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This introduction is based on Touzi [14], Bouchard
[1] and Rutkowski [12] as well as papers given in

the reference section.

Throughout this introduction, we consider a d-
dimensional Brownian motion W on a complete
probability space (L2, F, P) over a finite horizon
[0, T] for a fixed T > 0.

We denote by (F;)o<¢<71 the augmented filtration
generated by W.



1 Motivation

Consider d = 1 and a model of a financial market with

e one risk-free asset with interest rate r. We as-
sume that r is bounded and predictable,

e one risky asset whose prices (St)o<¢<7 are given
by So > 0 and

ds
2ty dt 4+ op dW,
St

where 1 is bounded and predictable, and o is pos-
itive, bounded away from zero and predictable,

e an investor, whose amount of money invested in
S at time t is denoted by 7, and his/her total
wealth is denoted by Y%,

e wealth process dynamics
dY; = o St + re(Yi — ) dt
t
= (mepe — mere + 1Y) dt + o dWy,

assuming that the strategy is self-financing,
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e a European option with payoff £ at time 1", where
& is a square-integrable, Fp-measurable random
variable.

Assuming that the investor wants to replicate the op-

tion payoff, we want to solve

dY; = (mepe — mere + reYy) dt + o dWe, (1)
Yr =¢, (2)

which is a stochastic differential equation for Y with
terminal condition Yp = &.

In this case (see Section 4] below), we can solve ex-
plicitly the problem with Y given by

Vi = BQ|e Ji g

Ft]a
where the probability measure () is defined by

d T 1o — 1 /T — )2

_Q — exp _/ Hs — Ts dW,—= (s —1s) ds |
dP 0 Os 2.J0 o2

We will see that the reason why we can solve explicitly
this problem is that the term my(py — r¢) + 74z in (1))
is affine in 7 and Y%.
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However, the problem has no more an explicit solu-
tion if the interest rates for borrowing and lending are
different, say, r; for lending and 7 for borrowing. The
wealth process dynamics then is

dY; = (mops + 14 (Vi — m) t = F(Ye — mp) 7 ) dt
+ oy dWh,
Yr =¢,

which has no more a dt-term affine in 7w and Y.

2 Definition of BSDEs

Definition: An n-dimensional BSDE is of the form
dY; = —ft(n, Zt) dt + Z; dW; for t € [0, T],
Yr =¢&,

where given are
e the generator (also called driver) f, which is a

mapping
F:00,T] x Q x R* x R™*? 5 R”,

(3)

which satisfied appropriate measurability condi-
tions, namely, for every fixed (y, z) € R™ x RPXd
the process (ft(y, z))o<t<T is predictable;
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e the terminal condition &, which is an Fp-measur-
able, square-integrable random variable with val-
ues in R™.

A solution to (3)) consists of (Y, Z) for

e an R™-valued, adapted process (Y3)o<¢<T

Rnxd

® an -valued, predictable process (Zt)ogth

satisfying ({3)).
Remark: We can write ({3)) equivalently as

T T
Yi :f—l—/t fs(Ys,ZS)dS_/t Zs dWs. (4)

3 BSDEs with zero generator

In the case of f =0, (/4] reduces to

T
Yt:g—/t Zs dW. (5)
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To find a solution (Y, Z), recall the martingale repre-
sentation theorem, which says that every Fp-measur-
able, square-integrable £ can be written as

T
5=E[§]+/0 By AW,

for a unique predictable, square-integrable process 3.
By setting Y; = FE[¢|F:] and Z = 3, we obtain a
solution to ([5]), which is unique in the class of square-
integrable solutions.

4 BSDEs with affine generator

We now consider the case n = 1 and

fi(y,2) = at + by + ¢ - 2,
where

e a is an R-valued, predictable process such that
E| J¢ lag| dt] < oo,

e b is an R-valued, bounded, predictable process,

e cis an R%valued, bounded, predictable process.
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In this case, we can reduce the corresponding BSDE

to a problem of a BSDE with zero generator.

1. To eliminate the term ¢t - z in the generator, we
apply Girsanov’'s theorem. Recall that under the
measure () given by

dQ T 1T,
& _ dW——/ dt |,
1P eXP(/O ctdWy—o | let] )

the process (Bt)o<<7 defined by

t
By =W, —/O csds, € [0,T]
Is a Brownian motion.

We can rewrite

dY; = —(at + oYy + ¢t - Zy) dt + Zy dW
as
dY; = —(ar + b4Yy) dt + Z; d By
and consider this BSDE under Q.
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2. To eliminate the term by in the generator, we

use the transformation
v, = Ytefg bs ds
so that by It6’s formula
dY, = eJobsdsqy, 4 b,vielo bsds gy
— _qelobsds g 4 Zeobsds 4B, (6)
with Y = £ 1= efOT bs dsﬁ,

3. To eliminate the remaining term in the generator,

we write (/0] as

— t U t
d (Yt —I—/O auefo bs ds du) = Ztefo bs dsj dB;.

N / :Zt
:;Xt

T U
with Y =§ = elo bs dsf + fOT auefo bsds 4,
4. By Section 3, we know that
Y = EQ[¢|F]
T T U
— g9 [efo bs dsg +/ auefo bs ds du']-'t],
0
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hence

. [~ T T U
Vi=BQelo bdsg 4 [*ayel bSdeu‘ft],
i t

A T t
Y; = E¥ el bs ds¢ 4 / aye Juy bs ds du‘]—"t].
! ¢

5 BSDEs with Lipschitz-continuous

generator

Theorem 1 (Pardou and Peng [10]) Assume that
E[|¢P] < oo, E| Jg |£:(0,0) dt] < oo and

iy, 2) = £y, 2 < Clly =y + 12 = 2']) (7

for a constant C' and all y,y' € R™, z, 2 € R"*4

Then the BSDE (3) has a unique square-integrable
solution.
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Remarks:

e The proof is based on fixed point argument, work-
ing in a combined space for (Y, Z) with norm

JE[ [ ety + |zt|2>dt]

for a suitably chosen constant «. A sequence
(Y (), Z(1")) can be defined by

v =g+ | 7 (Ys(”‘”, Zé”‘”) ds

_ /tT 7 qw,

using the martingale represenltation f(l)r the ran-
dom variable £ + fOT fS(YS(n_ ), Z§”_ )) ds.

e Theorem [1] holds for general n (multidimensio-
nal Y), but in applications from mathematical fi-
nance, the Lipschitz continuity for the generator
is often too restrictive.

Having established existence and uniqueness of BSDE
solutions, we can compare them for different terminal
conditions and generators.
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Theorem 2 (Peng [11] and El Karoui et al. [4])
Assume n = 1. Consider two square-integrable solu-
tions (Y, Z') to BSDEs with terminal conditions &
and generator f' such that E[fg | ££(0,0)? dt} < 00,
E[|€%|°] < oo and (7)) is satisfied for f* for i = 1,2.
Assume further that

el > 2 flvE z2) > fA(YR, Z3).
Then Y, > Y2 for all t € [0,T].

While the Brownian motion W can be multidimen-
sional in Theorem 2, we need that Y is one-dimensio-
nal. Under additional conditions, comparison results
for multidimensional Y are available, see for example,
Hu and Peng [7] or Cohen et al. [2], but they only hold
under additional conditions on the generators. This is
one of the reasons why the existence and uniqueness
results can be extended to the quadratic generators
only in the case of n = 1; see next section.
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6 BSDEs with quadratic generator

Let us start with an example of a quadratic BSDE for
n =1 and d = 1 by considering

1
dY; = —§|Zt|2dt + Z; dW.

Recall that the stochastic exponential

/ t1
Xt = eXp / ZS dWS — / —|Zs| ds
0 02

is a martingale if [ ZsdWj satisfies sufficient integra-
bility conditions, for example, if it is a BMO (bounded
mean oscillation) martingale or if the Novikov condi-

T1 5
E | exp /O §|ZS| ds || < oo

is satisfied. Note that

tion

1
d(ln(Xt)> - —§|Zt|2dt + Z, dW.
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Therefore, we use an exponential transformation
1
d (eYt) — e'tdY; + EeYtd<Y>t
1 1
— —eY%§|Zt|2 dt + eYtZt dWi + EeY%|Zt|2 dt

— et 7, dW;.

which yields

et — ¥t = /Td(eYS) = /T eYSZS dWs,
t t
so that
Yi=In (E[ef|7]),

assuming that erSZS dWs5 is a true martingale (and
not merely a local martingale).

The example shows that BSDEs with quadratic gen-
erators are still meaningful, but square integrability of
the terminal condition may not be enough because et
appears in the solution of the above example.
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Theorem 3 (Simplified version from Kobylanski [9])
Assume n = 1, that £ is bounded and

|ft(y7 Z)
0 ft
E(y’ Z)

Oft
oy

<c+clzl?,

< c+ clz]

(y,2) < ¢+ c|z|?

for a constant ¢ and all y € R,z € R®. Then the
BSDE (3)) has a unique solution (Y, Z) with bounded
Y and square-integrable Z.

Remarks:

e A comparison theorem similarly to Theorem

holds for BSDEs with quadratic generators and

n=1.

e Theorem [3 cannot be generalized to BSDEs with
generators of super-quadratic growth in z. Coun-

terexamples for such a case can be found in Del-

baen et al. [3].
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Example (from Frei and dos Reis [6]):
We take d = 1 (dimension of W) and consider the
two-dimensional (n = 2) BSDE

dvit = zHdwy, vi=¢, (8)
1

avP = —(1Z}2 + |1 22P) dt + 22 Wi, YE =0,

(9)

for a given bounded random variable &.

For some bounded &, the BSDE (8), (9)) has no square-
integrable solution. Main ideas to show this:

e assume that a square-integrable solution (Y, Z)
exists;

e (§8) determines Y7 and Z7 uniquely;
e using this Z7 in (9) gives

E[exp(/OT |Ztl|2dt>]
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e it is possible to construct a process 3 such that
[ B¢ dW4¢ is bounded but

E[p( [ |5t|2dt)] ~

then set £ = fOT By dW4.

Comments:

e The questions about existence of solutions to mul-
tidimensional, quadratic BSDEs are related to in-
terested economic questions about the existence
of a Nash equilibrium in a model of a financial
market where different investors take the relative
performance compared to each other into account

(see [6]).

e The study of multidimensional, quadratic BSDEs
Is a very recent research topic. There are ex-
istence results available for particular cases, for
example, if
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— the terminal condition is small enough (see
Tevzadze [13]),

— the time horizon [0, T] is short (see Frei [5]),

— the generator has a particularly quadratic di-
agonal structure (see Hu and Tang [8]),

— under some Markovian assumptions on the gen-
erator and terminal condition (see Xing and
Zitkovié [15]).
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