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We discuss an apparent paradox (and conjectured resolution) of Jacobson and Venka-
taramani concerning “temporarily toroidal” black hole horizons, in light of a recent connectivity
theorem for spaces of complete causal curves. We do this in a self-contained manner by first
reviewing the “fastest curve argument” which proves this connectivity theorem, and we note
that active topological censorship can be derived as a corollary of this argument. We argue that
the apparent paradox arises only when one dispenses with the invariant viewpoint provided by
the connectivity theorem in favour of an observer-dependent description. Finally, we discuss an
alternative to fastest curve arguments, which can be used to construct a self-contradictory null
line in certain spacetimes violating topological censorship. These arguments may shed light on
the relationship between topological and cosmic censorship.

1991 : Primary 53C50; Secondary 83C75.
The paper is in final form and no version of it will be published elsewhere.

[1]

The study of Lorentzian geometry has progressed, at least in part, by
adapting tools found to be effacacious within Riemannian geometry, though one must keep
in mind that such adaptation is not always useful nor even always possible. Consider the
notable example of the Hopf-Rinow theorem. In part, this theorem states that geodesic
completeness, an important instrument of global geometrical analysis, is equivalent to
Cauchy completeness and to finite compactness, so it is not surprising that these last
two properties provide useful tools in Riemannian geometry. No analogue of this aspect
of Hopf-Rinow is available in Lorentzian geometry. This does not mean that Lorentzian
geometry is less rich, for one has new tools, which make use of causal relations. The
role of Riemannian concepts like Cauchy completeness or finite compactness is assumed
by “causal regularity conditions” like global hyperbolicity or causal continuity, while
geodesic completeness is replaced by the more specialized notions of timelike and null
geodesic completeness.

The Hopf-Rinow theorem also states that a complete Riemannian metric implies a
minimal curve between any two points. There are Lorentzian analogues of this part of
the theorem. An oft-cited one is the existence of timelike curves joining any pair
of timelike-related points in a globally hyperbolic spacetime. It is less often noted that
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A in a Lorentzian manifold is an inextendible geodesic that realizes the Lorentzian
distance between any pair of its points. In the case of a null line, this distance is always zero.
A line cannot have conjugate points, since a geodesic with conjugate points does not realize the
Lorentzian distance between points that lie beyond a conjugate pair.

there is also an analogous result for null curves, which one may express in the following
way. Let there exist causal curves from both and to , but not from to , and let

be a causal curve from to . Assuming global hyperbolicity, then there will exist a
from to . A curve from to is if there is a

such that ( ) implies ; in other words, lies on a causal curve from
and is the infimum, in the induced causal order on , of those points that can be so

reached from . Then lies on ( ) from to ; in consequence, it is a null geodesic
and has no points conjugate to along it (before ; we will not insist that fastest curves
end at ; then the definition then places no conditions on any segment of lying beyond

).

But consider a spacetime that is asymptotically flat, so that it admits a boundary-
at-infinity . As is standard, we assume that is the null cone of a point representing
spatial infinity, or perhaps it is a disjoint union of many such cones. If and lies
on , then a fastest curve from to would have to be a conjugate-point-free null
geodesic which leaves , travels through spacetime, and returns to . The segment of
that lies within spacetime would be infinite, as measured by affine parameters defined by
the spacetime metric; it’s a complete null line. But if one assumes an energy condition,
even a very mild “integrated” energy condition, and the generic condition, then every
null geodesic must have a pair of conjugate points lying within finite affine distance from
each other. As a consequence, null lines are forbidden, and there is no fastest curve from

to .

Recall now another result from Riemannian geometry, that if a complete Riemannian
manifold has more than one asymptotic end it admits a complete line (in this case, a
complete geodesic realizing the distance between any pair of its points).
By way of analogy, one might therefore speculate that globally hyperbolic Lorentzian
manifolds with more than one component of would admit complete null lines joining
these components. But when the physically reasonable assumptions used above hold, we
have said complete null lines are forbidden; these postulated null lines cannot actually
occur.

In the Riemannian case, one can place a condition on the sign of curvature components
which will forbid complete lines, implying in turn that such manifolds have only one end.
However, in the Lorentzian case reasonable energy conditions are not strong enough to
allow for an argument to rule out complete spacelike lines, and in consequence multiple
ends are not forbidden. Then what mechanism acts to prevent the completion of the
null lines? A theorem of Gannon states that if a globally hyperbolic, asymptotically flat
spacetime obeys a suitable energy condition and admits a Cauchy surface with more than
one asymptotic end (whence there are multiple components of ), or if the spacetime has
a covering spacetime with these properties, then it is null geodesically incomplete [5]. Here
the global hyperbolicity assumption may well be tantamount to a censorship condition
suggesting that, if the manifold is inextendible, there would be horizons which cloak the
incomplete geodesics. In this case at least, one can postulate that these horizons separate
the components of , preventing null lines, or any causal curves, from joining different
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2. The Connectivity Theorem and its Censorship Corollary:

3

It is not a corollary, since the [3] result relies on a different focusing condition than
the one in use here.

components, in accord with the arguments concerning and above . This scenario is
known to be correct, in consequence of the active topological censorship theorem, first
proved by Friedman, Schleich, and Witt [3]. They did not employ fastest curves to prove
this theorem, although they were aware that a proof along these lines could be given, and
they sketched an argument.

Indeed, in the Lorentzian case, direct application of these “fastest curve” arguments
produces a result that is actually more powerful than a topological censorship theorem,
and concerns not spacetime topology but the topology of the space ( ) of causal
curves that join to . This result, that the space ( ) is connected,
was obtained by Penrose, Sorkin, and Woolgar, and will receive a full discussion in a
forthcoming paper [9], wherein it will be given an interpretation as a positive energy
theorem (cf. [8]).

In this paper, the theorem is instead applied to the question of topological censorship
and a related issue of horizon topology. In particular, we treat certain questions raised by
Jacobson and Venkataramani [7]. They speculated that such a theorem — more precisely,
a very similar theorem — should exist and would have an interesting application to the
case of a “temporarily toroidal” black hole horizon. They remarked that causal curves
could appear to thread this torus and would therefore appear to violate the theorem.
They further suggested that this apparent paradox could be resolved if these curves also
appeared to be “time-delayed.”

Herein we show that the connectivity theorem, although perhaps subtlely weaker than
the theorem that the authors of [7] had in mind, may be applied in essentially the same
manner as they discussed, thereby producing the same apparent paradox. The theorem
is compelling evidence that no causal curve threads the torus formed by the
horizon; then the of such threading, and concomitant time-delay effect, is the
result of a non-invariant description based in a choice of slicing for spacetime.

In Section 2, we borrow heavily from [9] to present the proof of connectedness of
( ), which we will need for later reference. Peripherally, as part of the proof, we show

that the active topological censorship theorem of Friedman, Schleich, and Witt [3] can
be thought of in essence as a corollary of the connectivity theorem. The contents of this
section are not new, and are provided in order to inform the subsequent discussion in
Section 3. The demonstration of the censorship theorem largely parallels an argument
outlined in [3], wherein it was suggested as an alternative to the main demonstration
of the censorship theorem given there (which did not use “fastest curves”). In Section
3, the connectivity theorem is applied to the question of temporarily toroidal horizons,
in order to clarify the aforementioned apparent paradox. In the final section, we outline
an argument which is in many ways analogous to the fastest curve argument, but uses
null geodesic completeness instead of global hyperbolicity, and which has potential for
clarifying the underlying structure responsible for enforcing topological censorship.

To give meaning to
an assertion concerning the connectedness of a space of curves, we must first say what
the topology is. Let , be two points in a spacetime ( ) and let ( ) be the
space whose elements are the causal curves beginning at and ending at . Let be any
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Let a spacetime be asymptotically flat with boundary-at-infinity

comprised of a disjoint union of one or more components, and let be one such
component. Let be the domain of outer communications belonging
to the component , and assume that can be embedded in an open globally
hyperbolic “extended spacetime” (the embedding is a conformeomorphism on
the image of ). Let be null focusing.
( Then the space of causal curves from to is connected, and

( active topological censorship holds for .

4

The theorem will apply even for asymptotically flat (2 + 1)-dimensional spacetimes, but in
this case Cauchy surfaces do not have so-called simply connected neighbourhoods of infinity. As
a consequence, ( ) would not be connected if the null generator of were not included in it,
and the homotopy referred to by the censorship result might necessarily pass through curves that
meet . In the (3 + 1)-dimensional asymptotically flat case, simply connected neighbourhoods
of infinity are assumed, and our statement that a curve should be homotopic to a generator of

becomes equivalent to the usual condition that a curve is homotopic within spacetime to a
curve within such a simply connected neighbourhood of .

As alluded to earlier, the focusing lemma used for the proof of active topological censorship
given by [3] does not require the generic condition, in contrast to what is needed here. There is
also a subtle difference in the sorts of energy conditions that these two proofs require.

-open set. Then we define the set ( ) ( ) by

( ) = ( )

Thus, the causal curve from to belongs to the subset ( ) of ( ) iff is
contained within the open set in . We define the topology on ( ) to be that
topology whose open sets are arbitrary unions of all such ( ), where is
open in . This is a standard choice, at least when is strongly causal (we will in fact
use this topology below only when is globally hyperbolic, and thus strongly causal).
We now state the theorem and then comment on the assumptions.

2.1: ( )

= ( ) ( )

( )
( )

( )

Here active topological censorship will be taken to mean that every causal curve from
to can be deformed to a null generator of . The deformation proceeds

through a homotopy on the space of continuous curves, but on the space
( ) of curves. This space refers to the causal curves in the spacetime,

and so includes the null generator of from , through (where it need not be smooth),
to .

The global hyperbolicity of ( ) implies global hyperbolicity of ( ). Techni-
cal issues concerning the presence in the larger globally hyperbolic spacetime of non-
differentiable points, such as is the case with when the mass is non-zero, are handled
in [11].

A domain of spacetime is null focusing if every complete null geodesic in it possesses
a pair of conjugate points. Focusing lemmata guarantee that this is always the case
whenever a suitable energy condition hold. Examples of
suitable conditions are the Average Null Energy Condition (which requires non-negativity
of an integral of a Ricci curvature component along each null geodesic) [12] and the Borde
Energy Condition (which is a requirement on integrals of Ricci components along finite
portions of each null geodesic) [1].

Now we are ready to give the proof. The proof of part ( ) is abstracted from [9],
wherein it is given a different interpretation. The idea to interpret it as below grew out of
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a suggestion that appears in [7]. The proof of part ( ) closely corresponds to an argument
first outlined in [3].

P r o o f. Let Λ be the null generator of containing (the past endpoint of Λ
does not belong to Λ ), let Λ be the null generator of containing , and let ( )

be the space of causal curves in ( ) from to .

Let ( ) be a connected component of ( ), and let ( ) be a causal
curve from to which does not meet Λ except at . A curve ( ) is “faster”
if it arrives at some earlier point ( earlier: possibly = ) of Λ , and then
extends along Λ from to . Let Λ be the set of “points of arrival” on Λ of
curves in ( ); that is, iff there is a causal curve in ( ) from which first
meets Λ at . Obviously is linearly ordered and either has supremum or is empty
(which occurs iff ( ) is empty). We will argue that cannot have an infimum in Λ ,
whence either ( ) contains the joined-up null curve Λ Λ or it is empty.

If instead were to have an infimum Λ , then we may consider a net, indexed by
, of curves in ( ) whose points of arrival converge to . By the global hyperbolicity

assumption, ( ) is compact, whence so is ( ), so this net in ( ) converges to
a limit causal curve Ω ( ) through . Since this curve is in ( ), it does not
arrive at Λ before , which implies that := Ω is non-empty. Then joins Λ to
Λ by passing through , so clearly it is complete, as measured by affine parameters in
( ). Now we show that it’s a line.

At this stage, a direct proof of ( ) is possible (cf. the argument sketched in [3]), but
we will obtain it as a corollary of ( ) instead. We cannot immediately assert in this case
that (and thus ) lies on ( ), since we have not shown that timelike curves in some
other component of ( ) do not join to . However, we can assert that for ( )
to be a connected component there must be some open set in ( ) that contains Ω
and does not contain any curve in ( ) ( ). This open set is necessarily a union

of basis sets ( ), so there must be a -open set (recall is the extended spacetime
for ) such that Ω and such that no element of ( ) ( ) is contained as a
subset of . It follows that lies on the boundary of ( ), the ,
since any causal curve in joining to Λ belongs to ( ) and so cannot arrive on
Λ before . But ( ˜ ) is a spacetime in its own right, and in this spacetime we
assert that lies on ( ), whence so does the curve . Thus is a complete null line
in the spacetime ( ), which contradicts the focusing assumption (which holds on
( ), and therefore holds on the subset ( )). We can resolve this contradiction
by dispensing with the assumption that the set of arrival points for members of ( )
has an infimum in Λ .

If ( ) has no infimum and is non-empty, then curves in ( ) arrive arbitrarily
early (arbitrarily close to ) on Λ . Since ( ) is compact, it must therefore contain
a limit curve which passes through . But only one causal curve can go from
through to , namely the joined-up null curve Λ Λ . We have therefore
shown that every connected component of ( ) must contain this curve, so there can
only be one connected component, proving ( ).

To prove ( ), we simply note that if two causal curves from to are not homotopic
(here we refer to homotopies on the space of curves, not just causal curves, in ),
then will have a universal covering space whose will consist of multiple disjoint copies
of the of . Let and be two distinct copies, and choose and .
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In the context of arbitrary (as opposed to causal) curves, a usually means a

Applying the above reasoning to any component ( ) of ( ), then either ( )
is empty or there is a causal curve from that passes through on its way to . But in

the latter case such a curve could not remain entirely on from to since and

are not mutually connected, and it cannot pass through spacetime to reach because
its projection into would be a curve that passes through spacetime and then reaches

, which is forbidden. Hence, no such curve can exist, and ( ) must be empty. This
will be true for every connected component of ( ), so ( ) is empty, proving ( ).

Before interpreting part ( ) of the theorem, it will be useful to review
the interpretation of part ( ). As we have said, Gannon’s singularity theorem (Corollary
1.2 of [5]) shows that incomplete null geodesics exist in physically reasonable spacetimes
admitting non-simply connected Cauchy surfaces. Gannon’s theorem is consistent with
figure 1 (depicting the UCS of a specific example spacetime), where the horizon shields
the singularity but does not prevent causal curves that begin on one component of from
ending on another. The point of active topological censorship is that horizons appear early
enough to catch all causal curves that might otherwise “traverse the spacetime topology”
and so connect different components of in the UCS, as in figure 2. This provides an
interpretation for the result in [3], and for Theorem 2.1( ) above.

Moreover, Galloway has shown [4] that the result of [3] can be extended in a direct fashion
to prove that the domain of outer communications is simply connected.

In what follows, we will refer to the specific example of a black hole whose horizon
intersects some spacetime Cauchy surface in a torus, although what is said will also
apply if the horizon has higher genus. Topological censorship implies that every causal
curve from to can be continuously deformed within the domain of outer
communications to a causal curve from to and which is always near infinity, although
the interpolating curves through which the deformation proceeds need not be causal. This
eliminates the possibility of what one might call “eternal toroidal horizons” (unless they
are supported by negative energy densities which cause de-focusing of null geodesics),
since such spacetimes admit causal curves from to that “thread the torus” and so
cannot be deformed, even acausally, to infinity without meeting the horizon. In particular,
in a stationary spacetime with a toroidal black hole one could find a pair of causal curves
from to and one could join up the pair at and at to form a single
closed (but of course not future-causal) curve which would be linked with the horizon,
and would violate topological censorship [2].
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curve that is not homotopic to a point. In consequence, if one fixes two points and on
such a linked curve, the two resulting portions of the curve define curves from to that are
not homotopic to each other.

Although the parts of these surfaces that lie outside the horizon are not Cauchy surfaces for
, we do assume global hyperbolicity of in order that Theorem 2.1 applies.

Moreover, essentially the same procedure can be followed even if , the “inverse thickness”
of each thickening, varies. Note that one can go from any initial to any final curve via only
finitely many such moves, even when varies, because of the compactness of ( ). The
curves are then said to comprise a .

A similar argument [7] may be used to show a stronger result that toroidal horizons
which are not present on some initial surface but form later cannot persist as torii into
the infinite future. One may say from this that a toroidal horizon can have only a finite
lifetime, and so it must “decay,” presumably to spherical topology. Such a phenomenon
is observed to occur in numerical evolutions of the Einstein equations [6].

This brings us to our primary interests, an interpretation for Theorem 2.1( ) and
an apparent paradox which was raised in [7], where a resolution was also conjectured.
Consider a domain of outer communications and a time coordinate orthogonal to a
system of spacetime Cauchy surfaces. Say that horizons are at first absent (for 0)
and then a symmetrical toroidal horizon forms about the origin (for (0 )). Let us
for convenience characterize the size of the torus by , the radius in some convenient
coordinates of the largest coordinate circle lying on the torus. In accordance with the
above discussion, say that for only a horizon of spherical topology is present,
presumably because the toroidal horizon has expanded until it begins to self-intersect
in the centre. Now fix a point such that a null geodesic from this point passes
through the origin (so this geodesic is “axial”) at time . Since ( 0 0 0) is not behind
the horizon, this geodesic can escape back out to some , but to observers moving
along integral curves of , this geodesic will appear to thread through the torus.

If this curve were to thread the torus, would that contradict part ( ) of the theorem?
Theorem 2.1( ) falls just short of claiming that every causal curve, and in particular

the curve which appears to thread the horizon above, is (i.e. con-
tinuously deformable, remaining always within ( )) to a causal curve near infinity.
The distinction is that this theorem claims only that ( ) is connected, not

; the latter, stronger condition is necessary to guarantee a homotopy. However,
given the topology on ( ), the former condition is sufficiently strong so as to capture
the physical content of the discussion of [7]. In any case, this is really just a technical
exercise; the physical arguments of [7] already clearly illustrate what is at issue here.

To proceed, let ( ) and let ( ) belong to a family of “open thickenings”
of which shrink down on as gets large. Consider any collection of sets drawn from
such thickenings, one for each curve in ( ), say the set defined by = . This defines
an open cover ( ( )) ( ) for ( ). No matter how large is (hence, no
matter how “thin” these “thickenings” are), this cover cannot be disjoint, since ( ) is
connected. Therefore, from any initial curve, say ( ), one must be able to move
to some other curve ( ) such that the respective thickenings ( ( )) and

( ( )) not only intersect each other but also contain a curve ( ) within
this intersection. From this second curve, one must similarly be able to move to a third
curve , and so on, until one arrives at any desired final curve, and this is possible no
matter how large .
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The Mazurkiewicz-Menger-Moore theorem states that every compact, connected, locally con-
nected space is arcwise connected. That ( ) obeys the first of these conditions follows from
global hyperbolicity while, for and , the second follows from Theorem 2.1. The
third is the condition that every neighbourhood of every curve in ( ) has a connected sub-
neighbourhood. Now a straightforward argument which uses only that the sets are open (this
argument does not require , nor does it require any focusing lemma or causal regularity
condition to hold) suggests that timelike curves are always in ( ).
However, no obvious argument presents itself as to why null geodesics, or even curves which
contain a null geodesic segment, should be points of local connectivity.

Hence there is indeed something of an paradox, for which Jacobson and
Venkataramani suggested the following resolution. Consider now that we deform this null
geodesic off-axis and out to infinity. For deformations which move the geodesic off-axis by
a coordinate amount (defined above), Jacobson and Venkataramani suggest that the
geodesic, in order to remain a null geodesic, also receives a “time-advance” by an amount

. Then this deformed geodesic, which might otherwise be expected to encounter
the horizon, arrives within and escapes from the black hole formation region before the
horizon has in fact formed. Because of this time-advance mechanism associated with off-
axis deformations of the geodesic, the original geodesic can in fact be deformed
to a causal curve near infinity, in agreement with part ( ) of the theorem, and where
we interpret the word “deform” in the sense of the preceding paragraph (i.e. through a
chain, but not necessarily through a homotopy, in ( )).

A time-advance mechanism is familiar in Schwarzschild spacetime, where off-axis null
geodesics are also advanced relative to axial ones. This effect is named for Shapiro [10],
who first suggested its importance as a test of relativity theory. However, the Shapiro
effect is witnessed by observers at rest with respect to the timelike Killing field of
Schwarzschild spacetime, and so has the necessary invariant character that gives it phys-
ical significance (hence it permits a useful experimental test of general relativity). In
contrast, the time-advance discussed above is witnessed by observers moving perpendicu-
larly to the surfaces = . These surfaces have no differential-geometric significance,
and indeed cannot be orthogonal surfaces to a Killing field. The description is
that no “causal linking” of a causal curve through the horizon has occurred, because in
virtue of Theorem 2.1( ), ( ) is connected. The absence of such causal linking is the
desired interpretation of Theorem 2.1( ).

Lastly, although the notion of linking is usually referred to arcwise connectivity, we
have not seen a need here to extend the theorem to assert arcwise connectivity of ( ).
Beyond perhaps yielding a clearer development of certain known results concerning vari-
ations of causal curves, the question arises as to whether a compelling motivation to
investigate this extension exists, especially since it is not presently clear whether such an
extension should exist.

Finally, we discuss the interesting implications of a point raised
by G. Galloway during the oral presentation of this paper. We consider now a domain of
outer communications which has the property that the past-inextendible null geodesics
reaching are past-complete, and we assume that these geodesics are governed by a
focusing lemma. Let us further assume that this domain is not simply connected, so that
it has a multi-sheeted covering by a universal covering space whose own therefore has
at least two components. Lastly, we assume that for each point covering , there is a
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neighbourhood which is not in causal contact with for = .

Now by arguments in [4], must be in causal contact with some , for otherwise
the UCS would not be connected. But if and were in causal contact but had
neighbourhoods of their respective s which were not, then we could find a point
such that the boundary of the future of this point intersects (or this is true but with

and interchanged). From this point of intersection, we could trace back along a null
generator of this boundary which, by standard arguments, would be an inextendible null
line and, by assumption, complete (it could be past-trapped, however, and so it need not
reach back to ). By the focusing assumption, complete null lines are forbidden, so we
would have a contradiction, which is resolved if and are not in causal contact after
all. Since this in turn would contradict the argument of [4], it must be that and
cannot be distinct components of the of the UCS after all, which leads in turn to the
conclusion that the domain of outer communications must be simply connected.

But recall the Introduction, wherein we described how horizons cloaking the sin-
gularity served to enforce topological censorship. This description echoed the common
understanding that cosmic censorship, rather than global hyperbolicity , is the key
assumption underpinning topological censorship. Because the argument just presented
relies on geodesic completeness and not on global hyperbolicity, variations of it show
promise as tools with which to explore the link between cosmic and topological cen-
sorship. This issue is presently under investigation (and has recently been resolved, see
[13]).
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