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ANALYSIS OF PROPAGATION FOR IMPULSIVE
REACTION-DIFFUSION MODELS\ast 

MOSTAFA FAZLY\dagger , MARK LEWIS\ddagger , AND HAO WANG\ddagger 

Abstract. We study a hybrid impulsive reaction-advection-diffusion model given by a reaction-
advection-diffusion equation composed with a discrete-time map in space dimension n \in \BbbN . The

reaction-advection-diffusion equation takes the form u
(m)
t =div(A\nabla u(m) - qu(m))+f(u(m)) for (x, t) \in 

\BbbR n \times (0, 1], for some function f , a drift q, and a diffusion matrix A. When the discrete-time map
is local in space we use Nm(x) to denote the density of population at a point x at the beginning
of reproductive season in the mth year, and when the map is nonlocal we use um(x). The local
discrete-time map is \{ u(m)(x, 0) = g(Nm(x)) for x \in \BbbR n, Nm+1(x) := u(m)(x, 1) for x \in \BbbR n\} for
some function g. The nonlocal discrete time map is \{ u(m)(x, 0) = um(x) for x \in \BbbR n, um+1(x) :=
g(
\int 
\BbbR n K(x  - y)u(m)(y, 1)dy) for x \in \BbbR n\} , when K is a nonnegative normalized kernel. Here, we

analyze the above model from a variety of perspectives so as to understand the phenomenon of prop-
agation. We provide explicit formulas for the spreading speed of propagation in any direction e \in \BbbR n.
Due to the structure of the model, we apply a simultaneous analysis of the differential equation and
the recurrence relation to establish the existence of traveling wave solutions. The remarkable point
is that the roots of spreading speed formulas, as a function of drift, are exactly the values that yield
blow-up for the critical domain dimensions, just as with the classical Fisher's equation with advec-
tion. We provide applications of our main results to impulsive reaction-advection-diffusion models
describing periodically reproducing populations subject to climate change, insect populations in a
stream environment with yearly reproduction, and grass growing logistically in the savannah with
asymmetric seed dispersal and impacted by periodic fires.

Key words. impulsive reaction-diffusion models, traveling wave solutions, local and nonlocal
equations, propagation phenomenon, spreading speed
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1. Introduction. The hybrid models of a discrete-map and a reaction-advection-
diffusion equation for species with impulse and dispersal stages were proposed and
studied in [8, 16]. Such discrete- and continuous-time hybrid models can describe a
seasonal event, such as reproduction or harvesting, plus nonlinear turnover and dis-
persal throughout the year. We examine the propagation phenomenon for a general
hybrid model of the form given in [8]:
(1.1)

u
(m)
t = div(A\nabla u(m)  - qu(m)) + f(u(m)) for (x, t) \in \BbbR n \times (0, 1], m = 0, 1, 2, . . . ,

where A is a constant symmetric positive definite matrix and q is a constant vector.
In addition, we consider initial values either of the form

u(m)(x, 0) = g(Nm(x)) for x \in \BbbR n,(1.2)

Nm+1(x) := u(m)(x, 1) for x \in \BbbR n(1.3)
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or of the convolution form

u(m)(x, 0) = um(x) for x \in \BbbR n,(1.4)

um+1(x) := g

\biggl( \int 
\BbbR n

K(x - y)u(m)(y, 1)dy

\biggr) 
for x \in \BbbR n,(1.5)

whenK is a nonnegative kernel, i.e.,K \geq 0, and it is normalized so
\int 
\BbbR n K(x)dx = 1. We

do not require K to be symmetric so as to accommodate various applications. The
Cauchy problem is given by (1.1)--(1.3) with N0(x) specified or by (1.1), (1.4)--(1.5)
with u0(x) specified. In [8], authors studied the impulsive reaction-diffusion model
(1.1)--(1.3) and provided formulas for the critical domain sizes, associated with (1.9),
for various type domains. In the current article, we provide explicit formulas for the
spreading speed of propagation, which are counterparts of (1.10), for such models.

Notation 1.1. Throughout this paper the matrix A is defined as A = (ai,j)
n
i,j=1,

the matrix I = (\delta i,j)
n
i,j=1 stands for the identity matrix, and the vector q is q = (qi)

n
i=1.

The matrix A and the vector q have constant components unless stated otherwise.

We require the continuous function g to satisfy the following assumption:
(G0) g is a positive function in \BbbR +, g(0) = 0, g\prime (0) > 0, and g(s) is nondecreasing

in 0 < s \leq s\ast for some s\ast > 0. The quotient g(s)/s is nonincreasing in s > 0.
We now consider a few standard functions that satisfy the above assumptions.

Note that the linear function

(1.6) g(s) = \alpha s,

where \alpha is a positive constant, satisfies (G0). For the special case where \alpha = 1
and f(s) = s(1  - s), model (1.1) simplifies to the classical Fisher's equation for the
spatial spread of an advantageous gene introduced by Fisher in [10] and Kolmogorov,
Petrowsky, and Piscounoff (KPP) in [14] in 1937. The spreading speed formula was
first computed by KPP and Fisher for the semilinear parabolic equation

(1.7) ut  - d\Delta u = f(u) when (x, t) \in \BbbR n \times \BbbR +.

They proved that under certain assumptions on f , now called KPP nonlinearities,
there is a threshold value c\ast = 2

\sqrt{} 
df \prime (0) such that there is no front for c < c\ast and for

all c \geq c\ast there is a unique front up to translations and dilations in terms of space and
time; see also Aronson and Weinberger [1, 2]. With respect to the standard Fisher's
equation with the drift in one dimension,

(1.8) ut = duxx  - qux + f(u) for (x, t) \in \Omega \times \BbbR +,

the critical domain size for the persistence versus extinction is

(1.9) L\ast :=
2\pi d\sqrt{} 

4df \prime (0) - q2
,

when \Omega = (0, L) and the speeds of propagation to the right and left are

(1.10) c\ast \pm (q) = 2
\sqrt{} 
df \prime (0)\pm q,

when \Omega = \BbbR . The remarkable point, made by Speirs and Gurney [29], is that c\ast \pm (q)
is a linear function of q and L\ast as a function of q blows up to infinity exactly at
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roots of c\ast \pm (q). For more information regarding the minimal domain size and analysis
of reaction-diffusion models and connections between persistence criteria and propa-
gation speeds, we refer interested readers to Lewis et al. [13, 16, 23, 30], Lutscher,
Nisbet, and Pachepsky [18], Murray and Sperb [22], Pachepsky et al. [23], Speirs and
Gurney [29], and references therein. For a broader perspective on reaction-advection-
diffusion models in ecology we also refer interested readers to books of Cantrell and
Cosner [6], Fife [9], Lewis, Hillen, and Lutscher [15], Murray [20, 21], and Perthame
[24]. The authors in [8] studied the impulsive reaction-diffusion model (1.1)--(1.2) and
provided formulas for the critical domain sizes, associated to (1.9), for various type
domains. In particular, for n-hypercube with the length \Lambda 1 = \cdot \cdot \cdot = \Lambda n = \Lambda > 0, the
critical domain size is given by

(1.11) \Lambda \ast :=

\Biggl\{ 
2\pi d

\sqrt{} 
n

4d[f \prime (0)+ln(g\prime (0))] - | q| 2 if 4d[f \prime (0) + ln(g\prime (0))] - | q| 2 > 0,

\infty if 4d[f \prime (0) + ln(g\prime (0))] - | q| 2 < 0.

In this article, we provide explicit formulas for the spreading speed of propagation,
counterparts of (1.10), for such models.

One can consider nonlinear functions for g such as the Ricker function, that is,

(1.12) g(s) = se\beta (1 - s),

where \beta is a positive constant. For the optimal stocking rates for fisheries, mathe-
matical biologists often apply is the Ricker model [26], introduced in 1954 to study
salmon populations with scramble competition for spawning sites leading to overcom-
pensatory dynamics. The Ricker function is nondecreasing for 0 < s \leq s\ast = 1

\beta and

satisfies assumption (G0). Note also that the Beverton--Holt function

(1.13) g(s) =
(1 + \lambda )s

1 + \lambda s

with positive constant \lambda is an increasing function and satisfies assumption (G0). This
model was introduced to understand the dynamics of compensatory competition in
fisheries by Beverton and Holt [5] in 1957. Another example is the Skellam function

(1.14) g(s) = \alpha (1 - e - \beta s),

where \alpha is a positive constant and \beta > 1. This function satisfies assumption (G0)
and was introduced by Skellam in 1951 in [27] to study population density for ani-
mals, such as birds, which have contest competition for nesting sites, which leads to
compensatory competition dynamics. Note that the Skellam function behaves similar
to the Beverton--Holt function and it is nondecreasing for any s > 0. We shall use
these functions in the application section (section 5). We refer interested readers to
[28] for more functional forms with biological applications.

We now provide some assumptions on the continuous function f . We assume that
(F0) f(s) = f \prime (0)s+ f1(s), where f \prime (0) \not = 0, f1(0) = f \prime 

1(0) = 0 and f1 \leq 0.
Note that we do not have any assumption on the sign of f \prime (0). Note that f(s) =

\alpha s  - \beta s2, f(s) = \alpha s for \alpha , \beta \in \BbbR satisfy (F0). The above equation (1.1) with (1.2)--
(1.3) and (1.4)--(1.5) defines recurrence relations for Nm(x) and um(x), respectively,
as

(1.15) Nm+1(x) = Q[Nm(x)] for x \in \BbbR n
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and

(1.16) um+1(x) = P [um(x)] for x \in \BbbR n,

where m \geq 0 and P and Q are operators that depend on both the reaction-advection-
diffusion equation and the discrete-time map and thus A, a, f , and g. Most of the
results provided in this paper are valid in any dimensions. However, we shall focus
on the case of n \leq 3 for applications.

This article is structured as follows. We provide properties of the recursion equa-
tion and spreading speeds um+1 = \Gamma [um], where \Gamma is an operator on a certain set of
functions on the habitat (section 2). Methods and techniques provided in this section
are based on those established by Weinberger in [31, 32]. We consider the impulsive
reaction-advection-diffusion equations with both local and nonlocal conditions. We
then provide explicit formulas for the spreading speed of traveling waves and establish
the existence of traveling wave (sections 3 and 4). We also provide applications of the
main results to models for periodically reproducing populations subject to climate
change, to stream-dwelling insects that reproduce yearly, and to grass growing logis-
tically in the savannah, impacted by periodic fires (section 5). Finally, we provide
discussion and proofs for our main results.

2. Formulation of the problem. In this section we study properties of the
recursion

(2.1) um+1 = \Gamma [um],

where \Gamma is an operator on a certain set of functions on the habitat and um(x) represents
the gene fraction or population density at time m at the point x of the habitat. Later
in the applications and proofs we shall set \Gamma = P and \Gamma = Q, where operators P
and Q were introduced earlier. We shall define a wave speed c\ast (e) as a scalar-valued
function of unit direction vector e \in \BbbR n corresponding to any operator \Gamma which
satisfies the following hypotheses, introduced by Weinberger as Hypotheses (3.1) in
[31]. Such definitions and analysis of spreading speeds are discussed and extended in
[1, 2, 3, 4, 17, 32] and are used vastly in the literature that it is not limited to [6, 7,
12, 13, 15, 16, 17, 30].

In all our applications the dependent variable u has only nonnegative values. A
population size will normally vary between 0 and some large upper bound \pi +, but
this upper bound could conceivably be \infty . We define \scrA as the set of nonnegative
continuous functions on \BbbR n that are bounded by \pi +. Let us define the translation
operator

(2.2) Ty[u(x)] = u(x - y).

Note that a constant function is clearly translation invariant; that is, Ty[a] = a for
a \in \BbbR . In addition we assume that Ty[\Gamma [a]] = \Gamma [a]. Weinberger [31] provided a list
of properties for the operators in regards to the spreading speed theory. In addition
to these assumptions it is required that \Gamma [u] to behave continuously with respect to
changes in u, as well as the following:

(H1) \Gamma [u] \in \scrA for all u \in \scrA .
(H2) \Gamma [Ty[u]] = Ty[\Gamma [u]] for all u \in \scrF and y \in \BbbR n.
(H3) There are constants 0 \leq \pi 0 < \pi 1 \leq \pi + such that \Gamma [s] > s for s \in (\pi 0, \pi 1),

\Gamma [\pi 0] = \pi 0, \Gamma [\pi 1] = \pi 1, if \pi 1 < \infty .
(H4) If u \leq v, then \Gamma [u] \leq \Gamma [v].
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(H5) um \rightarrow u uniformly on each bounded domain in \BbbR n implies that \Gamma [um] \rightarrow \Gamma [u]
pointwise.

Now, we define the sequence am(c, e; s) by the recursion

(2.3) am+1(c, e; s) = max \{ \phi (s),\Gamma [am(c, e;x \cdot e+ s+ c)](0)\} ,

where a0 = \phi (s) and \phi (s) is a continuous and nonincreasing function with \phi (s) = 0 for
s \geq 0 and \phi ( - \infty ) \in (\pi 0, \pi 1) where 0 \leq \pi 0 < \pi 1 \leq \pi +. From this definition, we notice
that a0 \leq a1, and performing induction arguments we conclude that am \leq am+1 \leq \pi +.
In addition, the sequence am is nondecreasing in m, nonincreasing in s and c, and
continuous in c, e, and s. Therefore, the sequence am is monotone convergent to a
limit function a(c, e; s) that is again nonincreasing in s and c and bounded by a2.
Applying Lemma 5.2 in [31], we conclude that

(2.4) a(c, e; - \infty ) = \pi +.

However, the value of a(c, e;\infty ) may or may not be \pi +. As it is shown in [31]
a(c, e;\infty ) = \pi + if and only if there is m such that a(c, e; 0) > \phi ( - \infty ). We now define
the spreading speed of propagation for e = (e1, . . . , en) \in \BbbR n direction as c\ast (e) by

(2.5) c\ast (e) = sup\{ c; a(c, e;\infty ) = \pi +\} .

Note that for the case of a(c, e;\infty ) = \pi + for all c we set c\ast (e) = \infty . The following
theorem gives a method for bounding the spreading speed of propagation.

Theorem 2.1 (see Weinberger [31]). If m(x, dx) is a bounded nonnegative mea-
sure on \BbbR n with the property that for all continuous functions u with 0 \leq u \leq \pi 1,

(2.6) \Gamma [u](x) \leq 
\int 
\BbbR n

u(x - y)m(y, dy),

then

(2.7) c\ast (e) \leq inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot em(x, dx)

\biggr\} 
.

Theorem 2.2 (see Weinberger [31]). If m(x, dx) is a bounded nonnegative mea-
sure on \BbbR n with the property that

(2.8)

\int 
m(x, dx) > 1

and that, for all continuous positive bounded functions u with 0 \leq u \leq \pi 1,

(2.9) \Gamma [u](x) \geq 
\int 
\BbbR n

u(x - y)m(y, dy),

then

(2.10) c\ast (e) \geq inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot em(x, dx)

\biggr\} 
.
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3. Spreading speed formula; linear dynamics. In this section, we provide
an explicit formula for spreading speed of propagation for (1.1) with (1.2) and (1.4)
in e = (e1, . . . , en) \in \BbbR n direction. In addition, we compute the direction e such that
the roots of the spreading speed as a function of advection coincide with the values
for which critical domain dimensions tend to infinity.

Suppose that L[\cdot ] is the linearization of operator Q[\cdot ] about zero. Define M0(x) :=
N0(x); then Mm+1(x) = L[Mm(x)], where

(3.1) u
(m)
t + q \cdot \nabla u(m) = div(A\nabla u(m)) + f \prime (0)u(m) for (x, t) \in \BbbR n \times (0, 1],

satisfying

u(m)(x, 0) = g\prime (0)Mm(x) for x \in \BbbR n,(3.2)

Mm+1(x) = u(m)(x, 1) for x \in \BbbR n.(3.3)

Similarly, let \=L[\cdot ] be the linearization of operator P [\cdot ] about zero. Set \=M0(x) := u0(x)
and \=Mm+1(x) = \=L[ \=Mm(x)], where u(m) satisfies the linear equation (3.1) with the
following initial values:

u(m)(x, 0) = \=Mm(x) for x \in \BbbR n,(3.4)

\=Mm+1(x) = g\prime (0)

\int 
\BbbR n

K(x - y)u(m)(y, 1)dy for x \in \BbbR n.(3.5)

Lemma 3.1. Let L[\cdot ] and \=L[\cdot ] be the linearization of operator Q[\cdot ] and P [\cdot ] about
zero, respectively. Then, for any v \in C(\BbbR n) we have

(3.6) L(v)(x) =

\int 
\BbbR n

v(x - y)m(y, dy) and \=L(v)(x) =

\int 
\BbbR n

v(x - y)l(y, dy),

where the measures m and l are defined as

m(y, dy) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

e - 
1
4<A - 1(y - q),(y - q)>,(3.7)

l(y, dy) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

K(z  - y)e - 
1
4<A - 1(z - q),(z - q)>dz,(3.8)

and < A - 1\eta , \eta > stands for \eta TA - 1\eta for any \eta \in \BbbR n.

The proof of Lemma 3.1 is given in section 7. Note that m(y, dy) is a bounded
nonnegative measure, since A is a positive definite matrix.

Lemma 3.2. Let m and l be the measures introduced by (3.7) and (3.8). Then,

(3.9)

\int 
\BbbR n

m(x, dx) =

\int 
\BbbR n

l(x, dx) = g\prime (0)ef
\prime (0).

Proof. This is a special case of Lemma 3.4 for s = 0. Note that from the assump-
tions on the kernel we have

k(0) =

\int 
\BbbR n

K(x)dx = 1.

Note that the linear operators L[v] and \=L[v] are explicitly formulated by (3.6) and
therefore behave continuously with respect to changes in v. Here, we emphasize a few
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properties of these operators, and in particular we show that assumptions (H1)--(H5)
hold. The operator L commutes with any translation, meaning

(3.10) L[Ty[v]](x) = Ty[L[v]](x),

when T is the shift operator Ty[v](x) = v(x - y). In addition, the comparison principle
holds for the operator L, meaning that for v1 \leq v2 we have L[v1](x) \leq L[v2](x), due
to properties of the integral operator. Let us recall that the integral operator is
continuous with respect to its integrand. This elementary fact implies that when
vn \rightarrow v as n \rightarrow \infty uniformly, then L[vn](x) \rightarrow L[v](x). In the following theorem, we
determine the traveling wave speeds in e direction for the linear system. This result
is a direct consequence of Theorem 2.1 and Theorem 2.2.

Lemma 3.3. Let L[\cdot ] and \=L[\cdot ] be the linear operators given by (3.6), where

(3.11) g\prime (0)ef
\prime (0) > 1.

Then, the traveling wave speeds in e direction for these operators are

c\ast (e) = inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot em(x, dx)

\biggr\} 
,(3.12)

c\ast (e) = inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot el(x, dx)

\biggr\} 
,(3.13)

respectively, when m and l are the measures introduced by (3.7) and (3.8).

Proof. From the assumption (3.11) and Lemma 3.2 we conclude that

(3.14)

\int 
\BbbR n

m(x, dx) =

\int 
\BbbR n

l(x, dx) > 1.

Since the linear operators L and \=L, given by Lemma 3.1, satisfy assumptions (H1)--
(H5), from Theorem 2.1 and Theorem 2.2 we conclude the desired result.

We now generalize (3.2) and compute the integrals in the right-hand side of the
equations in (3.12) and (3.13).

Lemma 3.4. Let m and l be the measures introduced by (3.7) and (3.8). Then,
for any \mu \in \BbbR , \int 

\BbbR n

esx\cdot em(x, dx) = g\prime (0)ef
\prime (0)ese\cdot q+s2<Ae,e>,(3.15) \int 

\BbbR n

esx\cdot el(x, dx) = g\prime (0)ef
\prime (0)k(s)ese\cdot q+s2<Ae,e>,(3.16)

when k(s) :=
\int 
\BbbR n K(x)e - sx\cdot edx.

The proof of Lemma 3.4 is given in section 7. We are now ready to provide an
explicit formula for the spreading speed of the linearized model L.

Theorem 3.1. Let g\prime (0)ef
\prime (0) > 1. There exists a spreading speed c\ast L associated

with (3.1)--(3.3) of the following form:

(3.17) c\ast L(e) := 2
\sqrt{} 
< Ae, e >

\sqrt{} 
f \prime (0) + ln(g\prime (0)) + e \cdot q

such that initial data which is nonzero on a bounded set eventually spreads at speed
c\ast L in e-direction.
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Proof. In order to establish the formula of the traveling wave speed c\ast L(e) for the
linear operator L, we minimize the following function for s > 0, as it is given in
Lemma 3.3, that is,

c\ast L(e) = inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot em(x, dx)

\biggr\} 
,

where the measure m is given by

m(y, dy) = g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

e - 
1
4<A - 1(y - q),(y - q)>.

Define W (s) := 1
s ln

\int 
\BbbR n esx\cdot em(x, dx) for s > 0. Note that from Lemma 3.4, we

conclude that

W (s) =
ln[g\prime (0)ef

\prime (0)]

s
+ e \cdot q + s < Ae, e > .

Therefore,

c\ast L(e) = inf
s>0

W (s).

It is straightforward to compute the minimizer of the function W as

s\ast :=

\sqrt{} 
ln[g\prime (0)] + f \prime (0)

< Ae, e >
.

Therefore, c\ast L(e) = W (s\ast ), and this completes the proof.

As a particular case, consider the speed of propagation c\ast L(e) in e-direction as a
function of the nonzero advection q when A = d(\delta i,j)

n
i,j=1. For the direction given by

the e =  - q
| q| , a unit vector, from (3.17) we have

(3.18) c\ast L

\biggl( 
 - q

| q| 

\biggr) 
= 2

\surd 
d
\sqrt{} 
f \prime (0) + ln(g\prime (0)) - | q| .

Note that c\ast L( - 
q
| q| ) vanishes exactly at | q| = 2

\sqrt{} 
d[f \prime (0) + ln(g\prime (0))], for which the

critical domain dimensions in (1.11) tend to infinity. Figure 1 clarifies this relation.

(a) (b)

Fig. 1. (a) Minimal speed c\ast L(e) in the direction e =  - q
| q| when the advection velocity is given

by q = (q1, q2). c\ast L(e) is negative in the blank region. The boundary between blank and shaded
regions also gives the values of q in (1.11) where the critical domain size \Lambda \ast becomes infinite. (b)
Level sets of c\ast L(e).
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Remark 3.1. For the case of n = 1, g(\tau ) = \tau and A = (d\delta ij)
n
i,j=1, the spreading

speed formula (3.17) turns into the standard minimal speed

(3.19) c\ast \pm = 2
\sqrt{} 

df \prime (0)\pm q

in directions e = \pm 1. The latter formula is the upstream and downstream traveling
wave speeds of the classical Fisher's equation.

The case with a Gaussian dispersal function K also has a straightforward spread-
ing speed formula. Suppose that K(x) is a Gaussian distribution with mean \mu and
covariance matrix B denoted by

(3.20) KG(x) :=
1

(4\pi )n/2
\surd 
detB

e - 
1
4<B - 1(x - \mu ),(x - \mu )>.

Here, \mu is a real vector and B stands for some positive definite matrix. We are now
ready to provide an explicit formula for the spreading speed of the linearized model
\=L associated with the above Gaussian distribution.

Theorem 3.2. Let g\prime (0)ef
\prime (0) > 1. There exists a spreading speed c\ast K associated

to (3.1) together with (3.4)--(3.5) of the following form:

(3.21) c\ast KG
(e) := 2

\sqrt{} 
< (A+B)e, e >

\sqrt{} 
f \prime (0) + ln(g\prime (0)) + e \cdot (q  - \mu )

such that initial data that is nonzero on a bounded set with positive measure eventually
spreads at speed c\ast K in e-direction. Here, KG is given by (3.20).

The proof of Theorem 3.2 is given in section 7.

4. Existence of traveling wave solutions. We start with the definition of
traveling wave solutions.

Definition 4.1. We say that um(x) is a traveling wave solution of (2.1) in e =
(e1, . . . , en) \in \BbbR n direction if there exists a function W and a constant c such that
um(x) = W (x \cdot e - cm).

Suppose that a = 0 and A = 0 in (1.1). Then u(x, t) only depends on time and
not on space, meaning that individuals do not advect or diffuse. Assume that Nm

represents the number of individuals at the beginning of reproductive stage in the
mth year. Then \left\{   ut(t) = f(u(t)) for t \in (0, 1],

u(0) = g(Nm),
Nm+1 := u(1).

(4.1)

Separation of variables shows that

(4.2)

\int Nm+1

g(Nm)

d\omega 

f(\omega )
= 1.

Note that a positive constant equilibrium of (4.1) satisfies

(4.3)

\int N

g(N)

d\omega 

f(\omega )
= 1.
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Assume that f satisfies (F0) and g satisfies (G0); then

(4.4) 1 =

\int N

g(N)

d\omega 

f(\omega )
\geq 1

f \prime (0)

\int N

g(N)

d\omega 

\omega 
=

1

f \prime (0)
ln

\bigm| \bigm| \bigm| \bigm| N

g(N)

\bigm| \bigm| \bigm| \bigm| \geq 1

f \prime (0)
ln

\bigm| \bigm| \bigm| \bigm| 1

g\prime (0)

\bigm| \bigm| \bigm| \bigm| .
In the light of above computations, we assume that

(4.5) ef
\prime (0)g\prime (0) > 1,

and an N\ast > 0 exists such that f \not = 0 on the closed interval with endpoints N\ast and
g(N\ast ) and

(4.6)

\int N\ast 

g(N\ast )

d\omega 

f(\omega )
= 1.

In what follows, we study the assumptions (H1)--(H5) for operators P and Q given
by (1.15) and (1.16). Let us start with the following order-preserving property.

Lemma 4.1. Assume that v0 and w0 are nonnengative continuous functions on
\BbbR n and v0(x) \leq w0(x) for all x \in \BbbR n. Let v(x, t) and w(x, t) be solutions of (1.1) with
initial values of v0, w0 and for operators \Gamma = P and \Gamma = Q. Then, v(x, t) \leq w(x, t)
for all x \in \BbbR n and t > 0.

The proof of this lemma follows from the comparison principle for reaction-
diffusion equations, from the nonnegativity of kernel K, and from the monotonicity
assumption on g. Therefore, (H1) and (H4) hold. It is straightforward to notice that
operators P andQ commutes with all translations of the real line. For the convolution,
one can apply the following change of variables argument:

(4.7)

\int 
\BbbR n

K(x - y  - z)v(z)dz =

\int 
\BbbR n

K(x - w)v(w  - y)dw.

This implies that (H2) holds for both P and Q. Note that for spatially constant
solutions to (1.1), when u0(x, 0) = g(U0), the solution um(x, 0) remains spatially
constant and satisfies

(4.8)
d

dt
Um = f(Um) for t \in (0, 1]

and Um+1(0) = g(Um(1)). Lewis and Li in [16] calculated the solution to this model
explicitly for f(u) = f \prime (0)u+ f1(u) when f1(u) = \gamma u2 and that is given by

(4.9) Um+1 =
f \prime (0)g(Um)

(e - f \prime (0)  - 1)\gamma g(Um) + f \prime (0)e - f \prime (0)
.

In the general case, one may refer to the computations as in (4.2) in this regard.
Moreover, the following result was established for a nonspatial model by Lewis and
Li in [16] for f1(u) = \gamma u2 and by the authors in [8] for general nonlinearities f .

Lemma 4.2.
1. If g\prime (0)ef

\prime (0) \leq 1 and U0 > 0, then Um+1 \leq Um and limm\rightarrow \infty Um = 0.
2. If g\prime (0)ef

\prime (0) > 1, then there exists a unique U\ast > 0 with Q(U\ast ) = U\ast .
3. If g\prime (0)ef

\prime (0) > 1 and 0 < U0 < U\ast , then Um+1 > Um and limm\rightarrow \infty Um = U\ast .
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Applying similar arguments as in the above lemma one can see that

(4.10) Q[0] = 0, Q[U\ast ] = U\ast , and Q[U ] > U for U \in (0, U\ast ).

Similar results hold for the operator P , and therefore assumption (H3) holds too. In
order to show that (H5) is satisfied for operators P and Q, we state that the integral
operator \int 

\BbbR n

K(x - y)u(y)dy

with the kernel K \in L2(\BbbR n) is a compact operator in \scrA \cap L2(\BbbR n), known also as the
Hilbert--Schmidt operator. Since g is continuous, this implies that both operators P
and Q are compact in \scrA on every bounded set.

We now provide the existence of a traveling wave solution of speed c in e direction
whenever c \geq c\ast (e). Here, c\ast (e) is given by (3.12) and (3.13) for the linearized
operators L[\cdot ] and \=L[\cdot ] stated in (3.1) with conditions (3.2)--(3.3) and (3.4)--(3.5),
respectively. We say that the recursion model (1.1) together with either (1.2)--(1.3)
or (1.4)--(1.5) is linearly determinate in the direction of e, since c\ast (e) is determined
exactly in terms of the behavior of the linearized system.

Theorem 4.1. For every c \geq c\ast (e) there exists a traveling wave solution of speed
c, that is, W (x \cdot e  - mc) for model (1.1) together with either (1.2)--(1.3) or (1.4)--
(1.5). Here, W is a nonincreasing function such that W ( - \infty ) = \pi 1 and W (+\infty ) = 0.
In addition, the system is linearly determinate; that is, c\ast (e) is given by (3.12) and
(3.13).

As an example, we compute the spreading speed for particular models in two
dimensions.

Example 4.1. Let n = 2, e = (cos \theta , sin \theta ), A = (a2ij\delta ij)
n
i,j=1, and q = (q1, q2),

where 0 \leq \theta < 2\pi and aij and qi are constant. Applying formula (3.17) we get

(4.11) c\ast (e) = 2

\sqrt{} 
a211 cos

2 \theta + a222 sin
2 \theta 

\sqrt{} 
f \prime (0) + ln(g\prime (0)) + q1 cos \theta + q2 sin \theta .

This formula clarifies the dependence of the spreading speed of propagation, for
any angle \theta , on anisotropic diffusion coefficients a11 and a22 and on advection coeffi-
cients q1 and q2. Define the following set:

\scrS := \{ x \in \BbbR n, c\ast (\~e) \geq \~e \cdot x for all vectors \~e\} .

Suppose that c\ast (e) is the propagation speed in the e-direction of a traveling wave;
then the convex set \scrS would be the ray surface. As mentioned by Weinberger in [32],
the ray speed in e-direction is defined to be the largest value of \alpha such that \alpha e \in \scrS ,
and it is related to c\ast by the following formula:

(4.12) C(e) := min
e\cdot \~e>0,\~e\in \BbbR n

c\ast (\~e)

e \cdot \~e
.

In other words, the ray speed in direction e, C(e), is the minimizer of the speed in the
direction e among all the fronts, even those in directions \~e \not = e, providing \~e \cdot e > 0.
Thus C(e) is the minimum possible rate of spread in the e-direction, given that an
expansion front occurs in a direction whose projection onto e is positive. This ray
speed will be less than or equal to the speed of an expansion front travelling in the
e-direction c\ast (e). Note that the above formula is also known as Freidlin--G\"artner's
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formula [11]. Just as in the above example, we shall compute the ray speed in the
direction e = (cos \theta , sin \theta ) as follows. Let q = 0 in Example 4.1. Then, for a unit
vector \~e = (\~e1, \~e2) \in \BbbR 2, we have

(4.13) c\ast (\~e) = 2
\sqrt{} 
a211\~e

2
1 + a222\~e

2
2

\sqrt{} 
f \prime (0) + ln(g\prime (0)).

From this and (4.12), we conclude

(4.14) C(e) = 2
\sqrt{} 
f \prime (0) + ln(g\prime (0)) min

cos(\theta )\~e1+sin(\theta )\~e2>0

\sqrt{} 
a211\~e

2
1 + a222\~e

2
2

cos(\theta )\~e1 + sin(\theta )\~e2
.

It is straightforward to notice that for all units vector \~e = (\~e1, \~e2) \in \BbbR 2 and for
0 \leq \theta \leq \pi /2, the minimum is attained, and it is given by

(4.15) min
cos(\theta )\~e1+sin(\theta )\~e2>0

\sqrt{} 
a211\~e

2
1 + a222\~e

2
2

cos(\theta )\~e1 + sin(\theta )\~e2
=

\sqrt{} 
a211a

2
22

a211 sin
2 \theta + a222 cos

2 \theta 
.

Therefore,

(4.16) C(e) = 2

\sqrt{} 
a211a

2
22

a211 sin
2 \theta + a222 cos

2 \theta 

\sqrt{} 
f \prime (0) + ln(g\prime (0)).

Note that both c\ast (e) and C(e) as functions of \theta for 0 \leq \theta \leq \pi /2 are either decreasing
or increasing depending on a11 > a22 or a22 > a11. In addition, c\ast (e) \geq C(e) if and
only if

(a211  - a222)
2 sin2 \theta cos2 \theta \geq 0.

Therefore, C(e) = c\ast (e) if and only if e = (\pm 1, 0) or e = (0,\pm 1) or a11 = a22. In
Figure 2 we illustrate the relation between c\ast (e) and C(e).

0 0.5 1 1.5

x

0

0.5

1

1.5

y

The minimum speed of
traveling waves

The ray speed

c*

C

(a) (b)

Fig. 2. Minimal speed and ray speed in e = (cos \theta , sin \theta ) direction in two dimensions when
0 \leq \theta \leq \pi 

2
. In (a) the case where a11 > a22 is shown. In (b) the quantitites c\ast (red) and C (blue)

are shown in polar coordinates.

5. Applications. In this section, we provide applications of main theorems re-
garding analysis of the spreading speed formula provided in sections 3 and 4.
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5.1. Population subject to climate change. Climate change, especially global
warming, has greatly changed the distribution and habitats of biological species. Un-
covering the potential impact of climate change on biota is an important task for
modelers [25]. We investigate the dependence of the critical domain size and the
spreading speed on the climate shifting speed.

We consider a rectangular domain, that is, \Omega = [0, L1] \times [0, L2], moving in the
positive x-axis direction at speed c. Outside this domain conditions are hostile to
population growth, while inside the domain there are random media, mortality, and
periodic reproduction. Using the approach of [25] this problem is transformed to a
related problem on a stationary domain. Consider the model\left\{       

u
(m)
t = d\Delta u(m)  - q \cdot \nabla u(m)  - \gamma u(m) for (x, t) \in \Omega \times (0, 1],

u(m)(x, t) = 0 for (x, t) \in \partial \Omega \times (0, 1],
u(m)(x, 0) = g(Nm(x)) for x \in \Omega ,
Nm+1(x) := u(m)(x, 1) for x \in \Omega ,

(5.1)

where g is the Beverton--Holt function, that is, g(Nm) = (1+\lambda )Nm

1+\lambda Nm
and q = (c, 0).

Similar to previous examples the assumption (3.11) implies that ln(1 + \lambda ) > \gamma . From
the critical domain dimensions provided by the authors in [8] we conclude that

(5.2)
1

L2
1

+
1

L2
2

<
1

d\pi 2

\biggl[ 
ln(1 + \lambda ) - \gamma  - c2

4d

\biggr] 
;

when ln(1+\lambda ) > \gamma + c2

4d we have limm\rightarrow \infty Nm(x) = \=N(x) for some positive equilibrium
\=N(x) which refers to persistence of population. In other words, (5.2) yields that the
parameter c must be bounded by

(5.3) c2 < 4d[ln(1 + \lambda ) - \gamma ] - (2d\pi )2
\biggl[ 
L2
1 + L2

2

L2
1L

2
2

\biggr] 
.

Let us mention that Theorem 3.1 implies that the speed of propagation for the model
(5.1) on an infinite domain \Omega = \BbbR in the x - axis direction, e = 1, and in the opposite
of x - axis direction, e =  - 1, is given by

(5.4) c\ast = 2
\sqrt{} 

d[ln(1 + \lambda ) - \gamma ]\pm c.

Note that when c satisfies (5.3) then the speed of propagation in (5.4) is positive.
This implies that persistence and ability to propagate should be closely connected.
This is the case from a biological perspective as well. For example, if a population
cannot propagate upstream but is washed downstream, it will not persist. We refer
interested readers to Speirs and Gurney [29] and Pachepsky et al. [23] for similar
arguments regarding Fisher's equation with advection. Note also that the speed of
propagation vanishes in (5.4) exactly at the values that make the right-hand side of
(5.2) zero. One can compare this relation to the one given in (1.9) and (1.10) for the
classical Fisher's equation.

5.2. Population of a stream insect species (e.g., stoneflies, mayflies).
We now apply the nonlocal model to formulate a mixed continuous-discrete model
for a single population of a stream insect species (e.g., stoneflies, mayflies) with two
distinct, nonoverlapping developmental stages. Such models are studied by Vasilyeva,
Lutscher, and Lewis in [30] and by Speirs and Gurney in [29]. Let u(m)(x, t) be the
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density of the larval population at time t and location x during season m. Larvae are
transported by diffusion rate d and by drift speed q and experience possibly density-
dependent death according to some positive function f . Then, consider the model\left\{   u

(m)
t = d\Delta u(m)  - q \cdot \nabla u(m)  - ru(m) for (x, t) \in \BbbR \times (0, 1],

u(m)(x, 0) = um(x) for x \in \BbbR ,
um+1(x) = g

\bigl( \int 
\BbbR n K(x - y)u(m)(y, 1)dy

\bigr) 
for x \in \BbbR ,

(5.5)

where r is the natural mortality rate, d is the diffusion rate, g is the Beverton--Holt

function g(\tau ) = (1+\lambda )\tau 
1+\lambda \tau for \lambda > 0, and q is the speed rate of drift. In this model,

the adult dispersal stage is modeled by a Gaussian normal distribution with mean
up-river dispersal distance \mu and covariance \sigma 2, denoted by (3.20) in one dimension,
that is,

(5.6) K(x) :=
1\surd 
4\sigma 2\pi 

e - 
1

4\sigma 2 | x - \mu | 2 .

Note that the condition (3.11) is equivalent to

(5.7) (1 + \lambda )e - r > 1.

Theorem 3.2 implies that

(5.8) c\ast := 2
\sqrt{} 
d+ \sigma 2

\sqrt{} 
ln(1 + \lambda ) - r \pm (q  - \mu ).

Note that c\ast > 0 is equivalent to

(5.9) \lambda + 1 > e
r+

(q - \mu )2

4(d+\sigma 2) .

Therefore, the population spreads in both directions exactly when the above condition
is satisfied. This is, in general, stronger than the nonextinction condition (5.7) that
is, (1+\lambda )e - r > 1. When a population can persist on a bounded domain, it can spread
upstream and downstream on the infinite domain.

5.3. Grass growing logistically in the savannah with asymmetric seed
dispersal and impacted by periodic fires. The high grass productivity on sa-
vannahs can lead to more frequent savannah fires. We apply the impulsive model
(1.1)--(1.2) with Fisher-KPP nonlinearity to study grass growing logistically in the
savannah, impacted by periodic fires. For an isotropic impulsive model in one dimen-
sion, see [33]. Seed dispersal is the movement or transport of seeds away from the
parent plant, and it is often directionally biased because of the inherent directional-
ity of wind and many other dispersal vectors. Therefore, we consider an anisotropic
model to characterize seed dispersal with advection in two dimensions. Let n = 2,
e = (cos \theta , sin \theta ), A = (a2ij\delta ij)

n
i,j=1 when a11 \not = a22, and q = (q1, q2) where 0 \leq \theta < 2\pi 

and aij and qi are constant. For (x, y, t) \in \BbbR \times \BbbR \times (0, 1], consider\left\{   u
(m)
t = a11u

(m)
xx + a22u

(m)
yy  - < q1, q2 > \cdot < u

(m)
x , u

(m)
y > +r(1 - u(m))u(m),

u(m)(x, y, 0) = g(Nm(x, y)) for x, y \in \BbbR \times \BbbR ,
Nm+1(x, y) = u(m)(x, y, 1) for x, y \in \BbbR \times \BbbR ,

(5.10)

where g(Nm) = (1 - s)Nm and 0 < s < 1. The assumption (4.5) is equivalent to

(5.11) er(1 - s) > 1.
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Assuming that (5.11) holds, straightforward calculations show that the positive equi-
librium N\ast that solves (4.6) is of the form

(5.12) N\ast :=
(1 - s)er  - 1

(1 - s)(er  - 1)
.

From (3.17), we obtain an explicit formula of spreading speed of propagation in di-
rection e = (cos \theta , sin \theta ) of the form of

(5.13) c\ast (e) = 2

\sqrt{} 
a211 cos

2 \theta + a222 sin
2 \theta 

\sqrt{} 
ln(1 - s) + r + q1 cos \theta + q2 sin \theta .

We now compute the ray speed in the direction e = (cos \theta , sin \theta ) when q = 0. Then

(5.14) C(e) = 2

\sqrt{} 
a211a

2
22

a211 sin
2 \theta + a222 cos

2 \theta 

\sqrt{} 
ln(1 - s) + r.

Straightforward computations show that c\ast (e) \geq C(e) if and only if

(a211  - a222)
2 sin2 \theta cos2 \theta \geq 0.

Because of anisotropic diffusion, the above inequality implies the wave speed is strictly
larger than the ray speed in any direction that is not parallel to x-axis, that is,
e = (\pm 1, 0), or y-axis, that is, e = (0,\pm 1).

6. Discussion. We analyzed population spread and traveling waves for impul-
sive reaction-advection-diffusion equation models for species with distinct reproduc-
tive and dispersal stages on spatial domains \Omega \subset \BbbR n when n \geq 1. The case of one
dimensional model was studied by Lewis and Li in [16] and Vasilyeva, Lutscher, and
Lewis in [30] and the critical domain size for higher dimensions by the authors in
[8]. Unlike the analysis of standard partial differential equation models, the study
of impulsive reaction-advection-diffusion models requires a simultaneous analysis of
the differential equation and the recurrence relation. This fundamental fact rules out
certain standard mathematical analysis theories for analyzing solutions of these type
models, but it opens up various new ways to apply the model. The models can be
variously considered as a description for a continuously growing and a dispersing pop-
ulation with pulse harvesting, a dispersing population with periodic reproduction, or
a population with individuals immobile during the winter.

On the entire space \BbbR n, we provided an explicit formula for the spreading speed of
propagation in any direction e \in \BbbR n in terms of the same set of model parameters used
for computing critical domain sizes and extreme volume sizes. Our applications section
demonstrates that the possible modeling questions that can be addressed are broad
ranging and in many cases need to be addressed in higher dimensions than dimension
one. Our paper has developed the tools to make this possible. Study of the minimal
speed of propagation and the asymptotic spreading speed has attracted the attention
of many mathematicians and scientists for the past few decades; see [1, 2, 9, 11, 31,
32]. Many authors have driven formulas for the spreading speed of propagation for
parabolic equations with a nonconstant diffusion matrix and a non constant advection
vector field on cylinders, periodic domains, and general domains; see G\"artner and
Freidlin [11], Mallordy and Roquejoffre [19], Heinze, Papanicolaou, and Stevens [12],
Berestycki, Hamel, and Nadirashvili [3, 4], and references therein. In these articles,
authors used variational principles, more precisely min-max theories, to express the

D
ow

nl
oa

de
d 

02
/2

0/
20

 to
 1

29
.1

28
.2

16
.3

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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spreading speed formulas. One can apply the ideas and mathematical techniques
used in these references to develop a theory of propagation for the impulsive reaction-
diffusion equation models with a nonconstant diffusion matrix and a nonconstant
advection vector with hostile and flux boundary conditions.

7. Proofs. In this section, we provide proofs for the main results of sections 3
and 4. We shall start with the following technical lemma that is used frequently in
the proofs. We omit the proof of this lemma since it is straightforward.

Lemma 7.1. Let A = (ai,j)
n
i,j=1 be a symmetric positive definite matrix with con-

stant components. Then, the following formulas hold:

(7.1)

\int 
\BbbR n

eiz\cdot \eta  - <A\eta ,\eta >d\eta =
\pi 

n
2

\surd 
detA

e - 
1
4<A - 1z,z>

and

(7.2)

\int 
\BbbR n

ez\cdot \eta  - <A - 1\eta ,\eta >d\eta = \pi 
n
2

\surd 
detAe

1
4<Az,z>

for any z \in \BbbR n where < A\eta , \eta > stands for \eta TA\eta for any \eta \in \BbbR n.

Proof of Lemma 3.1. Note that div(A\nabla u) =
\sum n

i,j=1 aijuxixj
. Let the notation \scrF 

stand for the Fourier transform, that is,

\scrF (u)(\zeta , t) = (2\pi ) - 
n
2

\int 
\BbbR n

e - ix\cdot \zeta u(x, t)dx.

From properties of the Fourier transform we have

\scrF (uxixj
)(\zeta , t) =  - \zeta i\zeta j\scrF (u)(\zeta , t) and \scrF (q \cdot \nabla u)(\zeta , t) = iq \cdot \zeta \scrF (u)(\zeta , t).

Applying the Fourier transform to (3.1) we get

\partial t\scrF (u)(\zeta , t) + iq \cdot \zeta \scrF (u)(\zeta , t) =  - 
\sum 
i,j

aij\zeta i\zeta j\scrF (u)(\zeta , t) + f \prime (0)\scrF (u)(\zeta , t).

This is a first order linear differential equation, and the solution is

\scrF (u)(\zeta , t) = \scrF (u)(\zeta , 0)etf
\prime (0) - t(iq\cdot \zeta +

\sum 
i,j aij\zeta i\zeta j).

For some k(x, t), define

\scrF (k)(\zeta , t) := (2\pi ) - 
n
2 etf

\prime (0) - t(iq\cdot \zeta +
\sum 

i,j aij\zeta i\zeta j).

Therefore,
\scrF (u)(\zeta , t) = (2\pi )

n
2 \scrF (u)(\zeta , 0)\scrF (k)(\zeta , t).

From the properties of the Fourier transform we have

(7.3) u(x, t) =

\int 
\BbbR n

k(x - y, t)u(y, 0)dy,

where

k(x, t) = etf
\prime (0)(2\pi ) - n

\int 
\BbbR n

eix\cdot \zeta e - t(iq\cdot \zeta +
\sum 

i,j aij\zeta i\zeta j)d\zeta 

= etf
\prime (0)(2\pi ) - n

\int 
\BbbR n

ei(x - tq)\cdot \zeta e - t
\sum 

i,j aij\zeta i\zeta jd\zeta .
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Now set \eta = \zeta 
\surd 
t. Then

k(x, t) = etf
\prime (0)(2\pi ) - nt - 

n
2

\int 
\BbbR n

e
i
\Bigl( 

x - tq\surd 
t

\Bigr) 
\cdot \eta  - <A\eta ,\eta >

d\eta .

Applying (7.1) with z = x - tq\surd 
t

for any x \in \BbbR n and t \in \BbbR + we get the following explicit

formula for k:

k(x, t) = etf
\prime (0)(2\pi ) - nt - 

n
2

\pi 
n
2

\surd 
detA

e
 - 1

4<A - 1
\Bigl( 

x - tq\surd 
t

\Bigr) 
,
\Bigl( 

x - tq\surd 
t

\Bigr) 
>
.

We now substitute the above formula for k in (7.3) to obtain

u(x, t) = etf
\prime (0)(2\pi ) - nt - 

n
2

\pi 
n
2

\surd 
detA

\int 
\BbbR n

e
 - 1

4<A - 1
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
,
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
>
u(y, 0)dy.

We apply the above integral operator to establish the formulas for both L and \=L in
(3.6). Let u(m)(x, t) be a solution of the linear equation (3.1) with initial value (3.2),
that is, u(m)(x, 0) = g\prime (0)Mm(x). Then,

u(m)(x, t) = g\prime (0)etf
\prime (0)(2\pi ) - nt - 

n
2

\pi 
n
2

\surd 
detA

\int 
\BbbR n

e
 - 1

4<A - 1
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
,
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
>
Mm(y)dy.

From (3.3), that is, Mm+1(x) = u(m)(x, 1), by setting t = 1 in the above we conclude

Mm+1(x) = g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

e - 
1
4<A - 1(x - y - q),(x - y - q)>Mm(y)dy

= L[Mm(x)].

Note that the operator L is defined on the set of all continuous functions as

L(v)(x) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

e - 
1
4<A - 1(y - q),(y - q)>v(x - y)dy

=

\int 
\BbbR n

v(x - y)m(y, dy),

where the measure m is defined as

m(y, dy) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

e - 
1
4<A - 1(y - q),(y - q)>.

Now, let u(m)(x, t) be a solution of the linear equation (3.1) with initial value (3.4),
that is, u(m)(x, 0) = \=Mm(x). Then,

u(m)(x, t) = etf
\prime (0)(2\pi ) - nt - 

n
2

\pi 
n
2

\surd 
detA

\int 
\BbbR n

e
 - 1

4<A - 1
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
,
\Bigl( 

x - y - tq\surd 
t

\Bigr) 
> \=Mm(y)dy.

From (3.3), that is,

\=Mm+1(x) = g\prime (0)

\int 
\BbbR n

K(x - z)u(m)(z, 1)dz,
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by setting t = 1 in the above we conclude

\=Mm+1(x)

= g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

\int 
\BbbR n

K(x - z)e - 
1
4<A - 1(z - y - q),(z - y - q)>Mm(y)dydz

= \=L[ \=Mm(x)].

Note that the operator \=L is defined on the set of all continuous functions as

\=L(v)(x) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

\int 
\BbbR n

K(z - y)e - 
1
4<A - 1(z - q),(z - q)>v(x - y)dzdy

=

\int 
\BbbR n

v(x - y)l(y, dy),

where the measure l is defined as

l(y, dy) := g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

K(z  - y)e - 
1
4<A - 1(z - q),(z - q)>dz.

This completes the proof.

Proof of Lemma 3.4. We now compute the integral in the right-hand side of (3.7):\int 
\BbbR n

esx\cdot em(x, dx) = g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

esx\cdot e - 
1
4<A - 1(x - q),(x - q)>dx

= g\prime (0)ef
\prime (0)(2\pi ) - n(2)n

\pi 
n
2

\surd 
detA

\int 
\BbbR n

ese\cdot (2\eta +q) - <A - 1\eta ,\eta >d\eta 

= g\prime (0)ef
\prime (0)(\pi ) - ne\mu e\cdot q

\pi 
n
2

\surd 
detA

\int 
\BbbR n

e\eta \cdot (2se) - <A - 1\eta ,\eta >d\eta .

Applying formula (7.2) for z = 2\mu e we obtain\int 
\BbbR n

esx\cdot em(x, dx) = g\prime (0)ef
\prime (0)(\pi ) - nese\cdot a

\pi 
n
2

\surd 
detA

\pi 
n
2

\surd 
detAe

1
4<A(2se),(2se)>

= g\prime (0)ef
\prime (0)ese\cdot q+s2<Ae,e>.

We now compute the integral in the right-hand side of (3.8):\int 
\BbbR n

esx\cdot el(x, dx)

= g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

\biggl[ \int 
\BbbR n

esx\cdot eK(y  - x)dx

\biggr] 
e - 

1
4<A - 1(y - q),(y - q)>dy

= g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

k(s)

\int 
\BbbR n

esy\cdot e - 
1
4<A - 1(y - q),(y - q)>dy,

where k(s) :=
\int 
\BbbR n esz\cdot eK( - z)dz. Applying the same arguments as in the above for

the measure m completes the proof.

Proof of Theorem 3.2. Let K(x) be the Gaussian distribution with mean \mu and
covariance matrix B denoted by

KG(x) :=
1

(4\pi )n/2
\surd 
detB

e - 
1
4<B - 1(x - \mu ),(x - \mu )>.
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Here, \mu is a real vector, and B stands for some positive definite matrix. In order to
establish the formula of the traveling wave speed c\ast (e) for the linear operator \=L, we
minimize the following function for s > 0, as it is given in Lemma 3.3, that is,

c\ast (e) = inf
s>0

\biggl\{ 
1

s
ln

\int 
\BbbR n

esx\cdot el(x, dx)

\biggr\} 
,

where the measure l is given by Lemma 3.1,

l(y, dy) = g\prime (0)ef
\prime (0)(2\pi ) - n \pi 

n
2

\surd 
detA

\int 
\BbbR n

K(x - y)e - 
1
4<A - 1(x - q),(x - q)>dx.

Define WG(s) := 1
s ln

\int 
\BbbR n esx\cdot el(x, dx) for s > 0. Note that from Lemma 3.4, we

conclude that

WG(s) =
ln k(s)

s
+

ln[g\prime (0)ef
\prime (0)]

s
+ e \cdot q + s < Ae, e >,

where k(s) =
\int 
\BbbR n KG(x)e

 - sx\cdot edx. We now compute the latter integral to evaluate
k(s), that is,

k(s) =
1

(4\pi )n/2
\surd 
detB

\int 
\BbbR n

e - sx\cdot ee - 
1
4<B - 1(x - \mu ),(x - \mu )>dx.

We now set a change of variable \eta = x - \mu 
2 . Therefore, Lemma 7.1 implies

k(s) =
1

\pi n/2
\surd 
detB

e - s\mu \cdot e
\int 
\BbbR n

e( - 2se)\cdot \eta  - <B - 1\eta ,\eta >d\eta 

= e - s\mu \cdot ee
1
4<B( - 2se),( - 2se)>

= e - s\mu \cdot e+<Be,e>s2 .

We now rewrite WG(s) as

WG(s) =
ln[g\prime (0)ef

\prime (0)]

s
+ e \cdot (q  - \mu ) + s < (A+B)e, e > .

Therefore,

c\ast KG
(e) = inf

s>0
WG(s).

It is straightforward to compute the minimizer of the function WG as

s\ast :=

\sqrt{} 
ln[g\prime (0)] + f \prime (0)

< (A+B)e, e >
.

Therefore, c\ast KG
(e) = WG(s

\ast ), and this completes the proof.

Proof of Theorem 4.1. The operators P and Q and the measures m and l satisfy
all of the assumptions of Theorem 6.6 provided by Weinberger in [31] in regards to the
existence of traveling wave. More precisely, as discussed in section 4, the operators P
and Q satisfy the assumptions (H1)--(H5). From the assumption (G0) on the function

g, we have g(s)
s is a nonincreasing function of s in \BbbR +, that is,

g(\alpha )

\alpha 
\geq g(s)

s
for s \geq \alpha .
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Now set \alpha = \rho s \leq s for 0 \leq \rho \leq 1, and apply the above inequality to get

g(\rho s) \geq \rho g(s).

This implies that for all 0 \leq \rho \leq 1 we have

Q[\rho u] \geq \rho Q[u],

where u is a solution of (1.1) and Q is given by (1.16). In the light of arguments in
section 2, we choose a function \phi that satisfies the corresponding properties. For each
positive integer k we define the sequence

am+1(c, e; k, s) := max\{ k - 1\phi (s), Q[am(c, e, k;x \cdot e+ s+ c)](0)\} ,

when a0(c, e, k; s) = k - 1\phi (s). The sequence an is nonincreasing in c, k, and s and
nondecreasing in n. As n \rightarrow \infty , it converges to a limit function a which is nonin-
creasing in c, k, and s. The function a(c, e, k;x \cdot e+ t) is continuous in terms of x and
lims\rightarrow  - \infty a(c, e, k; s) = \pi 1 and lims\rightarrow \infty a(c, e, k; s) = 0 for c \geq c\ast (e). Furthermore,

(7.4) a(c, e; k, s) := max\{ k - 1\phi (s), Q[a(c, e, k;x \cdot e+ s+ c)](0)\} .

Set x0 \in \BbbR n such that x0 \cdot e > 0. For every integer j and any c \geq c\ast (e) define the
sequence

Tk(l) =
1

2
[a(c, e, k; lx0 \cdot e) + a(c, e, k; (l + 1)x0 \cdot e)] .

Then, Tk(l) is nonincreasing in l, Tk( - \infty ) = \pi 1 and Tk(\infty ) = 0. Since a decreases
from \pi 1 to 0 as s goes from  - \infty to \infty ,

Tk(l) - Tk(l  - 1) =
1

2
[a(c, e, k; (l + 1)x0 \cdot e) - a(c, e, k; (l  - 1)x0 \cdot e)] \leq 

\pi 1

2
.

Therefore, there is an integer lk such that

\pi 1

4
\leq Tk(lk) \leq 

3\pi 1

4
.

We now consider the sequence a(c, e, k;x\cdot e+lkx0 \cdot e) for k \in \BbbN . There is a subsequence
ki of the integers such that a(c, e, ki;x \cdot e + lkix0 \cdot e) converges uniformly for x on
bounded subsets of \BbbR n to a functionW (x\cdot e) defined on \BbbR n. From this we conclude that

there exists a subsequence k
(1)
i such that a(c, e, k

(1)
i ;x \cdot e+ l

k
(1)
i
x0 \cdot e+c) also converges

uniformly on bounded subsets of \BbbR n to a function W (x\cdot e+c). Applying this argument

we establish a sequence a(c, e, k
(m)
i ;x \cdot e+ l

k
(m)
i

x0 \cdot e+mc) that is uniformly convergent

to a function W (x \cdot e +mc) for any m \in \BbbN . Using a diagonal process we arrive at a
sequence \=ki, and taking limits in (7.4) for k = \=ki and s = y \cdot e + l\=ki

x0 \cdot e  - (m + 1)c
we get

W (y \cdot e - (m+ 1)c) = Q[W (x \cdot e - mc)](y).

Therefore, um(x) = W (x \cdot e - mc) is a traveling wave solution of um+1 = Q[um].
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