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Abstract
In a grassland ecosystem, the dynamics and coexistencemechanisms of two herbivores
competing for one herbaceous plant have been widely studied, while the chemical
heterogeneity of herbaceous plant’s aboveground and belowground parts is usually
ignored in dynamic modeling. Based on the traditional two herbivore-one herbaceous
plant competitionmodel, a new stoichiometric competitionmodel, which incorporates
the chemical heterogeneity of herbaceous plants, is formulated to investigate effects
of the aboveground–belowground interactions and the chemical heterogeneity on the
dynamics of the two herbivore-one herbaceous plant system. We perform theoretical
analysis for the stability of boundary equilibria and show that a stable coexistent equi-
librium is possible with two herbivores on one herbaceous plant. Moreover, numerical
simulations reveal that various light intensity and nitrogen input can also allow all
populations to coexist in periodic oscillations or irregularly cyclic oscillations. Our
findings further indicate that when the nitrogen input is fixed, higher light intensity
leads to a dominance of the lower N-demand herbivore, while the light intensity is
fixed, higher nitrogen input leads to a dominance of the higher N-demand herbivore.
Moderate levels of light and nutrient could promote the coexistence of two herbi-
vores and herbaceous plant. This study also explains the functional mechanism for the
decline of species diversity in response to nitrogen enrichment.

Keywords Stoichiometry · Aboveground and belowground · Competition · N:C
ratio · Species diversity

1 Introduction

A grassland ecosystem, as a key part of a terrestrial ecosystem, is composed of
aboveground and belowground subsystems that contain enormous amount of species
interacting at various spatial scales (Van et al. 2009). Most studies focus on above-
ground parts of herbaceous plants due to sampling difficulties and limited measuring
methods and less data are available of belowground parts. Plants have longer effects
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in the belowground than in the aboveground since organisms in the soil have lower
mobility and higher survival rates (Van et al. 2009). In addition, many herbivores
only ingest the aboveground herbaceous plants and 80–90% biomass of herbaceous
plants remain in the belowground part, which contributes to the regeneration of the
plant’s aboveground part (Niklas 2005).Moreover, a growing body of evidence implies
that above- and belowground communities and processes are intrinsically linked, and
feedbacks between these two subsystems are important for community structure and
ecosystem functioning (Masters et al. 1993; Van et al. 2000, 2001). Therefore, it is
significant to consider the different roles and interactions of aboveground and below-
ground herbaceous plants.

Predation and competition are the main forces shaping food webs and ecological
communities. Meanwhile, the competitive interactions affect the earth’s biodiversity
(Peter and Kuang 2008). The fact that two herbivores compete for one herbaceous
plant and coexist is widespread in a grassland ecosystem. For example, in the steppe
and deserts around Qinghai Lake on the Qinghai-Tibet Plateau, Przewalski’s gazelle
(Procapra przewalskii) and the domestic Tibetan sheep (Ovis aries) compete for the
graminoids (Liu and Jiang 2004); In Inner Mongolica steppe, the Ovis aries and
Spermophilus dauricus compete for Stipa grandis (Liu et al. 2013). However, the
competitive exclusion principle (CEP) states that no equilibrium is possible mathe-
matically if n species exploit fewer than n resources (Levin 1970). This principle is
largely inconsistent with bio-diversity observed in nature. Although various mecha-
nisms, such as spatial heterogeneity or chaotic fluctuations, have been proposed to
explain this coexistence, none of them invalidate the principle (Armstrong andMcGe-
hee 1980; Richards et al. 2000; Chase et al. 2002; Kuang et al. 2003).

To explain the contradiction between the natural reality and competitive exclu-
sion principle, stoichiometry has been widely employed in competition models.
Loladze et al. (2004) incorporated principles of ecological stoichiometry into a stan-
dard predator-prey model and revealed that chemical heterogeneity within and among
species can support species coexistence. Here, ecological stoichiometry is the study
of the balance of energy and multiple chemical elements in ecological interactions
(Sterner and Elser 2008). Miller et al. (2004) proposed a stoichiometric model to
analyze the two-patch consumer-resource systems. They obtained that competition
models incorporating stoichiometry can be meaningful in explaining biodiversity and
providing a mechanism for deterministic extinction. The stoichiometric competition
model of two predators and one prey established by Deng and Loladze (2007) showed
that the reduction in prey quality can give rise to chaotic oscillation. Wang et al.
(2009) showed that Daphnia species invasion model exhibited chaotic coexistence
of the competing species. These studies work well for aquatic ecosystems by treating
the prey (primary producer) as an integrality; however, the aboveground–belowground
interaction in grassland ecosystems is much less explored (Bardgett andWardle 2003).

Turchin formulated a herbaceous regeneration dynamic model, in which they
divided the herbaceous plant into aboveground and belowground parts and considered
the interactions between the two portions. The model clearly elaborated the energy
flow between the aboveground and belowground (Turchin 2003). Yet, they neglected
effects of nutrients on the biomass. In fact, it has been shown that variable chemical
composition (i.e., stoichiometry) of prey can significantly affect competitive predator-
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prey dynamics both experimentally (Sterner et al. 1998; Nelson et al. 2001; Urabe
et al. 2002) and theoretically (Andersen 1997; Loladze et al. 2000; Muller et al. 2001;
Wang et al. 2008; Wang 2010; Peace et al. 2014; Chen et al. 2017; Peace and Wang
2019).

Nitrogen is one of the most important limiting nutrient elements of plants and plays
a vital role in plant growth. Many studies show that nitrogen enrichment can promote
the aboveground growth of grassland ecosystems, and then lead to an increase in the
aboveground biomass (LeBauer and Treseder 2008; Song et al. 2012). Furthermore,
nitrogen enrichment can also affect species diversity and community stability in grass-
land ecosystems (Gough et al. 2000;Bai et al. 2004).More counter-intuitively, nitrogen
enrichment can accelerate loss of rare species in the community, reduce species diver-
sity, and ultimately lead to a decline in ecosystem stability (Suding et al. 2005; Lan
and Bai 2012). The mechanism for this decline remains unclear. Most existing studies
are mainly based on field observational evidence and experimental analysis while the
dynamical modeling approach is lacking.

In this study, by considering the ecological stoichiometry of key nutrient elements,
in Sect. 2, we formulate a new stoichiometric competition model to investigate the
dynamics among two herbivore and one herbaceous plant and characterize the mech-
anism that nitrogen enrichment reduces species diversity in a grassland ecosystem.
Here, the biomass of herbaceous plant is divided into two parts: the aboveground and
the belowground. Section 3 provides the qualitative analysis of the complex dynamics
of the stoichiometric competition model. Section 4 includes some numerical studies
of the time series dynamics and bifurcation analyses of the model. We investigate
the effects of above- and belowground interaction and food quality on the population
growth and the energy flow across herbaceous plant and herbivores. Section 5 con-
cludes this paper by presenting biological implications of our mathematical findings
and computational observations.

2 Model Formulation

In this study, we focus on the interaction between two herbivores (sheep and cattle) or
primary consumers exploiting one herbaceous plant or herb in a grassland system. The
model construction follows an outline in Turchin (2003) and Loladze et al. (2004).
We start with a conventional (MacArthur–Rosenzweig-type) model, which describes
a system of two herbivores feeding on one herbaceous plant

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= r S

(

1 − S

K

)

− f1(S)H1 − f2(S)H2,

dH1

dt
= e1 f1(S)H1 − d1H1,

dH2

dt
= e2 f2(S)H2 − d2H2.

(1)

In (1), S, H1 and H2 denote biomass densities of the herbaceous plant and two
herbivores, respectively; r is the intrinsic growth rate of the herbaceous plant; d1 and
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d2 represent specific loss rates of herbivores that include respiration and death; f1 and
f2 are herbivores’ ingestion rates, which are assumed to be monotonically increasing
and bounded differentiable functions following Holling type II functional response,
i.e., fi (S) satisfies following assumptions

fi (0) = 0, f ′
i (S) > 0 and f ′′

i (S) < 0 for S ≥ 0, i = 1, 2; (2)

e1 and e2 are the maximum production efficiencies of converting ingested herbaceous
plant biomass into herbivore biomass. The second law of thermodynamics requires
that e1 < 1 and e2 < 1. K is the herbaceous plant’s constant carrying capacity in
terms of carbon (C) and represents the light intensity.

However, herbivores usually only feed on the aboveground part of the herbaceous
plants, the belowground part of herbaceous plants will be retained and the energy
stored in the belowground will help the aboveground to regrow after the aboveground
is ingested by herbivores (Ares and Singh 1974). Hence, it is reasonable and realistic
to take into account the heterogeneity of above- and belowground herbaceous plants.

Let A be the aboveground biomass density and B be the corresponding below-
ground biomass of herbaceous plant. Assume that the photosynthesis rate is directly
proportional to the amount of aboveground biomass and a constant proportion of fixed
energy by photosynthesis is transferred belowground. Similarly, some proportion of
belowground energy is mobilized for the growth of aboveground biomass, and above-
ground biomass will increase because a portion of energy fixed aboveground will be
allocated to growth. In Turchin (2003), based on above assumptions, Turchin reached
the following dynamic model

⎧
⎪⎪⎨

⎪⎪⎩

dB

dt
= s A − cB

(

1 − A

K

)

− d0B,

dA

dt
= (r A + cB)

(

1 − A

K

)

,

(3)

where K represents the carrying capacity (i.e., the maximum standing biomass) relat-
ing to light intensity, s is the constant proportion of fixed biomass by photosynthesis
assigned to the belowground part, r reflects the rate at which energy is fixed by the
aboveground, c denotes the rate of carbondelivered frombelowground to aboveground,
d0 is the specific degraded rate of the belowground biomass.

In order to explore the impact of interactions between aboveground and below-
ground of herbaceous plants on the dynamics of the competitive foodweb, we combine
(1) with (3) and then obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB

dt
= s A − cB

(

1 − A

K

)

− d0B,

dA

dt
= (r A + cB)

(

1 − A

K

)

− f1(A)H1 − f2(A)H2,

dH1

dt
= e1 f1(A)H1 − d1H1,

dH2

dt
= e2 f2(A)H2 − d2H2.

(4)

This model characterizes energy flow through aboveground to the belowground
of herbaceous plants but neglects the effect of element cycling. Since any biological
populations require both energy and various mineral elements to sustain their growth,
we reconstruct a new four-dimensionalmodel that incorporates chemical heterogeneity
based on the principles in ecological stoichiometry. We deliberately focus on the two
key chemical elements C and N, since C comprises the bulk of the dry weight of
the most organisms and N plays a vital role in the plant growth and decomposition
(Manzoni et al. 2008).

In addition, organisms have inherent stability, that is, biological organisms have
the ability to maintain a relatively constant chemical composition in a changing envi-
ronment (Koojiman 1995). Therefore, the N:C ratio in plants cannot be infinitely
increased. Nitrogen in plants is mainly contained in proteins and chloroplasts, while
chloroplasts are found in the leaves of aerial parts of the limbs. Hence, nitrogen content
in different organs of plants is considerably different. For example, many experiments
show that nitrogen content of stems and roots of herbs are about 4–5% while the
nitrogen content in leaves is about 10–15% (Zhou et al. 2018), the N:C in leaves or
stems is greater than that in roots (Zhang et al. 2019). In reality, nitrogen is absorbed
from the soil by plants mainly through the roots (Bouldin 1961). Moreover, plant stoi-
chiometry has lower levels of variation than soil and/or bedrock stoichiometry (Castle
and Neff 2009; Neff et al. 2006). Moreover, this tendency influences the capacity of
sequestration of C in the ecosystem, since more C will be diverted to detritus in soils
and sediments when the efficiency of C use is low due to a stoichiometric imbalance
(Hessen et al. 2004).

The above considerations are expressed in the following assumptions:

(A1) All nitrogen absorbed by herbaceous plant derives from the soil.
(A2) The system is closed for N, with a total of N (mg N/m2), which is divided into

three pools: N in the herbivores, N in the aboveground plants and the rest as N
potentially available for the belowground part.

(A3) The two herbivores maintain constant N:C ratios, say θ1 and θ2 (mg N/mg C),
respectively; in the absence of extreme scenarios (e.g., drought, flood, or chemical
pollution, et al.), N:C ratio of the aboveground varies, but never falls below a
minimum θmin (mg N/mg C) and never rises over a maximum θmax (mg N/mg
C). We assume that the N:C within (θmin, θmax) is the “normal N:C” of the
aboveground part; “the natural level” of N denotes the amount of nitrogen input
when the aboveground N:C is less than θmin. The belowground part’s N:C ratio
is a constant θ0 (mg N/mg C), and θmin> θ0.
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From these three assumptions, it follows that the light intensity limits herbaceous
plant’s density to K (mg C/m2) and the combination of (A2) and (A3) imposes another
limit on the herbaceous plants, N/θmin. Moreover, the herbivores and belowground
part contain θ1H1, θ2H2 and θ0B (mg N/m2) of nitrogen, respectively. Thus, nitrogen
available for the aboveground herbaceous plant at any given time is N−θ1H1−θ2H2−
θ0B (mg N/m2). For convenience, denote Q = N − θ1H1 − θ2H2 − θ0B. Recalling
that N:C in the aboveground should be at least θmin (mg N/mg C), one obtains that the
aboveground part’s density cannot exceed Q/θmin (mg C/m2). Therefore, the density
of aboveground plant (mg C/m2) at any time is given by

min
(
K , Q/θmin

)
. (5)

If the aboveground plant’s N:C ratio is greater than θi , then the i-th herbivore can
convert the energy content of the plant with the maximal (in C terms) efficiency ei ,
i = 1, 2. If the aboveground plant’s N:C ratio is less than θi , then the plant is poor
quality food for herbivores, and the i-th herbivore wastes excess carbon to maintain its
constant N:C ratio. Thewaste is assumed to be proportional to the ratio of aboveground
plant’s N:C to i-th herbivore’s N:C, which reduces the growth efficiency in C terms.
The following minimum function provides the simplest way to capture such effects of
variable herbaceous plant quality on herbivores’ growth efficiencies

ei min
(
1,

Q/A

θi

)
, i = 1, 2. (6)

By (A3), the abovegroundpart’sN:C ratio varieswhile theN:C ratio of belowground
part remains constant, because plants can maintain a dynamic balance of N: C through
internal mechanisms (Sterner and Elser 2002). If Q/A ≥ θmax, then it implies the
nitrogen content in plant is sufficient, so the absorption of nitrogen may be reduced,
then the herbaceous aboveground part increases the absorption of carbon by intense
photosynthesis to reduce N:C ratio. If θmin < Q/A < θmax, then the aboveground
part of the plant absorbs C from the belowground at rate c. If Q/A < θmin, then it
indicates that the aboveground part’s N: C is lower than the minimum ratio required
to ensure its normal growth. In this case, the aboveground does not absorb carbon
from the belowground, but transfers carbon to roots to increase the aboveground N:C
ratio, and helps to accumulate biomass in the belowground portion for absorbing more
nutrition from soil (Zhou et al. 2018). Furthermore, if θ0 < Q/A < θmin, then the
belowground part absorbs all carbon transferred from aboveground herbaceous plant
(assuming the absorption rate is still c); while Q/A < θ0 < θmin, because the N:C
ratio of belowground part is constant, the belowground part wastes excess carbon that
transferred from aboveground, and the absorption rate is Q/A

θ0
c. Therefore, the transfer

of C between the aboveground and the belowground is

min
(Q/A

θ0
, 1

)
cB

(
1 − A

min
(
K , Q/θmin

)
)
. (7)
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Incorporating (5), (6) and (7) into (4) leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB

dt
= s A − min

(Q/A

θ0
, 1

)
cB

(
1 − A

min
(
K , Q/θmin

)
)

− d0B,

dA

dt
= (r A + cB)

(
1 − A

min
(
K , Q/θmin

)
)

− f1(A)H1 − f2(A)H2,

dH1

dt
= e1 min

(
1,

Q/A

θ1

)
f1(A)H1 − d1H1,

dH2

dt
= e2 min

(
1,

Q/A

θ2

)
f2(A)H2 − d2H2.

(8)

Here all parameters are positive and their biological significance, default values (when
available), and reference resources are summarized in Table 1.

Remark 1 When H1 = H2 = 0 and Q/A < θ0 < θmin, A′ + B ′ in system (8) is

A′ + B ′ = s A − d0B + r A

(

1 − Aθmin

Q

)

+
(

1 − Q

Aθ0

) (

1 − Aθmin

Q

)

,

where 1 − Aθmin/Q < 0. Then the third and fourth terms are negative. The negative
terms imply that the whole plant will expel carbon out of its body when the N:C
aboveground is low.

3 Qualitative Analysis

3.1 Boundedness and Invariance

In this section, we investigate the primary dynamics of (8). The boundedness and
positive invariance of the solutions of the system are assured by the following theorem.

Theorem 1 The open set

Δ ≡ {(B, A, H1, H2) : B > 0, 0 < A < k,
A + B < (s + r + d0)k/d0, H1 > 0, H2 > 0, θminA + θ1H1 + θ2H2 < N }

is positively invariant with respect to (8), where k = min(K , N/θmin).

Proof Consider the solution S(t) = (B(t), A(t), H1(t), H2(t)) of (8) with S(0) ∈ Δ.
Let t1 > 0 be the first time at which S(t) touches or crosses the boundary of Δ. We
prove the claim by contradiction arguments and the discussion is divided into seven
cases.

Case 1. B(t1) = 0. Let A1 = mintε[0,t1] A(t). If Q/A ≥ θ0, then one has

dB

dt
= s A − cB

(
1 − A

min(K , Q/θmin)

)
− d0B
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≥ −cB
(
1 − A

min(K , Q/θmin)

)
− d0B

≥ −cB

(

1 − A1

K

)

− d0B := α1B, t ∈ [0, t1].

The standard argument yields that B(t) ≥ B(0)eα1t > 0 for any t ∈ [0, t1], which
implies that B(t1) ≥ B(0)eα1t1 > 0.

If Q/A < θ0, then

dB

dt
= s A − Q/A

θ0
cB

(
1 − A

min(K , Q/θmin)

)
− d0B

≥ −Q/A

θ0
cB

(
1 − A

min(K , Q/θmin)

)
− d0B

≥ cBθmin

θ0
− QcB

Aθ0
− d0B

≥
(
cθmin

θ0
− cN

A1θ0
− d0

)

B := α2B.

Hence, one has B(t1) ≥ B(0)eα2t1 > 0, and there is a contradiction. No trajectory can
touch the boundary B(t) = 0.

Case 2. A(t1) = 0. Since B(t), H1(t) and H2(t) are continuous, let B1 =
maxt∈[0,t1] B(t), H1

1 = maxtε[0,t1] H1(t), H2
2 = maxtε[0,t1] H2(t), f̄1 = f ′

1(0), f̄2 =
f ′
2(0), Q̄ = N − θ1H1

1 − θ2H2
2 − θ0B1. If A(t) > Q̄/θmin, then A(t1) > 0 holds. If

A(t) ≤ Q̄/θmin, then

dA

dt
= (r A + cB)

(
1 − A

min(K , Q/θmin)

)
− f1(A)H1 − f2(A)H2

≥ r A
(
1 − A

min(K , Q̄/θmin)

)
− f1(A)H1 − f2(A)H2

≥
[
r
(
1 − k

min(K , Q̄/θmin)

)
− f̄1H

1
1 − f̄2H

2
1

]
A := α3A.

Using the standard comparison argument, we find that A(t) ≥ A(0)eα3t > 0 for all
t ∈ [0, t1]. Hence, S(t) cannot touch the boundary A(t) = 0.

Case 3. A(t1) = k. For all t ∈ [0, t1], it follows that

dA

dt
= (r A + cB)

(
1 − A

min(K , Q/θmin)

)
− f1(A)H1 − f2(A)H2

≤ (r A + cB)
(
1 − A

min(K , Q/θmin)

)

≤ (r A + cB)

(

1 − A

k

)

.
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Hence, one obtains dA/dt ≤ 0, if A(t) ≥ 0 for all t ∈ [0, t1]. The standard comparison
argument yields that A(t) < k for all t ∈ [0, t1]. This contradicts to the fact that
A(t1) = k. S(t) cannot touch the boundary A(t) = k.

Case 4. A(t1) + B(t1) = (s + r + d0)k/d0. Since A(t) + B(t) < (s + r + d0)k/d0
for any t ∈ [0, t1), then A′(t1) + B ′(t1) ≥ 0. If θmin > Q/A > θ0, then

A′(t1) + B ′(t1) = (r A(t1) + cB(t1))
(
1 − A(t1)

min(K , Q(t1)/θmin)

)

− f1(A(t1))H1(t1) − f2(A(t1))H2(t1) + s A(t1)

−Q(t1)/A(t1)

θ0
cB(t1)

(
1 − A(t1)

min(K , Q(t1)/θmin)

)
− d0B(t1)

< s A(t1) + r A(t1) − d0B(t1)

= s A(t1) + r A(t1) − d0
( (s + r + d0)k

d0
− A(t1)

)

= s(A(t1) − k) + r(A(t1) − k) + d0(A(t1) − k) < 0.

By similar arguments, if Q/A > θmin or Q/A < θ0, then one has A′(t1)+ B ′(t1) < 0.
Hence, S(t) cannot touch the boundary A(t) + B(t) = (s + r + d0)k/d0.

Case 5. H1(t1) = 0. Let P1 = maxtε[0,t1] P(t) and f̄2 = f ′
2(0), then

dH1

dt
= e1 min

(
1,

Q/A

θ1

)
f1(A)H1 − d1H1 ≥ −d1H1, t ∈ [0, t1].

The standard comparison argument yields that H1(t) ≥ H1(0)e−d1t for all t ∈ [0, t1]
and thus, no trajectory touches the boundary H1(t) = 0.

Case 6. H2(t1) = 0. Then

dH2

dt
= e2 min

(
1,

Q/A

θ2

)
f2(A)H2 − d2H2 ≥ −d2H2, t ∈ [0, t1].

Hence, H2(t) ≥ H2(0)e−d2t . This excludes the possibility that S(t) touches the bound-
ary H2(t) = 0 as well.

Case 7. θminA(t1) + θ1H1(t1) + θ2H2(t1) = N . Since θminA(t) + θ1H1(t) +
θ2H2(t) < N for any t ∈ [0, t1). Hence, θminA′(t1)+θ1H ′

1(t1)+θ2H ′
2(t1) ≥ 0. Since

A′(t1) = (r A(t1) + cB(t1))
(
1 − A(t1)

min(K , Q(t1)/θmin)

)

− f1(A(t1))H1(t1) − f2(A(t1))H2(t1)

≤ − f1(A(t1))H1(t1) − f2(A(t1))H2(t1),

H ′
1(t1) = e1 min

(
1,

Q/A(t1)

θ1

)
f1(A(t1))H1(t1) − d1H1(t1)

≤ e1
θmin

θ1
f1(A(t1))H1(t1),

H ′
2(t1) = e2 min

(
1,

Q/A(t1)

θ2

)
f2(A(t1))H2(t1) − d2P(t1)
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≤ e2
θmin

θ2
f2(A(t1))H2(t1).

Then,

θminA
′(t1) + θ1H

′
1(t1) + θ2H

′
2(t1)

≤ θmin

[
− f1(A(t1))H1(t1) − f2(A(t1))H2(t1)

]

+θ1e1
θmin

θ1
f1(A(t1))H1(t1) + θ2e2

θmin

θ2
f2(A(t1))H2(t1)

= (e1 − 1)θmin f1(A(t1))H1(t1) + (e2 − 1)θmin f2(A(t1))H2(t1).

Note that 0 < e1 < 1, 0 < e2 < 1, then θminA′(t1)+θ1H ′
1(t1)+θ2H ′

2(t1) < 0. There is
a contradiction. No trajectory touches the boundary θminA(t)+θ1H1(t)+θ2H2(t) =
N .

In summary, we claim that the solution S(t) = (B(t), A(t), H1(t), H2(t)) of (8)
starting in Δ stays in Δ for any t ≥ 0. The proof is complete. ��

3.2 Equilibria

To facilitate the discussion below, we rewrite system (8) in the following form

dB

dt
= BF1(B, A, H1, H2),

dA

dt
= AF2(B, A, H1, H2),

dH1

dt
= H1G1(B, A, H1, H2),

dH2

dt
= H2G2(B, A, H1, H2),

(9)

where

F1(B, A, H1, H2) = s
A

B
− min

(Q/A

θ0
, 1

)
c
(
1 − A

min(K , Q/θmin)

)
− d0,

F2(B, A, H1, H2) = (r + c
B

A
)
(
1 − A

min(K , Q/θmin)

)
− f1(A)

A
H1 − f2(A)

A
H2,

G1(B, A, H1, H2) = e1 min
(
1,

Q/A

θ1

)
f1(A) − d1,

G2(B, A, H1, H2) = e2 min
(
1,

Q/A

θ2

)
f2(A) − d2.

(10)
To find equilibria of (9), we need to solve the following system of algebraic equa-

tions

BF1(B, A, H1, H2) = 0, AF2(B, A, H1, H2) = 0,
H1G1(B, A, H1, H2) = 0, H2G2(B, A, H1, H2) = 0.
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Note that Gi , i = 1, 2 denote the per capita growth rate of each herbivore. If the
per capita growth rate keeps negative, then only the herbaceous plant can survive in
the system. The herbivore-extinct boundary equilibrium E1 = (B0, A0, 0, 0) can be
viewed as the internal equilibrium of the subsystem without herbivores. For simplify-
ing, we explore the herbivores are extinct and study the stability of E0 = (B0, A0) of
following subsystem

⎧
⎪⎪⎨

⎪⎪⎩

dB

dt
= s A − min

(Q/A

θ0
, 1

)
cB

(
1 − A

min
(
K , Q/θmin

)
)

− d0B,

dA

dt
= (r A + cB)

(
1 − A

min
(
K , Q/θmin

)
)
.

(11)

Let

Ω = {(B, A) : 0 < B < N/θ0, 0 < A < k, A + B < (s + r + d0)k/d0},
k = min{K , N/θmin},

Φ(B, A) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s A − N − θ0B

θ0A
cB

(

1 − Aθmin

N − θ0B

)

− d0B, A + B ≥ N/θ0,

s A − cB

(

1 − Aθmin

N − θ0B

)

− d0B, A + B ≤ N/θ0,

B ≥ (A − θminK )/θ0,

s A − cB

(

1 − A

K

)

− d0B, A + B ≤ N/θ0,

B ≤ (A − θminK )/θ0,

Ψ (B, A) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(r A + cB)

(

1 − Aθmin

N − θ0B

)

, A + B ≥ N/θ0,

(r A + cB)

(

1 − Aθmin

N − θ0B

)

, A + B ≤ N/θ0, B ≥ (A − θminK )/θ0,

(r A + cB)

(

1 − A

K

)

, A + B ≤ N/θ0, B ≤ (A − θminK )/θ0.

In the case N/θ0 ≤ (s + r + d0)k/d0, when k = N/θmin or k = K , the studied
regions are divided into two parts (see Fig. 1a) or three parts (see Fig. 1b). Similarly,
in the case N/θ0 > (s + r + d0)k/d0, when k = N/θmin or k = K , the studied region
is one part (see Fig. 1c) or is divided into two parts (see Fig. 1d). Without any loss of
generality, we only consider the case when k = K , N/θ0 ≤ (s+r+d0)k/d0 (Fig. 1b).
In this case, we define

D1 =
{

(B, A) ∈ Ω, B + A ≥ N

θ0

}

,

D2 =
{

(B, A) ∈ Ω, B + A <
N

θ0
, B ≥ N − θminK

θ0

}

,

D3 =
{

(B, A) ∈ Ω, B + A <
N

θ0
, B <

N − θminK

θ0

}

.
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(a) (b)

(c) (d)

Fig. 1 The partition of studied region Ω . a k = N/θmin, N/θ0 ≤ (s + r + d0)k/d0. b k = K , N/θ0 ≤
(s + r + d0)k/d0. c k = N/θmin, N/θ0 > (s + r + d0)k/d0. d k = K , N/θ0 > (s + r + d0)k/d0

It is easy to show that, if (B, A) ∈ D1, namely Q/A < θ0 < θmin, then 1−Aθmin <

0 and there is no solution satisfying Ψ (B, A) = 0. We then only need to study the
cases (B, A) ∈ D2, D3. System (11) takes the form

⎧
⎪⎨

⎪⎩

dB

dt
= s A − cB

(

1 − Aθmin

N − θ0B

)

− d0B := Φ1(B, A),

dA

dt
= (r A + cB)

(
1 − Aθmin

N − θ0B

)
:= Ψ1(B, A),

(12)

⎧
⎪⎨

⎪⎩

dB

dt
= s A − cB

(

1 − A

K

)

− d0B := Φ2(B, A),

dA

dt
= (r A + cB)

(
1 − A

K

)
:= Ψ2(B, A),

(13)

in the domains D2, D3, respectively.
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(a) (b)

(c)

Fig. 2 (Colour figure online) The nullclines and equilibria. a–b K θmin < N ≤ N1, the equilibrium lays
on region D2. c N > N1, the equilibrium lays on region D3

Motivated by the method in Xie et al. (2016), we first analyze the nullclines of the
system. Let Φ1 = 0, Φ2 = 0, then one has

s A − d0B = cB (1 − Aθmin/(N − θ0B)) and s A − d0B = cB (1 − A/K ) ,

which denotes two curves, say s1 and s2, respectively. Thus the B-nullcline in the
invariant region are curves composed of s1 and s2 (see Fig. 2). Let Ψ1(B, A) = 0,
then B = 0, A = 0 and B = −θmin/θ0A + N/θ0, denoted by l1 the line segment
θ0B+ θminA = N , B ∈ [0, K ]. Let Ψ2 = 0, then B = 0, A = 0 and A = K , denoted
by l2 the line segment A = K , B ∈ [0, (N−θminK )/θ0]. Hence, theA-nullcline in the
invariant region are the positive A-axis, B-axis, and a polygonal line composing of l1
and l2 (see Fig. 2).We then calculate the critical value. Let the curves s1 and s2 intersect
at the intersection of l1 and l2, i.e., M = (K , (N −θmin)/θ0). Denote the critical value
N by N1 and directly calculation derives N1 = (θmin + sθ0K/d0)K . When N passes
through the critical from small to large, i.e., N ≤ N1 (see (B, A) ∈ D2 in Fig. 2a–b)
and N > N1 (see (B, A) ∈ D3 in Fig. 2c), we have the following theorems.

Theorem 2 If K θmin ≤ N ≤ N1, then E0 = (B0, A0) exists and is globally asymp-
totically stable.

123



Stoichiometric Modeling of Aboveground–Belowground… Page 15 of 35   107 

Proof When K θmin ≤ N ≤ N1, E0 = (B0, A0) exists in D2 and is explicitly solved
from (12). Direct calculation gives

B0 = sN

θ0s + θmind0
, A0 = d0N

θ0s + θmind0
.

The Jacobian matrix at E0 becomes

J (E0) =
(
a11 a12
a21 a22

)

,

where

a11 = cθ0s

d0θmin
− d0, a12 = s + cs

d0
> 0,

a21 = − θ0

θmin

(

r + cs

d0

)

< 0, a22 = −
(

r + cs

d0

)

< 0.

Then

Det(J (E0)) = d0r + cs + rsθ0
θmin

+ cs2θ0
d0θmin

> 0,

Tr(J (E0)) =
(

1 − θ0

θmin

)
cs

d0
− d0 − r < 0.

Routh–Hurwitz Criterion shows that both eigenvalues of the Jacobian have negative
real parts. Therefore, E0 is locally asymptotically stable. Consider the Dulac function

V (B, A) = B−1A−1, (14)

then

∂(Φ1V )

∂B
+ ∂(Ψ1V )

∂A
= V (B, A)

(
∂Φ1

∂B
+ ∂Ψ1

∂A

)

+ Φ1(B, A)
∂V

∂B
+ Ψ1(B, A)

∂V

∂A

= V (B, A)

(

r
A

K
− r Aθmin

N − θ0B
− r A

Aθ0θmin

(N − θ0B)2
− s A

B
− cB

K

)

≤ V (B, A)

(

r
A

K
− r Aθmin

N − θ0B

)

.

Note that (B, A) ∈ D2, then B > (N − θminK )/θ0, which yields

∂(Φ1V )/∂B + ∂(Ψ1V )/∂A ≤ r A/K − (r Aθmin)/(N − θ0B) < 0,

the Dulac criterion precludes the possibility for (12) to admit any limit-cycle behav-
ior. Therefore, from the Poincaré–Bendixson criterion, it follows that E0 is globally
asymptotically stable. ��
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Theorem 3 If N > N1, then E01 = (sK/d0, K ) exists and is globally asymptotically
stable.

Proof When N > N1, E01 = (sK/d0, K ) is solved directly from (13). The Jacobian
matrix at E01 becomes

J2(E01) =
(−d0 s + sc/d0

0 −(r + sc/d0)

)

,

both eigenvalues of the Jacobian have negative real parts. Therefore, E01 is locally
asymptotically stable.

We next consider the Dulac function defined by

V2(B, A) = B−1A−1, (15)

then

∂(Φ2V2)

∂B
+ ∂(Ψ2V2)

∂A
= V2(B, A)

(
∂Φ2

∂B
+ ∂Ψ2

∂A

)

+ Φ2(B, A)
∂V2
∂B

+ Ψ2(B, A)
∂V2
∂A

= V2(B, A)

(

−r A + cB

K
− s

A

B
− c

B

A
(1 − A

K
)

)

< 0

Dulac’s criterion precludes the possibility for (13) to admit any limit-cycle behav-
ior. Therefore, from the Poincaré-Bendixson criterion, it follows that E01 is globally
asymptotically stable. ��

The boundary equilibrium E2 = (B̄, Ā, H̄1, 0) represents the extinction of the
lower N-demand herbivore (H2), and E3 = (B̃, Ã, 0, H̃2) indicates the extinction of
the higher N-demand herbivore (H1). Thus E2 or E3 can be viewed as the internal
equilibrium of the subsystem only with one consumer and one herbaceous plant.
Without any loss of generality, we discuss the existence of E2 as an example. Due to
the complexity of the system (8), we analyze the existence on the plane by viewing
a scenario of the phase space. It is easy to show that, if Q/A < θmin, then there is
no solution satisfying F2(B̄, Ā, H̄1, 0) = 0. We only need to study the case when
Q/A > θmin. Rewrite F1 as

F1(B̄, Ā, H̄1, 0) = s
B̄

Ā
− c

(
1 − Ā

min(K , Q̄2/θmin)

) − d0.

From F1(B̄, Ā, H̄1, 0) = 0 and G1(B̄, Ā, H̄1, 0) = 0, it follows that

H̄1 = Ā(sr Ā/(cB̄) − rd0/c + s − d0 B̄/ Ā)

f1( Ā)
.

Then the boundary equilibria can be studied by degenerating the system onto the
2−dimensional B − A plane by setting H1 = H̄1. The equilibria can be found at the
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interaction in the B − A plane of the following two curves

φ1(A, B) = s Ā

B̄
− c

(

1 − Ā

min(K , Q̄2/θmin)

)

− d0 = 0, (16)

φ2(A, B) = e1 min(1,
Q̄2/ Ā

θ1
) f1( Ā − d1) = 0, (17)

where f1( Ā) = c1 Ā/(a1 + Ā), Q̄2 = N − θ0B − θ1 H̄1. When Q̄2/K > θmin and
Q̄2/ Ā > θ1, there is only a unique equilibrium (see Fig. 3e). Otherwise, there may
exist zero to three equilibria (see Fig. 3a–d). Following proposition summarizes and
lists the various possibilities for the roots of (16) and (17).

Proposition 1 If Q̄2/K > θmin and Q̄2/ Ā > θi , then system (8)has auniqueboundary
equilibrium; if Q̄2/K ≤ θmin, or Q̄2/K > θmin and Q̄2/ Ā ≤ θi , then system (8) may
have zero to three equilibria.

If system (9) has an internal equilibrium E∗ = (B∗, A∗, H∗
1 , H∗

2 ), then its coordi-
nates to solve the following system of algebraic equations

Fi (B, A, H1, H2) = 0, Gi (B, A, H1, H2) = 0, i = 1, 2. (18)

From Loladze et al. (2004), it follows that (8) will never have any positive equilibrium
if the herbaceous plant’s quality is good for both herbivores. However, in the case of
bad quality of herbaceous plant,

X := N − θ1H
∗
1 − θ2H

∗
2 − θ0B

∗ = d1θ1A∗

e1 f1(A∗)
= d2θ2A∗

e2 f2(A∗)
,

Y := (r A∗ + cB∗)
(
1 − A∗

min(K , [d2θ2A∗]/[θmine2 f2(A∗)])
)

= f1(A
∗)H∗

1 + f2(A
∗)H∗

2 ,

Z := min
(d2θ2
e2θ0

, 1
)(

1 − A∗

min(K , [d2θ2A∗]/[θmine2 f2(A∗)])
)

= s A∗/B∗ − d0.

Then the value of A∗ is determined by

d1θ1A∗

e1 f1(A∗)
= d2θ2A∗

e2 f2(A∗)
, (19)

and the values of B∗, H∗
1 and H∗

2 are given by

B∗ = s A∗

d0 + Z
,

H∗
1 = f2(A∗)N − θ2Y − (θ0s A∗ f2(A∗))/(d0 + Z) − (d2θ2A∗)/e2

θ1 f2(A∗) − θ2 f1(A∗)
,
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(a) (b)

(c) (d)

(e)

Fig. 3 Location of the equilibria in theA–B plane. The inverse peak-shaped curve is defined by h(B̄, Ā) = 0,
which will never change its shape as parameters vary. The black dashed curve is defined by g(B̄, Ā) = 0
with different K , N and θ1 values. A solid circle denotes a possible equilibrium. Here, N = 0.1 in a–d,
while N = 0.03 in e, the light intensity K and θ1 in a–e are 1, 2, 4, 0.9, 0.05 and 0.2, 0.05, 0.05, 0.1, 0.05,
respectively
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H∗
2 = θ1Y − f1(A∗)N + (θ0s A∗ f1(A∗))/(d0 + Z) + (d2θ2A∗ f1(A∗))/[e2 f2(A∗)]

θ1 f2(A∗) − θ2 f1(A∗)
.

(20)

Thus, let Q∗ = N − θ1H∗
1 − θ∗

2 H
∗
2 − θ0B∗, we have the following proposition.

Proposition 2 If Q∗/A∗ < θi , then system (8) has a possible positive equilibrium
E∗ = (B∗, A∗, H∗

1 , H∗
2 ), where (B∗, A∗, H∗

1 , H∗
2 ) satisfies (19) and (20).

To characterize the type of species interactions occurring at this equilibrium, it
is convenient to examine the Jacobian matrix. The Jacobian matrix at E∗ takes the
following form

J (E∗) =

⎡

⎢
⎢
⎣

B∗ 0 0 0
0 A∗ 0 0
0 0 H∗

1 0
0 0 0 H∗

2

⎤

⎥
⎥
⎦ × M(B∗, A∗, H∗

1 , H∗
2 ) , (21)

where

M = (ai j )4×4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂F1
∂B

∂F1
∂A

∂F1
∂H1

∂F1
∂H2

∂F2
∂B

∂F2
∂A

∂F2
∂H1

∂F2
∂H2

∂G1

∂B

∂G1

∂A

∂G1

∂H1

∂G1

∂H2
∂G2

∂B

∂G2

∂A

∂G2

∂H1

∂G2

∂H2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

is the ecosystem matrix. The possible items of M are listed below:
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∂F1
∂B

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c

A
− s A

B2 , if Q < Aθ0,

cAθ0θmin

Q2 − s A

B2 , if Aθ0 ≤ Q < K θmin,

− s A

B2 < 0, if Q ≥ K θmin,

∂F1
∂A

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cQ

θ0A2 + s

B
> 0, if Q < Aθ0,

cθmin

Q
+ s

B
> 0, if Aθ0 ≤ Q < K θmin,

c

K
+ s

B
> 0, if Q ≥ K θmin,

∂F1
∂Hi

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cθi
Aθ0

> 0, if Q < Aθ0,

cAθiθmin

Q2 > 0, if Aθ0 ≤ Q < K θmin,

0, if Q ≥ K θmin,

∂F2
∂B

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c

A
− c

K
≥ 0, if K ≤ Q/θmin,

c

A
− r Aθ0θmin

Q2

−cθmin(N − θ1H1 − θ2H2)

Q2 , if K > Q/θmin,

∂F2
∂A

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− r

K
− cB

A2 −
(

f1(A)

A

)′
H1

−
(

f2(A)

A

)′
H2 < 0, if K ≤ Q/θmin,

−rθmin

Q
− cB

A2

(
f1(A)

A

)′
H1

−
(

f2(A)

A

)′
H2 < 0, if K > Q/θmin,

∂F2
∂Hi

=

⎧
⎪⎪⎨

⎪⎪⎩

− fi (A)

A
< 0 if K ≤ Q/θmin,

−θiθmin(r A + cB)

Q2 − fi (A)

A
< 0 if K > Q/θmin,

∂Gi

∂B
=

⎧
⎨

⎩

0 if Q/A ≥ θi ,

−eiθ0 fi (A)

Aθi
< 0 if Q/A < θi ,

∂Gi

∂A
=

⎧
⎨

⎩

ei f ′
i (A) > 0 if Q/A ≥ θi ,

−ei Q

θi

( fi (A)

A

)′
< 0 if Q/A < θi ,

∂Gi

∂Hj
=

⎧
⎨

⎩

0 if Q/A ≥ θi ,

−eiθ j fi (A)

Aθi
< 0 if Q/A < θi .

(23)
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Due to the complexity of the system (8), it seems difficult to establish explicit suf-
ficient conditions for the stability of the equilibria by Routh–Hurwitz criteria. Instead,
we explore it by the analysis of ecosystem matrix. In the ecosystem matrix, ai j mea-
sures the effect of j-th species on i-th specie’s net growth rate.

According to the relations of N:C ratios Q∗/A∗, θ1 and θ2, the discussion is divided
into three cases.

1. If Q∗/A∗ > θi , i = 1, 2, that is, the herbaceous plant’s quality is good for both
herbivores, then the ecosystem matrix takes the form

⎡

⎢
⎢
⎣

+/− + 0/+ 0/+
+/− +/− − −
0 + 0 0
0 + 0 0

⎤

⎥
⎥
⎦ , (24)

which indicates that the interaction between the herbivore and the herbaceous plant
falls into the traditional predator-prey category, i.e., (+,−) type.

2. If Q∗/A∗ < θi , i = 1, 2, i.e., the herbaceous plant’s quality is bad for both
herbivores, then the ecosystem matrix is

⎡

⎢
⎢
⎣

+/− + 0/+ 0/+
+/− +/− − −
− − − −
− − − −

⎤

⎥
⎥
⎦ (25)

which implies that the interaction between herbivore and herbaceous plant changes
from (+,−) to (−,−). It means that all the three species compete with each
other, and the competition lies in two species not only intraspecifically but also
interspecifically due to the limited N content. The increase in the herbaceous plant
with bad qualitywill not promote the herbivores’ growth. It has been shown that the
interference among herbivores can enhance the possibility for coexistence (Kuang
et al. 2003).

3. If θ2 > Q∗/A∗ > θ1 or θ1 > Q∗/A∗ > θ2, i.e., the quality of herbaceous plant
is good for the herbivore with lower N:C ratio but is bad for the other herbivore,
then the ecosystem matrix reads

⎡

⎢
⎢
⎣

+/− + 0/+ 0/+
+/− +/− − −
0 + 0 0
− − − −

⎤

⎥
⎥
⎦ or

⎡

⎢
⎢
⎣

+/− + 0/+ 0/+
+/− +/− − −
− − − −
0 + 0 0

⎤

⎥
⎥
⎦ .

In this case, the herbivore with lower N:C ratio will survive due to the relatively
good food quality, while the herbivore with higher N:C ratio will go extinct due
to the relatively bad food quality.

A significant and unusual property of this system is that the sign of ∂Gi/∂A,
i = 1, 2 changes from positive to negative when the herbaceous plant’s N:C ratio
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is less than the N:C ratio of the i-th herbivore, θi . These negative derivatives mean
that, all else being equal, higher herbaceous plant density reduces the growth rates
of herbivores. It is because that when the quality of herbaceous plant is bad, then
any further increase in the herbaceous plant’s density deteriorates its quality, which
neutralizes the benefit provided by higher herbaceous plant density to herbivores that
has already been limited by N . This effect is in strong contrast to many conventional
population dynamics.Moreover, the signs of ∂Gi/∂B, i = 1, 2 turn from 0 to negative
as herbaceous plant’s quality becomes bad for the herbivores, Q∗/A∗ < θi . It means
that the belowground part competes with the herbivores for N to keep the regular
growth of herbaceous plant when the available nutrient is limiting. Furthermore, the
sustained increase in the belowground settles more nutrient which makes the quality
of plants becomes worse, then the densities of the herbivores decrease due to the bad
quality of food.

4 Numerical Simulation

The principal aim of this section is to investigate the impact of variational initial states,
nitrogen availability, and light intensity on the dynamics of (8). In the numerical
analysis, the herbivores’ ingestion rates are chosen as Monod (Michaelis–Menten)
functions, i.e., fi (x) = ci x/(ai + x), i = 1, 2, and all parameters take the values
listed in Table 1 if not specified.

In a grassland ecosystem, the aboveground part of herbaceous plants is usually
consumed by herbivores, while the belowground is preserved. The traditional model
(e.g., (1)) cannot well describe the dynamic scenarios since the belowground is not
explicitly modeled in the system. Here, we use (8) to investigate the effect of the
aboveground part on changing trends of population dynamics. Set A(0) = 0.3, Fig. 4a
shows that initially the biomass density of the aboveground increaseswhich is followed
by an increase in the densities of the belowground and the two herbivores. With
the increase in two herbivores, the densities of both aboveground and belowground
decline while the density of the herbivore with higher N-demand H1(t) keeps growing
and the herbivore with lower N-demand H2(t) shows an opposite trend due to the
inferior competitiveness. In Fig. 4b, A(0) = 0, it is observed that the density of
the aboveground could recover and regrow due to the transfer support of material
from the belowground; meanwhile, the belowground conserves more biomass due
to the absence or less amount of the aboveground. The densities of two herbivores
first decrease due to the lack of food and then increase due to the regrowth of the
aboveground plants. Then, the trend of future development in Fig. 4b is similar to
that in Fig. 4a. The simulation analyses show that, in the short term, the variation of
(8) is quite different when the aboveground is present or not, while, in the long run,
(8) eventually stabilizes at some internal equilibrium in both cases. Therefore, (8)
reasonably describes the dynamic interaction among one herbaceous plant and two
herbivores, and also well characterizes the realistic scenario in a grassland ecosystem.

The light intensity (i.e., K ) can change the herbaceous plant’s quality (Loladze et al.
2000), and analyses in previous section suggest that plant’s N:C ratio can profoundly
affect predation and competition between the two herbivores. Moreover, plant’s nitro-
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(a) (b)

Fig. 4 Time series dynamics of (8) with different initial values of the aboveground: a
(B(0), A(0), H1(0), H2(0)) = (0.1, 0.3, 0.2, 0.1), b (B(0), A(0), H1(0), H2(0)) = (0.1, 0, 0.2, 0.1).
Here the parameter values are defined in Table 1 except K = 0.7 and N = 0.03

gen addition rates also affect the nutrient transfer between the aboveground and the
belowground in grassland ecosystems. Hence, we choose K and N as bifurcation
parameters to explore how (8) response to variations of light intensity K and nitro-
gen availability N . Figure 5 presents such bifurcation diagrams where the densities
of all populations are drawn along the gradient of nitrogen and energy availabilities
implicitly represented by N and K . From Fig. 5, one observes that, the aboveground
and belowground herbaceous plants can only survive at very low densities with the
limitation of light intensity and nitrogen availability, then grow rapidly with enhancing
light and nitrogen. With further increase in light intensity and nitrogen availability,
the densities of the aboveground and belowground do not increase anymore due to the
ingestion of herbivores and the limitation of nutrient or energy (see Fig. 5a and b).
Meanwhile, neither of the herbivores can survive due to starvation at sufficiently low
light intensity and nitrogen availability. As K and N increase, all herbivores survive
and coexist stably or cyclically, but all of them tend to perish with the extremely high
light intensity and nitrogen (see Fig. 5c and d). In particular, the two herbivores can
coexist under moderate light and nitrogen availabilities.

In order to deeply understand the characteristics of the bifurcation and to better
investigate the effects of the light intensity K and the total nitrogen availability N , we
present detailed discussions of some cross-profiles along the gradient of K from 0 to
4 and the gradient of N from 0.02 to 0.1 (see Figs. 6, 7, 8, 9, 10 and 11).

It follows from Figs. 6 and 7 that when the total nitrogen availability is low (N =
0.03) or sufficiently high (N = 0.08), all populations coexist in a single form, either
at a steady state or at a cyclic state. That is, when N = 0.03, herbivores can coexist at
a stable steady-state exploiting the herbaceous plant (see 0.23 < K < 0.61 in Fig. 6);
when N = 0.08, the populations can only coexist via cyclic oscillation (e.g., 1.79 <

K < 2.55 in Fig. 7). Dramatically, in both cases, with the further increase in light
intensity, the higher N-demand herbivore becomes extinct initially which is followed
by the extinction of the lower N-demand herbivore (such as 0.61 < K < 2 in Fig. 6
and 2.55 < K < 4 in Fig. 7). This is possible, because increasing light intensity lowers
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(a) (b)

(c) (d)

Fig. 5 Bifurcation surfaces for (8) with the light intensity K and the nitrogen availability N being the
bifurcation parameters. a–d represent bifurcation surfaces of the equilibrium densities of the belowground
herbaceous plant B, the aboveground herbaceous plant A, the higher N-demand herbivore H1, and the lower
N-demand herbivore H2 plotted against K and N , respectively

the herbaceous plant’s quality, and extremely low food quality drives the extinction
of the two herbivores in order. Furthermore, due to the extinction of herbivores, with
increasing light intensity, the densities of aboveground and belowground herbaceous
plants increase first and stay constant finally due to the limitation of total nitrogen
availability (see Fig. 6a).

When the total nitrogen availability is at some intermediate level, we focus on a
typical case with N = 0.04 (Fig. 8), the dynamics become more complex. When the
light intensity is low (e.g., 0 < K < 0.55 in Fig. 8), the dynamics are similar to that
of the case when the total nitrogen availability is low, that is, both herbivores cannot
survive due to low level of food abundance; with the increase in food abundance, the
higher N-demand herbivore survives initially and then the lower N-demand herbivore
survives. As the light intensity K increases further (e.g., 0.55 < K < 1.03 in Fig. 8),
compared with the previous low nutrient case, now the dynamical behaviors are quite
different. In Fig. 8, at K = 0.55, the internal equilibrium loses its stability and under-
goes a supercritical Hopf bifurcation, and all populations coexist via oscillations as K
increases from0.55 to 0.62.When K increases further (e.g., from0.62 to 0.97 inFig. 8),
the dynamics of (8) are significantly different from that of the model in Loladze et al.
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(a) (b)

Fig. 6 Bifurcation diagrams of the equilibrium densities of (8) plotted against the light intensity K . Here
N = 0.03 and the values of other parameters are defined in Table 1

(a) (b)

Fig. 7 (Colour figure online) Bifurcation diagrams of equilibrium densities with respect to light intensity
K for the scenario of N = 0.08 in Fig. 5

(2004) due to the explicit consideration of the belowground. In fact, with K increas-
ing from 0.62 to 0.97, system (8) admits oscillatory dynamics and all populations
coexist with irregularly cyclic oscillations. Similar to Wang et al. (2009), we plot the
spectrum of maximum Lyapunov exponent (MLE) of (8) against K in Fig. 8e which
shows that there is no chaotic orbit since the maximum Lyapunov exponent λ < 0 for
0 < K < 2.5. When the light intensity increases through an intermediate threshold
value (e.g., K = 0.97 in Fig. 8), the dynamics of (8) change abruptly, the irregularly
periodic behavior disappears via a supercritical Hopf bifurcation once again. When K
increases from 0.97 to 1.03, all populations oscillate periodically. When K increases
further, the above- and belowground plants grow rapidly with sufficient light intensity
but the density of the higher N-demand herbivore H1 cannot survive and the density
of the lower N-demand herbivore H2 declines due to worse and worse food quality
(for 1.03 < K < 1.8). Finally, extremely high light intensity (1.8 < K < 2.5) leads
to extinction of both herbivores.
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(a) (b)

(c) (d)

(e)

Fig. 8 Bifurcation diagrams of equilibrium densities for system (8) with respect to light intensity K varying
from 0 to 2.5. a and b are bifurcation diagrams of the equilibrium densities of the belowground herbaceous
plant and the aboveground herbaceous plant for the scenario of N = 0.04 in Fig. 5a and b. c–d Represent
bifurcation diagrams of the equilibriumdensities of the higherN-demand herbivore H1 and lowerN-demand
herbivore H2 for the scenario of N = 0.04 in Fig. 5c and d. e Spectrum of themaximumLyapunov exponent
(λ) against K of system (8). The MLE is negative for 0 < K < 2.5, which implies that there is no chaotic
orbit
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In conclusion, for the effect of variations of light intensity, if the total nitrogen
availability N is fixed, high light intensity leads to a increase in herbaceous plant abun-
dance and hence deteriorates the herbaceous plant’s quality, whence the herbivore with
lower N-demand will have a competitive advantage. Due to the limitation of nitrogen,
the biomass of herbaceous plant does not continuously increase with the increase in
light intensity. Meanwhile, because of the poor food quality (small N:C ratio), both
herbivores go extinct despite of a sufficient food quantity (e.g., 3.75 < K ≤ 4 in
Fig. 7b), which is consistent with the explanation of the paradox of nutrient enrich-
ment proposed in Loladze et al. (2000). In addition, for different nitrogen availabilities
increasing from low to high, the densities of aboveground and belowground biomasses
increase as light intensity increases (e.g., Figs. 6, 7 and 8). The range of parameter K
for the survival of herbivores expands with the increase in nitrogen availability N .

Next, we discuss the effect of varying total nitrogen availability N on the dynam-
ics of (8), and we expound the details for low, intermediate, and high levels of light
intensity with K = 0.2, K = 0.7, and K = 1, respectively. For K = 0.2 (Fig. 9),
the light intensity is at a low level, all populations can only coexist when the nitrogen
availability is also very low (0.02 < N < 0.032), this is because the N:C of the above-
ground is relatively high, the quality of herbaceous plant is good for both herbivores.
Furthermore, with the increase in N ( 0.02 < N < 0.08), the density of the higher
N-demand herbivore is always higher than that of the lower N-demand herbivore. The
reason is that, the low light intensity limits the abundance of herbaceous plants and the
herbivore having higher growth rate (H1) takes advantage in the low food abundance.

For K = 0.7, we observe from Fig. 10 that, when N increases, the system experi-
ences a dynamic path with the switch pattern: H2-existence equilibrium (0.02 ≤ N <

0.032) → coexistence equilibrium (0.032 ≤ N < 0.037) → irregular oscillation
(0.037 ≤ N < 0.045) → H1-existence equilibrium (0.045 ≤ N < 0.08). So, when
the light intensity is at intermediate level, large N will facilitate the existence of the
higher N-demand herbivore and stabilize the system to a H2-existence equilibrium.

For K = 1, we can see from Fig. 11 that, when N increases, the dynamic path
of the system with respect to N has a different pattern of switches: None-herbivore
equilibrium (0.02 ≤ N < 0.023) → H2-existence equilibrium (0.023 ≤ N < 0.039)
→ cyclic (0.039 ≤ N < 0.06) → H1-existence cyclic (0.06 ≤ N < 0.08). Whence,
if the light intensity is high, then large N will lead the system to a cyclic state. Partic-
ularly, when 0.071 < N < 0.08, the densities of the aboveground and belowground
herbaceous plants oscillate between 0 and 0.38 in Fig. 11, which implies that the
plants have a potential extinction trend with the increase in total nitrogen availability.
High nitrogen availability improves the food quality of the herbaceous plant and then
increases the biomass of the higher N-demand herbivore, while the excessive preda-
tion of herbivores leads to a potential extinction of the herbaceous plant. This finding
is consistent with the experimental results in Suding et al. (2005), Lan and Bai (2012)
that nitrogen enrichment can promote the loss of rare species in the community and
further reduce species diversity.

In summary,when the light intensity and nitrogen availability are low, the herbivores
can coexist at low densities; when the light is fixed, the increase in nitrogen can
lead to the extinction of the lower N-demand herbivore. In addition, increasing both
light and nutrient make all populations coexist via stable state, periodic or irregularly

123



  107 Page 28 of 35 X. Rong et al.

(a) (b)

Fig. 9 Bifurcation diagrams of equilibrium densities with respect to nitrogen availability N for the scenario
of K = 0.2 in Fig. 5

(a)   (b)

(c)   (d)

Fig. 10 Bifurcation diagrams of all populations densities with respect to nitrogen availability N varying
from 0.02 to 0.08 for the scenario of K = 0.7 in Fig. 5
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Fig. 11 Bifurcation diagrams of all populations densities with respect to nitrogen availability N varying
from 0.02 to 0.08 for the scenario of K = 1 in Fig. 5

cyclic oscillations, i.e., moderate levels of light and nitrogen availabilities contribute to
species diversity. It is more interesting that extremely high level of nitrogen can cause
overeating of herbivores on the herbaceous plant, and then may lead to extinction of
the herbaceous plant.

5 Discussion

In this study, we formulate a new ecological stoichiometric model of two competing
herbivores on one herbaceous plant in a grassland ecosystem, where the heterogeneity
of herbaceous plant and the effect of food quality are explicitly incorporated. The
interaction between the aboveground and belowground of herbaceous plant is well
identified. The effects of light intensity and nitrogen availability on themodel’s dynam-
ics are systematically explored. Both analytical and simulation findings expound the
importance of the aboveground–belowground interaction and chemical heterogene-
ity. As shown in Fig. 4, the model (8) reasonably describes the dynamics among two
herbivores exploring one herbaceous plant and can also well characterize the realistic
scenarios in a grassland ecosystem. Our study shows that aboveground and below-
ground interaction can facilitate the coexistence of four populations. All populations
can coexist either in a stable equilibrium or in oscillations, even in irregularly cyclic
oscillations (Figs. 5, 8 and 10).

The results of numerical experiments reveal that, both light intensity and nitrogen
availability play important roles in the growth and coexistence of the four populations.
When the total nitrogen availability N is fixed (Figs. 6, 7 and 8), the increased light
intensity could increase the amount of herbaceous plant and hence deteriorate the
herbaceous plant’s quality, and both herbivores coexist first, then the lower N-demand
herbivore excludes the higher N-demand herbivore finally. It implies that intermedi-
ate levels of light intensity and nitrogen availability promote the coexistence of two
herbivores, and a higher light intensity can help the lower N-demand herbivore to
win. With the further increase in light intensity, the densities of the aboveground and
belowground plants do not increase anymore due to the ingestion of herbivores and
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(a) (b)

Fig. 12 (Colour figure online) Bifurcation diagrams of (4) with light intensity K being the bifurcation
parameter. Other parameters are defined in Table 1

the limitation of nitrogen. Meanwhile, the quality of the herbaceous plant becomes too
bad for both herbivores, initially the higher N-demand herbivore tends to die out which
is followed by the extinction of lower N-demand herbivore despite of a sufficient food
quantity (e.g., 1.35 < K < 2 in Fig. 6b, 3.75 < K ≤ 4 in Fig. 7b and 1.8 < K < 2.5
in Fig. 8b). The above facts expound the paradox of nutrient enrichment and are con-
sistent with the findings in Loladze et al. (2000). In addition, for different nitrogen
availabilities, the biomass densities of the aboveground and belowground plants can
reach higher levels with the increase in light intensity. The range of parameter K
for the survival of herbivores expands with the increase in total nitrogen availability
N . It is concluded that, when the light intensity and nitrogen availability are both at
high levels, the herbaceous plant will grow well, which is in good agreement with the
reality.

When the light intensity is fixed (Figs. 9, 10 and 11), the increase in nitrogen
availability improves the herbaceous plant’s quality and thus satisfies the need of
lower N-demand herbivore first, and further becomes good for both herbivores. The
higher N-demand herbivore will occupymore nutrient resources and the amount of the
lower N-demand herbivore will decline. It suggests again that, the light and nitrogen
availability at intermediate levels facilitate the coexistence of herbivores. Different
from the scenarios in Figs. 6, 7 and 8, when the nitrogen availability is high, the
higher N-demand herbivore keeps at a stable state or at a periodic oscillation instead
of going perish (e.g., 0.028 < N < 0.08 in Fig. 9, 0.044 < N < 0.08 in Fig. 10 and
0.06 < N < 0.08 in Fig. 11). It implies that high nitrogen availability can lead to
the domination of the higher N-demand herbivore in the competition. Note that, when
the light intensity is at an intermediate level, extremely high nitrogen may lead to the
extinction of herbaceous plant (see 0.071 < N < 0.08 in Fig. 11), which suggests
that the nutrient enrichment can reduce the species diversity.

Figure 12 represents the bifurcation diagrams of system (4) and elucidates the
dynamic evolution of (4) with K increasing from 0 to 3 mg C/m2. The values of
parameters are the same as those in system (8). Note that system (4) shows simple
oscillatory dynamics, the densities of the aboveground and belowground plants as
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well as the higher N-demand herbivore increase as light intensity increases, while
the density of lower N-demand herbivore keeps decreasing (see 0.65 < K < 3 in
Fig. 12). In particular, the higher N-demand herbivore is always dominant. However,
the stoichiometric model (8) shows something quite different. With the enhancement
of the light intensity, the higher N-demand herbivore density declines while the lower
N-demand herbivore starts to survive and its density keeps increasing. In addition,
when the light intensity is at high level, the densities of plants tend to a stable state
rather than continuously increasing due to the limitation of nitrogen availability. It is
distinct that the two herbivores in system (8) may perish when the light intensity is
extremely high, which is more reasonable and realistic.

In summary, we reach the following conclusions:

– First, the stoichiometric competition model, which incorporates the aboveground-
belowground interactions, provides a more realistic illustration of the competition
of two herbivores on one herbaceous plant in a grassland ecosystems.

– Second, when the food quality of herbaceous plant is good, the new model admits
similar dynamics to that of the traditional one. Whereas, when the food quality
of herbaceous plant is poor, the stoichiometric competition model provides more
realistic and reasonable mechanisms for the deterministic extinction of two herbi-
vores.

– Third, the aboveground and belowground interaction and stoichiometry within or
among species can considerably change the existence states of herbaceous plant
and herbivores.

– Finally, the moderate levels of light intensity and nitrogen availability contribute
to species diversity (i.e., it guarantees the coexistence of all populations), while
extremely high nitrogen may lead to the extinction of the herbaceous plant due
to the excessive predation of herbivores. This finding answers the question why
nitrogen enrichment results in reduced species diversity.

In addition, plant biologists often discuss the root-to-shoot ratio of plants (Aikio
and Markkola 2002; Grechi et al. 2007), which is super interesting to investigate.
The model (8), which characterizes the above- and belowground parts of the plant
separately and allows varying stoichiometric ratios, can also be applied to investigate
the biomass ratio between these two plant parts. Figure 13 depicts that the predicted
root-to-shoot ratio varies under different nitrogen and light gradients. In particular,
the numerical result also indicates that the root-to-shoot ratio of the plant tends to a
cyclic state with the increasing of both nitrogen input and light intensity. Moreover,
the values of B/A when N = 0.02, K ∈ (0.2, 0.8)(B/A > 2.5) are always greater
than that when K = 0.2, N ∈ (0.02.0.08)(B/A < 2.4). This implies that plants
grown under low nitrogen have a higher root-to-shoot ratio than plants grown under
low light. The result is consistent with the experimental finding in Aikio andMarkkola
(2002) that the plant will regulate the biomass of shoot when light is limited and will
regulate the biomass of root when nitrogen is restricted.

In this work, it is assumed that the N:C ratio of the belowground herbaceous plant
is constant (called the “strict homeostasis” assumption). The ideas for relaxing the
“strict homeostasis” assumption have been presented in some recent studies (Wang
et al. 2012, 2018). However, in natural setting, the belowground can also store nutrient
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Fig. 13 (Colour figure online) Bifurcation surfaces for the root-to-shoot ratio with the light intensity K and
the nitrogen availability N being the bifurcation parameters. Other parameters are defined in Table 1

and change its N:C ratio. Therefore, it is reasonable and important to understand the
dynamics of stoichiometric competitionmodelwith the belowground having a variable
N:C ratio. In ecology, it has been long recognized that the temporal fluctuations in the
physical environment are a major driver of population fluctuations. The light intensity
and nitrogen availability as well as other abiotic or biotic factors are usually subject
to seasonality and vary greatly over time. Whence, the competition process will be
more complicated and challenging to study with seasonal forcing. The comprehensive
consideration of the above issues may shed new insights on the studied topic.We leave
these as future work and open questions.
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