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Abstract

The aim of the lectures is to study pricing and hedging issues for
various options (European, American, game options) in the case of
imperfections on the market. These imperfections are taken into
account via the nonlinearity of the wealth dynamics.

In this setting, the pricing system is expressed as a nonlinear
g-expectation/g-evaluation induced by a nonlinear BSDE.

We shall address in particular superhedging issues for American
and game options in this context and their links with generalized
optimal stopping problems and Dynkin games.



Overview

1. The perfect market model (linear case)
Linear pricing system and linear BSDEs

2. Market with imperfections
Nonlinear pricing system and nonlinear BSDEs (g -evaluation).
Links with dynamic risk measures

3. Nonlinear pricing of American Contingent claims -
Introduction to reflected BSDEs. Links with optimal stopping.

4. Game options in an imperfect market. Links with generalized
Dynkin games and doubly reflected nonlinear BSDEs.

5. Market model with default



I. Linear pricing theory
Market model

Let (Ω, (Ft)t≥0,P)) be a filtered probability space, where (Ft)t≥0
is generated by the Wiener process W and completed. Let T > 0
be fixed.
Consider a complete financial market with one risk free and one
risky investment possibility, with prices S0, S1 per unit given by,
respectively

(1)

{
dS0

t = S0
t rtdt ; S0

0 = 1

dS1
t = S1

t [µtdt + σtdWt ] ; S1
0 > 0;

where rt , µt , σt are bounded predictable processes. Assume σt 6= 0
and σ−1t bounded.



Linear pricing theory
Strategy Wealth/Portfolio

Definition (Strategy)

A strategy is given by a couple of predictable processes

I Vt the value of the wealth of the investor (or the value of his
portfolio)

I ϕt the portfolio process equal to the amount of total wealth
invested in the risky asset at time t.

A strategy is self-financing if

dVt = (Vt − ϕt)
dS0

t

S0
t

+ ϕt
dS1

t

S1
t

= (Vt − ϕt)rdt + ϕt(µt dt + σtdWt ]

= (rVt + θtσtϕt)dt + σtϕtdWt

where

θt :=
µt − rt
σt

is the risk premium process.



Linear pricing theory
Pricing and hedging European contingent claims

We consider a European contingent claim with maturity T > 0
and payoff ξ which is FT -measurable. The problem is to find a
self-financing strategy (Vt , ϕt) which reaches ξ at time T .

I Classical approach (without BSDE theory) :
(Karatzas-Shreve...)

I Discounting and change of probability measure.
I integrability conditions under Q (unique martingale measure)

I BSDE approach
I No discounting and no change of probability measure.
I integrability conditions (for ξ and ϕ) under P (reference

probability)



Linear pricing theory
Classical approach

Let Q be the unique martingale probability measure defined by

dQ
dP
| FT

= exp(−
∫ T

0
θsdWs −

1

2

∫ T

0
θ2s ds).

From Girsanov theorem, under Q, W̃t := Wt +
∫ t
0 θsds is a F-

Brownian motion and by Itô, S̃ := e−
∫ t
0 rsdsSt is a martingale

under Q.
dS̃ = S̃σtdW̃t .

We consider the discounted wealth Ṽ := e−
∫ t
0 rsdsVt . We get

dṼ = ϕ̃σtdW̃t ,

where ϕ̃ := e−
∫ t
0 rsdsϕt is the discounted portfolio.



The pricing/hedging problem is to construct a couple (Vt , ϕt)
(value of portfolio, portfolio) such that{

dVt = (rtVt + θtϕtσt)dt + ϕtσtdWt ; 0 ≤ t ≤ T .

VT = ξ a.s.

that is to find (Ṽt , ϕ̃t)

(2)

{
dṼt = ϕ̃σtdW̃t ; 0 ≤ t ≤ T .

ṼT = ξ̃ a.s. where ξ̃ = e−
∫ T
0 ξ.

In order to have uniqueness we need integrability conditions. Here
the integrability conditions are under Q. It is required that
EQ(ξ2) < +∞ (or equivalently, EQ(ξ̃2) < +∞ since rt is
bounded), and we look for ϕ in H2

Q (set of predictable processes,

square integrable under Q, that is EQ(
∫ T
0 ϕ2

sds <∞) (or

equivalently, EQ(
∫ T
0 ϕ̃2

sds <∞), since σt , σ
−1
t bounded).



Theorem
If ξ ∈ L2Q(FT ), ∃!(Ṽ , ϕ̃) ∈ H2

Q ×H2
Q satisfying (2).

Proof. Take
Ṽt = EQ(ξ̃ | Ft).

By the theorem of representation of martingales under Q with respect to

Brownian motion W̃ ,

∃!(Ψt) ∈ H2
Q, s.t. Ṽt = Ṽ0 +

∫ t

0
ΨsdW̃s .

Set ϕ̃t = Ψtσ
−1
t . We obtain dṼt = ϕ̃σtdW̃t ; ṼT = ξ̃.

We get ϕt = e
∫ t
0 rsds ϕ̃t and Vt = e

∫ t
0 rsds Ṽt , i.e.,under P:

Vt = EP[e−
∫ T
t rsdse−

∫ T
t θsdWs−

∫ T
t θ2s dsξ | Ft ]

= EP[Γt,T ξ | Ft ] ; 0 ≤ t ≤ T a .s.

where the process Γ, called deflator or change of numeraire, is given by

dΓt,s = Γt,s [−rsds − θsdWs ] ; Γt,t = 1, i.e.

Γt,s = exp(−
∫ s

t
θudWu +

∫ s

t
{−ru −

1

2
θ2u})du.



Linear pricing theory
BSDE approach

The problem can be formulated in terms of a BSDE problem. Set

(3) Zt = ϕtσt .

Suppose EP[ξ2] <∞ (in L2P(FT )). We want to find a couple of
square integrable (with respect to P) predictable processes (V ,Z )
such that

(4)

{
dVt = (rtVt + θtZt)dt + ZtdWt ; 0 ≤ t ≤ T .

VT = ξ a.s.

Equation (4) is an example of a (linear) BSDE in the pair (Vt ,Zt)
of unknown processes. If we can solve this equation, then the
replicating portfolio ϕt is given by Ztσ

−1
t and Vt is the hedging

price of the claim at time t.

Note that, in contrast to ordinary SDEs, Equation (4) has two unknown

processes and the terminal value VT of V is given, not the initial value.



Both ”classical” and ”BSDE” approaches are possible for the linear
case, but in the case of imperfections (nonlinear wealth) , the
classical approach can no more be used.



II. Imperfect financial markets
An example leading to nonlinear wealth

Different borrowing and lending interest rates, denoted respectively
by Rt and rt , adapted and bounded with Rt ≥ rt .

Amount borrowed at t: (Vt − ϕt)
− (at interest rate Rt)

Amount lended at t: (Vt − ϕt)
+ (invested at bond rate rt)

We have:
Vt − ϕt = (Vt − ϕt)

+ − (Vt − ϕt)
−

Self- financing property gives:

dVt = (Vt − ϕt)
+rtdt − (Vt − ϕt)

−Rtdt + ϕt
dS1

t

S1
t

.

Using (Vt − ϕt)
+ = (Vt − ϕt) + (Vt − ϕt)

−, we get, by easy
computations

dVt = rtVtdt − (Rt − rt)(Vt − ϕt)
−dt + ϕtσtθtdt + ϕtσtdWt



Consider a European option with payoff ξ ∈ L2(FT ). Pricing and
hedging this claim by constructing a replicating portfolio lead to
the following problem : Find (V , ϕ) ∈ H2 ×H2 such that{
dVt = (rtVt − (Rt − rt)(Vt − ϕt)

−)dt + ϕtσtθtdt + ϕtσtdWt ;

VT = ξ.

This is an example of “nonlinear” BSDE (coefficient of dt is
nonlinear in V and φ).

Does a solution exists ?



Nonlinear BSDEs

I (Ω,F ,P)

I W = (Wt)t≥0: d-dim Brownian motion; Wt = (W 1
t , ...,W

d
t )∗

I Ft = σ(Ws , 0 ≤ s ≤ t) augmented with the P-null sets.

T > 0 : terminal time

I H2(R) = {(φt)0≤t≤T , real-valued predictable processes s.t.

E(
∫ T
0 φ2tdt) <∞}. We denote ‖φ‖H2 = E(

∫ T
0 φ2tdt).

I H2(Rd) = {(φt)0≤t≤T , predictable processes s.t.

E(
∫ T
0 |φt |

2dt) <∞}.



Definition (Standard coefficients)

I ξ ∈ L2(FT ) (the terminal condition)

I g (the driver) : Ω× [0,T ]×R×Rd → g(ω, t, y , z) such that
I (i) g is P ⊗ B(R)⊗ B(Rd) - measurable
I (ii) E

∫ T

0
g(t, 0, 0)2dt <∞

I (iii) g is uniformly Lipschitz w.r.t. y , z , i.e.
∃C > 0 s.t. dt ⊗ dP- a.s., ∀y , y ′ ∈ R, ∀z , z ′ ∈ Rd ,

g(ω, t, y , z)− g(ω, t, y ′, z ′) ≤ C (|y − y ′|+ |z − z ′|).



Theorem (Existence and uniqueness for BSDEs)

There exists a unique solution (Y ,Z ) ∈ H2(R)×H2(Rd) of the
BSDE associated to standard coefficients (ξ, g), that is satisfying:

(5)

{
−dYt = g(t,Yt ,Zt)dt − Z ∗t dWt 0 ≤ t ≤ T

YT = ξ.

This result can be extended when the terminal time T is replaced
by a stopping time S ∈ T0,T .



Proof
Suppose g does not depend on y and z , i.e. g(ω, t, y , z) = g(t, ω) ∈ H2(R)

(6) − dYt = g(t)dt − Z ∗t dWt ; YT = ξ.

I Uniqueness. Integrating (6) between t and T , we get

Yt = ξ +

∫ T

t
g(s)ds −

∫ T

t
Z ∗s dWs

Taking E(· | Ft) we get

(7) Yt = E[ξ +

∫ T

t
g(s)ds | Ft ].

I Existence. Consider the candidate Y given by (7). Then

Yt +
∫ t
0 g(s)ds = E[ξ +

∫ T
0 g(s)ds | Ft ]. It is a martingale.

By the martingale representation thm, there exists a unique Z
in H2 s. t. Yt +

∫ t
0 g(s)ds = Y0 +

∫ t
0 Z ∗s dWs .

and we get dYt + g(t)dt = Z ∗t dWt and YT = ξ.
(Y ,Z ) is thus a solution in H2(R)×H2(Rd) of the BSDE.



Moreover we have
E[ sup

0≤t≤T
Y 2
t ] < +∞

i.e. Y ∈ S2.

Hint: Use Burkholder-Davis-Gundy inequalities.



General standard driver g(t, ω, y , z)

Proof of existence and uniqueness of the solution of the
BSDE: We define a mapping Φ as follows. Given
(U,V ) ∈ H2(R)×H2(Rd), let

Φ(U,V ) = (Y ,Z )

where (Y ,Z ) is the solution of the BSDE associated with driver
g(s) = g(ω, s,Us(ω),Vs(ω)) and terminal condition ξ
(which is well defined.)
We can show that Φ is a contraction (for the norm

‖φ‖2β := E[
∫ T
0 eβsφ2sds] with β well chosen large enough) and thus

admits an unique fixed point, which corresponds to the solution of
BSDE (5). �

Detailed proof on the blackboard (see also Pham’s book).



Linear BSDEs

Theorem
Let α, β be bounded predictable processes, ξ ∈ L2P(FT ) and φ

predictable with EP[
∫ T
0 φ2tdt] <∞. Then there exists a unique

solution (Y ,Z ) of square integrable predictable processes of the
linear BSDE

−dYt = [φt + αtYt + βtZt ]dt − ZtdWt ; 0 ≤ t ≤ T ; YT = ξ

given by

Yt = E[Γt,T ξ +

∫ T

t
Γt,sφsds | Ft ] ; 0 ≤ t ≤ T a .s.

where the process Γ, usually called adjoint process, is given by

dΓt,s = Γt,s [αsds + βsdWs ] ; Γt,t = 1, i.e.

Γt,s = exp(

∫ s

t
βudWu +

∫ s

t
{αu −

1

2
β2u})du.



Sketch of Proof:

- Apply Itô formula to YsΓt,s

- we obtain YsΓt,s +
∫ s
t Γt,rφrdr is a martingale. Hence,

Yt = E[Γt,T ξ +

∫ T

t
Γt,sφsds | Ft ] ; 0 ≤ t ≤ T a .s.

�

Remark: Note that if ξ ≥ 0 and φ ≥ 0 , then Yt ≥ 0.



Application to the replication portfolio problem in the linear case:{
−dYt = (−rtYt − θtZt)dt − ZtdWt ; 0 ≤ t ≤ T .

YT = ξ a.s.

In this case, we have φt = 0, αt = −rt , βt = −θt . This leads to
the classical quasi explicit expression for the wealth Yt (value of
replicating portfolio):

Yt = E[Γt,T ξ | Ft ],

where Γt,s is the deflator process, started at t, such that

Γt,s = exp{−
∫ s

t
rudu} exp{−

∫ s

t
θudWu −

1

2

∫ s

t
θ2udu}.

This defines a linear price system Y : L2P → H2
P ; ξ 7→ Y (ξ), which

is increasing and corresponds to the classical free-arbitrage price
system. Y (ξ) is called the hedging price of ξ.

Note that in particular if ξ ≥ 0 a.s. then the price Yt ≥ 0.



Linear BSDEs were first introduced by Bismut 1973 as the adjoint
equation associated with the stochastic Pontryagin maximum
principle for stochastic control.



Theorem (Comparison theorem for BSDEs)

Let (g1, ξ1), (g2, ξ2) be standard coefficients and
(Y 1,Z 1), (Y 2,Z 2) be the solutions of the associated BSDEs.
Assume

I ξ1 ≥ ξ2

I g1(t,Y 2
t ,Z

2
t ) ≥ g2(t,Y 2

t ,Z
2
t )

Then Y 1
t ≥ Y 2

t , 0 ≤ t ≤ T a.s.



Proof: Set Ȳ = Y 1 − Y 2, Z̄ = Z 1 − Z 2 and take d = 1 to
simplify.

By difference of the 2 BSDEs,{
−dȲt = {g1(t,Y 1

t ,Z
1
t )− g2(t,Y 2

t ,Z
2
t )}dt − Z̄tdWt

ȲT = ξ1 − ξ2.

Now

g1(t,Y 1
t ,Z

1
t )− g2(t,Y 2

t ,Z
2
t ) =

{g1(t,Y 1
t ,Z

1
t )− g1(t,Y 2

t ,Z
1
t )}+ {g1(t,Y 2

t ,Z
1
t )− g1(t,Y 2

t ,Z
2
t )}

+ {g1(t,Y 2
t ,Z

2
t )− g2(t,Y 2

t ,Z
2
t )}

= ∆yg
1(t)(Y 1

t − Y 2
t ) + ∆zg

1(t)(Z 1
t − Z 2

t ) + φt

where

∆yg
1(t) :=

g1(t,Y 1
t ,Z

1
t )− g1(t,Y 2

t ,Z
1
t )

Y 1
t − Y 2

t

if Y 1
t − Y 2

t 6= 0; 0 otherwise

∆zg
1(t) :=

g1(t,Y 2
t ,Z

1
t )− g1(t,Y 2

t ,Z
2
t )

Z 1
t − Z 2

t

if Z 1
t − Z 2

t 6= 0; 0 otherwise

φt := g1(t,Y 2
t ,Z

2
t )− g2(t,Y 2

t ,Z
2
t ) ≥ 0



So {
−dȲt = {∆yg

1(t)Ȳt + ∆zg
1(t)Z̄t + φt}dt − Z̄tdWt

ȲT = ξ1 − ξ2

This is a linear BSDE. Note that ∆yg
1(t) and ∆zg

1(t) are
bounded since g is Lipschitz.

Since φt ≥ 0 and ξ1 − ξ2 ≥ 0 we get that Ȳt ≥ 0, 0 ≤ t ≤ T a.s.
�



Theorem (Strict Comparison theorem for BSDEs)

Let (g1, ξ1), (g2, ξ2) be standard coefficients and
(Y 1,Z 1), (Y 2,Z 2) be the solutions of the associated BSDEs.
Assume

I ξ1 ≥ ξ2 a.s.

I g1(s,Y 2
s ,Z

2
s ) ≥ g2(s,Y 2

s ,Z
2
s ) a.s 0 ≤ s ≤ T

I Y 1
t = Y 2

t on A ∈ Ft (for fixed t in [0,T ])

Then ξ1 = ξ2 on A and g1(s,Y 2
s ,Z

2
s ) = g2(s,Y 2

s ,Z
2
s ) a.s on

A× [t,T ]



Corollary (Sufficient condition of positivity)

If ξ ≥ 0 a .s. and g(t, 0, 0) ≥ 0 a.s., then Yt ≥ 0, 0 ≤ t ≤ T a.s.

Proof. We apply the comparison theorem to (g1 = g , ξ1 = ξ),
(g2 = 0, ξ2 = 0).

Solution associated to (g1, ξ1) : (Y 1,Z 1) = (Y ,Z ).
Solution associated to (0, 0) : (Y 2,Z 2) = (0, 0).

�



Application to the example of higher interest rate for
borrowing

Consider an option with payoff ξ ∈ L2(FT ) in this market. Recall
that the pricing/hedginp problem of European option with payoff ξ
leads to the BSDE: find (V , ϕ) such that

dVt = (rtVt−(Rt−rt)(Vt−ϕt)
−)dt+ϕtσtθdt+ϕtσtdWt ;VT = ξ.

or equivalently, setting Zt = ϕtσt ,

−dVt = g(t,Vt ,Zt)dt − ZtdWt , VT = ξ.

with
g(t, y , z) = −rty + (Rt − rt)(y − z

σ
)− + θtz

By the thm of existence and uniqueness, there exists a unique
solution (V ,Z ) of this BSDE in H2 ×H2 with nonlinear driver g .
Note that g(t, 0, 0) = 0 in this example.
By the corollary, we obtain that if ξ ≥ 0 a.s, then
Vt ≥ 0, 0 ≤ t ≤ T a.s.



Other examples of imperfections leading to nonlinear
dynamics:

−dVt = g(t,Vt , ϕtσt)dt − ϕtσtdWt

I Large investor with trading strategy ϕt affecting the market
prices: rt(ω) = r̄(t, ω, ϕt) and similarly for σ, θ.

g(t,Vt , ϕtσt) = −r̄(t, ϕt)Vt − ϕt (θ̄σ̄)(t, ϕt).

I Taxes on the profits on risky investments.

g(t,Vt , ϕtσt) = −(rtVt + ϕtθtσt) + ρϕ+
t .

Here, ρ ∈]0, 1[ represents an instantaneous tax coefficient on
the gains made from the investments in the risky assets .



Imperfect financial markets

More generally, when there are market imperfections captured by
the nonlinearity of the wealth process

−dVt = g(t,Vt , σtϕt)dt − σtϕtdWt ;

with driver g(t, y , z) uniformly Lipschitz with respect to y and z ,
the theory of BSDEs implies that given a claim ξ ∈ L2(FT ) , there
exists a unique solution (Y , ϕ) with Y and ϕ in H2(R) (i.e.
predictable and square integrable) such that

−dYt = g(t,Yt , σtϕt)dt − σtϕtdWt ; YT = ξ.

Yt is the price of the option at time t and ϕt is the hedging
portfolio.



Nonlinear pricing system Eg

The operator Eg : (ξ,T ) 7→ Y·(ξ,T ), where (Y (ξ,T ),Z (ξ,T )) is
solution of the associated BSDE with coefficients (ξ, g) and
terminal time T was first introduced in El-Karoui-Quenez ’96 and
called nonlinear pricing system, and later called g -conditional
expectation in Peng’2004.

This notion can be extended to the case where T is replaced by a
stopping time τ ∈ T0 and ξ by a random variable η ∈ L2(Fτ ).

Definition
The g -conditional expectation Eg is defined for all stopping time
τ ∈ T0 and all η ∈ L2(Fτ ) by

Egt,τ (η) := Yt(η, τ); 0 ≤ t ≤ T ,

where (Y (η, τ),Z (η, τ)) is the solution of the BSDE associated
with driver g , terminal time τ and terminal condition η.



In the case of a perfect market, g(t, y , z) = −rty − θtz (linear)
and the pricing system is linear, i.e.

∀α, β ∈ R, Egt,T (αξ1 + βξ2) = αEgt,T (ξ1) + βEgt,T (ξ2)



Properties of the nonlinear pricing system (or g -evaluation)
I The price system is increasing: if ξ1 ≥ ξ2 a.s. then
Et,T (ξ1) ≥ Et,T (ξ2) a.s.
(By comparison thm)

I if g(t, 0, 0) = 0 a.s. on [0,T ]× Ω, then Et,T (0) = 0 ∀t.
(i.e. the price of the null option is 0)
(By uniqueness of the solution: (0, 0) is solution and it is the
only one)
Moreover the price system is positive, i.e. if ξ ≥ 0 a.s. then
Et,T (ξ) ≥ 0.
(By comparison thm)

I If g(t, 0, 0) = 0 a.s. then the pricing system satifies the non
arbitrage property , i.e. if for t, A ∈ Ft given, if

I if ξ1 ≥ ξ2 a.s. on A
I and Et,T (ξ1) = Et,T (ξ2) a.s. on A ∈ Ft

Then ξ1 = ξ2 a.s. on A
Proof: Apply strict comparison thm with g1 = g2 = g .



I if g is convex w.r.t. y , z , then the price system is convex, i.e.
∀α ∈ [0, 1], ∀ξ1, ξ2 ∈ L2(FT ),

Et,T (αξ1 + (1− α)ξ2) ≤ αEt,T (ξ1) + (1− α)Et,T (ξ2)

(By comparison thm)



I The price system is time-consistent, i.e. if S ≤ T , then

Et,T (ξ) = Et,S(ES ,T (ξ)) 0 ≤ t ≤ S

This corresponds to the flow property of BSDEs
(also holds if S is a stopping time ≤ T ).

In other words, ∀s ∈ [0,T ] , ∀ξ ∈ L2(Fs), the g -evaluation
Egt,s(ξ) is an Eg -martingale.

A continuous adapted process Xt in S2 is said to be an

E-martingale if Eσ,τ (Xτ ) = Xσ a.s. on σ ≤ τ , for all σ, τ ∈ T0.



A brief introduction to risk measures
Static framework

We assume that uncertainty is described by a measurable space
(Ω,F) of possible scenarios, and that risky positions belong to a
linear space X .
Let A ⊂ X : Subset of ”acceptable” positions. We require that
A contains all constants and that

X ∈ A whenever X ≥ Y for some Y ∈ A.

We define the monetary risk measure by

ρ(X ) : inf{m ∈ R | X + m ∈ A}

The functional ρ satisfies:

1. ρ(X + m) = ρ(X )−m for all X ∈ X and all constants m.
(Translation invariance)

2. If X1 ≤ X2 then ρ(X1) ≥ ρ(X2). (Monotonicity)

Interpretation: ρ(X ) is the amount to be added to X to make it
“acceptable”, since by translation invariance, ρ(X + ρ(X )) = 0.



Example: Value at Risk (VaR)
Suppose that a probability measure is given on the set Ω of all
scenarios.

A position is acceptable for the VaR if the probability of loss
P[X < 0] is below some level β:

VaR(X ) := inf{m ∈ R | P[X + m < 0] ≤ β}

It is thus a β-quantile of the distribution of X under P.

VaR is widely used in practice but it is not convex; however
convexity is a good property for a risk measure since it means that
diversification should not increase the risk.



This has motivated an axiomatic approach for a general theory of
monetary risk measures called

I ”coherent” (A is a cone),
Arzner et al. ’99

I then extended to the convex case (A convex)
For all λ ∈ [0, 1] and all X1,X2 ∈ X .

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2)

(Föllmer & Schied ’02, Frittelli & Rosazza-Gianin ’02)



Example: the entropic risk measure

ρ(X ) =
1

γ
lnEP [exp(−γX )] = sup

Q∈Q
{EQ [−X ]− 1

γ
H(Q | P)}

where H(Q | P) is the relative entropy of Q with respect to P
defined by:

H(Q | P) =

{
EQ [ln dQ

dP ] if Q admits a density w.r.t. P

+∞ otherwise



Dual Representation:
Convex dualiy theory implies that convex risk measures are
typically of the form:

ρ(X ) = sup
Q∈Q
{EQ [−X ]− α(Q)}

where Q is a set of probability measures and α is a penalty
fonction which can take the value +∞.
The penalty term vanishes in the special case of coherent risk
measures.
Interpretation in terms of model uncertainty : ”Worst case”



Dynamic risk measures and relations to BSDEs

Extension to the dynamic case.
Additional axioms are required to get time-consistency ;
→ Natural link with BSDEs.

In the Brownian case, cf e.g. P. Barrieu - N. El Karoui 2004).

in the case with jumps , see M.C. Quenez, A.S. SPA’13



Dynamic risk measures associated to BSDEs

Let g be a standard Lipschitz driver. For each T > 0 and
ξ ∈ L2(FT ), set

ρt(ξ,T ) := −Egt,T (ξ), 0 ≤ t ≤ T ,

If T represents a given maturity and ξ a financial position at time
T , then ρt(ξ,T ) is interpreted as the risk measure of ξ at time t.

The functional ρ : (ξ,T ) 7→ ρ·(ξ,T ) defines then a dynamic risk
measure induced by the BSDE with driver g .



I ρt(·,T ) is monotonous (nonincreasing with respect to
financial position ξ:) if ξ1 ≥ ξ2 then ρt(ξ

1,T ) ≤ ρt(ξ2,T )
a.s.

I ρ satisfies the nonarbitrage property: If ξ1 ≥ ξ2 and if
ρt(ξ

1,T ) = ρt(ξ
2,T ) a.s. on an event A ∈ Ft , then ξ1 = ξ2

a.s. on A.

I If g is concave w.r.t. y , z , then ρt(·,T ) is convex.

I If g only depends on z (not on y), then ρ is invariant by
translation (monetary risk measure), i.e.
ρt(ξ + ξ′,T ) = ρt(ξ,T )− ξ′, ∀ξ ∈ L2(FT ), ξ′ ∈ L2(Ft).

Example: the dynamic entropic risk measure

ρt(ξ,T ) :=
1

γ
lnE[exp(−γξ) | Ft ]

is associated to the BSDE with driver g(t, y , z) := 1
2γz

2.



Recursive utility

(Duffie & Epstein (1992), Epstein & Zin (1989), Kreps & Porteus
(1978)).
Let g(t, y , c) be an Ft-adapted process. Assume that
c → g(t, y , c) is concave for all t, y . The recursive utility process
of a given consumption process c(·) ≥ 0 is defined as the solution
Y of the equation

(8) Yt = E
[∫ T

t
g(s,Ys , cs))ds | Ft

]
; 0 ≤ t ≤ T .

This equation is equivalent to the following BSDE in (Y ,Z ):

(9)

{
−dYt = g(t,Yt , ct)dt − ZtdBt

YT = 0.



The Markovian case - Links of BSDEs with PDEs

Let (t, x) ∈ [0,T ]× Rp. Let (S t,x
s , t ≤ s ≤ T ) the solution of the

forward SDE:{
dSs = b(s,Ss)ds + σ(s,Ss)dWs , t ≤ s ≤ T

St = x

where b : [0,T ]× Rp → Rp and σ : [0,T ]× Rp → Rp×d are
Borelian Lipschitz w.r.t. x .
Let (Y t,x

s ,Z t,x
s ) be the solution of the BSDE

(10)

{
−dYs = g(t, S t,x

s ,Ys ,Zs)dt − Z ∗s dWs t ≤ s ≤ T

YT = Ψ(S t,x
T ),

where Ψ : Rp → R, g is Lipschitz w.r.t. (y , z) with constant C
(uniformly wrt (t, s)), and b, σ, g ,Ψ have linear growth.

Y t,x
t is a deterministic function of (t, x), denoted by u(t, x).



Theorem (Generalized Feyman-Kac representation)

Let v a function of class C 1,2 such that

|v(t, x)|+ |σ(t, x)∗∂xv(t, x)| ≤ C (1 + |x |),

solution of the PDE{
∂tv(t, x) + Lv(t, x) + g(t, x , v(t, x), σ(t, x)∗∂xv(t, x)) = 0

v(T , x) = Ψ(x)

where ∂xv denotes the gradient of v and Lt,x is the infinitesimal
generator of Ss :

Lt,x :=
∑
i

bi (t, x)∂xi +
∑
i ,j

ai ,j(t, x)∂2xixj

with aij = 1
2(σσ∗)ij . Then

v(t, x) = Y t,x
t

where (Y t,x ,Z t,x) is the solution of the BSDE (10).

†



Moreover

Y t,x
s = v(s,S t,x

s ) s ≥ t

Z t,x
s = σ(s, S t,x

s )∂xv(s, S t,x
s ) s ≥ t.

Proof. Apply Itô to v(s,S t,x
s ). We get :

dv(s,S t,x
s ) = {∂tv(s,Ss) + Lv(s, Ss)}ds + ∂xv(s, Ss)∗σ(s, Ss)dWs

Since v satisfies the PDE, the term in ds above is equal to
−g(t,Ss , v(s,Ss), σ(s, Ss)∗∂xv(s,Ss)).

Moreover v(T ,ST ) = Ψ(ST ) (terminal condition).
So (v(s,S t,x

s ), σ∗(s,S t,x
s )∂xv(s,S t,x

s )) is solution of the BSDE
(10). By uniqueness it is equal a.s. to (Ys ,Zs). �

reference: Pardoux-Peng: BSDEs and quasi-linear PDEs 1992



This is a ”verification” theorem.

We have also a theorem which states that the function
u(t, x) := Y t,x

t is a viscosity solution of the PDE. (El
Karoui-Peng-Quenez 97).



III. Nonlinear pricing of American Contingent claims

Recall that an American option gives the right to the owner to
exercise the option at any time before maturity.

Consider the imperfect market Mg , when under nonlinear
constraints, the strategy (wealth V , portfolio ϕ) satisfies:

−dVt = g(t,Vt , σ
∗
tϕt)dt − σ∗tϕtdWt .

where g is nonlinear (Lipschitz).



Consider an American option associated with horizon T > 0 and a
payoff given by a continuous process (ξt , 0 ≤ t ≤ T ).
At time 0, it consists in the selection of a stopping time ν ∈ T
leading to the payment of the payoff ξν from the seller to the
buyer.

We have seen that for an European option with payoff ξ and
maturity T , its initial hedging price is given by Eg0,T (ξ).

A ”natural” price for the American option is the quantity

sup
ν∈T
Eg0,ν(ξν),(11)

which we call the g -value of the American option (first introduced

in NEK-Quenez’96 and called ”fair value”).



Main results:

1. The g-value supν∈T E
g
0,ν(ξν) of the American option with

payoff ξ coincides with the solution of an associated
reflected BSDE with barrier ξ.

2. It is equal to the superhedging price u0 of the American
option, (i.e. the minimal initial capital which enables the
seller to invest in a portfolio which will cover his liability to
pay to the buyer no matter the exercise time of the buyer).

Mathematical tools: theory of (nonlinear) reflected BSDEs.



Reflected BSDEs

Reflected BSDEs have been introduced by El Karoui et al. (1997).

The solution of such a BSDE is forced to stay above a given
process, called obstacle (or barrier). An increasing process is
introduced to push the solution upwards in a minimal way so that
it remains above the obstacle.



Reflected BSDEs
Given:
I a standard driver g(t, y , z)
I an obstacle (ξt),0≤t≤T , continuous on [0,T [, adapted,

belonging to S2, i.e. E(supt |ξt |2) <∞ and satisfying
limt→T ,t<T ξt ≤ ξT .

A solution of the reflected BSDE associated with driver g and
obstacle ξ. consists in a triplet (Y ,Z ,K ) in
H2(R)×H2(Rn)× S2(R) such that
(12)

−dYt = g(t,Yt ,Zt)dt + dKt − ZtdWt ;

YT = ξT

Yt ≥ ξt , 0 ≤ t ≤ T a.s.,

K is a nondecreasing continuous predictable process with K0 = 0 and∫ T
0 (Yt − ξt)dKt = 0 ( i.e. t 7→ Kt increases only on{t,Yt = ξt})

The process K is the minimal push which allows the solution to
stay above the obstacle.



Reflected BSDEs
The special case of a driver process

Suppose g does not depend on y , z , k , that is
g(ω, t, y , z) = g(ω, t), where g is a process in H2.

Theorem (Link with classical optimal stopping problems)

If (Y ,Z ,K ) satisfies the reflected BSDE associated with driver
g = g(ω, t) and obstacle ξ, then

Yt = ess sup
τ∈Tt

E[ξτ +

∫ τ

t
g(s)ds | Ft ] a.s.

and the supremum is attained at

Dt = inf{s ≥ t;Ys = ξs}.

Proof. on blackboard �



Theorem (Existence and Uniqueness)

The reflected BSDE associated with driver g = g(ω, t) and
obstacle ξ admits a unique solution (Y ,Z ,K ).

Proof.

I Uniqueness.
It comes from the previous characterization theorem.

I Existence.
The proof is based on Doob-Meyer decomposition for super
martingales, the theorem of martingale representation and the
optimal stopping theory. (Proof on the blackboard).

�



Reflected BSDEs
The general case of a Lipschitz driver process

Theorem (Existence and Uniqueness)

Let g(t, y , z) and ξ. be a couple of standard parameters. Then, the
associated reflected BSDE admits a unique solution (Y ,Z ,K ).



Proof. Define a mapping Φ as follows. Given
(U,V ) ∈ H2(R)×H2(Rd), let (Y ,Z ) = Φ(U,V ) where
(Y ,Z ,K ), with

Kt = −Yt + Y0 −
∫ t

0
g(s,Us ,Vs) ds +

∫ t

0
Z ∗s dWs , 0 ≤ t ≤ T ,

is the solution of the Reflected BSDE associated with driver
g(s) = g(s,Us ,Vs) and obstacle ξ (which is well defined from
previous proposition)
Prove that Φ is a contraction in the Banach space
H2(R)×H2(Rd) equipped with the norm ‖ · ‖β (with β well
chosen) and thus admits an unique fixed point, which corresponds
to the solution of RBSDE (12).
Detailed proof on the blackboard. �



Theorem (Characterization)

Let (Y ,Z ,K ) be the solution of the reflected BSDE. Then

Yt = ess sup
τ∈Tt,T

Egt,τ (ξτ )

and the supremum is attained at

Dt := inf{s ≥ t;Ys = ξs},

that is
Yt = Et,Dt (ξDt ).



Proof. Let
Dt := inf{s ≥ t;Ys = ξs}.

On [t,Dt ], the solution Yt > ξt , so (Kt) remains constant and
(Y ,Z ) ≡ the solution of the BSDE with driver g , terminal time Dt

and terminal condition ξDt (= YDt by continuity of Y and ξ). In
other terms,

Yt = Et,Dt (ξDt ).

It remains to prove that for each τ ∈ Tt,T , we have: Yt ≥ Et,τ (ξτ ).
Set X ′t := Et,τ (ξτ ); It satisfies the BSDE

−dX ′s = g(s,X ′s , π
′
s)ds − π′∗s dWs , t ≤ s ≤ τ ;X ′τ = ξτ

Note that on [t, τ ], the pair (Y ,Z ) satisfies

−dYs = g(s,Ys ,Zs)ds + dKs − Z ∗s dWs ; Yτ = Yτ .

In other terms, (Y ,Z ) is a solution of the BSDE associated with
terminal time τ , terminal condition Yτ and driver g(s, ·, ·) + dKs

ds .
But we have : g(s, y , z)ds + dKs ≥ g(s, y , z) and Y τ ≥ ξτ .
The comparison thm for BSDEs implies Yt ≥ Et,τ (ξτ ). �



Theorem (Comparison theorem for reflected BSDEs)

Let (f 1, ξ1), (f 2, ξ2) be standard coefficients and (Y 1,Z 1,K 1),
(Y 2,Z 2,K 2) be the solutions of the associated reflected BSDEs.
Assume

I ξ1t ≥ ξ2t , 0 ≤ T , a.s.

I f 1(t, y , z ≥ f 2(t, y , z) ∀t, y , z
Then Y 1

· ≥ Y 2
· , P-a.s.

Proof. By the comparison thm for BSDEs, for all stopping time
τ ≥ t, we have:

E1t,τ (ξ1τ ) ≥ E2t,τ (ξ2τ ).

Taking the supremum over τ , we get:

Y 1
t ≥ Y 2

t .

�



Theorem (Optimality criterium)

We have the following equivalence:
(i) τ∗ is t-optimal , i.e.

Yt = ess sup
τ∈Tt,T

Egt,τ (ξτ ) = Et,τ∗(ξτ∗)

(ii) dKs = 0 , t ≤ s ≤ τ∗ and Y ∗τ = ξτ∗ .
In other terms (Ys , t ≤ s ≤ τ∗) is solution of the BSDE associated
with the terminal condition ξτ∗ .

Proof. (ii) ⇒ (i): clear
(i) ⇒ (ii) application of the strict comparison thm (detailed proof
on the blackboard) �



Application to American option pricing

Under nonlinear constraints, the wealth is supposed to satisfy:

−dVt = g(t,Vt , σ
∗
t πt)dt − σ∗t πtdWt .

If the exercise time τ ∈ Tt,T is fixed, then the American option is a
European option with maturity τ and payoff ξτ . The price of this
European option is given by Et,τ (ξτ ).

Definition
The g -value of the American option at time t is defined by the
Ft-measurable random variable:

Yt = ess sup
τ∈Tt,T

Egt,τ (ξτ ) a.s.

Using the previous theory we have that Y is the solution of the
reflected BSDE assciated to driver g and obstacle ξ.
More precisely,



Proposition: ∃ Z in H(Rd), ∃ K continuous, increasing process,
such that 

−dYt = g(t,Yt ,Zt)dt + dKt − Z ∗t dWt

YT = ξT

Yt ≥ ξt 0 ≤ t ≤ T a.s.∫ T
0 (Ys − ξs)dKs = 0

Moreover, Dt := inf{s ≥ t;Ys = ξs} is optimal i.e.
Yt = Et,Dt (ξDt ).



Theorem
The g -value Y0 := supν∈T E

g
0,ν(ξν) of the American option with

payoff ξ satisfies
Y0 = u0

where u0 is the superhedging price of the American option defined
as the lowest price which allows the seller to be superhedged, i.e.

u0 = infH

where

H = {x ∈ R, ∃ϕ ∈ H2 s.t . V x ,ϕ
t ≥ ξt a.s. 0 ≤ t ≤ T}

Proof:
1.Y0 ≤ u0.
Let x ∈ H. Let us show that Y0 ≤ x .
For all τ ∈ T0, we have: ξτ ≤ V x ,ϕ

τ .
So by comparison thm, E0,τ (ξτ ) ≤ E0,τ (V x ,ϕ

τ ) = V x ,ϕ
0 = x .

Taking supremum over τ , we get Y0 = supτ∈T0 E0,τ (ξτ ) ≤ x .



2. u0 ≤ Y0

Consider V Y0,ϕ
t the wealth associated to portfolio ϕt = (σ∗t )−1Zt

and initial value Y0. It satisfies:

Vt = Y0 −
∫ t

0
g(s,Ys ,Zs)ds +

∫ t

0
Z ∗s dWs

and we have

Yt = Y0 −
∫ t

0
g(s,Ys ,Zs)ds +

∫ t

0
Z ∗s dWs − Kt .

We can prove by using a comparison argument for forward
differential equations , that

V Y0,ϕ
t ≥ Yt .

Now
Yt ≥ ξt ,

So V Y0,ϕ
t ≥ ξt , for all 0 ≤ t ≤ T .

So Y0 belongs to H.
�



Relation with PDEs (Variational inequalities)

We now focus on the Markovian case.
Let b and σ be continuous mappings, globally Lipschitz. For each
(t, x) ∈ [0,T ]× R, let {X t,x

s , t ≤ s ≤ T} the solution of

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr

We consider the Reflected BSDE associated driver f (s,X t,x
s , .) and

obstacle ξt,x of the following form:{
ξt,xs := h(s,X t,x

s ), s < T

ξt,xT := g(X t,x
T )

where g ∈ C(R) has at most polynomial growth at infinity,
h : [0,T ]× R→ R is jointly continuous in t and x and there exist
p ∈ N and C > 0, such that |h(t, x)| ≤ C (1 + |x |p),∀t, x and
h(T , x) ≤ g(x), ∀x .



For each (t, x) ∈ [0,T ]× R, there exists a unique triple
(Y t,x ,Z t,x ,K t,x) ∈ S2 ×H2 × S2 of adapted processes, which
solves the Reflected BSDE:
(13)

Y t,x
s = g(X t,x

T ) +

∫ T

s
f (r ,X t,x

r ,Y t,x
r ,Z t,x

r )dr + K t,x
T − K t,x

s

−
∫ T

s
Z t,x
r dWr

Y t,x
s ≥ ξt,xs , 0 ≤ s ≤ T a.s. ,

K t,x is a nondecreasing, continuous predictable process with

K t,x
t = 0 and such that∫ T

t
(Y t,x

s − ξt,xs )dK t,x
s = 0 a.s.



Theorem
The function u, defined by

u(t, x) := Y t,x
t , t ∈ [0,T ], x ∈ R

is a viscosity solution (i.e. both a viscosity sub- and supersolution)
of the following PDE with obstacle
(14)

min(u(t, x)− h(t, x),

−∂u
∂t

(t, x)− Lu(t, x)− f (t, x , u(t, x), (σ
∂u

∂x
)(t, x)) = 0, (t, x) ∈ [0,T )× R

u(T , x) = g(x), x ∈ R

where

Lφ(x) :=
1

2
σ2(x)

∂2φ

∂x2
(x) + b(x)

∂φ

∂x
(x).



Definition
• A continuous function u is said to be a viscosity subsolution of (14)
if u(T , x) ≤ g(x), x ∈ R, and if for any point (t0, x0) ∈ (0,T )× R and
for any φ ∈ C 1,2([0,T ]× R) such that φ(t0, x0) = u(t0, x0) and φ− u
attains its minimum at (t0, x0), we have

min(u(t0, x0)− h(t0, x0),

− ∂φ

∂t
(t0, x0)− Lφ(t0, x0)− f (t0, x0, u(t0, x0), (σ

∂φ

∂x
)(t, x))(t0, x0)) ≤ 0.

In other words, if u(t0, x0) > h(t0, x0),

−∂φ
∂t

(t0, x0)− Lφ(t0, x0)− f (t0, x0, u(t0, x0), (σ
∂φ

∂x
)(t, x))(t0, x0)) ≤ 0.

• A continuous function u is said to be a viscosity supersolution of
(14) if u(T , x) ≥ g(x), x ∈ R, and if for any point (t0, x0) ∈ (0,T )× R
and for any φ ∈ C 1,2([0,T ]× R) such that φ(t0, x0) = u(t0, x0) and
φ− u attains its maximum at (t0, x0), we have

min(u(t0, x0)− h(t0, x0),

− ∂

∂t
φ(t0, x0)− Lφ(t0, x0)− f (t0, x0, u(t0, x0), (σ

∂φ

∂x
)(t0, x0)) ≥ 0.

In other words, we have both u(t0, x0) ≥ h(t0, x0),

−∂φ
∂t

(t0, x0)−Lφ(t0, x0)−f (t0, x0, u(t0, x0), (σ
∂φ

∂x
)(t0, x0),Bφ(t0, x0)) ≥ 0.



Under some additional hypothesis on f , there exists a unique
solution of the obstacle problem (27) in the class of continuous
functions with polynomial growth.



IV. Nonlinear pricing of Game options
Definition

I Game options are derivative contracts that can be
terminated by both counterparties at any time before maturity
T (introduced by Kifer ’2000).

I extend the setup of American options by allowing the seller to
cancel the contract.

More precisely

I If the buyer exercises at time τ , he gets ξτ from the seller,

I If the seller cancels at σ before τ , then he pays ζσ to the
buyer.

We assume ζt − ξt ≥ 0 for all t and this difference is interpreted as
a penalty for the seller for cancellation of the contract.



Game options
Superhedging

The game option consists for the seller to select a cancellation
time σ ∈ T and for the buyer to choose an exercise time τ ∈ T , so
that the seller pays to the buyer at time τ ∧ σ the amount
I (τ, σ) = ξτ1τ≤σ + ζσ1σ<τ .

Definition (Superhedging price)

It is the minimal initial wealth which enables the seller to choose a
cancellation time σ and a portfolio which cover his liability to pay
to the buyer up to σ no matter the exercise time chosen by the
buyer (Kifer).

Definition: For each initial wealth x , a super-hedge against the
game option is a pair (σ, ϕ) of a stopping time σ and a portfolio ϕ
s.t. V x ,ϕ

t∧σ ≥ I (t, σ), 0 ≤ t ≤ T a.s. (or equivalently V x ,ϕ
t ≥ ξt ,

0 ≤ t ≤ σ a.s. and V x ,ϕ
σ ≥ ζσ a.s.).



Let A(x) be the set of all super-hedges associated with initial
wealth x .
The superhedging price u0 is then defined as the infimum of initial
wealths such that there exists a hedge against the game option,
that is

u0 = inf{x ∈ R, ∃(σ, ϕ) ∈ A(x)}.



In the case of perfect markets, Kifer shows in the CRR
discrete-time model and in the Black-Scholes model that
u0 = value function of a Dynkin game:

u0 = sup
τ

inf
σ
EQ[ξ̃τ1τ≤σ + ζ̃σ1τ>σ] = inf

σ
sup
τ

EQ[ξ̃τ1τ≤σ + ζ̃σ1τ>σ],

where ξ̃t and ζ̃t are the discounted values of ξt and ζt .

Here, EQ denotes the expectation under the unique martingale
probability measure Q of the market model.



Nonlinear pricing of Game options

Consider the imperfect market Mg , when under nonlinear
constraints, the wealth satisfies:

−dVt = g(t,Vt , σ
∗
tϕt)dt − σ∗tϕtdWt .

where g is nonlinear (Lipschitz).

Suppose that the seller has chosen his cancellation time σ.
Then, the game option reduces to an American option with payoff
I (., σ), whose superhedging initial price is given by
supτ∈T E

g
0,τ∧σ[I (τ, σ)].

It is thus natural to define the g -value of the game option as

inf
σ∈T

sup
τ∈T
Eg0,τ∧σ(I (τ, σ)).



Questions :

? inf
σ∈T

sup
τ∈T
Eg0,τ∧σ(I (τ, σ)) = sup

τ∈T
inf
σ∈T
Eg0,τ∧σ(I (τ, σ))

In other words, does this generalized Dynkin game has a value?

? Links with superhedging price of game options

The classical approach based on a change of probability measure and an

actualization procedure (see Hamadène) cannot be adapted to the

nonlinear case.

Mathematical tools: theory of (nonlinear) doubly reflected
BSDEs and links with generalized Dynkin games.
Dumitrescu-Quenez-Sulem 2014



Doubly reflected BSDEs

We define Doubly reflected BSDEs (DRBSDEs), for which the
solution is constrained to stay between two given processes called
barriers ξ ≤ ζ.

Two nondecreasing processes A and A′ are introduced in order to
push the solution Y above ξ and below ζ in a minimal way. This
minimality property of A and A′ is ensured by the Skorohod
conditions.



Definition (Doubly reflected BSDEs)

Let T > 0 be a fixed terminal time and g be a Lipschitz driver.
Let ξ and ζ be two adapted continuous on [t,T) processes with
ζT = ξT a.s., ξ ∈ S2, ζ ∈ S2, ξt ≤ ζt , ∀t ∈ [0,T ] a.s.
A process (Y ,Z ,A,A′) in S2 ×H2 ×A2 ×A2 is a solution of the
doubly reflected BSDE associated with driver g and barriers ξ, ζ if

−dYt = g(t,Yt ,Zt)dt + dAt − dA
′
t − ZtdWt ; 0 ≤ t ≤ T

YT = ξT ,

ξt ≤ Yt ≤ ζt , 0 ≤ t ≤ T a.s.,

dAt ⊥ dA′t∫ T
0 (Yt − ξt)dAt = 0 and

∫ T

0
(ζt − Yt)dA

′
t = 0 a.s. (Skorohod conditions)

A2 = {nondecreasing continuous adapted processes A with A0 = 0 and

E(A2
T ) <∞}



Classical Dynkin games
Links with linear doubly reflected BSDEs

We start by the case of the driver g = 0 and ξT = 0 a.s.

Then the associated doubly reflected BSDE is related to a classical
Dynkin game problem with payoff:

I (τ, σ) = ξτ1{τ≤σ} + ζσ1{σ<τ}.



Definition (Classical Dynkin game)

For any S ∈ T0, the upper and lower value functions at time S are
defined respectively by

V (S) := ess inf
σ∈TS

ess sup
τ∈TS

E[I (τ, σ)|FS ]

V (S) := ess sup
τ∈TS

ess inf
σ∈TS

E[I (τ, σ)|FS ].

We clearly have the inequality V (S) ≤ V (S) a.s.

We say that the Dynkin game is fair (or there exists a value
function) at time S if V (S) = V (S) a.s.



Definition (S-saddle point)

Let S ∈ T0. A pair (τ∗, σ∗) ∈ T 2
S is called an S-saddle point if for

all (τ, σ) ∈ T 2
S , we have

E [I (τ, σ∗) | FS ] ≤ E [I (τ∗, σ∗) | FS ] ≤ E [I (τ∗, σ) | FS ] a.s.



When it exists, the value function of the Dynkin game can be
written as the difference of 2 supermartingales J and J ′ solutions
of a coupled optimal stopping problems: V (S) = V (S) = JS − J ′S ,
where for all θ ∈ T0,

Jθ = ess sup
τ∈Tθ

E
[
J ′τ + ξτ |Fθ

]
and J ′θ = ess sup

σ∈Tθ
E [Jσ − ζσ|Fθ] a.s.

J and J ′ are finite (and in S2 ) iff Mokobodzki’s condition holds,
that is if there exist two nonnegative continuous supermartingales
H and H ′ in S2 such that:

(15) ξt ≤ Ht − H ′t ≤ ζt 0 ≤ t ≤ T a.s.

(which is for example satisfied when ξ and ζ are semimartingales)



Theorem
Under this condition, the doubly reflected BSDE

−dYt = dAt − dA
′
t − ZtdWt ;YT = 0

ξt ≤ Yt ≤ ζt , 0 ≤ t ≤ T a.s.,

dAt ⊥ dA′t∫ T
0 (Yt − ξt)dAt = 0 and

∫ T

0
(ζt − Yt)dA

′
t = 0

admits a unique solution (Y ,Z ,A,A′) in S2 ×H2 × (A2)2.
∀S ∈ T0, YS is the common value function of the Dynkin game
associated with the gain I (τ, σ) = ξτ1{τ≤σ} + ζσ1{σ<τ}., i.e.

YS = V (S) = V (S) a.s.(16)

Moreover, ∀S ∈ T0, the pair of stopping times (τ∗s , σ
∗
s ) defined by

(17) σ∗S := inf{t ≥ S , Yt = ζt}; τ∗S := inf{t ≥ S , Yt = ξt}

is an S-saddle point.



Sketch of proof : Suppose that J, J ′ ∈ S2. Define

(18) Y t := Jt − J ′t ; 0 ≤ t ≤ T .

Let us show that there exist (Z ,A,A′) ∈ H2 ×A2 ×A2 such that
(Y ,Z ,A,A′) is a solution of DRBSDE (15) associated with driver
process g = 0.
By assumption, J and J

′
are square integrable supermartingales.

The process Y is thus well defined. We have JT = J ′T a.s. Hence,
Y T = ξT a.s. By the Doob-Meyer decomposition, there exist two
square integrable martingales M and M ′ and two processes A and
A
′ ∈ A2 such that:

(19) dJt = dMt − dAt ; dJ
′
t = dM

′
t − dA

′
t .

Set
Mt := Mt −M

′
t .

By (19), (18), we derive dY t = dMt − dαt , with α := A− A
′
.

By the martingale representation theorem, there exist Z ∈ H2 such
that dMt = ZtdWt . Hence,

−dY t = dαt − ZtdWt .



By the optimal stopping theory, the process A increases only when
the value function J is equal to the corresponding reward J

′
+ ξ.

Now, {Jt = J
′
t + ξ} = {Yt = ξt}. Hence,

∫ T
0 (Yt − ξt)dAt = 0 a.s.

Similarly the process A
′

satisfies
∫ T
0 (Yt − ζt)dA

′
t = 0 a.s.

We have Yσ∗S = ζσ∗S and Yτ∗S = ξτ∗S a.s.
On [S , τ∗S [, we have Yt > ξt a.s., so A is constant on [S , τ∗S ].
Similarly, A′ is constant on [S , σ∗S ] a.s.
The process (Yt +

∫ t
0 g(s)ds, S ≤ t ≤ τ∗S ∧ σ∗S) is thus a

martingale. Hence, YS = E [IS(τ∗S , σ
∗
S) | FS ] a.s.

Similarly we can show that ∀τ, σ ∈ TS , E [IS(τ, σ∗S) | FS ] ≤ YS and
YS ≤ E [IS(τ∗S , σ) | FS ] a.s. , So (τ∗S , σ

∗
S) is an S-saddle point. �



This result can easily be extended to the case when g = (gt) in H2

is a driver process and ξT 6= 0, by doing the change of variables:

ξ̃gt := ξt−E [ξT+

∫ T

t
g(s)ds | Ft ], ζ̃gt := ζt−E [ζT+

∫ T

t
g(s)ds | Ft ], 0 ≤ t ≤ T .

The associated payoff of the Dynkin game is then

IS(τ, σ) =

∫ σ∧τ

S
g(u)du + ξτ1{τ≤σ} + ζσ1{σ<τ}.



Generalized Dynkin games and links with nonlinear
DRBSDEs

From now on, we are given a standard Lipschitz driver g and we
suppose that Mokobodzki’s condition is satisfied.

Theorem (Existence and uniqueness for DRBSDEs)

Then, DRBSDE (15) admits a unique solution
(Y ,Z ,A,A′) ∈ S2 ×H2 × (A2)2.

Proof. based on a contraction argument (similar to the case of
BSDEs and Reflected BSDEs) �



Generalized Dynkin games

We introduce a generalized Dynkin game expressed in terms of
Eg -expectations. Let g(t, y , z) be a given a Lipschitz driver.

For each pair (τ, σ) of stopping times valued in [0,T ], the
criterium is given by

Eg0,τ∧σ
(
ξτ1{τ≤σ} + ζσ1{σ<τ}

)
with ξ, ζ two continuous adapted processes satisfying ξ ≤ ζ.

When the driver g does not depend on the solution, that is, when
it is given by a process (g(t)), the criterium coincides with

E
(∫ τ∧σ

0
gsds + ξτ1{τ≤σ} + ζσ1{σ<τ}

)
.



For each stopping time S ∈ T0, the upper and lower value
functions at time S are defined respectively by

(20) V (S) := ess inf
σ∈TS

ess sup
τ∈TS
ES ,τ∧σ(I (τ, σ));

(21) V (S) := ess sup
τ∈TS

ess inf
σ∈TS
ES ,τ∧σ(I (τ, σ)).

with
I (τ, σ) := ξτ1τ≤σ + ζσ1σ<τ .

We clearly have the inequality V (S) ≤ V (S) a.s.

By definition, we say that the game is fair (or there exists a value
function) at time S if V (S) = V (S) a.s.



Definition (S-saddle)

Let S ∈ T0. A pair (τ∗, σ∗) ∈ T 2
S is called an S-saddle point for

the generalized Dynkin game if for each (τ, σ) ∈ T 2
S we have

EgS ,τ∧σ∗(I (τ, σ
∗)) ≤ EgS ,τ∗∧σ∗(I (τ

∗, σ∗)) ≤ EgS ,τ∗∧σ(I (τ∗, σ)) a.s.

Definition
Let Y be an RCLL process in S2. The process Y is said to be a
Eg -supermartingale (resp Eg -submartingale), if Egσ,τ (Yτ ) ≤ Yσ
(resp. Egσ,τ (Yτ ) ≥ Yσ) a.s. on σ ≤ τ , for all σ, τ ∈ T0.



We first provide a sufficient condition for the existence of an
S-saddle point and for the characterization of the common value
function as the solution of the DRBSDE.

Lemma
Let (Y ,Z ,A,A′) be the solution of the DRBSDE. Let S ∈ T0. Let
(τ̂ , σ̂) ∈ TS . Suppose that (Yt , S ≤ t ≤ τ̂) is a E-submartingale
and that (Yt , S ≤ t ≤ σ̂) is a E-supermartingale with Yτ̂ = ξτ̂ and
Yσ̂ = ζσ̂ a.s.
The pair (τ̂ , σ̂) is then an S-saddle point for the generalized
Dynkin game (20)-(21) and

YS = V (S) = V (S) a.s.



Proof. Since the process (Yt , S ≤ t ≤ τ̂ ∧ σ̂) is a E-martingale
and since Yτ̂ = ξτ̂ and Yσ̂ = ζσ̂ a.s. , we have

YS = EgS ,τ̂∧σ̂(Yτ̂∧σ̂) = EgS ,τ̂∧σ̂(ξτ̂1τ̂≤σ̂+ζσ̂1σ̂<τ̂ ) = EgS ,τ̂∧σ̂(I (τ̂ , σ̂)) a.s.

Let τ ∈ TS . We want to show that for each τ ∈ TS
(22) YS ≥ ES ,τ∧σ̂(I (τ, σ̂)) a.s.

Since the process (Yt , S ≤ t ≤ τ ∧ σ̂) is a E-supermartingale, we
get

(23) YS ≥ ES,τ∧σ̂(Yτ∧σ̂) a.s.

Since Y ≥ ξ and Yσ̂ = ζσ̂ a.s. , we also have

Yτ∧σ̂ = Yτ1τ≤σ̂ + Yσ̂1σ̂<τ ≥ ξτ1τ≤σ̂ + ζσ̂1σ̂<τ = I (τ, σ̂) a.s.

By inequality (23) and the monotonicity property of E , we derive
inequality (22).
Similarly, one can show that for each σ ∈ TS , we have:

YS ≤ ES,τ̂∧σ(I (τ̂ , σ)) a.s.

The pair (τ̂ , σ̂) is thus an S-saddle point and YS = V (S) = V (S)
a.s. �



Theorem (Existence of S-saddle points)

Let (Y ,Z ,A,A′) be the solution of the DRBSDE (15). For each S
∈ T0, let

τ∗S := inf{t ≥ S , Yt = ξt}; σ∗S := inf{t ≥ S , Yt = ζt}.

Then, for each S ∈ T0, the pair of stopping times (τ∗S , σ
∗
S) is a

S-saddle point for the generalized Dynkin game and
YS = V (S) = V (S) a.s.
Moreover, Yσ∗S = ζσ∗S , Yτ∗S = ξτ∗S , Aτ∗S = AS and A′σ∗S

= A′S a.s.



Proof. Let S ∈ T0. Since Y and ξ are continuous processes, we
have Yσ∗S = ζσ∗S and Yτ∗S = ξτ∗S a.s. By definition of τ∗S , Yt > ξt(ω)
for each t ∈ [S , τ∗S [.
Hence, since Y is solution of the DRBSDE, the process A is
constant on [S , τ∗S ] a.s. because A is continuous. Hence, Aτ∗S = AS

a.s. Similarly, A′σ∗S
= A′S a.s.

By previous Lemma , (τ∗S , σ
∗
S) is an S-saddle point and

YS = V (S) = V (S) a.s.
�



Application to nonlinear pricing of game options

We consider now a game option associated with continuous payoffs
ξ and ζ in S2 with ζT = ξT ; ξt ≤ ζt , 0 ≤ t ≤ T a.s. satisfying
Mokobodski’s condition (which is for example satisfied when ξ
and ζ are semimartingales)
The game option consists for the seller to select a cancellation
time σ ∈ T and for the buyer an exercise time τ ∈ T , so that the
seller pays to the buyer at time τ ∧ σ the payoff

I (τ, σ) := ξτ1τ≤σ + ζσ1σ<τ .

A natural price for the seller of the game option, is the g -value
given by

(24) Y (0) := inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)]



Under the assumptions above, this generalized Dynkin game is fair,
i.e

inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)] = sup

τ∈T
inf
σ∈T
Eg0,τ∧σ[I (τ, σ)]

and its value Y (0) equals Y0, where (Y ,Z ,A,A′) is the unique

solution in S2 × L2(W )×A2 ×A2 of the Doubly Reflected BSDE

associated to driver g and obstacles ξ, ζ.



Definition: Superhedging price u0 of the game option := minimal
initial wealth which enables the seller to choose a cancellation time
σ and a portfolio which will cover his liability to pay to the buyer
up to σ no matter what exercise time the buyer chooses (Kifer).

Definition: For each initial wealth x , a super-hedge against the
game option is a pair (σ, ϕ) of a stopping time σ and a portfolio ϕ
s.t. V x ,ϕ

t∧σ ≥ I (t, σ), 0 ≤ t ≤ T a.s. (or equivalently V x ,ϕ
t ≥ ξt ,

0 ≤ t ≤ σ a.s. and V x ,ϕ
σ ≥ ζσ a.s.).

Let A(x) be the set of all super-hedges associated with initial
wealth x .

The superhedging price is then defined as the infimum of initial
wealths such that there exists a hedge against the game option,
that is

u0 = inf{x ∈ R, ∃(σ, ϕ) ∈ A(x)}.



Theorem

I superhedging price u0 = g-value of the game option, that is

u0 = inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)] = sup

τ∈T
inf
σ∈T
Eg0,τ∧σ[I (τ, σ)].

I Let (Y ,Z ,A,A′) be the solution of the DRBSDE associated
with driver g and barriers ξ, ζ. We have

u0 = Y0.

Let

σ∗ := inf{t ≥ 0, Yt = ζt} and ϕ∗t = (σ∗t )−1Zt .

The pair (σ∗, ϕ∗) belongs to A(u0), i.e. the cancellation time
σ∗ and the strategy ϕ∗ allow the seller of the game option to
be super-hedged.

The proof is based on links between generalized Dynkin games and

DRBSDEs



Buyer point of view

Definition: (Kifer) A stopping time τ is a rational exercise time

for the game option if V Y0,ϕ
∗

t ≤ ζt , 0 ≤ t ≤ τ a.s. and
V Y0,ϕ

∗
τ = ξτ a.s.

Lemma: The stopping time

(25) τ∗ := inf{t ≥ 0 : Yt = ξt}

is a rational exercise time for the buyer of the game option.



The pair (τ∗, σ∗) is a saddle point for the generalized Dynkin
game, that is for each (τ, σ) ∈ T 2 we have

Eg0,τ∧σ∗ [I (τ, σ
∗)] ≤ Y0 = Eg0,τ∗∧σ∗ [I (τ

∗, σ∗)] ≤ Eg0,τ∗∧σ[I (τ∗, σ)].

In this case, τ∗ is optimal for the optimal stopping problem
supτ∈T Eg [I (τ, σ∗)] (as in the case of an American option) and σ∗

is optimal for infσ∈T Eg [I (τ∗, σ)].



Relations with variational inequalities (VI)

We consider now the Markovian case and study the links between
generalized Dynkin games (or equivalently DRBSDEs) and obstacle
problems.
Let b : R→ R , σ : R→ R be continuous, globally Lipschitz.
∀(t, x) ∈ [0,T ]× R, let (X t,x

s , t ≤ s ≤ T ) solution of

X t,x
s = x +

∫ s

t
b(X t,x

r )dr +

∫ s

t
σ(X t,x

r )dWr

and set X t,x
s = x for s ≤ t.



We consider the DRBSDE associated with obstacles ξt,x , ζt,x of
the following form:

ξt,xs := h1(s,X t,x
s ), ζt,xs := h2(s,X t,x

s ), s < T , ξt,xT = ζt,xT := g(X t,x
T )

with g ∈ C(R), h1, h2 : [0,T ] continuous with respect to t and
Lipschitz continuous with respect to x , uniformly in t and g , h1, h2
have at most polynomial growth with respect to x .
Moreover, we assume that the obstacles ξt,xs and ζt,xs satisfy
Mokobodski’s condition, which holds e.g; if h1 and h2 are C1,2.
Let f : [0,T ]× R3 → R be continuous in t uniformly with respect
to x , y , z , uniformly Lipschitz with respect to x , y , z uniformly in t,
such that f (t, x , 0, 0, ) at most polynomial growth with respect to
x .
The driver is defined by f (s,X t,x

s (ω), y , z).



For each (t, x) ∈ [0,T ]× R, there exists an unique solution
(Y t,x ,Z t,x ,At,x ,A

′ t,x) of the associated DRBSDE.
We define:

(26) u(t, x) := Y t,x
t , t ∈ [0,T ], x ∈ R.

which is a deterministic quantity.
u is continuous in (t, x) and has at most polynomial growth at
infinity.



A solution of the obstacle problem is a function u : [0,T ]×R→ R
which satisfies the equality u(T , x) = g(x) and

(27)


h1(t, x) ≤ u(t, x) ≤ h2(t, x)

if u(t, x) < h2(t, x) then Hu ≥ 0

if h1(t, x) < u(t, x) then Hu ≤ 0

where

• Lφ(x) :=
1

2
σ2(x)

∂2φ

∂x2
(x) + b(x)

∂φ

∂x
(x),

• Hφ(t, x) :=

−∂φ
∂t

(t, x)− Lφ(t, x)− f (t, x , φ(t, x), (σ
∂φ

∂x
)(t, x)).



Definition
• A continuous function u is said to be a viscosity subsolution
(resp. supersolution) of (27) if

I u(T , x) ≤ g(x), (resp ≥) ∀x ∈ R,

I for all (t, x), h1(t, x) ≤ u(t, x) ≤ h2(t, x)

I for all φ ∈ C 1,2([0,T ]× R) such that φ(t0, x0) = u(t0, x0)
and φ− u attains its minimum (resp. maximum) at (t0, x0),
if u(t0, x0) > h1(t0, x0) (resp. <), then (Hφ)(t0, x0) ≤ 0
(resp ≥.)



Theorem
The function u defined by (26) is a viscosity solution (i.e. both a
viscosity sub- and supersolution) of the obstacle problem (27).

This result provides a probabilistic interpretation of semi linear
PDEs with two barriers in terms of game problems.
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Market model with default
Setup

Let (Ω,G,P) be a probability space, equipped with two stochastic
processes: a one-dimensional standard Brownian motion W and a
jump process N defined by Nt := 1ϑ≤t for any t ≥ 0, where ϑ is a
random variable which represents a default time. We assume that
this default can appear at any time that is P(ϑ ≥ t) > 0 for any
t ≥ 0.
We denote by G = (Gt , t ≥ 0)) the complete natural filtration
generated by W and N. We suppose that W is a G-Brownian
motion.



Let Λ be the predictable compensator of the nondecreasing process
N (i.e. the unique RCLL increasing predictable process null at 0
such that Nt − Λ is a martingale).
Note that Λt∧ϑ is then the predictable compensator of Nt∧ϑ = Nt .
By uniqueness of the predictable compensator, Λt∧ϑ = Λt .

We assume that Λ is absolutely continuous w.r.t. Lebesgue’s
measure, so that there exists a nonnegative process λ, called the
intensity process, such that Λt =

∫ t
0 λsds.

Since Λt∧ϑ = Λt , λ vanishes after ϑ.
We denote by M the compensated martingale which satisfies

Mt = Nt −
∫ t

0
λsds .



Let T > 0. We introduce the following sets :

I S2 is the set of G-adapted RCLL processes ϕ such that
E [sup0≤t≤T |ϕt |2] < +∞.

I A2 is the set of real-valued non decreasing RCLL predictable
processes A with A0 = 0 and E(A2

T ) <∞.

I H2 is the set of G-predictable processes such that

‖Z‖2 := E
[ ∫ T

0 |Zt |2dt
]
<∞ .

I H2
λ is the set of G-predictable processes such that

‖U‖2λ := E
[ ∫ T

0 |Ut |2λtdt
]
<∞ .



We recall the martingale representation theorem (see e.g.
Jeanblanc-Yor-Chesnay’09):

Lemma
Any G-local martingale m has the representation

(28) mt = m0 +

∫ t

0
zsdWs +

∫ t

0
lsdMs , ∀ t ∈ [0,T ] a.s. ,

where z and l are predictable such that the two above stochastic
integrals are well defined. If m is a square integrable martingale,
then z ∈ H2 and l ∈ H2

λ.



Market model with default
Financial market

We consider a financial market with three assets with price process
S = (S0, S1,S2)′ governed by the equation:

dS0
t = S0

t rtdt

dS1
t = S1

t [µ1tdt + σ1t dWt ]

dS2
t = S2

t− [µ2tdt + σ2t dWt − dMt ]

S2 : price of a defaultable asset with total default. It vanishes
after ϑ.
All processes σ1, σ2, r , µ1, µ2 are predictable, σ1, σ2 > 0, and
σ1, σ2, r , µ1, µ2, (σ1)

−1
, (σ2)

−1
are bounded. We set

σ = (σ1, σ2)′.



Market model with default
Risky asset strategy

We consider an investor, with initial wealth x , who can invest his
wealth in the three assets of the market.
At each time t < ϑ, he chooses the amount ϕ1

t (resp. ϕ2
t ) of

wealth invested in the first (resp. second) risky asset. However,
after time ϑ, the investor cannot invest his wealth in the
defaultable asset since its price is equal to 0, and he only chooses
the amount ϕ1

t of wealth invested in the first risky asset. Note that
the process ϕ2 can be defined on the whole interval [0,T ] by
setting ϕ2

t = 0 for each t ≥ ϑ.
A process ϕ. = (ϕ1

t , ϕ
2
t )′0≤t≤T is called a risky assets stategy if it

belongs to H2 ×H2
λ.

We denote by V x ,ϕ
t (or simply Vt) the wealth, or equivalently the

value of the portfolio, at time t. The amount invested in the non
risky asset at time t is then given by Vt − (ϕ1

t + ϕ2
t ).



Market model with default
The perfect market case

In the classical case of a perfect market model, the wealth process
and the strategy satisfy the self financing condition:

dVt = (rtVt + ϕ1
t (µ1t − rt) + ϕ2

t (µ2t − rt))dt + (ϕ1
tσ

1
t + ϕ2

tσ
2
t )dWt − ϕ2

tdMt

= (rtVt + ϕ1
t θ

1
t σ

1
t − ϕ2

t θ
2
t λt)dt + ϕ′tσtdWt − ϕ2

tdMt ,

where θ1t :=
µ1t − rt
σ1t

, θ2t := −µ
2
t − σ2t θ1t − rt

λt
1{t≤ϑ}.



Consider a European option with maturity T and GT - measurable
payoff ξ in L2. The problem is to price and hedge this claim by
constructing a replicating portfolio.



∃! process (X ,Z ,K ) ∈ S2 ×H2 ×H2
λ solution of the following

linear BSDE:
(29){
−dXt = −(rtXt + (Zt − σtKt)θ

1
t + Ktλtθ

2
t )dt − ZtdWt − KtdMt

XT = ξ.

The solution (X ,Z ,K ) provides the replicating portfolio. More
precisely, the process X corresponds to its value, and the hedging
risky assets strategy ϕ is such that

(30) ϕt
′σt = Zt ; −ϕ2

t = Kt ,

This defines a change of variables (Z ,K ) 7→ Φ(Z ,K ) := (ϕ1, ϕ2),
where (ϕ1, ϕ2) is given by

(31) ϕ2
t = −Kt ; ϕ1

t =
Zt − ϕ2

tσ
2
t

σ1t
=

Zt + σ2tKt

σ1t
.

X coincides with V X0,ϕ, the value of the (hedging) portfolio
associated with initial wealth x = X0 and portfolio strategy ϕ.



This process defines a price process called hedging price of ξ and
denoted by X (ξ). Since the driver of BSDE (29) is linear the
representation property of the solution yields

Xt(ξ) = E[e−
∫ T
t rsdsζt,T ξ | Gt ],

where ζ satisfies

dζt,s = ζt,s− [−θ1s dWs − θ2s dMs ]; ζt,t = 1.

This defines a linear price system X : ξ 7→ X (ξ).
When θ2t < 1, 0 ≤ t ≤ ϑ dt ⊗ dP-a.s. the price system X is
increasing and corresponds to the classical free-arbitrage price
system.



The imperfect market model Mg

We assume now that there are imperfections in the market which
are taken into account via the nonlinearity of the dynamics of the
wealth.
We suppose that the wealth process V x ,ϕ

t (or simply Vt)
associated with an initial wealth x and a strategy ϕ = (ϕ1, ϕ2) in
H2 ×H2

λ satisfies the following dynamics:

−dVt = g(t,Vt , ϕt
′σt ,−ϕ2

t )dt − ϕt
′σtdWt + ϕ2

tdMt , V0 = x

or equivalently, setting Zt = ϕt
′σt and Kt = −ϕ2

t ,

(32) − dVt = g(t,Vt ,Zt ,Kt)dt − ZtdWt − KtdMt .

In the case of a perfect market , we have:

g(t, y , z , k) = −(rty + (z + σ2t k)θ1t + θ2t λtk).



The imperfect market model Mg .
Example

Different borrowing and lending interest rates, denoted respectively
by Rt and rt with Rt ≥ rt . Then the driver g is of the form

g(t,Vt , ϕ
′
tσt ,−ϕ2

t ) = −(rtVt+ϕ
1
t θ

1
t σ

1
t−ϕ2

tλtθ
2
t )+(Rt−rt)(Vt−ϕ1

t−ϕ2
t )−,

where ϕ2
t vanishes after ϑ.



Definition (λ-admissible driver)

A function g(ω, t, y , z , k) is called a λ-admissible driver if

I g is P ⊗ B(R3)− measurable,

I g(., 0, 0, 0) ∈ H2,

I ∃C ≥ 0 s.t. dP ⊗ dt-a.s. , ∀ (y , z , k), (y1, z1, k1), (y2, z2, k2),

|g(ω, t, y , z1, k1)−g(ω, t, y , z2, k2)| ≤ C (|y1−y2|+|z1−z2|+
√
λt |k1−k2|).

The above condition implies that for each t > ϑ, g does depend
on k, since λt = 0. In other terms, for each (y , z , k), we have:

g(t, y , z , k) = g(t, y , z , 0), t > ϑ dP ⊗ dt − a.s.



The pricing and hedging of European options in this imperfect
market leads to BSDEs with nonlinear driver g . We give below a
uniqueness and existence result in a model with a default time.

Theorem
Let g be a λ-admissible driver and let ξ ∈ L2(GT ). There exists an
unique solution (X (T , ξ),Z (T , ξ),K (T , ξ)) (denoted simply by
(X ,Z ,K )) in S2 ×H2 ×H2

λ of the following BSDE:

(33) − dXt = g(t,Xt ,Zt ,Kt)dt − ZtdWt − KtdMt ; XT = ξ.

See proof in Dumitrescu-Quenez-Sulem 2016.



Consider a European option with maturity T and terminal payoff
ξ ∈ L2(GT ) in this market model.

Let (X ,Z ,K ) be the solution of BSDE (33). The process X is
equal to the wealth process associated with initial value x = X0

and strategy ϕ = Φ(Z ,K ) (see (31)), that is X = V X0,ϕ.

Its initial value X0 is thus a sensible price (at time 0) of the claim
ξ for the seller since this amount allows him to construct a trading
strategy ϕ, called hedging strategy, such that the value of the
associated portfolio is equal to ξ at time T .

Similarly, Xt is a sensible price for the seller at time t.

This leads to a nonlinear pricing system denoted by Eg :

∀S ∈ [0,T ], ∀ξ ∈ L2(GS), Egt,S(ξ) := Xt(S , ξ) for each t ∈ [0,S ].



In order to ensure the monotonicity of the nonlinear pricing system
Eg , we make the following assumption:
Assumption: There exists a bounded map

γ : [0,T ]× Ω× R4 → R ; (ω, t, y , z , k1, k2) 7→ γy ,z,k1,k2t (ω)

P ⊗ B(R4)-measurable and satisfying dP ⊗ dt-a.s. , for each
(y , z , k1, k2) ∈ R4,

(34) g(t, y , z , k1)− g(t, y , z , k2) ≥ γy ,z,k1,k2t (k1 − k2)λt ,

and P-a.s. , for each (y , z , k1, k2) ∈ R4, γy ,z,k1,k2t > −1.

Recall that λ vanishes after ϑ and g(t, ·) does not depend on k on
{t > ϑ}. Hence, (34) is always satisfied on {t > ϑ}.
This assumption is satisfied e.g. if g(t, ·) is non decreasing with
respect to k , or if g is C1 in k with ∂kg(t, ·) > −λt on {t ≤ ϑ}.
By the comparison theorems for BSDEs, this assumption ensures
that the nonlinear pricing system Eg is strictly monotone.


