplankton Vertical Distribution and Density

The vertical distribution of phytoplankton biomass plays an important role in regulat-
ing an aquatic ecosystem. They can be significantly influenced by water movement
and depth, light and nutrients. It is of great interest to evaluate the effects of these abi-
otic factors on the vertical distribution of phytoplankton. We observe that parameters
in model (2.1) are closely related to these factors. For example, the spatial parame-
ters Db, Dm, v and depth xe, xh of epilimnion and hypolimnion are related to water
movement and depth; Iin , Kbg , l and γ2 are related to light; Mb, p, θ and γ1 are
related to nutrients. Therefore, in this section, we investigate the influence of environ-
mental parameters in model (2.1) on the vertical distribution and biomass density of
phytoplankton in epilimnion and hypolimnion.
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Fig. 6 Influence of parameters Db, Dm on the vertical distribution and biomass density of phytoplankton.
The results show that high vertical turbulent diffusivity (Db, Dm ) in the hypolimnion causes phytoplankton
to accumulate in the epilimnion and the increase in the biomass density in the epilimnion. Here other
parameters are shown in Table 2. The horizontal straight line at x = 0 is the thermocline, above which is
epilimnion and below which is hypolimnion

In order to facilitate the discussion below, we only consider the coexistence steady
states A4 and B4(x) and let the spatial average of B4(x) be B4 = (1/xh)

∫ xh
0 B4(x)dx .

In figures below, the vertical distribution profiles for four different parameter choices
are shown on the left, and the dependence of biomass densities on this parameter in
the two lake layers is shown on the right. We will compare the coexistence steady-
state biomass density A4, B4 and the coexistence steady-state vertical distribution
A4, B4(x) for different parameter values.

We first consider the effect of spatial parameters Db, Dm and v on the vertical
distribution and biomass density of phytoplankton. Figure 6 shows the impact of the
vertical turbulent diffusivity Db, Dm on the vertical distribution and biomass density of
phytoplankton. A high vertical turbulent diffusion causes phytoplankton populations
to outgrow sinking. (see Fig. 6a). In this case, there is a biomass density regime shift
from hypolimnion to epilimnion. The biomass density in the epilimnion surges, while
the one in the hypolimnion has a slight change (see Fig. 6b). The reason for the above
phenomenon is that with the increase in the turbulent diffusion, nutrients are more
fully transmitted from the bottom to the top, so that phytoplankton in the epilimnion
reduce their dependence on nutrients, which may lead to phytoplankton blooms. An
interesting phenomenon here is that there are two phytoplankton accumulating layers
in hypolimnion when Db = Dm = 0.1. This indicates that there may be one or
more maximum points for the phytoplankton biomass distribution, also regarded as
an important indicator of Deep Chlorophyll Maxima (DCMs), in a lake as a result of
the limitation of biological and abiotic factors.

Figure 7a shows that a transition of phytoplankton in the hypolimnion from floating
to sinking, and it causes a change in the aggregation of phytoplankton from the top
to the bottom of the hypolimnion. Meanwhile, the biomass density of phytoplankton
in epilimnion and hypolimnion reveals a non-monotonic property. In the epilimnion,
the biomass density first decreases and then increases, while in the hypolimnion, it
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Fig. 7 Influence of parameter v on the vertical distribution and biomass density of phytoplankton. The results
indicate that v in hypolimnion has no obvious effect on phytoplankton blooms. Here other parameters are
shown in Table 2
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Fig. 8 Influence of parameter Iin on the vertical distribution and biomass density of phytoplankton. The
results show that high light intensity Iin can lead to phytoplankton aggregation and rapid increase in biomass
in the hypolimnion. Here other parameters are shown in Table 2

is the opposite (see Fig. 7b). When phytoplankton in hypolimnion float up (v < 0)
due to phototaxis, they reduce the absorption of nutrients, which causes a reduction
in the biomass density. While the biomass density of phytoplankton in epilimnion
increases due to the reduction in competition. On the contrary, in the process of sinking
(v > 0), the biomass density of phytoplankton in hypolimnion decreases owing to the
limitation of light. This leads to an increase in the biomass density of phytoplankton
in epilimnion.

In Fig. 8, one can see that when the light intensity Iin is low, phytoplankton mainly
gather in epilimnion, while when Iin is high, phytoplankton gather in hypolimnion.
This is because, a high Iin implies that phytoplankton in epilimnion can not suppress
the rapid growth of phytoplankton in hypolimnion. But phytoplankton in hypolimnion
is still able to control the growth of phytoplankton in epilimnion through low nutrient
concentration Mb. This suggests that phytoplankton in hypolimnion are a stronger
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Fig. 9 Influence of parameter Mb on the vertical distribution and biomass density of phytoplankton. The
results show that high nutrient concentration Mb causes phytoplankton aggregation in the epilimnion, and
is easy to induce phytoplankton blooms. Here other parameters are shown in Table 2
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Fig. 10 Influence of parameter p on the vertical distribution and biomass density of phytoplankton. The
results show that if the nutrient recycling rate p is high enough, then even in oligotrophic aquatic ecosystems
phytoplankton may bloom. Here other parameters are shown in Table 2

competitor in this asymmetric competition under high light intensity. On the other
hand, if the nutrient concentration increases gradually, it produces an opposite result.
Phytoplankton gather in the epilimnion, and phytoplankton in the epilimnion become
a stronger competitor under high nutrient concentration and low light intensity (see
Fig.9). It also confirms once again that phytoplankton blooms are more likely to occur
in eutrophic lakes. It can be seen from the above discussion that under the asymmetric
competition mechanism, if a resource that was initially limiting become abundant, the
weaker competitor for the resource may win the competition.

In view of the increase in nutrient recycling proportion p, phytoplankton reduce
the dependence on nutrients; thus, phytoplankton in hypolimnion cannot control the
rapid growth of phytoplankton in the epilimnion through the asymmetric competition.
However, phytoplankton in epilimnion as a stronger competitor is still able to suppress
the growth of phytoplankton in hypolimnion through low light intensity. This results in
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Fig. 11 Influence of parameter Kbg on the vertical distribution and biomass density of phytoplankton. The
results show that low light attenuation coefficient Kbg is beneficial to control phytoplankton blooms. Here
other parameters are shown in Table 2
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Fig. 12 Influence of parameter θ on the vertical distribution and biomass density of phytoplankton. The
results indicate that with the increase in θ , phytoplankton gather at the benthos and the biomass of the
epilimnion decreases sharply. Here other parameters are shown in Table 2

a slight effect of p on the vertical distribution and biomass density of phytoplankton in
hypolimnion and agreat effect on the biomass density of phytoplankton in hypolimnion
(see Fig. 10). This research also suggests that even in oligotrophic aquatic ecosystems,
phytoplanktonmay bloom if the nutrient recycling rate after phytoplankton loss is high
enough.

The light attenuation coefficient Kbg is an important index to evaluate the trans-
mittance of water quality in an aquatic ecosystem. From Fig. 11, one can see that an
increase of Kbg causes the spatial heterogeneity of phytoplankton in hypolimnion to
change from aggregation to uniform distribution, and there is a shift of phytoplankton
competition from hypolimnion to epilimnion. If the value of Kbg is low, which implies
that the water has good light transmittance, phytoplankton in hypolimnion is a stronger
competitor and inhibit the growth of phytoplankton in epilimnion. When the value of
Kbg is high, the conclusion is just the opposite. Therefore, if the light transmittance
of water is good, phytoplankton bloom will not likely occur, otherwise, it will.
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Fig. 13 Influence of parameter l on the vertical distribution and biomass density of phytoplankton. The
results show that high light attenuation coefficient l is more prone to phytoplankton blooms. Here other
parameters are shown in Table 2
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Fig. 14 Influence of parameter γ1 on the vertical distribution and biomass density of phytoplankton. The
results mean that with the increase in γ1, the spatial heterogeneity of phytoplankton in the hypolimnion
weakens and the possibility of blooms increases. Here other parameters are shown in Table 2

The nutrient to carbon quota θ and light attenuation coefficient l describe the
degree of phytoplankton growth requiring nutrients and light, respectively. Figure 12
shows that although the biomass density of phytoplankton in hypolimnion is almost
unchanged with the increase in nutrient requirement, it gradually gathers from the top
to bottom of hypolimnion. At the same time, the biomass density of phytoplankton in
epilimnion decreases sharply. This implies that the requirement of phytoplankton for
nutrients has a greater effect on phytoplankton in epilimnion, making it to change from
a strong competitor to a weaker competitor. If phytoplankton need more light for the
growth, then most of them gather in epilimnion, and their biomass density increases
in the epilimnion and decreases in the hypolimnion (see Fig. 13). Therefore, phyto-
plankton with low nutrient requirement and high light requirement are more prone to
bloom.
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Fig. 15 Influence of parameter γ2 on the vertical distribution and biomass density of phytoplankton. The
results show that the increase of γ2 reduces the probability of phytoplankton blooms. Here other parameters
are shown in Table 2
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Fig. 16 Influence of parameters xe, xh on the vertical distribution and biomass density of phytoplankton.
The results show that the increase in xe is easy to induce phytoplankton blooms, while the increase in xh
reduces the possibility of blooms. Here xe + xh = 20, Dm = Db = 0.4 and other parameters are shown
in Table 2

The half saturation constants γ1 and γ2 characterize the efficiency of phytoplankton
in absorbing nutrients and light, respectively. From Figs. 14 and 15 , we observe that if
the values of γ1, γ2 are high, the spatial heterogeneity of phytoplankton in hypolimnion
weakens and gradually turns into average distributed. In addition, phytoplankton in
epilimnion become a stronger competitor, whose biomass density increases, and con-
trol the growth of phytoplankton in hypolimnion. There is a phytoplankton regime
shift from hypolimnion to epilimnion. This means that if phytoplankton have high
light or nutrient uptake efficiency, then the possibility of bloom will increase.

The depth of the thermocline between epilimnion and hypolimnion varies with the
seasons, climate, latitude and local environmental conditions. When the thermocline
descends, i.e., the value of xe increases, the biomass density and aggregation layer of
phytoplankton transfer from hypolimnion to epilimnion (see Fig. 16). On the contrary,
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Table 4 Influence of environmental parameters

Parameters xmax BDPE BDPH PPB Parameters xmax BDPE BDPH PPB

Db, Dm ↑ ↓ ↑ – ↑ v ↑ ↑ ↓ ↑ ↑ ↓ –

Iin ↑ ↑ ↓ ↑ ↓ Mb ↑ ↓ ↑ – ↑
p ↑ ↓ ↑ – ↑ Kbg ↑ ↓ ↑ ↓ ↑
θ ↑ ↑ ↓ – ↓ l ↑ ↓ ↑ ↓ ↑
γ1 ↑ ↓ ↑ ↓ ↑ γ2 ↑ ↓ ↑ ↓ ↑
xe ↑ ↓ ↑ ↑ ↓ ↑ ↑ xh ↑ ↑ ↓ ↓ ↑ ↓ ↓
↑: Increasing, ↓: Decreasing, –: No significant effect, BDPE Biomass density of phytoplankton in epil-
imnion, BDPH Biomass density of phytoplankton in hypolimnion, PPB Probability of phytoplankton
blooms

if the thermocline ascends, then the biomass density and aggregation layer of phyto-
plankton transfer from epilimnion to hypolimnion. This also shows that phytoplankton
blooms are easy to occur in summer or autumn. One of the reasons is that the increase
in water temperature in these two seasons leads to the decline of the thermocline.

In order to summarize the above discussion, we let xmax to be the depth coordinate,
where the biomass density of phytoplankton in epilimnion and hypolimnion reaches
its maximum. xmax characterizes the change of phytoplankton aggregation layer. The
increase means that the aggregation layer moves downward, while the decrease means
that the aggregation layermoves upward.This indicates that xmax is an index to describe
the vertical distribution of phytoplankton. The influence of environmental parameters
on the vertical distribution and biomass density of phytoplankton are listed in Table 4.

6 Discussion

We propose a mathematical model (2.1) to describe phytoplankton dynamics in a
stratified lake. The existence and local stability of nonnegative steady-state solutions of
model (2.1) are established in terms of parameters (δ, a) (the loss rate of phytoplankton
and the settling speed of phytoplankton cells in the thermocline), and the results are
summarized in Table 3.

Our analytical results on model (2.1) show that the extinction of phytoplankton in
the epilimnion and hypolimnion may arise from the model for a larger phytoplankton
loss rate. Phytoplankton in epilimnion and hypolimnion can coexist in a stratified lake
if a = 0, p ∈ [0, 1) or 0 < a < xeδ∗

0 (see Figs. 2 and 3 ). In two extreme cases: (1) the
settling speed rate is zero (a = 0) and the nutrients are completely recycled (p = 1);
(2) the settling speed rate is large enough (a > xeδ∗

0), the principle of competitive
exclusion always holds. Model (2.1) including nonlocal effect and coupled dynamics
of ODE and PDE equations is difficult for analyzing, and we obtain rigorous results
for the existence and sometimes stability of nonnegative steady-state solutions in
different parameter regions. It is important to understand the existence and stability
of coexistence steady state E4 in parameter regions 41 and 43, which is supported
by our analytic results and extensive numerical simulations.
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All the environmental parameters could influence the vertical distribution and
biomass density of phytoplankton (see Table 4). Our studies demonstrate that high
vertical turbulent diffusivity (Db, Dm) in hypolimnion causes phytoplankton to accu-
mulate in epilimnion and the increase of biomass density in epilimnion. This may
result in the occurrence of phytoplankton blooms. Another spatial parameter v in
hypolimnion has no obvious effect on phytoplankton blooms. High nutrient input
concentration (Mb), nutrient recycling proportion (p), or nutrient uptake efficiency
(γ1) reduces the dependence of phytoplankton in epilimnion on nutrients and makes it
a stronger competitor. Hence, there is a biomass density regime shift fromhypolimnion
to epilimnion,which increases the probability of phytoplankton blooms. If phytoplank-
ton are more dependent on light than nutrients, then high light attenuation coefficient
(Kbg), light requirement (l) or light uptake efficiency (γ2) raises the possibility of
phytoplankton blooms. Conversely, high light density (Iin) or nutrient requirement
(θ ) reduces the possibility of phytoplankton blooms. The depths xe and xh of epil-
imnion and hypolimnion are also important environmental factors for the occurrence
of phytoplankton blooms. The increase in epilimnion depth enhances the probability
of phytoplankton blooms.

Lake stratification is a common phenomenon. The above theoretical analysis and
numerical results characterize the vertical distribution and biomass change of phy-
toplankton in the epilimnion and hypolimnion. Phytoplankton in a stratified lake
compete for light from the surface and nutrients from the benthic zone. This asymmet-
ric resource supply mechanism is conducive to the coexistence of phytoplankton in the
epilimnion and hypolimnion. The settling speed a is a key parameter for evaluating
phytoplankton competition in a stratified lake. Both a = 0 and a > xeδ∗

0 can induce
the principle of competitive exclusion. It is of great significance tomeasure the settling
speed of phytoplankton cells in the thermocline for the assessment of phytoplankton
dynamics in a stratified lake. Our studies show that the influence of water movement
and depth, light, and nutrients on the vertical distribution and biomass change of phy-
toplankton and its internal mechanism (see Table 4 as a summary). These results can
help control phytoplankton blooms and protect a freshwater ecosystem.

InWang et al. (2007),Wang et al. investigated dynamics of stoichiometric bacterial-
algae interactions in the epilimnion. This research was motivated by some hypotheses
on competing bacterial strains observed in Lake Biwa (Nishimura et al. 2005). They
pointed out that severely phosphorus limitation in the epilimnion is an important reason
for low nucleic acid (LNA) bacteria to win the competition. However, they did not
consider the interaction between algae and bacteria in the hypolimnion and its effect
on the epilimnion. Compared with the literature (Wang et al. 2007), in the present
paper, we consider phytoplankton dynamics in the epilimnion and hypolimnion and
the interaction between them, and conclude that phytoplankton in the hypolimnion can
control phytoplankton biomass in the epilimnion by controlling nutrient transport.
Hence, an interesting but challenging question is to study the relationship between
phytoplankton and bacteria in a stratified lake. Furthermore, it will be of interest to
explore more biological questions including two or more species of phytoplankton
(Du and Hsu 2010; Jiang et al. 2019; Mei and Zhang 2012), harmful phytoplankton
(Hsu et al. 2013; Wang et al. 2015), as well as zooplankton and fishes (Hsu et al. 2013;
Loladze et al. 2000; Lv et al. 2016).
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Appendix A

In order to obtain the existence and stability of semi-trivial steady-state solutions of
(2.1), we consider an eigenvalue problem

⎧
⎨

⎩

Dφ′′(x) = λφ(x), x ∈ (0, xh),

Dφ′(0) = λ

δ1λ + δ2
φ(0), φ(xh) = 0,

(A.1)

where D, δ1, δ2 > 0. A direct calculation shows that if λ is a complex eigenvalue of
(A.1), then λ̄ is also a complex eigenvalue of (A.1).

Lemma A.1 If λ is an eigenvalue of (A.1), then Re λ < 0.

Proof If λ is an eigenvalue (real or complex valued) and φ(x) is the corresponding
eigenfunction, then

λ

∫ xh

0
|φ(x)|2dx = D

∫ xh

0
φ′′(x)φ̄(x)dx = −λ|φ(0)|2

δ1λ + δ2
− D

∫ xh

0
|φ′(x)|2dx .

Let

c1 =
∫ xh

0
|φ(x)|2dx, c2 = D

∫ xh

0
|φ′(x)|2dx .

Then, λ satisfies

δ1c1λ
2 + (δ2c1 + |φ(0)|2 + δ1c2)λ + δ2c2 = 0.

This means that Re λ < 0. This completes the proof. ��
Proof of Theorem 3.1 From (3.1), it is easy to see that E1 ≡ (0, Mb, 0, Mb) is the
unique nutrients-only semi-trivial steady state solution of (2.1). The stability of E1 is
determined by the eigenvalue problem

λξ = (
δ∗
a − δ

)
ξ, (A.2a)

λζ = θ

(
pδ − δ∗

a − a

xe

)
ξ − b

xe
ζ + b

xe
ψ(0), (A.2b)

λϕ = Dbϕ
′′(x) − vϕ′(x) + (r f (Mb)g(I (x, 0, 0)) − δ) ϕ, 0 < x < xh, (A.2c)

λψ = Dmψ ′′(x) + (θ pδ − θr f (Mb)g(I (x, 0, 0))) ϕ, 0 < x < xh, (A.2d)

Dbϕ
′(0) − vϕ(0) = −aξ, Dbϕ

′(xh) − vϕ(xh) = 0, (A.2e)

Dmψ ′(0) = b(ψ(0) − ζ ), ψ(xh) = 0. (A.2f)

To establish the local stability of E1, we let λ1 be the eigenvalue of (A.2) with the
largest real part and let (ξ, ζ, ϕ, ψ) be the corresponding eigenfunction. Note that the
linearized system (A.2) is partially decoupled. We consider the following three cases:
(i) ξ �= 0; (ii) ξ = 0, ϕ �≡ 0; or (iii) ξ = 0, ϕ ≡ 0.
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Case (i): ξ �= 0. In this case, the stability of E1 is determined by (A.2a). Then,
λ1 = δ∗

a − δ.
Case (ii): ξ = 0, ϕ �≡ 0. This case means that the stability of E1 is determined by

(A.2c) and its boundary condition (A.2e). Then, λ1 = δ∗ − δ.
Case (iii): ξ = 0, ϕ ≡ 0. In this case, (A.2) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

λζ = − b

xe
ζ + b

xe
ψ(0),

λψ(x) = Dmψ ′′(x), 0 < x < xh,

Dmψ ′(0) = b(ψ(0) − ζ ), ψ(xh) = 0.

(A.3)

From the boundary condition of (A.3), we have ζ = 0 if ψ ≡ 0. On
the other hand, if ζ = 0 in (A.3), we also have ψ ≡ 0. This shows
that ζ �= 0 and ψ(x) �≡ 0. Then, either λ = −b/xe = −Dmk2π2/x2h
for some k ∈ N with the corresponding eigenfunction (ζ, ψ) =
(1,−√

bxe/Dm sin(
√
b/(xeDm)x); or λ �= −b/xe, ζ = b

xeλ + b
ψ(0),

and ψ satisfies

⎧
⎨

⎩

λψ(x) = Dmψ ′′(x), 0 < x < xh,

Dmψ ′(0) = bxeλ

xeλ + b
ψ(0), ψ(xh) = 0.

(A.4)

It follows from Lemma A.1 that all eigenvalues of (A.4) have negative real parts.
Therefore, we conclude that in case (iii), Re λ1 is negative.

Summarizing the above cases (i)-(iii), we conclude that if (3.6) holds, then Re λ1 <

0 and E1 is locally asymptotically stable; Conversely, if (3.7) holds, then Re λ1 > 0
and E1 is unstable.

Next we prove that if (3.8) holds, then E1 is globally asymptotically stable. From
the first equation of (2.1), we have

d A(t)

dt
≤ r A

1

xe

∫ 0

−xe
g(I (x, 0))dx − a

xe
A − δA,

which implies that lim
t→∞ A(t) = 0 if δ > δ∗∗

a . From the theory of asymptotical

autonomous systems (Mischaikow et al. 1995), the third equation of (2.1) reduces
to a limiting system

∂B(x, t)

∂t
= Db

∂2B

∂x2
− v

∂B

∂x
+ r B f (M)g(I (x, A, B)) − δB

≤ Db
∂2B

∂x2
− v

∂B

∂x
+ rg(I (0, 0, 0))B − δB, 0 < x < xh, t > 0,

Db
∂B(0, t)

∂x
− vB(0, t) = Db

∂B(xh, t)

∂x
− vB(xh, t) = 0, t > 0.
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This implies that B(x, t) converges to 0 uniformly for x ∈ [0, xh] as t → ∞ if
δ > δ∗∗ by the comparison principle of parabolic equations. By applying the theory
of asymptotical autonomous systems again, (2.1) reduces to a limiting system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dN (t)

dt
= b

xe
(M(0, t) − N (t)), t > 0,

∂M(x, t)

∂t
= Dm

∂2M

∂x2
, 0 < x < xh, t > 0,

Dm
∂M(0, t)

∂x
= b(M(0, t) − N (t)), M(xh, t) = Mb, t > 0.

(A.5)

Define Lyapunov functional V : R × C([0, L]) → R by

V (N , M) = xe
2

(N − Mb)
2 + 1

2

∫ xh

0
(M(z) − Mb)

2dz.

For an arbitrary solution (N (t), M(x, t)) of (A.5) with nonnegative initial values, we
obtain

dV (N (t), M(x, t))

dt
= xe(N (t) − Mb)

dN

dt
+

∫ xh

0
(M(z, t) − Mb)

∂M

∂t
dz

= b(N (t)−Mb)(M(0, t)−N (t))+Dm

∫ xh

0
(M(z, t)−Mb)

∂2M

∂z2
dz

= b(N (t) − Mb)(M(0, t) − N (t))

+ Dm
∂M

∂z
(M(z, t) − Mb)

∣
∣
∣
xh

0
−

∫ xh

0

(
∂M

∂z

)2

dz

= b(N (t) − Mb)(M(0, t) − N (t))

− b(M(0, t) − N (t))(M(0, t) − Mb) −
∫ xh

0

(
∂M

∂z

)2

dz

= −b(N (t) − M(0, t))2 −
∫ xh

0

(
∂M

∂z

)2

dz ≤ 0.

Note that dV (·)/dt = 0 holds if and only if ∂M/∂z = 0 and N (t) = M(0, t). It
follows from M(xh, t) = Mb that N (t) ≡ M(x, t) ≡ Mb. By using the LaSalle’s
Invariance Principle (Henry 1981), we conclude that (N (t), M(x, t)) converges to
(Mb, Mb) uniformly for x ∈ [0, xh] as t → ∞, and E1 is globally asymptotically
stable for (2.1) with respect to any nonnegative initial value. ��
Proof of Theorem 3.3 The steady-state equation (3.2) can be explicitly solved. The
equation of N implies that b(M(0)−N ) = (1− p)θδxe A. Combining the equation of
M with its boundary conditions DmM ′(0) = (1 − p)θδxe A and M(xh) = Mb gives

M(x) = Mb − xh − x

Dm
(1 − p)θδxe A,
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and then

N = Mb −
(

xh
Dm

+ 1

b

)
(1 − p)θδxe A.

If p = 1 and (3.9) holds, then M(x) = N = Mb, and there exists a unique positive A∗
2

satisfying f (Mb)
r

xe

∫ 0

−xe
g(I (x, A∗

2))dx = δ since g is a strictly decreasing function

of A. If p ∈ [0, 1), then we let

Q = δA, β =
(

xh
Dm

+ 1

b

)
(1 − p)θxe.

From the first equation of (3.2), we consider

u(δ, Q) = r

xe

∫ 0

−xe
g

(
I

(
x,

Q

δ

))
dx − δ

(
1 + γ1

Mb − βQ

)
for (δ, Q) ∈ (0,∞)

×
(
0,

Mb

β

)
.

A direct calculation gives ∂u/∂Q < 0. Note that lim
Q→0+ u(δ, Q) = (1+ γ1/Mb)(δ

∗
0 −

δ) > 0 if 0 < δ < δ∗
0 and lim

Q→(Mb/β)−
u(δ, Q) = −∞. Then for any fixed δ ∈ (0, δ∗

0),

there exists a unique positive Qδ such that u(δ, Qδ) = 0, and A∗
2 = Qδ/δ is desired

unique solution. This proves part (i).
Next we establish the stability of E2. The stability of E2 is determined by the

eigenvalue problem

λξ = −h1ξ + h2ζ, (A.6a)

λζ = (−(1 − p)θδ + θh1)ξ −
(
b

xe
+ θh2

)
ζ + b

xe
ψ(0), (A.6b)

λϕ = Dbϕ
′′(x) − vϕ′(x) + (h3(x) − δ) ϕ, 0 < x < xh, (A.6c)

λψ = Dmψ ′′(x) + (pθδ − θh3(x)) ϕ, 0 < x < xh, (A.6d)

Dbϕ
′(0) − vϕ(0) = Dbϕ

′(xh) − vϕ(xh) = 0, (A.6e)

Dmψ ′(0) = b(ψ(0) − ζ ), ψ(xh) = 0, (A.6f)

where

h1 = rγ2μ(A∗
2)N

∗
2 A

∗
2

N∗
2 + γ1

, h2 = rγ1A∗
2

(N∗
2 + γ1)2

1

xe

∫ 0

−xe
g(I (x, A∗

2))dx,

h3(x) = r f (M∗
2 )g(I (x, A∗

2, 0))

(A.7)
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and

μ(A∗
2) =

l

(

ln
Iin + γ2

Iine−xe(Kbg+l A∗
2) + γ2

− Iinxe(Kbg + l A∗
2)e

−xe(Kbg+l A∗
2)

Iine−xe(Kbg+l A∗
2) + γ2

)

xe(Kbg + l A∗
2)

2 > 0.

(A.8)

Again let λ1 be the eigenvalue of (A.6) with largest real part, and let (ξ, ζ, ϕ, ψ) be
the corresponding eigenfunction. Note that the eigenvalue problem (A.6) is partially
decoupled. We consider the following two cases: (i) ϕ �≡ 0; (ii) ϕ ≡ 0.
Case (i): ϕ �≡ 0. Then, the stability of E2 is determined by the subsystem

λϕ = Dbϕ
′′(x) − vϕ′(x) + (h3(x) − δ) ϕ, 0 < x < xh,

Dbϕ
′(0) − vϕ(0) = Dbϕ

′(xh) − vϕ(xh) = 0,
(A.9)

with ξ, ζ, ψ solved from(A.6a), (A.6b), (A.6d) and (A.6f). Then,λ1 = λ1(Db, v, h3(x)
− δ) = λ1(Db, v, h3(x)) − δ.
Case (ii): ϕ ≡ 0. Then, (ξ, ζ, ψ) satisfies

λξ = −h1ξ + h2ζ,

λζ = (−(1 − p)θδ + θh1)ξ −
(
b

xe
+ θh2

)
ζ + b

xe
ψ(0),

λψ = Dmψ ′′(x), 0 < x < xh,

Dmψ ′(0) = b(ψ(0) − ζ ), ψ(xh) = 0.

(A.10)

By using similar arguments as those in Theorem 3.1 and Lemma A.1, we conclude
that all eigenvalues of (A.10) have negative real parts. Based on the analysis above,
E2 is locally asymptotically stable with respect to (2.1) if (3.11) holds, while E2 is
unstable if (3.12) holds.

It can be shown that A∗
2 is strictly decreasing in δ and lim

δ→δ∗−
0

A∗
2 = 0. This also

implies that lim
δ→δ∗−

0

N∗
2 = Mb and lim

δ→δ∗−
0

M∗
2 (x) = Mb. Hence, when δ → δ∗−

0 , we

have

lim
δ→δ∗−

0

[
λ1

(
Db, v, r f (M∗

2 )g(I (x, A∗
2, 0)

) − δ
]

= lim
δ→δ∗−

0

[
λ1

(
Db, v, r f (M∗

2 )g(I (x, A∗
2, 0)

)

−λ1

(
Db, v, f (N∗

2 )
r

xe

∫ 0

−xe
g(I (x, A∗

2))dx

)]

=λ1 (Db, v, r f (Mb)g(I (x, 0, 0)) − λ1

(
Db, v, f (Mb)

r

xe

∫ 0

−xe
g(I (x, 0))dx

)
< 0.
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Therefore, (3.11) holds and E2 is locally asymptotically stable when δ is sufficiently
close to δ∗

0 . When p = 1, E2 ≡ (A∗
2, Mb, 0, Mb) where A∗

2 satisfies (3.10) with
N∗
2 = Mb. From (3.5) and the monotonicity of the principal eigenvalue on the weight

functions, we have

λ1
(
Db, v, r f (Mb)g(I (x, A

∗
2, 0)

)
< λ1

(
Db, v, f (Mb)

r

xe

∫ 0

−xe
g(I (x, A∗

2))dx

)
= δ,

so (3.11) holds and E2 is locally asymptotically stable for any 0 < δ < δ∗
0 . ��

To obtain the global existence of E3, we first establish the following a priori esti-
mates for nonnegative solutions (N3, B3(x), M3(x)) of (3.3).

Lemma A.2 Assume that (N3, B3(x), M3(x)) ∈ R
+ ×Y 2 is a nonnegative solution of

(3.3) with N3 > 0, B3, M3 �≡ 0. Then,

(i) 0 < δ < δ∗∗, where δ∗∗ is defined in (3.5);
(ii) For any ε > 0, there exists a positive constant K (ε) such that 0 < B3(x) ≤ K (ε)

and 0 < N3, M3(x) ≤ Mb + θx2h(r + pδ∗∗)K (ε)/Dm on [0, xh] for δ ∈ [ε, δ∗∗).

Proof (i) Let R(x) = B3(x)e−(v/Db)x . Then, R(x) satisfies

{
−DbR′′(x) − vR′(x) + δR = r f (M3)g(I (x, 0, B3))R ≥ 0, 0 < x < xh,

R′(0) = 0, R′(xh) = 0.

It follows from the strong maximum principle that R(x) > 0 on [0, xh], and conse-
quently, B3(x) > 0 on [0, xh]. From (3.3), we have

λ1 (Db, v, r f (M3)g(I (x, 0, B3))) = δ

with corresponding principal eigenfunction B3. It follows from the monotonicity of
principal eigenvalue with respect to the weight functions that

δ = λ1 (Db, v, r f (M3)g(I (x, 0, B3))) < λ1 (Db, v, rg(I (0, 0, 0))) = δ∗∗.

(ii) Fix ε > 0. If B3 is not bounded for all δ ∈ [ε, δ∗∗), then there are a sequence δi ∈
[ε, δ∗∗) and corresponding positive solutions (Ni

3, B
i
3(x), M

i
3(x)) such that ‖Bi

3‖∞ →
∞ and δi → δ0 ∈ [ε, δ∗∗] as i → ∞. Let μi = Bi

3/‖Bi
3‖∞. From the equation of B3

in (3.3), we get

{
−Dbμ

′′
i (x) + vμ′

i (x) = [r f (Mi
3)g(I (x, 0, B

i
3)) − δi ]μi (x) = 0, 0 < x < xh,

Dbμ
′
i (0) − vμi (0) = Dbμ

′
i (xh) − vμi (xh) = 0.

(A.11)

Since the right hand side of (A.11) is uniformly bounded, by using L p theory
for elliptic operators and by passing to a subsequence, we obtain that μi → μ
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in W 2,p([0, xh)] (and also in C1,α([0, xh]) from Sobolev’s embedding) as i →
∞. Since r f (Mi

3)g(I (x, 0, B
i
3)) is bounded in L∞([0, xh]), we may assume that

r f (Mi
3)g(I (x, 0, B

i
3)) → l0 weakly in L2([0, xh]). Hence, μ satisfies (in the weak

sense)

{
Dbμ

′′(x) − vμ′(x) + (l0 − δ0)μ(x) = 0, 0 < x < xh,

Dbμ
′(0) − vμ(0) = Dbμ

′(xh) − vμ(xh) = 0.
(A.12)

From the strong maximum principle, μ(x) > 0 on [0, xh] since μ ≥ 0 and ‖μ‖∞ =
1. This implies that Bi

3 = ||Bi
3||∞μi → ∞ uniformly on [0, xh], and thus, l0 =

0. Integrating (A.12) we obtain 0 = δ0
∫ xh

0
μ(x)dx > 0. That is a contradiction.

Therefore, there is a positive constant K (ε) such that 0 < B3(x) ≤ K (ε) on [0, xh]
for all δ ∈ [ε, δ∗∗).

From the strong maximum principle, we have M3(x) > 0 on [0, xh]. For any
x ∈ [0, xh], we have

|DmM
′
3(x)| =

∣∣∣
∣Dm

∫ x

0
M ′′

3 (s)ds

∣∣∣
∣ = θ

∣∣∣
∣

∫ x

0
(r f (M3)g(I (x, 0, B3)) − pδ) B3ds

∣∣∣
∣

≤ θxh(r + pδ∗∗)K (ε)

and consequently

|M3(x)| = |M3(xh) + M3(x) − M3(xh)| ≤ |M3(xh)| + |M3(x) − M3(xh)|
≤ Mb +

∣∣
∣∣

∫ xh

x
M ′

3(s)ds

∣∣
∣∣ ≤ Mb + θx2h(r + pδ∗∗)K (ε)/Dm .

(A.13)

From M3(0) = N3, we have 0 < N3 ≤ Mb + θx2h(r + pδ∗∗)K (ε)/Dm . ��
Proof of Theorem 3.5 We prove the existence of E3 using bifurcation theory and show
that the solution E3 bifurcates from the line of nutrient-only semi-trivial steady state
E1 at δ = δ∗ with parameter δ. We first use local bifurcation theory in Crandall and
Rabinowitz (1971) to show that E3 bifurcates from the line of E1 at δ = δ∗.

Recall function spaces X1, X2 defined in (3.13) and define Y = C([0, xh]). We
define a nonlinear mapping F : R+ × R × X1 × X2 → R × Y 2 × R

2 by

F(δ, N , B, M) =

⎛

⎜⎜⎜⎜
⎝

M(0) − N
DbB ′′ − vB ′ + r B f (M)g(I (x, 0, B)) − δB
DmM ′′ + θ pδB − θr B f (M)g(I (x, 0, B))

DmM ′(0) − b(M(0) − N )

M(xh) − Mb

⎞

⎟⎟⎟⎟
⎠

.

It is easy to see that F(δ, Mb, 0, Mb) = 0. Let H := F(N ,B,M)(δ∗, Mb, 0, Mb) be
the Frechét derivative of F with respect to (N , B, M) at (δ∗, Mb, 0, Mb). For any
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(ζ, ϕ, ψ) ∈ R × X1 × X2, we have

H [ζ, ϕ, ψ] =

⎛

⎜
⎜⎜⎜
⎝

ψ(0) − ζ

Dbϕ
′′(x) − vϕ′(x) + (r f (Mb)g(I (x, 0, 0)) − δ∗) ϕ

Dmψ ′′(x) + (θ pδ∗ − θr f (Mb)g(I (x, 0, 0))) ϕ

Dmψ ′(0) − b(ψ(0) − ζ )

ψ(xh)

⎞

⎟
⎟⎟⎟
⎠

. (A.14)

If (ζ1, ϕ1, ψ1) ∈ ker H , then

ψ1(0) − ζ1 = 0, (A.15a)

Dbϕ
′′
1 (x) − vϕ′

1(x) + (r f (Mb)g(I (x, 0, 0)) − δ∗) ϕ1 = 0, 0 < x < xh, (A.15b)

Dmψ ′′
1 (x) + (θ pδ∗ − θr f (Mb)g(I (x, 0, 0))) ϕ1 = 0, 0 < x < xh, (A.15c)

ψ ′
1(0) = 0, ψ1(xh) = 0. (A.15d)

Recall that δ∗ is the principal eigenvalue of (3.4) with q(x) = r f (Mb)g(I (x, 0, 0)),
and let ϕ̄ ∈ X1 be the corresponding positive eigenfunction for the principal eigenvalue
δ∗. Then, ϕ̄ is the unique solution of (A.15b) up to a constant multiple. And there exist
unique functions ψ̄ ∈ X2 and ζ̄ ∈ R satisfying (A.15c), (A.15d) and (A.15a). Hence,
dim ker H = 1 and ker H = span{(ζ̄ , ϕ̄, ψ̄)}.

If (σ1, σ2, σ3, σ4, σ5) ∈ range H , then there exists (ζ2, ϕ2, ψ2) ∈ R × X1 × X2
such that

ψ2(0) − ζ2 = σ1,

Dbϕ
′′
2 (x) − vϕ′

2(x) + (r f (Mb)g(I (x, 0, 0)) − δ∗) ϕ2 = σ2(x), 0 < x < xh,

Dmψ ′′
2 (x) + (θ pδ∗ − θr f (Mb)g(I (x, 0, 0))) ϕ2 = σ3(x), 0 < x < xh,

Dmψ ′
2(0) − b(ψ2(0) − ζ2) = σ4, ψ2(xh) = σ5.

(A.16)

Multiplying both sides of (A.15b) and the second equation of (A.16) by ϕ2e−(v/Db)x

and ϕ1e−(v/Db)x , respectively, subtracting, and integrating on [0, xh], we obtain
∫ xh

0
σ2(x)e

−(v/Db)xϕ1(x)dx

=Db

∫ xh

0

((
ϕ′
2(x)e

−(v/Db)x
)′

ϕ1(x) −
(
ϕ′
1(x)e

−(v/Db)x
)′

ϕ2(x)

)
dx

=Dbϕ
′
2(x)e

−(v/Db)xϕ1(x)
∣∣
∣
xh

0
− Dbϕ

′
1(x)e

−(v/Db)xϕ2(x)
∣∣
∣
xh

0
= 0.

This implies that

∫ xh

0
σ2(x)e

−(v/Db)x ϕ̄(x)dx = 0
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and

range H =
{
(σ1, σ2, σ3, σ4, σ5) ∈ R × Y 2 × R

2 :
∫ xh

0
σ2(x)e

−(v/Db)x ϕ̄(x)dx = 0

}
.

Then, codim range H = 1. Moreover, we also have

Fδ(N ,B,M)(δ∗, Mb, 0, Mb)(ζ̄ , ϕ̄, ψ̄) = (0,−ϕ̄, pθϕ̄, 0, 0),

so Fδ,(N ,B,M)(δ∗, Mb, 0, Mb)(ζ̄ , ϕ̄, ψ̄) /∈ range H as
∫ xh

0
σ2(x)e

−(v/Db)x ϕ̄2(x)dx �=
0.

From Theorem 1.7 in Crandall and Rabinowitz (1971), there exists a positive con-
stant ε3 > 0 such that all solutions of (3.3) near (δ∗, Mb, 0, Mb) lie on a smooth
curve


3 = {(δ3(s), N∗
3 (s), B∗

3 (s, x), M∗
3 (s, x)) : 0 < s < ε3}

with the form
{

N∗
3 (s) = Mb + sζ̄ + o(s), B∗

3 (s, x) = sϕ̄(x) + o(s),

M∗
3 (s, x) = Mb + sψ̄(x) + o(s).

(A.17)

Let l̄ be a linear functional on R × Y 2 × R
2 by

〈l̄, (σ1, σ2, σ3, σ4, σ5)〉 =
∫ xh

0
σ2(x)e

−(v/Db)x ϕ̄(x)dx .

Then, from Liu et al. (2007), we have

δ′
3(0) = −

〈
l̄, F(N ,B,M)(N ,B,M) (δ∗, Mb, 0, Mb) [ζ̄ , ϕ̄, ψ̄]2〉

2
〈
l̄, Fδ,(N ,B,M) (δ∗, Mb, 0, Mb) [ζ̄ , ϕ̄, ψ̄]〉

= −

∫ xh

0

r I (x, 0, 0)e−(v/Db)x

(Mb + γ1)(I (x, 0, 0) + γ2)
μ(x, ϕ̄, ψ̄)dx

∫ xh

0
e−(v/Db)x ϕ̄2(x)dx

,

(A.18)

where

μ(x, ϕ̄, ψ̄) = γ2lMb

I (x, 0, 0) + γ2
ϕ̄2(x)

∫ x

0
ϕ̄(s)ds − γ1

Mb + γ1
ϕ̄2(x)ψ̄(x), x ∈ [0, xh].

We claim that ψ̄(x) ≤ 0 on x ∈ [0, xh]. Let y(x) = r f (Mb)g(I (x, 0, 0)). Then
y(x) is a strictly decreasing function on x ∈ [0, xh]. It follows from (A.15b)-(A.15d)
that ψ̄ ′(xh) ≥ 0. From (A.15c), we have ψ̄ ′′(x) > 0 on x ∈ [0, xh] if p ≤ y(xh)/δ∗.
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Combining with its boundary conditions ψ̄ ′(x) = 0, ψ̄(xh) = 0, we get ψ̄(x) ≤ 0 on
x ∈ [0, xh]. If p > y(xh)/δ∗, then there is a unique x0 ∈ (0, xh) such that ψ̄ ′′(x) > 0
on x ∈ (0, x0) and ψ̄ ′′(x) < 0 on x ∈ (x0, xh). This means that ψ̄ ′(x) is a strictly
increasing function on x ∈ [0, x0) and a strictly decreasing function on x ∈ (x0, xh].
Hence ψ̄ ′(x) > 0 on x ∈ (0, xh) since ψ̄ ′(0) = 0 and ψ̄ ′(xh) ≥ 0. It follows from
ψ̄(xh) = 0 that ψ̄(x) ≤ 0 on x ∈ [0, xh]. From (A.18), we have δ′

3(0) < 0, which
implies that the bifurcation at (δ∗, Mb, 0, Mb) is backward. This completes the proof
of part (iii).

Now we turn to global bifurcation of solutions of (3.3). By using Theorem 3.3
and Remark 3.4 in Shi and Wang (2009), we conclude that there exists a connected
component 	+ of 	 containing 
3, and the closure of 	+ includes the bifurcation
point (δ∗, Mb, 0, Mb). Moreover, 	+ satisfies one of the following three alternatives:

(a) it is not compact in R
+ × R × X1 × X2;

(b) it contains another bifurcation point (δ̂, Mb, 0, Mb) with δ̂ �= δ∗;
(c) it contains a point (δ, Mb + N∗∗

3 , B∗∗
3 (x), Mb + M∗∗

3 (x)) with 0 �= (N∗∗
3 , B∗∗

3 (x),
M∗∗

3 (x)) ∈ W , where W is a closed complement of ker H = span(ζ̄ , ϕ̄, ψ̄) in
R × X1 × X2.

If the alternative (c) holds, then

∫ xh

0
B∗∗
3 (x)ϕ̄(x)dx = 0. (A.19)

But it follows from Lemma A.2 that B∗∗
3 (x) > 0 on [0, xh], and ϕ̄(x) > 0 as it is a

positive eigenfunction. This is a contradiction to (A.19), which means that (c) cannot
happen. Suppose that the alternative (b) occurs, then (A.15) has a nonzero solution
(ζ̂ , ϕ̂, ψ̂) with δ∗ replaced by δ̂, ˆϕ ∈X1, and ϕ̂ > 0. But the eigenvalue problem (3.4)
has only one eigenvalue with positive eigenfunction, hence (b) cannot happen either.

Therefore, the alternative (a)must happen, and	+ is not compact inR+×R×X1×
X2. FromLemmaA.2, (N∗

3 , B∗
3 (x), M∗

3 (x)) is bounded on [0, xh] for δ ∈ [ε, δ∗∗)with
any ε > 0, and (3.3) has no nonnegative solution when δ > δ∗∗. Hence the projection
of 	+ onto δ-axis is contained in (0, δ∗∗), but contains [ε, δ∗) for any ε > 0, so the
projection of 	+ onto δ-axis contains (0, δ∗). This also implies that there is at least
one positive solution of (3.3) on 	+ for any δ ∈ (0, δ∗). This completes the proof of
parts (i) and (ii).

��
To prove the existence of coexistence steady state E4, we first prove the following

elementary result.

Lemma A.3 Suppose that 0 < a < xe(δ∗
0 − δ∗) holds, then

{
Dbϕ

′′(x) − vϕ′(x) + (
r f (Mb)g(I (x, 0, 0)) − δ∗

a

)
ϕ = 0, 0 < x < xh,

Dbϕ
′(0) − vϕ(0) = −a, Dbϕ

′(xh) − vϕ(xh) = 0.

(A.20)

has a unique positive solution ϕ̂(x).
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Proof By using the transform φ(x) = ϕ(x)e−(v/Db)x , we get

{
Dbφ

′′(x) + vφ′(x) + (
r f (Mb)g(I (x, 0, 0)) − δ∗

a

)
φ = 0, 0 < x < xh,

−Dbφ
′(0) − a = 0, φ′(xh) = 0.

(A.21)

It is clear that 0 is a lower solution of (A.21). Let ϕ̃(x) = φ̃(x)e(v/Db)x be the positive
eigenfunction of (3.4) corresponding to λ1(Db, v, r f (Mb)g(I (x, 0, 0)) = δ∗ with
maxx∈[0,xh ] φ̃(x) = 1. Define φ̄(x) = K [φ̃(x) + ε(x − xh)2], where K and ε are
positive constants to be specified. Then

Dbφ̄
′′(x) + vφ̄′(x) + (

r f (Mb)g(I (x, 0, 0)) − δ∗
a

)
φ̄

=(δ∗ − δ∗
a)K φ̃ + εK

[
2Db + 2v(x − xh) + (

r f (Mb)g(I (x, 0, 0)) − δ∗
a

)
(x − xh)

2
]

≤0, 0 < x < xh,

if ε > 0 is chosen sufficiently small since δ∗ − δ∗
a < 0 and φ̃ > 0. We can further

choose K > 0 so that −Dbφ̄
′(0) − a = 2DbK εxh − a = 0 and φ̄′(xh) = 0.

Hence φ̄ is an upper solution of (A.21). From Theorem 3.2.1 in Pao (1992), there
is a solution φ̂ of (A.21) satisfying 0 ≤ φ̂ ≤ φ̄. It follows from the strong maximum
principle that φ̂ > 0.Note that (A.21) is a linearODEwith nonhomogeneous boundary
conditions. Hence φ̂ is unique. This implies that there exists a unique positive solution
ϕ̂ = φ̂e(v/Db)x of (A.20). ��

To obtain the global existence of E4, we first establish the following a priori esti-
mates for nonnegative solutions (A4, N4, B4(x), M4(x)) of (3.14).

Lemma A.4 Assume that (A4, N4, B4, M4) ∈ (R+)2 × Y 2 is a nonnegative solution
of (3.14) with A4, N4 > 0 and B4, M4 �≡ 0. Then

(i) 0 < δ < δ∗∗
a , where δ∗∗

a is defined in (3.5);

(ii) 0 < A4 < K, where K satisfies
r

xe

∫ 0

−xe
g(I (x, K ))dx = δ + a

xe
;

(iii) For any ε > 0, there exists a positive constant C(ε) > 0 such that

0 < B4(x) ≤ C(ε),

0<N4, M4(x)<Mb+x2hθ(r + pδ∗∗
a )C(ε)/Dm+xhθ(xe(1 − p)δ∗∗

a + a)K/Dm

on [0, xh] for δ ∈ [ε, δ∗∗
a ).

Proof It follows from the first equation of (3.14) that (i) and (ii) hold. By applying
similar arguments to those in Lemma A.2, we conclude that M4 > 0 and for any
ε > 0, there exists a positive constant C(ε) > 0 such that 0 < B4 ≤ C(ε). From the
second and fourth equations of (3.14), we have

b(M4(0) − N4) = θ(xe(1 − p)δ + a)A4
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and

|DmM
′
4(x)| =

∣∣
∣∣Dm

∫ x

0
M ′′

4 (s)ds + DmM
′
4(0)

∣∣
∣∣

≤ θ

∣∣∣∣

∫ x

0
(r f (M4)g(I (x, A4, B4)) − pδ) B4ds

∣∣∣∣ + b|M4(0) − N4|
≤ xhθ(r + pδ∗∗

a )C(ε) + θ(xe(1 − p)δ∗∗
a + a)K .

By (A.13), we conclude that (iii) holds. ��
Proof of Theorem 3.7 Define a nonlinear mapping G : R+ ×R

2 × X3 × X2 → R
2 ×

Y 2 × R
3 by

G(δ, A, N , B, M) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

(

r f (N )
1

xe

∫ 0

−xe
g(I (x, A))dx − δ − a

xe

)

A

b

xe
(M(0) − N ) + θ

(

pδ − r f (N )
1

xe

∫ 0

−xe
g(I (x, A))dx

)

A

DbB
′′ − vB′ + r B f (M)g(I (x, A, B)) − δB

DmM ′′ + θ (pδ − r f (M)g(I (x, A, B))) B
DbB

′(0) − vB(0) + aA
DmM ′(0) − b(M(0) − N )

M(xh) − Mb

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

,

(A.22)

where X3 := {u ∈ C2([0, xh]) : Dbu′(xh) − vu(xh) = 0}, and X2,Y are defined in
(3.13). It follows thatG(δ, 0, Mb, 0, Mb) = 0.Let L := G(A,N ,B,M)(δ

∗
a , 0, Mb, 0, Mb)

be the Frechét derivative of G with respect to (A, N , B, M). For any (ξ, ζ, ϕ, ψ) ∈
R
2 × X3 × X2, we have

L[ξ, ζ, ϕ, ψ] =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0

−θ

(
(1 − p)δ∗

a + a

xe

)
ξ − b

xe
ζ + b

xe
ψ(0)

Dbϕ
′′(x) − vϕ′(x) + (r f (Mb)g(I (x, 0, 0)) − δ∗

a)ϕ

Dmψ ′′(x) + θ(pδ∗
a − r f (Mb)g(I (x, 0, 0)))ϕ

Dbϕ
′(0) − vϕ(0) + aξ

Dmψ ′(0) − b(ψ(0) − ζ )

ψ(xh)

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

If (ξ1, ζ1, ϕ1, ψ1) ∈ ker L , then

− θ

(
(1 − p)δ∗

a + a

xe

)
ξ1 − b

xe
ζ1 + b

xe
ψ1(0) = 0,

Dbϕ
′′
1 (x) − vϕ′

1(x) + (r f (Mb)g(I (x, 0, 0)) − δ∗
a)ϕ1 = 0, 0 < x < xh,

Dmψ ′′
1 (x) + θ(pδ∗

a − r f (Mb)g(I (x, 0, 0)))ϕ1 = 0, 0 < x < xh,

Dbϕ
′
1(0) − vϕ1(0) + aξ1 = 0, Dmψ ′

1(0) − b(ψ1(0) − ζ1) = 0, ψ1(xh) = 0.

(A.23)
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Let ξ1 = 1. Then, from Lemma A.3, ϕ1 = ϕ̂ > 0 can be uniquely solved, so are
ζ1 = ζ̂ and ψ1 = ψ̂ . Similar to those in the proof of (i) in Theorem 3.5, we have
ψ̂ ≤ 0 and ζ̂ < 0. If ξ1 = 0, we can conclude that ϕ1 ≡ 0 as δ∗ < δ∗

a and consequently
ζ1 = ψ1 = 0. Hence, dim ker L = 1 and ker L = span{(1, ζ̂ , ϕ̂, ψ̂)}. It is also easy
to observe that codim range L = 1 as

range L =
{
(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7) ∈ R

2 × Y 2 × R
3 : ρ1 = 0

}
,

and

Gδ(A,N ,B,M)(δ
∗
a , 0, Mb, 0, Mb)(1, ζ̂ , ϕ̂, ψ̂) = (−1, θ p,−ϕ̂, θ pϕ̂, 0, 0, 0) /∈ range L.

By applying Theorem 1.7 in Crandall and Rabinowitz (1971), there exists a positive
constant ε4 > 0 such that all solutions of (3.14) near (δ∗, Mb, 0, Mb) lie on a smooth
curve


4 = {(δ4(s), A∗
4(s), N

∗
4 (s), B∗

4 (s, x), M∗
4 (s, x)) : 0 < s < ε4}

with the form
{

A∗
4(s) = s + o(s2), N∗

4 (s) = Mb + sζ̂ + o(s2),

B∗
4 (s, x) = sϕ̂(x) + o(s2), M∗

4 (s, x) = Mb + sψ̂(x) + o(s2).
(A.24)

Again the direction of bifurcation can be calculated by

δ′
4(0) = −

〈
l̂,G(A,N ,B,M)(A,N ,B,M)(δ

∗
a , 0, Mb, 0, Mb)[1, ζ̂ , ϕ̂, ψ̂]2

〉

2
〈
l̂,Gδ(A,N ,B,M)(δ∗

a , 0, Mb, 0, Mb)[1, ζ̂ , ϕ̂, ψ̂]
〉

= −rγ2μ(0)Mb

Mb + γ1
+ rγ1ζ̂

(Mb + γ1)2

1

xe

∫ 0

−xe
g(I (x, 0))dx < 0

where l̂ is a linear functional onR2×Y 2×R
3 defined as 〈l̂, (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7)〉

= ρ1 and μ(0) can been found in (A.8). This shows that the bifurcation at
(δ∗

a , 0, Mb, 0, Mb) is backward. This proves part (iii). The proof of part (i) and (ii) is
similar to the one for Theorem 3.5, so we omit it here. ��

Appendix B

We briefly describe the numerical algorithm used in the paper. Divide the interval
[0, xh] to n equal size subintervals [xi , xi+1], i = 1, 2, . . . , n, n + 1 with xi =
xi−1 + x, x1 = 0 and x = xh/n (grid size). We also denote the step size (in the
time direction) by t . Let

uij = u(xi , t j ), t j = t j−1 + t, xi = xi−1 + x, 1 ≤ j ≤ m, 1 ≤ i ≤ n + 1.
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We also define u0j to be the value at x0 = −x and un+2
j to be the value at xn+2 =

xh + x . We use backward differences and central differences as

ut (x
i , t j ) = uij − uij−1

t
, ux (x

i , t j ) = uij − ui−1
j

x
, uxx (x

i , t j ) = ui+1
j − 2uij + ui−1

j

(x)2
.

Then, model (2.1) becomes

A j − A j−1

t
= r A j f (N j )

1

xe

∫ 0

−xe
g(I (x, A j ))dx − a

xe
A j − δA j ,

N j − N j−1

t
= b

xe
(M1

j − N j ) + θ pδA j − θr A j f (N j )
1

xe

∫ 0

−xe
g(I (x, A j ))dx,

Bi
j − Bi

j−1

t
= Db

Bi+1
j − 2Bi

j + Bi−1
j

(x)2
− v

Bi
j − Bi−1

j

x

+ r Bi
j f (M

i
j )g(I (x

i , A j , B
i
j )) − δBi

j ,

Mi
j − Mi

j−1

t
=Dm

Mi+1
j −2Mi

j +Mi−1
j

(x)2
+θ pδBi

j − θr Bi
j f (M

i
j )g(I (x

i , A j , B
i
j )),

Db
B1
j − B0

j

x
− vB1

j = −aA j , Db
Bn+2
j − Bn+1

j

x
− vBn+1

j = 0,

Dm
M1

j − M0
j

x
= b(M1

j − N j ), Dm
Mn+2

j − Mn+1
j

x
= Mb,

1

xe

∫ 0

−xe
g(I (x, A j ))dx = 1

xe(Kbg + l A j )
ln

Iin + γ2

Iin exp(−xe(Kbg + l A j )) + γ2
,

I (xi , A j , B
i
j ) = Iin exp

(

−Kbg(x
i + xe) − xel A j − l

i∑

k=0

Bk
j

)

,

for 1 ≤ j ≤ m, 1 ≤ i ≤ n + 1. The simulations in the paper are based on the above
numerical algorithm and are implemented in MATLAB.
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