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CAUSAL STRUCTURE OF KINK SPACETIMES
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Abstract. We examine the causal structure of Finkelstein-Misner kink
spacetimes, and discuss the conjecture that a singularity theorem can be
predicated on the existence of non-zero kink number. As evidence in favour
of this conjecture, arguments are given which prove a limited special case.

I. PRELIMINARIES

The concept of gravitational kinks was first introduced by Finkelstein and Misner [1],
who called them M-geons. Consider an oriented embedded surface Σ in a spacetimeM.
If Σ “carries a kink,” then we may think of it as having light cones that “tumble over”
as one traverses Σ, with the kink number counting the number of complete tumbles.
Precise definitions of kink number are given elsewhere in this volume [2].

The concept applies to any hypersurface in spacetime, or any boundary hypersur-
face that spacetime might acquire as the result of a conformally isometric embedding
in a larger Lorentzian manifold. It is not even necessary that the spacetime be time-
orientable, although we will assume it is in what follows, since we will eventually invoke
causality considerations. An easily visualized case is a spacetime consisting of a ball
cut from Minkowski spacetime. The ball can be assigned a 3-sphere boundary carrying
kink number 1.

1E-Mail: ewoolgar@math.ualberta.ca
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It had been conjectured that compact manifolds with a single S3 boundary hav-
ing kink number other than 1 would contain closed timelike curves [3]. This is but
one example of the counter-intuitive nature of kinks, for the conjecture, although it
appears quite reasonable, is false. I came to understand this result, due to Chamblin
and Penrose [4], through discussions with Ken Dunn during my year at Dalhousie Uni-
versity. It seems appropriate therefore, as this session is dedicated to Ken’s memory,
to return to the still incompletely understood relationship between kink number and
causal structure. In particular, I will concentrate on evidence for another intuitively
plausible but as yet undecided conjecture concerning a possible relationship between
kinking and geodesic incompleteness.

We must first extend our notion of kink from a surface to an entire spacetime.
Even in such a simple case as (2 + 1)-dimensional Minkowski spacetime one can find a
surface—even one that extends to spatial infinity dividing the spacetime in two—which
carries a kink (e.g. attach a handle to a t = const slice; the light cones will “tumble
over” as one traverses the handle). The presence, therefore, of a single kink surface
is insufficient to characterize the whole spacetime as a kink. The point, however, is
that the surface of this example cannot belong to a foliation of Minkowski spacetime,
so by kink spacetime we will mean a topological product M = R × Σ such that each
embedded copy of Σ carries a kink. (I usually will not take care to distinguish between
Σ and any sub-manifold that is its image under an embedding Σ→M.)

If a product manifold admits two metrics with different kink numbers, then this
means that the space of Lorentzian metrics on it is not path connected. There is no
analogue of this for Riemannian geometries, since any two Riemannian metrics on a
given manifold are homotopic.2 It would therefore seem that the topology of the space
of Lorentzian metrics is richer than that of Riemannian metrics, and moreover one
might expect this richness to result in physical effects, for example in the quantum
theory of gravity.

However, it may be the case that metrics with non-zero kink number possess
physically undesirable or even pathological properties, such as negative energy densities,
violation of certain causality conditions, or unacceptable types of singularities. While
the preceding talks, as described in the resulting articles [2, 5], have concentrated on a
review of past and recent results, in this talk and article, a more speculative approach
will be followed, concentrating on the open question of whether kinking gives rise to
singularities. We will examine the causal structure of various kinks on M = R × Σ
with Σ compact, and give evidence suggesting that these kinks cannot be completed to
non-singular manifolds unless energy conditions or strong causality are violated. This
is consistent with a similar conjecture that asymptotically flat kinks obeying energy
and causality conditions cannot be geodesically complete [6].

Example kinks will be discussed in Section II. Section III will contain a discussion
of the causal completion of kinks and a singularity theorem valid when that completion
takes a certain very specialized form appropriate to our example kinks. Section IV
summarizes and includes some brief further comments concerning the role of kinks in
cosmology and quantum gravity. Appendices review the terminology of indecomposable
past and future sets and record certain properties of spherically symmetric, and in
particular de Sitter, kinks.

2To prove this, it is a simple exercise to explicitly check that for any two Riemannian metrics gab
and hab and for all t ∈ [0, 1], then (1− t)gab + thab satisfies the axioms of a Riemannian metric.
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II. Example Kinks

Consider Minkowski spacetime and let us introduce the 4-dimensional radial coordinate
ρ and the polar angle coordinate ψ with respect to the t-axis:

ρ2 := t2 + r2 , (1a)

tanψ := r/t . (1b)

In these new coordinates the Minkowski metric

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
(2)

takes the form

ds2 =− cos 2ψdρ2 + 2ρ sin 2ψdρdψ + ρ2 cos 2ψdψ2

+ ρ2 sin2 ψ
(
dθ2 + sin2 θdφ2

)
=e2τ

{
− cos 2ψdτ 2 + 2 sin 2ψdρdτ + cos 2ψdψ2

+ sin2 ψ
(
dθ2 + sin2 θdφ2

)}
(3a)

=e2τds2 ,

ds2 :=− cos 2ψdτ 2 + 2 sin 2ψdτdψ + cos 2ψdψ2

+ sin2 ψ
(
dθ2 + sin2 θdφ2

)
, (3b)

where
e2τ = ρ2 = t2 + r2 , (4)

so the origin of the t, r system (i.e. ρ = 0) is not covered by the τ, ψ patch.

With the origin removed, then both ds2 and ds2 are kink metrics on R×S3. This
is intuitively obvious: on any 3-sphere embedded in Minkowski space the future arrow
of time is necessarily somewhere parallel and somewhere anti-parallel to the outward
normal (defined with respect to any convenient fiducial Riemannian metric), so the
light cones “tip over” as required of kinks. Clearly, geodesics of the metric ds2 that
passed through the origin become incomplete once the origin is removed, but they
are complete in ds2 since the conformal transformation from (3a) to (3b) moves this
origin out to infinity. The boundaries of the past and future of the removed origin
are horizons. Geodesics of ds2 that end on the scri of Minkowski spacetime become
incomplete in ds2, since this boundary moves in to finite distance under the conformal
transformation. The manifold with metric ds2 can be extended through this boundary.

We next consider general spherically symmetric kinks with metric

ds2 = eϕ(r)
{
− eχ(r) cos 2α(r)dt2− 2 sin 2α(r)dtdr+ e−χ(r) cos 2α(r)dr2 + r2dΩ2

}
, (5)

where r takes values in a closed sub-interval I of [0,∞) and α : I → [0, kπ] with k the
kink number. Dunn, Harriott, and Williams [7, 5] studied the ϕ(r) = 0 case of this
metric; in recognition of this and for convenience, we will refer to all metrics of the form
(5) as DHW kinks. These kinks have properties similar to those of black holes, such as
horizons located at α = (2n + 1)π/4, where n is an integer. The kink metrics (3a,b)
are of course special cases of equation (5).

Some further discussion of DHW kinks, including the example of the de Sitter
kink, is provided in Appendix II. We note here certain easily verifed properties which



D
R

A
FT

 D
R

A
FT

 D
R

A
FT ψ

=
0

ψ
=

π

ψ
= 3π/4

ψ
= π/4

K

K

+

_

i

i

i

_

+

0κ

Figure 1. Penrose conformal diagram for the punctured Minkowski spacetime 1-
kink. The puncture is labelled κ, while the surfaces labelled K± are scri for the
metric of (3a) and are a boundary at finite distance for the metric (3b).

will be pertinent to our considerations in the next section. These properties are evident
in Figure 2.

Remark 1: Let M := R × Σ be a DHW kink. Let t parametrize the R factor and
let Σα be the embedded kink surface corresponding to tα. Let ⊂ denote proper subset.
Then:

(a) I+[Σ2] ⊂ I+[Σ1] and (simultaneously) I−[Σ2] ⊂ I−[Σ1] whenever t1 < t2.3

(b) F :=
⋂
t I

+[Σt] is a non-empty future set.

(c) P :=
⋂
t I
−[Σt] is a non-empty past set.

(d) F ∩ P is empty.

For example, if the surfaces Σt are the t = const. surfaces of DHW 1-kinks obeying
equation (5), then F is the set of all points for which α ≤ π/4, while P is the set of all
points for which α ≥ 3π/4.

Before leaving this section, it is worthy of mention that Klösch and Strobl [8]
describe some particularly interesting kinks in two dimensions. They construct incom-
plete but inextendible kinks of arbitrary kink number k > 1 as k-fold coverings of
(R2 − {pt}, gab) with gab an arbitrary non-kinked metric. (Note that kink number k in

3If the sign of the off-diagonal term in (5) is reversed or, equivalently, if the kink number is negative,
then one must reverse the direction of the inequality between t1 and t2 here (or, equivalently, the
direction of the set containment signs).
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Figure 2. A DHW kink. The heavy lines depict the boundaries of the past and of
the future of Σ2. Notice that they intersect off Σ2.

the convention of this article becomes 2k in the convention of Klösch and Strobl.) More-
over, given a kink with a Killing field, they are able to construct from it locally isometric
but globally inequivalent kinks by cutting out parts of the manifold and matching up
points of the resulting boundaries along the Killing trajectories. It would be interesting
to know if there are suitable generalizations of these constructions in higher dimensions.

III. Causal Properties of Kinks

Consider a kink spacetime M = R × Σ with Σ compact. Then M has two putative
asymptotic ends. One’s first expectation might be for conformal completion to result
in a manifold-with-boundary M = [0, 1] × Σ, the boundary being comprised of two
disjoint copies of Σ, both being at infinity (if the kink is already geodesically complete).

However, if the kink is a DHW kink, then this is not the case. To see this, notice
that if the conformal completion were as just described, then the metric would extend
continuously to both boundary components, which would therefore be kink surfaces
and so would be somewhere timelike. Let Σ∞ denote the component corresponding to
t → ∞. By Remark 1(a),4 we note that Q := I+[Σ∞] ∩ I−[Σ∞] will be a subset of
I+[Σt] ∩ I−[Σt] for any t, and so will be a subset of F ∩ P , which by Remark 1(d) is
empty. This contradicts the assumption that the completion at t → ∞ is achieved by
appending a surface Σ∞, since Σ∞ would have to be somewhere timelike, whence Q
could not be empty.

An example is provided by the metric (3b) in the limit τ → −∞ (which cor-
responds to the limit t → +∞ in the coordinates used in the metric (5) and in this
section). Completion of this spacetime in this limit is achieved by filling in the puncture
with a single point κ at infinity, not a boundary surface.

4If signs are reversed, as per the footnote to Remark 1(a), then the argument given here applies
instead to the boundary component Σ−∞ associated to t→ −∞.
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A notable property of this point at infinity is that it is both a future endpoint of
causal curves and also a past endpoint. All well-behaved kinks have points at infinity
with this property (this essentially explains Remarks 1(b) and 1(c)). To see this, note
that kinks cannot be globally hyperbolic and apply the following result of Penrose [9].
Penrose’s lemma is conveniently expressed in the language of Indecomposable Past (IP)
and Future (IF) sets. We review this terminology in Appendix I.

Lemma 2 (Penrose): A strongly causal spacetime is not globally hyperbolic

(i) iff there is a Proper IP (PIP) containing a Terminal IP (TIP)

(ii) iff there is a Proper IF (PIF) containing a Terminal IF (TIF).

We will refer to a TIP contained within a PIP as being “visible,” since every point
in the TIP is visible from a (fixed) point of spacetime (some may prefer the term “naked”
instead of visible, but “naked” sometimes means “visible from infinity”). As discussed
in Appendix I, TIPs are divided into singular TIPs or ∞-TIPs; if visible, we refer to
them as “visible singularities” or “visible infinities” respectively. The lemma ensures
that ”non-singular” (actually: strongly causal, not visibly singular) kinks have visible
infinities. Given our earlier deduction concerning the non-existence of the putative
boundary surface Σ∞ for DHW kinks, it is hard to see how such kinks can have any
points at infinity that are not visible.

Conjecture 3: Let S := M\M denote the set of points in the conformal com-
pletion of a DHW kink that are not points of spacetime. Then S has a connected
component consisting of a compact set, every point of which is visible.

For the punctured Minkowski spacetime, the visible TIP and TIF (there is only one
of each) both correspond to the puncture. If the metric is given by (3a), this is a singular
TIP/TIF, whereas if the metric is given by (3b) then the conformal transformation
places the origin at infinite distance and so we have an ∞-TIP/TIF. The case wherein
the compact set of visible points at infinity consists of a single point yields a particularly
simple incompleteness theorem.

Definition 4: A point p in the conformal completionM of a spacetimeM is an isolated
point at infinity if p is both an ∞-TIP and an ∞-TIF possessing a neighbourhood
U ⊆M with compact boundary inM that dividesM in two.

Theorem 5: If spacetime is strongly causal, obeys the strong energy and generic
curvature conditions, and has an isolated point κ at infinity, then it is non-spacelike
geodesically incomplete.

Proof: Choose a timelike geodesic which extends back to the isolated point κ in the
past, and assume this geodesic is also future-complete (for if it is not then we are
done). Choose a sequence of points pn+1 < pn along this geodesic, converging to κ
(here x < y ⇔ x ∈ I−(y)). This sequence diverges to infinity in the sense of p. 207 of
[10]. Since the geodesic is assumed complete, we can choose another sequence qn < qn+1

along it such that the affine parameter at successive qns diverges to infinity as n→∞.
By strong causality, the geodesic cannot be (totally or partially) future-imprisoned
within any compact set, and so this sequence also diverges to infinity.

Since κ is an isolated point, we can surround it by a neighbourhood U in spacetime
with compact boundary K as above and require pn ∈ U . As well, if U is small enough
then qn /∈ U ∀n (since otherwise the qn would accumulate to κ, in which case it would
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be easy to construct a closed causal curve joining pn to qn to pn for some n). Every
curve, and hence every causal curve, from pn to qn must meet K. Then the spacetime
is said to be causally disconnected by the set K (cf. p. 207 of [10]). Application of
Theorem 11.41 on p. 390 of [10] completes the proof.

This result is obviously evidence in favour of the view that kink spacetimes are
incomplete. However, it was obtained by making a great many assertions which may
not always be true. Moreover, it relies on the strong energy and generic curvature
conditions, both of which are sometimes thought to be unnecessarily restrictive.

It seems possible that Remark 1(a) may hold for a much wider class of kinks than
DHW kinks, and certainly Remarks 1(b,c) are general. However, it is easy to envisage
kinks in which Remark 1(d) fails. If one were to dispense with Remark 1(d), one would
have to deal with fully general compact boundaries, including surfaces. Nonetheless,
it seems possible that a causal disconnectivity argument like the above, but relying
on null lines rather than general non-spacelike lines could result in a theorem for the
general case. Such a method would automatically employ a weaker form of the energy
and generic conditions as well.

Finally, what if Σ is not compact? For these kinks, one always imposes bound-
ary conditions which amount to existence of a smooth extension of the metric under a
one-point compactification of Σ. The metric may not extend differentiably under this
procedure, but one might expect reasonable behaviour when the metric falls off suffi-
ciently rapidly near the asymptotic end of Σ. Figure 3 gives a conformal diagram for
a DHW 1-kink with an asymptotically flat region. In this particular case, the asymp-
totically flat region extends back into the past from a point κ at infinity having many
of the properties used above, and in fact the above argument still goes through. If the
asymptotically flat region had extended into the future instead, a time-reversed version
of the above argument would work.
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Figure 3. Conformal diagram of a 1-kink with an asymptotically flat region.
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IV. CONCLUDING REMARKS

Although the above discussion is far from complete or rigourous, one can deduce from
it that many known kink solutions, and sufficiently mild perturbations thereof, will not
provide physically acceptable models of black holes without singularities, contrary to
the optimism evident in [11].

Finally, the oral presentation of this material generated questions concerning the
possible role of kinks in cosmology, in view of the fact that kinks are analogous to
“topological defects” of other field theories, which play an essential role in modern cos-
mology. Assuming Einstein evolution, then one cannot address the question of whether
kinks may “form” from given initial data since the lack of global hyperbolicity implies
that there is no Cauchy surface on which to give the initial data. However, the question
probably should be treated in a quantum context. But the kink number of the Universe
is not a quantum observable. Kink number labels the homotopy class of the spacetime
metric; in other words, it labels connected components of the phase space, not the
configuration space, of the theory. The question of to which connected component the
metric belongs is analogous to the question of through which slit an electron has passed
in a double-slit experiment, and is therefore unanswerable.

ACKNOWLEGEMENTS

I’d like to thank Andrew Chamblin, Tina Harriott, Rafael Sorkin, and Jeff Williams for
discussions concerning the first three sections of this paper. In particular, the method
of proof for the Theorem draws directly from ideas of Chamblin, while the example of
the hypersurface with handles in Minkowski space was brought to my attention during
a discussion with Sorkin. I would like to thank Bernard Carr, G.F.R. Ellis, and Jack
Gegenberg for the questions that led to some of the comments in the final section, and
Don Page for a very helpful explanation of quantum cosmology, both generally and as
applied to kinks.

REFERENCES

[1] Finkelstein, D., and Misner, C.W., 1959, Ann. Phys., NY 12, 230–243.

[2] Williams, J.G., 1997, this volume.

[3] Hawking, S.W., and Gibbons, G.W., 1992, Phys. Rev. Lett. 69, 1719–21.

[4] Chamblin, H.A., and Penrose, R., 1992, Twistor Newsletter 34, 13–8.

[5] Harriott, T.A., 1997, this volume.

[6] Chamblin, H.A., 1995, DAMTP preprint R95/44.

[7] Dunn, K.A., Harriott, T.A., and Williams, J.G., 1996, J. Math. Phys. 37, 5637–5651.
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Appendix I: Indecomposable Past and Future Sets

Section III makes use of the Geroch, Kronheimer, and Penrose completion [12] of
strongly causal spacetimes. The technique is to construct a new space, the space of
IPs, or Indecomposable Past Sets. An IP is a past set X (a past set is one that equals
its chronological past, so X obeys I−[X] = X; a suitable alternative definition some-
times used is an open set that contains its own chronological past) which cannot be
decomposed into two proper subsets that are themselves past sets. We also may con-
struct the space of IFs, or Indecomposable Future Sets; these sets are dually defined.

All IPs may be represented by sets of the form I−[γ] where γ is a timelike curve.
If γ can be assigned a future endpoint p, then the IP is a PIP (a Proper IP), and
can be represented as I−(p). If instead γ is inextendible, then the corresponding IP
is Terminal, and is called a TIP. In a past-distinguishing spacetime,5 the PIPs are in
one-to-one correspondence with the points of spacetime. Dual definitions and results
exist for IFs. In particular, in future- and past-distinguishing spacetimes, the PIFs,
PIPs, and points of spacetime are all in one-to-one correspondence and so all three can
be identified.

The TIPs are further divided into two classes; those which can be written as the
past of a timelike curve of infinite proper length into the future are called ∞-TIPs,
while those that cannot be written this way are called singular TIPs. The idea is to
think of the TIPs and TIFs as representing idealized endpoints of timelike curves—since
points of spacetime are PIPs/PIFs, these endpoints are boundary points for spacetime.
This interpretation is appropriate only if spacetime is strongly causal,6 since in strongly
causal spacetimes timelike curves of infinite proper length cannot remain within any
compact subset of spacetime, nor return infinitely many times to any compact set.

Appendix II: DHW kinks and the de Sitter kink

Here we give a few more details concerning the ϕ = 0 case of the metric (5) of the text,
and discuss a particular example.

Setting ϕ = 0 in (5), we easily obtain first integrals of the radial geodesic equations,
expressed as functions t = x0(τ ), r = x1(τ ) of an affine parameter τ :

u0 :=
dx0(τ )

dτ
=

1∓ sin 2α
√

1− εeχ cos 2α

eχ cos 2α
, (A.II.1a)

u1 :=
dx1(τ )

dτ
= ±
√

1− εeχ cos 2α , (A.II.1b)

5A past-distinguishing spacetime is one in which I−(p) = I−(q)⇒ p = q.
6Every strongly causal spacetime is future- and past-distinguishing.
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where
ε = −gabuaub , (A.II.2)

so ε is a constant of the motion and distinguishes whether the geodesic is timelike (ε > 0
in our signature), spacelike, or null. These equations are easily solved by quadratures.

By setting ε = 0 in (A.II.1b) we see that the radial coordinate induces an affine
parameter along radial null geodesics. Radial null geodesics that do not approach
infinite r are incomplete.

An interesting 2-dimensional kink arises by restricting to a (t, r) section and setting
α(r) = r, χ = 0. This results in an isometric universal cover of the Misner torus.

A 4-dimensional example of a ϕ = 0 DHW kink is provided by the so-called de
Sitter kink [13]. To define this kink, choose χ(r) = 0 and α(r) = arcsin(r/

√
2). Since

r ∈ [0,
√

2], then α(r) ∈ [0, π/2], so the r-coordinate covers only half a kink.

On this half-kink, then

ds2 = −(1− r2)dt2 − 2r
√

2− r2dtdr + (1− r2)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (A.II.3)

The coordinate transformation

t̂ =
e−t+

√
2−r2

√
2− r2 + 1

, (A.II.4a)

r̂ = rt̂ , (A.II.4b)

brings the metric to the form

ds2 =
1

t̂2

[
− dt̂2 + dr̂2 + r̂2

(
dθ2 + sin2 θdφ2

)]
. (A.II.5)

This form of the de Sitter metric is familiar and shows it to be conformal to a
region of Minkowski spacetime. The region covered by the “half-kink” is the wedge-
shaped region of Minkowski spacetime lying above the cone r =

√
2t̂. This region is

globally hyperbolic. The surfaces corresponding to the t = const. surfaces are the level
sets of

f(t̂, r̂) =
e
√

2−r̂2

t̂(1 +
√

2− r̂2)
. (A.II.6)

The full kink is constructed by taking a second wedge of Minkowski spacetime, this one
lying between the cone r = −

√
2t̂ and the negative t-axis. The two wedges are then

joined along the cones. This cannot be done smoothly [14].


