Algorithmic Trading: Statistical Arbitrage PIMS Summer School

Sebastian Jaimungal, U. Toronto

Álvaro Cartea, U. Oxford many thanks to

José Penalva,(U. Carlos III)
Luhui Gan (U. Toronto)
Ryan Donnelly (Swiss Finance Institute, EPFL)
Damir Kinzebulatov (U. Laval)
Jason Ricci (Morgan Stanley)

July, 2016

Cointegration

Cointegration

- A process is said to be stationary if the unconditional distribution is constant (in time). For example,
- Random walk

$$
y_{t}=y_{t-1}+\varepsilon_{t}, \text { with } \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

is non-stationary

- Auto-regressive of order 1: AR(1)

$$
y_{t}=a+b y_{t-1}+\varepsilon_{t}, \text { with } b<1, \text { and } \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

is stationary

Cointegration

- A time-series is said to be integrated of order d (i.e., $I(d)$) if the d-times difference is stationary. For example,
- Random walk

$$
y_{t}=y_{t-1}+\varepsilon_{t}, \text { with } \varepsilon_{t} \sim \mathcal{N}\left(0, \text { sigma }^{2}\right)
$$

is $\mathbf{I}(1)$, since

$$
\mathcal{D} y_{t}:=y_{t}-y_{t-1}=\varepsilon_{t}
$$

has a stationary distribution

- $\operatorname{AR}(1)$ is $\mathbf{I}(0)$
- Most Economic models are I(0) or I(1)

Cointegration

- It is often the case that two (or more) time-series appear to be non-stationary, but a linear combination is stationary
- If \boldsymbol{y}_{t} is a vector-valued process that is $I(d)$ and there exists a vector \boldsymbol{b} such that $\boldsymbol{b}^{\prime} \boldsymbol{y}_{t}$ is $I\left(d^{*}\right)$ with $d^{*}<d$, then \boldsymbol{y}_{t} is said to be cointegrated and \boldsymbol{b} is the cointegrating vector.
- Most of the time $d=1$ and $d^{*}=0$

Cointegration

- For example, two price processes x and y are given by

$$
\begin{aligned}
& x_{t}=\left(x_{0}-\frac{1}{2} \varepsilon_{0}\right)+\sigma W_{t}+\frac{1}{2} \varepsilon_{t}, \\
& y_{t}=\left(y_{0}-\frac{1}{2} \varepsilon_{0}\right)+\sigma W_{t}-\frac{1}{2} \varepsilon_{t},
\end{aligned}
$$

where

$$
d \varepsilon_{t}=\kappa\left(\theta-\varepsilon_{t}\right) d t+\eta d B_{t}
$$

and W and B are correlated Brownian motions.

Cointegration

- How to estimate from data? First need a model...
- A pair of prices $\mathbf{S}=\left(S_{t}^{1}, S_{t}^{2}\right)_{t \geq 0}$ satisfies the continuous analog of a Vector Auto-Regressive (VAR(1)) model

$$
d \mathbf{S}_{t}=\boldsymbol{\kappa}\left(\boldsymbol{\theta}-\mathbf{S}_{t}\right) d t+\boldsymbol{\sigma} d \mathbf{W}_{t}
$$

where

- κ is a positive semi-definite 2×2 matrix,
- $\boldsymbol{\theta}$ is a 2×1 vector,
- $\boldsymbol{\sigma}$ is a 2×2 matrix, equal to the Cholesky decomposition of $\boldsymbol{\Sigma}$, and
- W is a 2×1 independent Brownian motion.

Cointegration

- Diagonalize $\boldsymbol{\kappa}$, so that $\boldsymbol{\kappa}=\boldsymbol{U} \tilde{\boldsymbol{\kappa}} \boldsymbol{U}^{-1}$ where \boldsymbol{U} is the matrix of eigenvectors of κ, and $\tilde{\kappa}$ is a diagonal matrix.
- Then, $\tilde{\mathbf{S}}_{t}=\boldsymbol{U}^{-1} \mathbf{S}_{t}$ will satisfy decoupled SDEs

$$
\begin{aligned}
d \tilde{\mathbf{S}}_{t, 1} & =\tilde{\boldsymbol{\kappa}}_{t, 1}\left(\tilde{\boldsymbol{\theta}}_{1}-\tilde{\mathbf{S}}_{t, 1}\right) d t+\left(\tilde{\sigma} d \mathbf{W}_{t}\right)_{1} \\
d \tilde{\mathbf{S}}_{t, 2} & =\tilde{\boldsymbol{\kappa}}_{t, 2}\left(\tilde{\boldsymbol{\theta}}_{2}-\tilde{\mathbf{S}}_{t, 2}\right) d t+\left(\tilde{\sigma} d \mathbf{W}_{t}\right)_{2}
\end{aligned}
$$

- these are the cointegrating factors

Cointegration

- With this model, we can estimate from data by regressing

$$
\mathbf{S}_{n+1}=\mathbf{A}+\mathbf{B} \mathbf{S}_{n}+\varepsilon_{n}
$$

Then,

$$
\begin{aligned}
\widehat{\boldsymbol{\kappa}} & =\frac{1}{\Delta t}(\mathbb{I}-\widehat{\mathbf{B}}), \\
\widehat{\boldsymbol{\theta}} & =(\mathbb{I}-\widehat{\mathbf{B}})^{-1} \widehat{\mathbf{A}}
\end{aligned}
$$

Cointegration

- Using INTC and SMH prices at 1-minute intervals

Pairs Trading

Naive Pairs Trading

- Pairs trading assumes that two assets are cointegrated and often are behave as a vector autoregressive (VAR) model

$$
\Delta \boldsymbol{S}_{t}=\boldsymbol{A}+\boldsymbol{B} \boldsymbol{S}_{t-1}+\varepsilon_{t}
$$

ε_{t} are iid bivariate normal with mean zero.

- It can be seen as a discrete version of the continuous time model

$$
d \boldsymbol{S}_{t}=\boldsymbol{\kappa}\left(\boldsymbol{\theta}-\boldsymbol{S}_{t}\right) d t+\boldsymbol{\sigma} d \boldsymbol{W}_{t}
$$

- To estimate the model, regress the vector of price changes on the price at the interval start.
- The eigenvector with the largest eigenvalue represents the cointegration factor that you trade on:

$$
\zeta_{t}=\alpha S_{t}^{(1)}+\beta S_{t}^{(2)} \quad \text { and } \quad d \zeta_{t}=\kappa_{\zeta}\left(\theta_{\zeta}-\zeta_{t}\right) d t+\sigma_{\zeta} d W_{t}^{\zeta}
$$

Naive Pairs Trading

Figure: INTC and SMH on November 1, 2013: (left) midprice relative to mean midprice; (right) co-integration factor. The x-axis is time in terms of fractions of the trading day. The dashed line indicates the mean-reverting level; the dash-dotted lines indicate the 2 standard deviation bands.

Naive Pairs Trading

Figure: Traders often use ad hoc bands to decide when to enter and exit a long/short position in the cointegration factor... A sample path of the co-integration factor, the trading position, and the book value of the trade, using the two standard deviation banded strategy.

Naive Pairs Trading

Figure: P\&L histograms from 10,000 scenarios using the naive strategy with y:iariopysztrigger bands.

Pairs Trading: Optimal Band Selection

- It is possible to formulate an optimal band selection problem
- Consider the performance criteria for exiting a long/short position...

$$
\begin{aligned}
& H_{+}^{(\tau)}(t, \varepsilon)=\mathbb{E}_{t, \varepsilon}\left[e^{-\rho(\tau-t)}\left(\varepsilon_{\tau}-c\right)\right] \\
& H_{-}^{(\tau)}(t, \varepsilon)=\mathbb{E}_{t, \varepsilon}\left[e^{-\rho(\tau-t)}\left(-\varepsilon_{\tau}-c\right)\right]
\end{aligned}
$$

- and consider the performance criteria for entering a long/short position...

$$
\begin{aligned}
G^{(\tau)}(t, \varepsilon)=\mathbb{E}_{t, \varepsilon} & {\left[e^{-\rho\left(\tau_{+}-t\right)}\left(H_{+}\left(\tau_{+}, \varepsilon_{\tau_{+}}\right)-\varepsilon_{\tau_{+}}-c\right) \mathbb{1}_{\min \left(\tau_{+}, \tau_{-}\right)=\tau_{+}}\right.} \\
& \left.+e^{-\rho\left(\tau_{-}-t\right)}\left(H_{-}\left(\tau_{-}, \varepsilon_{\tau_{-}}\right)+\varepsilon_{\tau_{-}}-c\right) \mathbb{1}_{\min \left(\tau_{+}, \tau_{-}\right)=\tau_{-}}\right] .
\end{aligned}
$$

Pairs Trading: Optimal Band Selection

- Variational inequality (VI) for optimal exiting
- a long position

$$
\max \left\{(\mathcal{L}-\rho) H_{+}(\varepsilon) ;(\varepsilon-c)-H_{+}(\varepsilon)\right\}=0
$$

- short position

$$
\max \left\{(\mathcal{L}-\rho) H_{-}(\varepsilon) ;(-\varepsilon-c)-H_{-}(\varepsilon)\right\}=0
$$

- VI for optimal entry is

$$
\begin{aligned}
\max \{ & (\mathcal{L}-\rho) G(\varepsilon) \\
& \left(H_{+}(\varepsilon)-\varepsilon-c\right)-G(t, \varepsilon) \\
& \left.\left(H_{-}(\varepsilon)+\varepsilon-c\right)-G(t, \varepsilon)\right\}=0
\end{aligned}
$$

Pairs Trading: Optimal Band Selection

- Two fundamental solutions to $(\mathcal{L}-\rho) F=0$ are

$$
\begin{aligned}
& F_{+}(\varepsilon)=\int_{0}^{\infty} u^{\frac{\rho}{\kappa}-1} e^{-\sqrt{\frac{2 k}{\sigma^{2}}}(\theta-\varepsilon) u-\frac{1}{2} u^{2}} d u, \\
& F_{-}(\varepsilon)=\int_{0}^{\infty} u^{\frac{\rho}{\kappa}-1} e^{+\sqrt{\frac{2 \kappa}{\sigma^{2}}}(\theta-\varepsilon) u-\frac{1}{2} u^{2}} d u .
\end{aligned}
$$

Pairs Trading: Optimal Band Selection

- H_{+}and H_{1} admit the solution

$$
\begin{aligned}
& H_{+}(\varepsilon)=A F_{+}(\varepsilon) \mathbb{1}_{\varepsilon<\varepsilon^{*}}+(\varepsilon-c) \mathbb{1}_{\varepsilon \geq \varepsilon^{*}}, \\
& H_{-}(\varepsilon)=A F_{-}(\varepsilon) \mathbb{1}_{\varepsilon>\varepsilon_{-}^{*}}-(\varepsilon+c) \mathbb{1}_{\varepsilon \leq \varepsilon_{-}^{*}},
\end{aligned}
$$

- G admits the solution

$$
\begin{aligned}
G(\varepsilon)= & \left(A F_{+}(\varepsilon)+B F_{-}(\varepsilon)\right) \mathbb{1}_{\varepsilon \in\left(\varepsilon_{*+}, \varepsilon_{*-}\right)} \\
& +\left(H_{+}(\varepsilon)-\varepsilon-c\right) \mathbb{1}_{\varepsilon \leq \varepsilon_{*+}}+\left(H_{-}(\varepsilon)+\varepsilon-c\right) \mathbb{1}_{\varepsilon \geq \varepsilon_{*-}} .
\end{aligned}
$$

Pairs Trading: Optimal Band Selection

Figure: The optimal entry trigger level and corresponding value function for the double entry-exit problem.

Pairs Trading: Multiple Assets

- Both of the previous approaches hardwire the portfolio... what about dynamically changing the positions?
- A model with short-term alpha in log prices

$$
d Y_{t}^{k}=Y_{t}^{k}\left(\delta_{k} \alpha_{t} d t+\sum_{i=1}^{n} \sigma_{k i} d W_{t}^{i}\right)
$$

where $\alpha_{t}=a_{0}+\sum_{i=1}^{n} a_{i} \log Y_{t}^{i}$.

- Interestingly, this model can be shown to be a cointegration model of log-prices
- We pose the trading problem as a portfolio optimization one and seek to maximize the performance criteria

$$
H^{\pi}(t, x, \boldsymbol{y})=\mathbb{E}_{t, x, \boldsymbol{y}}\left[-\exp \left(-\gamma X_{T}^{\pi}\right)\right]
$$

Pairs Trading: Multiple Assets

- The value function, after using the feedback control, solves the non-linear PDE

$$
\partial_{t} H+\alpha \delta^{\prime} \mathcal{D}_{y} H+\frac{1}{2} \mathcal{D}_{y y}^{\Omega} H-\frac{\mathscr{L}^{\prime} H \Omega^{-1} \mathscr{L} H}{2 \partial_{x x} H}=0 .
$$

- Value function admits the ansatz

$$
H(t, x, y)=-\exp \left\{-\gamma\left(x+h\left(t, a_{0}+\sum_{i=1}^{n} a_{i} \log y^{i}\right)\right)\right\}
$$

and

$$
\partial_{t} h-\frac{1}{2} \operatorname{Tr}(\boldsymbol{A} \boldsymbol{\Omega}) \partial_{\alpha} h+\frac{1}{2}\left(\boldsymbol{a}^{\prime} \boldsymbol{\Omega} \boldsymbol{a}\right) \partial_{\alpha \alpha} h+\frac{\boldsymbol{\delta}^{\prime} \boldsymbol{\Omega} \boldsymbol{\delta}}{2 \gamma} \alpha^{2}=0
$$

with the feedback control

$$
\boldsymbol{\pi}^{*}=\frac{1}{\gamma}\left(\boldsymbol{\Omega}^{-1} \boldsymbol{\delta}\right) \alpha-\boldsymbol{a} \partial_{\alpha} h .
$$

Pairs Trading: Multiple Assets

- The function h can be solved exactly and leads to

$$
h(t, \alpha)=\mathbb{E}_{t, \alpha}^{*}\left[\frac{\delta^{\prime} \Omega \delta}{2 \gamma} \int_{t}^{T} \alpha_{s}^{2} d s\right],
$$

the measure \mathbb{P}^{*} is the one which renders $Y_{t} \mathbb{P}^{*}$-martingales

- Can also show that the relationship

$$
\begin{aligned}
\sup _{\boldsymbol{\pi} \in \mathcal{A}} \mathbb{E}_{t, x, \boldsymbol{y}}[& \left.-\exp \left(-\gamma X_{T}^{\boldsymbol{\pi}}\right)\right] \\
& =-\exp \left(-\gamma x-\frac{1}{2} \boldsymbol{\delta}^{\prime} \boldsymbol{\Omega} \boldsymbol{\delta} \mathbb{E}_{t, x, \boldsymbol{y}}^{*}\left[\int_{t}^{T} \alpha_{s}^{2} d s\right]\right)
\end{aligned}
$$

holds.

Pairs Trading: Multiple Assets

Pairs Trading: Multiple Assets

Figure: Histogram of the P\&L of the optimal pairs trading strategy. Sharpe Ratio

