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Abstract

Nie and Rutkowski [21, 22] examined fair bilateral pricing in models with funding costs and
an exogenously given collateral. The goal of this work is to extend their results to the case
of an endogenous margin account, that is, the collateral that may depend on the contract’s
value for the hedger and/or the counterparty. Comparison theorems for BSDEs from Nie and
Rutkowski [23] are used to derive the bounds for unilateral prices and to study the range for
fair bilateral prices in a general semimartingale model. For the case of the negotiated collateral,
the backward stochastic viability property from Buckdahn et al. [7] is employed to examine the
bounds for fair bilateral prices of European claims in a diffusion-type model. As a by-product,
we generalize in several respects the option pricing results from Bergman [1], Mercurio [19]
and Piterbarg [27]. First, we consider general collateralized contracts with a stream of cash
flows, rather than path-independent European claims. Second, we examine not only the case
where the collateral is set by one party, but also the case of a collateral negotiated between
the counterparties. Third, we study not only the Bergman model with differing lending and
borrowing cash rates, but also a trading model with idiosyncratic funding costs for risky assets.
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1 Introduction

In Bielecki and Rutkowski [4], a generic nonlinear market model which includes several risky assets,
multiple funding accounts, as well as the margin account for collateral was introduced (for related
studies by other authors, see also [5, 8, 9, 11, 12, 24, 27]). We continue their study by examining the
pricing and hedging of a derivative contract from the perspective of the hedger and his counterparty.
Since we work within a nonlinear trading framework, the prices computed by the two parties of a
contract do not necessarily coincide and thus our goal is to compare these prices and to derive the
range for no-arbitrage bilateral prices. As emphasized in [4, 22, 23], the initial endowments of the
hedger and the counterparty become important factors in arbitrage pricing in the nonlinear setup.

In [21, 22], we studied collateralized contracts in Bergman’s model and the model with idiosyn-
cratic funding costs for risky assets, respectively. Using the comparison theorem for BSDEs, we
derived the range for fair bilateral prices under the postulate that the collateral is exogenously spec-
ified, so that it does not depend on the unilateral values of the contract for the counterparties. This
is indeed a most common assumption in the existing literature, where the value of the exogenous
collateral is defined as the price of an ‘equivalent’ uncollateralized contract between default-free
counterparties who fund their hedging strategies using the risk-free interest rate (or, more precisely,
its real-world proxy). The price computed under these simplifying assumptions are sometimes re-
ferred to as the clean price, as opposed to the dirty price, which accounts for the actual funding
costs, the presence of the margin account and the possibility of default by each party.

In the present work, we study a more complex case of an endogenous collateral that depends
either on the marked-to-market value of the contract for one party (say, the unilateral value for the
hedger) or is negotiated and thus depends on unilateral values of the contract for the two parties.
Although we focus here on two particular instances of market models, it is clear that the approach
developed in this work can be applied to a large variety of market models and collateral covenants.
We work throughout under the assumption of full rehypothecation of the cash collateral, which is
usually postulated in the existing literature (for other conventions, see Section 4 in [4]).

We acknowledge that we do not attempt to model the default events for the counterparties (and
thus also the closeout payoff), but we believe that our stance can be justified by two arguments.
First, the need to introduce additional traded instruments (say, defaultable bonds or credit default
swaps), as well as the presence of jump terms in pricing BSDEs considered in this work, would further
complicate the presentation. Second, in the framework of an intensity-based credit risk model, the
technique of reduction of filtrations could be applied and thus additional terms in BSDEs would only
appear in generators of BSDEs (see, for instance, Brigo et al. [6]). We thus contend that an extension
of our results to the case of models with explicitly specified default events would not change our
approach in an essential manner. For some results concerning hedging of the counterparty credit
risk via BSDE technique, the reader may consult Crépey [11, 12] who focused on mean-variance
hedging of credit value adjustment under a martingale measure and the recent work by Bichuch et
al. [2, 3] who examined replication of a European option under counterparty credit risk. Neither of
these works dealt with the case of endogenous collateral, however, and no attempt was made there
to compare unilateral prices and thus obtain bounds for fair bilateral prices. Also, the arbitrage-free
property is usually taken for granted without justification in these works.

1.1 Synopsis

In the first part of this work, we consider an extension of the model with differential interest rates, in-
troduced and studied by Bergman [1], to the case of endogenous collateral. The extended Bergman’s
model with an exogenous collateral was examined in [21]. To the best of our knowledge, the case
of endogenous collateral in Bergman’s setup was not studied in the existing literature, except for
the special case of proportional collateral, which was examined by Piterbarg [27] and Mercurio [19].
We offer essential extensions of their results using the BSDE approach. Firstly, we consider gen-
eral collateralized contracts with cash-flow streams, rather than path-independent European claims.
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Secondly, only unilateral pricing was examined in [27], whereas in [19] the collateralization of the
hedger (resp., the counterparty) was postulated to be a constant proportion of the hedger’s (resp.,
the counterparty’s) value, which apparently means that the two parties either post or receive the col-
lateral amounts specified by two different margin accounts when computing their respective prices.
Obviously, this contradicts the market practice where the collateral amount posted by one party
matches the amount received by another party.

In Section 2, we examine the extended Bergman’s model for nonnegative and general initial
endowments of counterparties when the collateral is based on the hedger’s unilateral valuation of
the contract (see Assumption 2.3). We first consider the case of nonnegative endowments and
we show in Proposition 2.1 that the model is arbitrage-free, in the sense of Definition 1.2, for an
arbitrary specification of a collateral. Subsequently, we derive BSDEs satisfied by unilateral prices
and we show that the pricing and hedging problems for both counterparties have unique solutions
(see Proposition 2.3). The main result in Section 2 is Proposition 2.4 showing that the range of
fair bilateral prices is nonempty. Moreover, we extend the results obtained by Mercurio [19] who
studied the market model with a single uncertain cash rate under an additional assumption of null
initial endowments (Proposition 2.5). For the case of general initial endowments, the no-arbitrage
property, the existence and uniqueness of unilateral prices and the nonemptiness of the range of fair
bilateral prices are established in Propositions 2.6, 2.7 and 2.8, respectively.

In Section 3, we study the case where the collateral is negotiated, in the sense that it depends
on both the hedger’s and the counterparty’s values, as formally specified in Assumption 3.1. We
show in Proposition 3.1 that unilateral prices are given by solutions to the pair of fully coupled
BSDEs. To study bilateral prices, we further specify in Assumption 3.2 the diffusion model for
risky assets. Using the BSVP technique from Buckdahn et al. [7] and Hu and Peng [15], we
identify in Proposition 3.2 the range of fair bilateral prices for European contingent claims under
the assumption of nonnegative endowments. In the proof of this result, we use a suitable version of
a comparison theorem for two-dimensional BSDEs driven by a Brownian motion (Proposition 5.2).
Next, we obtain analogous result for the case of general endowments under suitable assumptions
(Propositions 3.3 and 3.4).

Section 4 is devoted to the market model with idiosyncratic funding costs for risky assets. We
study the case of the hedger’s and negotiated collaterals and we establish similar results as for
Bergman’s model. The arbitrage-free property of the model is established in Proposition 4.1 for the
case of arbitrary endowments. In Subsection 4.2, we study the case of the hedger’s collateral. We
show that the range of fair bilateral prices is nonempty in Proposition 4.3. We also give conditions
under which the unilateral price computed by a trader with a nonnegative endowment is either
independent of his endowment (Proposition 4.4) or positively homogenous (Proposition 4.5), and we
study the case of an uncertain cash rate (Proposition 4.6). In Subsection 4.3, we examine the model
with idiosyncratic funding costs for risky assets under the convention of negotiated collateral. We
obtain there similar results for the range of fair bilateral prices for European claims as for Bergman’s
model in the case of nonnegative endowments (Propositions 4.7 and 4.8). A convenient version of
the comparison theorem for two-dimensional BSDEs, based on the backward stochastic viability
property studied by Buckdahn et al. [7], is established in Section 5.

The main findings of this research can be summarized as follows: the initial endowments of the
counterparties and the collateral covenants are critically important for the arbitrage-free properties
of a model and for the behavior of unilateral prices. Specifically, when both initial endowments
are nonnegative, a model is arbitrage-free under weaker assumptions and the range of fair bilateral
prices is nonempty under mild technical assumptions. By contrast, when initial endowments have
opposite signs, the possibility of making relative profits by entering into a contract strongly affects
the properties of bilateral prices. In particular, as was observed in [21, 22], the so-called funding
arbitrage may arise, even when a model is arbitrage-free for both parties with respect to any contract.
From the mathematical perspective, we note that the analysis of the case of the negotiated collateral
is harder to accomplish than for the hedger’s collateral, since in the former case one needs to deal
with fully coupled BSDEs. Although we establish the arbitrage-free property for general contracts
with the negotiated collateral, we only study the range of fair bilateral prices for European claims.
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1.2 Preliminaries

We provide in this section a very brief summary of general concepts, terminology and notation
introduced in [4, 21, 22]. Let T > 0 be a fixed finite trading horizon date for our model of the
financial market. We denote by (Ω,G,G,P) a filtered probability space satisfying the usual condi-
tions of right-continuity and completeness, where the filtration G = (Gt)t∈[0,T ] models the flow of
information available to all traders. For convenience, we assume that the initial σ-field G0 is trivial.
All probability measures are assumed to be defined on (Ω,GT ). Moreover, all processes introduced
in what follows are implicitly assumed to be G-adapted. As in [21, 22], we use the following notation
for the market data where i = 1, 2, . . . , d:
A – a bilateral financial contract or, simply, a contract. The process A is of finite variation and it
represents the cumulative cash flows of a given contract from time 0 till its maturity date T ,
C – the cash collateral, which is a G-adapted process satisfying CT = 0,
Si – the ex-dividend price of the ith risky asset with the cumulative dividend stream Ai,
Bl (resp., Bb) – the lending (resp., borrowing) cash account,
Bi,l – the remuneration account for short (cash) positions in the ith risky asset,
Bi,b – the funding account for long (cash) positions in the ith risky asset,
Bc – the collateral remuneration process specifying the interest paid/received on the margin account,
that is, the cash collateral.

We impose the equality CT = 0 to ensure that the collateral amount is returned in full to the
pledging party at the maturity date T of the contract. Typically, this will imply that the jump of
C at time T is non-zero, that is, ∆CT := CT − CT− 6= 0. We work throughout under the standing
assumption of the full rehypothecation, which means that the cash collateral can be used for trading
by the receiving party without any restrictions; this convention should be contrasted with the case
of segregated collateral (for more details, see, e.g., Section 4.1 in [4]). We assume that the margin
account is remunerated at the short-term interest rate, which is denoted as rc.

Assumption 1.1 We work throughout under the following assumptions:
(i) Si is a semimartingale and Ai is a process of finite variation with Ai

0 = 0.
(ii) the processes Bl, Bb, Bi,l, Bi,b and Bc are strictly positive, continuous processes of finite variation

with Bl
0 = Bb

0 = Bi,l
0 = Bi,b

0 = Bc
0 = 1. We assume that

dBl
t = rltB

l
t dt, dB

b
t = rbtB

b
t dt, dB

i,l
t = ri,lt B

i,l
t dt, dBi,b

t = ri,bt Bi,b
t dt, dBc

t = rctB
c
t dt

for some G-adapted and bounded processes rl, rb, ri,l, ri,b and rc. It is postulated throughout that
0 ≤ rlt ≤ rbt and 0 ≤ ri,lt ≤ r

i,b
t for all t ∈ [0, T ].

1.2.1 Self-Financing Trading Strategies

In general, a hedger’s trading strategy (x, ϕ,A,C) is composed of a contract (A,C), a predetermined
hedger’s initial endowment x and a process

ϕ =
(
ξ1, . . . , ξd, ψ1,l, . . . , ψd,l, ψ1,b, . . . , ψd,b, ψl, ψb, η

)
.

The components ξ1, . . . , ξd are the number of shares of risky assets S1, . . . , Sd. The processes
ψi,l and ψi,b represent positions in the remuneration and funding accounts Bi,l and Bi,b for the
ith risky assets, whereas ψl and ψb are positions in the unsecured cash lending account Bl and
the unsecured cash borrowing account Bb, respectively. The process η is given in terms of the
collateral remuneration account Bc and the collateral (margin account) process C through the
equality η = −(Bc)−1C where the minus sign means that the interest payments are made (resp.,
received) by the hedger when he is the collateral taker (resp., provider).

Definition 1.1 The portfolio’s value at time t is denoted as V p
t (x, ϕ,A,C) and it equals

V p
t (x, ϕ,A,C) =

∑d
i=1

(
ξitS

i
t + ψi,l

t B
i,l
t + ψi,b

t Bi,b
t

)
+ ψl

tB
l
t + ψb

tB
b
t . (1.1)
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In accordance with the financial interpretation, it is postulated throughout that ψi,l
t S

i
t ≥ 0, ψi,b

t Si
t ≤

0, ψl
t ≥ 0 and ψb

t ≤ 0 for all t ∈ [0, T ].

An explicit specification of an appropriate self-financing condition, which leads to the dynamics
of portfolio’s value, depends on the trading arrangements postulated for each particular model. For
the two models considered in this work, they are specified in Definitions 2.1 and 4.1, respectively.
For Bergman’s model examined in Sections 2 and 3, the dynamics of the discounted portfolio’s value
(Bl)−1V p(x, ϕ,A,C) were derived in Proposition 2.1 in [21] and they are recalled in Lemma 2.1.
For the model with idiosyncratic funding costs for risky assets, which is studied in Section 4, the
dynamics are given in Lemma 4.1. Any trading strategy considered in what follows is implicitly
assumed to be self-financing without explicit mentioning.

The hedger’s wealth Vt(x, ϕ,A,C) at time t differs from the portfolio’s value, since the cash
collateral is merely pledged and delivered, but not donated, to the collateral taker and thus it does
not constitute a bona fide part of his wealth. Under the standing assumption of full rehypothecation,
the collateral taker has the right to use collateral in its entire value, and thus the margin account
can be interpreted as a stream of cash loans granted by the collateral provider to the collateral taker
and thus the equality Vt(x, ϕ,A,C) = V p

t (x, ϕ,A,C) − Ct holds for all t ∈ [0, T ] (see Section 4.1
in [4]).

Finally, we set V 0
t (x) := xBl

t1{x≥0} + xBb
t1{x<0} where x = x1 (resp., x = x2) is the initial

endowment (or simply, the endowment) at time 0 of the hedger (resp., the counterparty). Obviously,
V 0
t (x) represents the value at time t of the endowment invested in cash, that is, the future value of

the deposit or loan, depending on the sign of x. It will be interpreted as the reference wealth, that
is, the party’s wealth when he decides not to enter into a contract (A,C).

1.2.2 Arbitrage-Free Models

Let us now discuss briefly the way in which the arbitrage-free property of a non-linear model was
defined in [4, 21, 22]. For any pair (x̂, ϕ̂, A,C) and (x̃, ϕ̃,−A,−C) of trading strategies, the netted
wealth V net = V net(x̂, x̃, ϕ̂, ϕ̃, A,C) is given by

V net(x̂, x̃, ϕ̂, ϕ̃, A,C) := V (x̂, ϕ̂, A,C) + V (x̃, ϕ̃,−A,−C).

We say that a pair (x̂, ϕ̂, A,C) and (x̃, ϕ̃,−A,−C) of trading strategies is admissible if the discounted
netted wealth, which is given by (denote x = x̂+ x̃)

V̂ net(x̂, x̃, ϕ̂, ϕ̃, A,C) := (Bl)−1V net(x̂, x̃, ϕ̂, ϕ̃, A,C)1{x≥0} + (Bb)−1V net(x̂, x̃, ϕ̂, ϕ̃, A,C)1{x<0},

is bounded from below by a constant. For the financial interpretation of the following definition of
the extended arbitrage opportunity, the reader is referred to Section 3.2 in [22]. Let us stress that
Definition 1.2 applies to an arbitrary, either exogenous or endogenous, specification of the collateral
process C.

Definition 1.2 An extended arbitrage opportunity with respect to the collateralized contract (A,C)
for the hedger with endowment x is any admissible pair (x̂, ϕ̂, A,C) and (x̃, ϕ̃,−A,−C) of trading
strategies such that x = x̂ + x̃, where x̂ and x̃ are arbitrary real numbers, and the netted wealth
satisfies

P(V net
T ≥ V 0

T (x)) = 1 and P(V net
T > V 0

T (x)) > 0.

We say that a model is arbitrage-free if there are no extended arbitrage opportunities in the class of
admissible pairs of trading strategies with respect to any collateralized contract (A,C).

Observe that an analogous definition can be formulated for the counterparty and that for uncol-
lateralized contracts in any linear market model Definition 1.2 reduces to the classic concept of an
arbitrage opportunity.
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1.2.3 Unilateral and Bilateral Prices

We are in a position to recall the definition of replication of a collateralized contract (A,C) on [t, T ]
(see Definition 5.1 in [4]). Note that the process A−At represents the cash flows of A on the interval
(t, T ], that is, after time t.

Definition 1.3 For a fixed t ∈ [0, T ], let pt be a Gt-measurable random variable. We say that a
self-financing trading strategy (V 0

t (x)+pt, ϕ,A−At, C) on [t, T ] replicates the collateralized contract
(A,C) on [t, T ] whenever VT (V 0

t (x) + pt, ϕ,A−At, C) = V 0
T (x).

The unilateral prices for a contract (A,C) are defined using the notion of replication and ac-
counting for possibly different endowments of the hedger and the counterparty and the idea that
both prices should be presented as seen from the perspective of the hedger (hence the minus sign
appears in front of P c

t (x2,−A,−C) in (1.3)). The following definition was introduced in [4] (see
Definition 5.1 therein) and subsequently used in [20, 21, 22].

Definition 1.4 Any Gt-measurable random variable for which a replicating strategy for (A,C) over
[t, T ] exists is called the hedger’s ex-dividend price at time t and it is denoted by Ph

t (x1, A,C). This
means that there exists a self-financing trading strategy ϕ such that

VT (V 0
t (x1) + Ph

t (x1, A,C), ϕ,A−At, C) = V 0
T (x1). (1.2)

For any level x2 of the counterparty’s endowment and any strategy ϕ̃ replicating (−A,−C), the
counterparty’s ex-dividend price P c

t (x2,−A,−C) at time t for a contract (−A,−C) is implicitly
given by the equality

VT (V 0
t (x2)− P c

t (x2,−A,−C), ϕ̃,−A+At,−C) = V 0
T (x2). (1.3)

Remark 1.1 In Definition 1.4, we fix the date t and we focus on the price of a contract initiated at
time t. Therefore, we do not impose any conditions on the price processes Ph

t (x1, A,C), t ∈ [0, T ]
and P c

t (x2,−A,−C), t ∈ [0, T ]. However, we will later identify these processes through solutions to
the pricing BSDEs, so in fact it would be possible to postulate a priori that the ex-dividend prices
Ph(x1, A,C) and P c(x2,−A,−C) are necessarily semimartingales.

A fair bilateral price is any level of the price at which no classical arbitrage opportunity arises
for the hedger or the counterparty. In essence, this means there is no super-hedging strategy is less
expensive than a replicating one when we only allow for admissible trading strategies.

Remark 1.2 Let us acknowledge that we do not use here any other concept of arbitrage oppor-
tunities, such as a free-lunch with vanishing risk or an arbitrage of the first kind, which are well
known to be crucial in establishing some form of the FTAP. We instead concentrate on sufficient
conditions for the non-existence of the classical arbitrage opportunity with a suitable adjustment for
the nonlinearity of models under study. For a more detailed discussion of alternative no-arbitrage
properties for non-linear and asymmetric setups considered here, we refer to Section 2.3 in [21].

The reader may also consult the papers by El Karoui et al. [14], Cvitanić and Karatzas [13]
and Karatzas and Kou [16, 17] who examined the issues of arbitrage pricing and super-hedging for
European and American claims under various kinds of portfolio constraints in continuous time and
the papers by Pennanen [25, 26] who studied similar issues in a discrete time illiquid market with
convex costs and under convex portfolio constraints.

Let us recall the following definition from [22] (see Definition 3.10 therein).

Definition 1.5 The Gt-measurable interval

Rf
t (x1, x2) :=

[
P c
t (x2,−A,−C), Ph

t (x1, A,C)
]

is called the range of fair bilateral prices at time t of a contract (A,C) between the hedger and the
counterparty.
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For more comments on unilateral prices and fair bilateral prices, we refer to Section 3.3 in [22]. Let
us only observe that Definition 1.5 hinges on an implicit assumption that the prices P c

t (x2,−A,−C)
and Ph

t (x1, A,C) defined via replication are unique. In each particular model considered in what
follows, this conjecture will be confirmed by a suitable existence and uniqueness result for the
unilateral prices. Using a comparison theorem for BSDEs, we will attempt to prove nonemptiness
of the range of fair bilateral prices, although it should be mentioned that this range may be empty
under certain circumstances.

2 Differential Cash Rates and Hedger’s Collateral

In Sections 2 and 3, we consider an extended version of the model studied by Bergman [1] in which
several risky assets are traded and contracts with cash-flow streams are subject to collateralization.
For a detailed study of this generalization of Bergman’s model, we refer to Nie and Rutkowski [21]
who studied the case of an exogenous collateral and nonnegative endowments. As in [4, 21, 22], we

introduce the discounted cumulative dividend price S̃i,l,cld, which is given by the following expression
for i = 1, 2, . . . , d

S̃i,l,cld
t := (Bl

t)
−1Si

t +

∫
(0,t]

(Bl
u)−1 dAi

u (2.1)

meaning that the discounting of the cumulative price of Si (that is, the price of Si inclusive of the
past dividends Ai) is done using the lending account Bl. For the future reference, we note that the

dynamics of the process S̃i,l,cld are

dS̃i,l,cld
t = (Bl

t)
−1(dSi

t + dAi
t − rltSi

t dt
)
. (2.2)

In the framework of the extended Bergman’s model, the accounts Bi,l and Bi,b are not introduced
(equivalently, we set ψi,l

t = ψi,b
t = 0 for all t ∈ [0, T ] in (1.1)) since all positions in risky assets are

funded using the unsecured cash accounts Bl and Bb. Consequently, it suffices to consider a trading
strategy ϕ = (ξ1, . . . , ξd, ψl, ψb, η). We define the remuneration process for the margin account by

setting FC
t := −

∫ t

0
rcuCu du for every t and, for brevity, we denote AC := A+ C + FC . Finally, we

introduce the discounted process

AC,l
t :=

∫
(0,t]

(Bl
u)−1 dAC

u .

From now on, we focus on trading strategies that are self-financing, in the sense of the following
definition.

Definition 2.1 A trading strategy (x, ϕ,A,C) is self-financing whenever the process V p(x, ϕ,A,C),
which is given by

V p
t (x, ϕ,A,C) =

∑d
i=1ξ

i
tS

i
t + ψl

tB
l
t + ψb

tB
b
t , (2.3)

satisfies for every t ∈ [0, T ]: ψl
t ≥ 0, ψb

t ≤ 0, ψl
tψ

b
t = 0 and

V p
t (x, ϕ,A,C) = x+

∑d
i=1

∫
(0,t]

ξiu d(Si
u +Ai

u) +

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u +AC

t .

The proof of Lemma 2.1 relies on a simple combination of Definition 2.1 with Itô’s formula and
thus it is not reproduced here (see Proposition 2.1 in [21]). As usual, we write x+ = max(x, 0) and
x− = max(−x, 0).

Lemma 2.1 For any self-financing trading strategy (x, ϕ,A,C), the portfolio’s value V p := V p(x, ϕ,A,C)
satisfies

dV p
t =

∑d
i=1ξ

i
t (dSi

t + dAi
t) + rlt

(
V p
t −

∑d
i=1ξ

i
tS

i
t

)+
dt

− rbt
(
V p
t −

∑d
i=1ξ

i
tS

i
t

)−
dt+ dAC

t
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and the process Y l := (Bl)−1V p(x, ϕ,A,C) representing the portfolio’s value discounted by the lend-
ing account satisfies

dY l
t =

∑d
i=1ξ

i
t dS̃

i,l,cld
t +Gl(t, Y

l
t , ξt) dt+ dAC,l

t (2.4)

where the mapping Gl : Ω× [0, T ]× R× Rd → R is given by

Gl(t, y, z) =
∑d

i=1r
l
t(B

l
t)
−1ziSi

t + rlt(B
l
t)
−1
(
yBl

t −
∑d

i=1z
iSi

t

)+
− rbt (Bl

t)
−1
(
yBl

t −
∑d

i=1z
iSi

t

)−
− rlty.

2.1 Nonnegative Endowments

Recall that the endowment of the hedger (resp., the counterparty) is denoted by x1 (resp., x2).
Without loss of generality, we assume throughout that x1 ≥ 0 and we consider an arbitrary level of
x2. We will split the analysis into two steps: the case of nonnegative endowments and the general
case. This separation is justified, since for each of these two cases the assumptions under which the
model is arbitrage-free and the properties of prices are markedly different.

2.1.1 Arbitrage-Free Property for Nonnegative Endowments

The next assumption postulates the existence of an suitable version of a ‘martingale measure’ for
the present setup.

Assumption 2.1 There exists a probability measure P̃l equivalent to P such that the processes
S̃i,l,cld, i = 1, 2, . . . , d are (P̃l,G)-local martingales.

We first prove that Bergman’s model is arbitrage-free for both parties provided that their endow-
ments are nonnegative. Note that this result is valid for any specification of the collateral process
and any dynamics of risky assets.

Proposition 2.1 If Assumption 2.1 is valid, then the extended Bergman’s model is arbitrage-free
for a trader with a nonnegative endowment.

Proof. The proof is analogous to the proof of Proposition 3.2 in [22]. Let 0 ≤ x = x̂ + x̃ be the

initial endowment. From Lemma 2.1, we see that the process V̂ p := V p(x̂, ϕ̂, A,C) is governed by

dV̂ p
t =

∑d
i=1ξ̂

i
t

(
dSi

t + dAi
t

)
+ rlt

(
V̂ p
t −

∑d
i=1ξ̂

i
tS

i
t

)+
dt− rbt

(
V̂ p
t −

∑d
i=1ξ̂

i
tS

i
t

)−
dt+ dAC

t ,

whereas the process Ṽ p := V p(x̃, ϕ̃,−A,−C) has the dynamics

dṼ p
t =

∑d
i=1ξ̃

i
t

(
dSi

t + dAi
t

)
+ rlt

(
Ṽ p
t −

∑d
i=1ξ̃

i
tS

i
t

)+
dt− rbt

(
Ṽ p
t −

∑d
i=1ξ̃

i
tS

i
t

)−
dt+ d(−A)−Ct .

Hence the netted wealth V net := V net(x̂, x̃, ϕ̂, ϕ̃, A,C) satisfies

V net = V (x̂, ϕ̂, A,C) + V (x̃, ϕ̃,−A,−C) = V̂ p − C + Ṽ p + C = V̂ p + Ṽ p, (2.5)

so that

dV net
t =

∑d
i=1(ξ̂it + ξ̃it)

(
dSi

t + dAi
t

)
+ rlt

(
V̂ p
t −

∑d
i=1ξ̂

i
tS

i
t

)+
dt− rbt

(
V̂ p
t −

∑d
i=1ξ̂

i
tS

i
t

)−
dt

+ rlt

(
Ṽ p
t −

∑d
i=1ξ̃

i
tS

i
t

)+
dt− rbt

(
Ṽ p
t −

∑d
i=1ξ̃

i
tS

i
t

)−
dt
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where we used the equality (−A)−C = −AC . Since by assumption rl ≤ rb, we obtain

dV net
t ≤

∑d
i=1(ξ̂it + ξ̃it)

(
dSi

t + dAi
t

)
+ rlt

(
V net
t −

∑d
i=1(ξ̂it + ξ̃it)S

i
t

)
dt (2.6)

and thus the process Ṽ l,net := (Bl)−1V net satisfies

dṼ l,net
t = (Bl

t)
−1dV net

t − rlt(Bl
t)
−1V net

t dt

≤ (Bl
t)
−1
(∑d

i=1ξ̂
i
t

(
dSi

t + dAi
t

)
−
∑d

i=1r
l
tξ̂

i
tS

i
tdt

)
+ (Bl

t)
−1
(∑d

i=1ξ̃
i
t

(
dSi

t + dAi
t

)
−
∑d

i=1r
l
tξ̃

i
tS

i
tdt

)
= (ξ̂it + ξ̃it) dS̃

i,l,cld
t ,

which means that
Ṽ l,net
t − Ṽ l,net

0 ≤
∑d

i=1

∫
(0,t]

(ξ̂iu + ξ̃iu) dS̃i,l,cld
u . (2.7)

The assumption that the process Ṽ l,net is bounded from below implies that the right-hand side in
(2.7) is a (P̃l,G)-supermartingale null at t = 0. Recall that for x ≥ 0, we have V 0

T (x) = Bl
Tx and

thus, from (2.7), we obtain

(Bl
T )−1

(
V net
T − V 0

T (x)
)
≤
∑d

i=1

∫
(0,T ]

(ξ̂it + ξ̃it) dS̃
i,l,cld
t .

Since P̃l is equivalent to P, we conclude that either V net
T = V 0

T (x) or P(V net
T < V 0

T (x)) > 0. This
implies that there are no arbitrage opportunities for the trader with a nonnegative endowment. �

2.1.2 Dynamics of Risky Assets

In order to obtain explicit results for unilateral and bilateral pricing using a BSDE approach, we
need to impose additional assumptions on the dynamics of risky assets. We will work under the
following postulate regarding the quadratic variation process for the continuous martingale S̃l,cld.
Note that ∗ stands hereafter for the transposition and, as in [21, 22], we define the matrix-valued
process S given by

St :=


S1
t 0 . . . 0

0 S2
t . . . 0

...
...

. . .
...

0 0 . . . Sd
t

 .

The following assumption is manifestly stronger than Assumption 2.1.

Assumption 2.2 We postulate that:
(i) there exists a probability measure P̃l equivalent to P such that S̃l,cld is a continuous, square-

integrable, (P̃l,G)-martingale and has the predictable representation property with respect to the

filtration G under P̃l,
(ii) there exists an Rd×d-valued, G-adapted process ml such that

〈S̃l,cld〉t =

∫ t

0

ml
u(ml

u)∗ du (2.8)

where the process ml(ml)∗ is invertible and satisfies ml(ml)∗ = Sγγ∗S where γ is a d-dimensional
square matrix of G-adapted processes satisfying the ellipticity condition: there exists a constant
Λ > 0 such that for all t ∈ [0, T ]∑d

i,j=1 (γtγ
∗
t )ij aiaj ≥ Λ‖a‖2 = Λa∗a, ∀ a ∈ Rd. (2.9)

We will also employ the following definition, introduced in [23] (see also [10]), where P stands
for an arbitrary probability measure.
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Definition 2.2 We say that a mapping h : Ω× [0, T ]×R×Rd → R satisfies the uniform m-Lipschitz

condition if there exists a constant L̂ > 0 such that for all t ∈ [0, T ] and all y1, y2 ∈ R, z1, z2 ∈ Rd

|h(t, y1, z1)− h(t, y2, z2)| ≤ L̂
(
|y1 − y2|+ ‖m∗t (z1 − z2)‖

)
. (2.10)

We denote by H2,d(P) the subspace of all Rd-valued, G-adapted processes X such that

‖X‖2H2,d(P) := EP

(∫ T

0

‖Xt‖2 dt
)
<∞ (2.11)

and, for brevity, we write H2(P) := H2,1(P). Also, let L2(P) = L2(Ω,GT ,P) stand for the space of
all real-valued, GT -measurable random variables η such that ‖η‖2L2(P) := EP(η2) <∞.

Definition 2.3 For any probability measure P, we denote by A(P) the following class of a real-
valued, G-adapted processes A(P) := {X ∈ H2(P) and XT ∈ L2(P)}.

Definition 2.3 will serve to define the class of admissible contracts with the choice of a probability
measure P depending on a particular setup at hand. Let us stress that for any contract (A,C) the
statement that A ∈ A(P) will mean that the process A−A0 of future cash flows belongs to the class
A(P). Recall that the cash flow A0 of a contract (A,C) represents its initial price, so that it is not
given a priori.

2.1.3 BSDEs for Unilateral Prices

For the reader’s convenience, we first recall the proposition concerning the case of an exogenous
collateral C (see Proposition 5.2 in Bielecki and Rutkowski [4] and Propositions 3.1 and 3.2 in [21]).
Recall that the mapping Gl was introduced in Lemma 2.1 and note that equations (2.12)–(2.13) and
(2.14)–(2.15) for unilateral prices are valid for any choice of the collateral process C, since they are
consequences of Definition 1.4 and Lemma 2.1.

Proposition 2.2 Let x1 ≥ 0, x2 ≥ 0 and Assumption 2.2 be valid. Then for any contract (A,C)

where AC,l ∈ A(P̃l), the hedger’s ex-dividend price equals

Ph(x1, A,C) = Bl(Y h,l,x1 − x1)− C (2.12)

where the pair (Y h,l,x1 , Zh,l,x1) is the unique solution to the BSDE{
dY h,l,x1

t = Zh,l,x1,∗
t dS̃l,cld

t +Gl

(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ dAC,l

t ,

Y h,l,x1

T = x1,
(2.13)

and the counterparty’s ex-dividend price equals

P c(x2,−A,−C;x1) = −Bl(Y c,l,x2 − x2) + C (2.14)

where the pair (Y c,l,x2 , Zc,l,x2) is the unique solution to the BSDE{
dY c,l,x2

t = Zc,l,x2,∗
t dS̃l,cld

t +Gl

(
t, Y c,l,x2

t , Zc,l,x2

t

)
dt− dAC,l

t ,

Y c,l,x2

T = x2.
(2.15)

Let us now consider the case of an endogenous collateral C. To be more specific, in the remaining
part of Section 2 (as well as in Section 4.2), we work under the assumption of the hedger’s collateral,
that is, the case where the collateral amount depends on the hedger’s price, but not on the coun-
terparty’s valuation. In practice, this situation may occur if an advantageous position of the hedger
allows him to enforce this asymmetric clause when negotiating the credit support annex with the
counterparty. For ease of notation, we will sometimes write V h := V (x1, ϕ,A,C).
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Assumption 2.3 We postulate that C is the hedger’s collateral meaning that it equals

Ct = q(V 0
t (x1)− V h

t ), t ∈ [0, T ), (2.16)

for some Lipschitz continuous function q : R→ R such that q(0) = 0.

Example 2.1 The hedger’s collateral C can be specified as in [4] (see equation (4.10) therein)
through the following expression

Ct = (1 + α1)
(
V 0
t (x)− V h

t

)+ − (1 + α2)
(
V 0
t (x)− V h

t

)−
for some constant haircuts α1 > −1 and α2 > −1, so that q(y) = (1 + α1)y+ − (1 + α2)y−. It is
clear that the function q is Lipschitz continuous and q(0) = 0. The case of the fully collateralized
contract, from the perspective of the hedger, is obtained by taking q(y) = y, that is, by setting
α1 = α2 = 0.

The next result solves the pricing problems for both parties in terms of suitable BSDEs. Let
us stress that BSDEs (2.17) and (2.18) deal with the unilateral ex-dividend prices, whereas BSDEs
(2.13) and (2.15) are concerned with the discounted value processes. Recall that explicit relationships
between these two kinds of processes are given by (2.12) and (2.14). Consequently, the generator
Gl derived in Lemma 2.1 will be transformed into either fl or gl, depending on whether we deal
with the hedger or the counterparty. It is clear that the hedger’s price Ph(x1, A,C) depends on his
endowment x1, but is independent of x2. By contrast, the counterparty’s price depends on both
endowments, x1 and x2, so that it is more suitable to denote it as P c(x2,−A,−C;x1). This is a
consequence of the fact that the generator gl in the counterparty’s pricing BSDE (2.18) explicitly
depends on the process Y 1, which is given through the solution of the hedger’s pricing BSDE (2.17).
In other words, the counterparty’s BSDE (2.18) is coupled with the hedger’s BSDE (2.17).

Let us also note that the process AC is replaced by A, since the impact of collateral on valuation
is now implicit in generators fl and gl through the process C = q(−Y 1). To emphasize the important
role of the function q, we will denote the contract (A,C) as (A, q) when the convention of the hedger’s
collateral is adopted. By the same token, we will write Ph

t (x1, A, q) and P c
t (x2,−A,−q;x1) instead

of Ph
t (x1, A,C) and P c

t (x2,−A,−C;x1), respectively.

Proposition 2.3 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 2.2 and 2.3 be valid. Then for any contract
(A, q) where A ∈ A(P̃l), the hedger’s ex-dividend price satisfies Ph(x1, A, q) = Y 1 where (Y 1, Z1) is
the unique solution to the BSDE{

dY 1
t = Z1,∗

t dS̃l,cld
t + fl

(
t, x1, Y

1
t , Z

1
t

)
dt+ dAt,

Y 1
T = 0,

(2.17)

with the generator fl given by

fl(t, x1, y, z) = rlt(B
l
t)
−1z∗St − x1Bl

tr
l
t − rctq(−y)

+ rlt

(
y + q(−y) + x1B

l
t − (Bl

t)
−1z∗St

)+
− rbt

(
y + q(−y) + x1B

l
t − (Bl

t)
−1z∗St

)−
and the counterparty’s ex-dividend price satisfies P c(x2,−A,−q;x1) = Y 2 where (Y 2, Z2) is the
unique solution to the BSDE{

dY 2
t = Z2,∗

t dS̃l,cld
t + gl

(
t, x2, Y

2
t , Z

2
t

)
dt+ dAt,

Y 2
T = 0,

(2.18)

with the generator gl given by

gl(t, x2, y, z) = rlt(B
l
t)
−1z∗St + x2B

l
tr

l
t − rctq(−Y 1

t )

− rlt
(
− y − q(−Y 1

t ) + x2B
l
t + (Bl

t)
−1z∗St

)+
+ rbt

(
− y − q(−Y 1

t ) + x2B
l
t + (Bl

t)
−1z∗St

)−
.
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Proof. We will first check that BSDEs (2.17) and (2.18) have unique solutions in the space H2(P̃l)×
H2,d(P̃l). To this end, we will use auxiliary results established in [23]. For (2.17), it is easy to check
that fl(t, x1, 0, 0) = 0 and the mapping fl satisfies the uniform m-Lipschitz condition of Definition

2.2. Consequently, if A ∈ A(P̃l) then, from Theorem 3.2 in [23], we conclude that BSDE (2.17) has a

unique solution (Y 1, Z1) such that (Y 1,m∗Z1) ∈ H2(P̃l)×H2,d(P̃l). By a slight abuse of language,

we then say that a solution (Y 1, Z1) is in the space H2(P̃l)×H2,d(P̃l).

Similarly, for (2.18), we note that

gl(t, x2, 0, 0) = x2B
l
tr

l
t − rctq(−Y 1

t )− rlt
(
− q(−Y 1

t ) + x2B
l
t

)+
+ rbt

(
− q(−Y 1

t ) + x2B
l
t

)−
where q is a Lipschitz continuous function and Y 1 ∈ H2(P̃l), so that gl(·, x2, 0, 0) ∈ H2(P̃l). More-
over, the mapping gl also satisfies the uniform m-Lipschitz condition and thus BSDE (2.18) has a

unique solution (Y 2, Z2) such that (Y 2,m∗Z2) ∈ H2(P̃l)×H2,d(P̃l).

In the second step, we will show that Ph(x1, A, q) = Y 1 where (Y 1, Z1) is the unique solution to
the BSDE (2.17). From Proposition 2.2 applied to an arbitrary collateral process C, we see that the
hedger’s ex-dividend price, if well defined, necessarily satisfies Ph(x1, A,C) = Bl(Y h,l,x1 − x1)− C
where the pair (Y h,l,x1 , Zh,l,x1) is governed by{

dY h,l,x1

t = Zh,l,x1,∗
t dS̃l,cld

t +Gl

(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ dAC,l

t ,

Y h,l,x1

T = x1.
(2.19)

In particular, we have Ph
T (x1, A,C) = 0 (recall that the equality CT = 0 always holds), which is

also obvious from Definition 1.4. Let us denote Ph := Ph(x1, A,C) and Z̃h,l,x1 := BlZh,l,x1 . Then
(2.19) yields

dPh
t = Bl

tZ
h,l,x1,∗
t dS̃l,cld

t +Bl
tGl

(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ rltB

l
t(Y

h,l,x1 − x1) dt

+ dAC
t − dCt

= Bl
tZ

h,l,x1,∗
t dS̃l,cld

t + rltZ
h,l,x1,∗
t St dt+ rlt

(
Y h,l,x1

t Bl
t − Z

h,l,x1,∗
t St

)+
dt

− rbt
(
Y h,l,x1

t Bl
t − Z

h,l,x1,∗
t St

)−
dt− rltBl

tY
h,l,x1

t dt

+ rltB
l
t(Y

h,l,x1

t − x1) dt+ dAt + dFC
t

so that

dPh
t = Z̃h,l,x1,∗

t dS̃l,cld
t + rlt

(
Ph
t + q(−Ph

t ) + x1B
l
t − (Bl

t)
−1Z̃h,l,x1,∗

t St

)+
dt

− rbt
(
Ph
t + q(−Ph

t ) + x1B
l
t − (Bl

t)
−1Z̃h,l,x1,∗

t St

)−
dt (2.20)

− x1rltBl
t dt+ rlt(B

l
t)
−1Z̃h,l,x1,∗

t St dt+ dAt − rctq(−Ph
t ) dt

where we used also the equality C = q(V 0(x1)− V h) = q(−Ph), which follows from

Ph = Bl(Y h,l,x1 − x1)− C = V p(x1, ϕ,A,C)− x1Bl − C
= V (x1, ϕ,A,C)− x1Bl = V h − V 0(x1).

By comparing (2.20) with (2.17), we conclude that if C is given by equation (2.16), then the pair

(Ph(x1, A, q), Z̃
h,l,x1) is a solution to BSDE (2.17), which was shown to admit a unique solution.

In the final step, we examine the counterparty’s pricing problem. By applying similar arguments
as for the hedger and using the equality P c(x2,−A,−C;x1) = −Bl(Y c,l,x2 − x2) + C where the

pair (Y c,l,x2 , Zc,l,x2) satisfies (2.15), one may deduce that the pair (P c(x2,−A,−q;x1), Z̃c,l,x2) is
the unique solution to BSDE (2.18). The details are left to the reader. Let us only recall that the
dependence of the counterparty’s price on the hedger’s endowment x1 is clear since the solution
Y 1 = Y 1,x1 to the hedger’s pricing problem is used as an input to BSDE (2.18). �
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2.1.4 Bilateral Pricing with Hedger’s Collateral

We are now in a position to examine the range of fair bilateral prices (see Definition 1.5). It appears
that, under mild assumptions, this range is nonempty when the endowments of the two parties have
the same sign. Let us stress that this range may be empty, in general, if the endowments are of
opposite signs, say, when x1 > 0 and x2 < 0 (see Proposition 2.8(ii) in Section 2.2 where we examine
the case of arbitrary endowments).

Proposition 2.4 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 2.2 and 2.3 be valid. Then for any contract
(A, q) where A ∈ A(P̃l) we have, for every t ∈ [0, T ],

P c
t (x2,−A,−q;x1) ≤ Ph

t (x1, A, q), P̃l − a.s., (2.21)

so that the range of fair bilateral prices Rf
t (x1, x2) is nonempty, P̃l − a.s.

Proof. In view of Proposition 2.3 and a suitable version of the comparison theorem for BSDEs
(see Theorem 3.3 in [23]), to establish the inequality P c

t (x2,−A,−q;x1) ≤ Ph
t (x1, A, q), P̃l − a.s.,

it suffices to show that gl
(
t, x2, Y

1
t , Z

1
t

)
≥ fl

(
t, x1, Y

1
t , Z

1
t

)
, P̃l ⊗ `− a.e.. To demonstrate the latter

inequality, we denote

δ := gl
(
t, x2, Y

1
t , Z

1
t

)
− fl

(
t, x1, Y

1
t , Z

1
t

)
= rlt(x1 + x2)Bl

t − rlt(δ+1 + δ+2 ) + rbt (δ
−
1 + δ−2 )

where

δ1 := −Y 1
t − q(−Y 1

t ) + x2B
l
t + (Bl

t)
−1Z1,∗

t St,

δ2 := Y 1
t + q(−Y 1

t ) + x1B
l
t − (Bl

t)
−1Z1,∗

t St.

Since, by Assumption 1.1, the inequality rl ≤ rb holds, we obtain

δ ≥ rlt(x1 + x2)Bl
t − rlt(δ1 + δ2) = 0,

which is the required condition. �

2.1.5 Model with an Uncertain Cash Rate

Let us take any G-adapted interest rate process such that rt ∈ [rlt, r
b
t ] for every t ∈ [0, T ]. We

maintain all other assumptions regarding the market model at hand and, for the sake of comparison,
we also consider an alternative market model with the same risky assets, but with the single uncertain
cash rate, denoted as r, so that the cash account satisfies dBt = rtBt dt. We still assume that
dBc

t = rctB
c
t dt where rc is a G-adapted and bounded process. Under these assumptions, the hedger

and the counterparty have the same ex-dividend price which is independent of their nonnegative
endowments. Intuitively, this is due to the fact that the situation is now symmetric, since we deal
here with the single cash rate, and thus the hedger’s and counterparty’s prices collapse to a unique
bilateral price, which is denoted as P r.

Lemma 2.2 In the model with a single uncertain cash rate r, the bilateral ex-dividend price process
P r = Y is given by the unique solution to the BSDE{

dYt = Z∗t dS̃
l,cld
t + fr(t, Yt, Zt) dt+ dAt,

YT = 0,
(2.22)

where the generator fr is given by the following expression

fr(t, y, z) = (rlt − rt)(Bl
t)
−1z∗St + rty + (rt − rct )q(−y).
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Proof. For the model with a single cash rate r, Proposition 2.3 yields the following BSDE for the
price P r = Ỹ {

dỸt = Z̃∗t dS̃
r,cld
t + f̃t(t, Ỹt, Z̃t) dt+ dAt,

ỸT = 0,
(2.23)

where f̃r(t, y, z̃) = rty + (rt − rct )q(−y) and

S̃i,r,cld
t := (Bt)

−1Si
t +

∫
(0,t]

(Bu)−1 dAi
u. (2.24)

To complete the proof, we observe that

dS̃i,r,cld
t = (Bt)

−1(dSi
t + dAi

t − rtSi
t dt
)

whereas dS̃i,l,cld
t is given by (2.2). It is now easy to check that unique solutions to BSDEs (2.22)

and (2.23) satisfy Ỹ = Y and thus the price P r is independent of initial endowments of the two
counterparties. �

The next result is not only more general but, in our opinion, also more natural than Proposition
4.1 in Mercurio [19] where, somewhat artificially, the collateral used in pricing of a contract by
each party was tied to his unilateral value of the contract. Note that in Proposition 2.5 the prices
Ph(0, A, q) and P c(0,−A,−q; 0) with hedger’s collateral are computed in Bergman’s model with
differential borrowing and lending rates rl and rb under the assumption that x1 = x2 = 0.

Proposition 2.5 (i) The price P r of any contract (A, q) where A ∈ A(P̃l), satisfies P r ≤ Ph(0, A, q).

(ii) If the inequality
(rt − rct )

[
q(−P r

t )− q(−Ph
t (0, A, q))

]
≤ 0 (2.25)

holds for all t ∈ [0, T ], then P c(0,−A,−q; 0) ≤ P r ≤ Ph(0, A, q).

Proof. (i) We first consider solutions in the space H2(P̃l) ×H2,d(P̃l) to BSDEs (2.17) and (2.22).
In view of the comparison theorem for BSDEs (see Theorem 3.3 in [23]), it suffices to show that

fl(t, 0, Yt, Zt) ≤ fr(t, Yt, Zt), P̃l ⊗ `− a.e.. We denote

γ1 := Yt + q(−Yt) + x1B
l
t − (Bl

t)
−1Z∗t St.

Since r ∈ [rl, rb], we obtain for x1 ≥ 0

γ := fl(t, x1, Yt, Zt)− fr(t, Yt, Zt) = rt(B
l
t)
−1Z∗t St − x1Bl

tr
l
t + rltγ

+
1 − rbtγ

−
1 − rtYt − rtq(−Yt)

≤ rt(Bl
t)
−1Z∗t St − x1Bl

tr
l
t + rtγ1 − rt(Yt + q(−Yt)) = (rt − rlt)x1Bl

t.

If x1 = 0, then γ ≤ 0 and thus P r = Y ≤ Y 1 = Ph(0, A, q).

(ii) We now consider solutions to BSDEs (2.18) and (2.23) with x1 = x2 = 0. It is now enough to

show that fr(t, Yt, Zt) ≤ gl(t, 0, Yt, Zt), P̃l ⊗ ` − a.e.. Recall that we postulate that C = q(−Y 1) =
q(−Ph(0, A, q)). Let us denote

γ2 := −Yt − q(−Y 1
t ) + x2B

l
t + (Bl

t)
−1Z∗t St.

From rt ∈ [rlt, r
b
t ], we obtain for x2 ≥ 0

γ̃ := fr(t, Yt, Zt)− gl(t, x2, Yt, Zt)

= −rt(Bl
t)
−1Z∗t St − rctq(−Yt) + rctq(−Y 1

t ) + rt(Yt + q(−Yt))− x2Bl
tr

l
t + rltγ

+
2 − rbtγ

−
2

≤ −rt(Bl
t)
−1Z∗t St − rctq(−Yt) + rctq(−Y 1

t ) + rt(Yt + q(−Yt))− x2Bl
tr

l
t + rtγ2

= (rt − rlt)x2Bl
t + (rt − rct )(q(−Yt)− q(−Y 1

t )) ≤ (rt − rlt)x2Bl
t

where the last inequality follows from (2.25). Therefore, if x2 = 0, then γ̃ ≤ 0. We conclude that
P c(0,−A,−q; 0) ≤ P r. �
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Remark 2.1 Condition (2.25) is valid, for instance, when r, rc and q satisfy (rt−rct )(q(y1)−q(y2)) ≤
0 for all y1 ≥ y2. Since q is typically an increasing function, the last inequality reduces to rct ≥ rt
for all t ∈ [0, T ]. Then the bilateral ex-dividend price P r under an uncertain interest rate r ∈ [rl, rb]
satisfies P r

t ∈ [P c
t (0, A, q; 0)), Ph

t (0, A, q)] for all t ∈ [0, T ].

2.2 Arbitrary Endowments

So far, we worked under the assumption that the endowments of both parties are nonnegative. We
will now examine the situation where x1 ≥ 0 and x2 ≤ 0. It appears that when the endowments of
the counterparties have opposite signs, due to asymmetry of trading arrangements in the nonlinear
trading framework, the bilateral pricing problem becomes more complex than in the case where both
endowments are nonnegative or, more generally, when they have the same sign.

2.2.1 Arbitrage-Free Property for Arbitrary Endowments

Let us explain the reasons for additional difficulties in the analysis of Bergman’s model for collat-
eralized contracts when the endowments of the counterparties have opposite signs. Recall that for
the hedger with a nonnegative endowment it suffices to use the martingale measure P̃l introduced
in Assumption 2.1. If, however, the counterparty’s endowment is negative, then to establish the no-
arbitrage property for the counterparty it is natural to introduce a probability measure P̃b equivalent
to P and such that the processes S̃i,b,cld, i = 1, 2, . . . , d given by

S̃i,b,cld
t := (Bb

t )−1Si
t +

∫
(0,t]

(Bb
u)−1 dAi

u

are (P̃b,G)-local martingales. Consequently, two distinct martingale measures are used to establish
the no-arbitrage property for counterparties with endowments of opposite signs. Formally, we now
make the following assumption, which replaces Assumption 2.3.

Assumption 2.4 We postulate that:
(i) there exists a probability measure P̃b equivalent to P and such that the processes Ŝi,b,cld, i =
1, 2, . . . , d, which are given by

dŜi,b,cld
t := dSi

t + dAi
t − rbtSi

t dt (2.26)

are (P̃b,G)-continuous, square-integrable martingales and have the predictable representation prop-

erty with respect to the filtration G under P̃b,
(ii) there exists an Rd×d-valued, G-adapted process m such that

〈Ŝb,cld〉t =

∫ t

0

mum
∗
u du (2.27)

where mm∗ is invertible and satisfies mm∗ = Sγγ∗S where γ is a d-dimensional square matrix of
G-adapted processes, which satisfies the ellipticity condition (2.9).

Note that the processes S̃i,b,cld are local martingales under P̃b whenever the processes Ŝi,b,cld

enjoy this property. The following proposition establishes the no-arbitrage property of Bergman’s
model under the present assumptions and for an arbitrary specification of the collateral process.

Proposition 2.6 If Assumption 2.4 holds, then Bergman’s model is arbitrage-free for a trader with
an arbitrary endowment.

Proof. The proof is analogous to the proof of Proposition 2.1 and thus it is not reported here. �
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2.2.2 BSDEs for Unilateral Prices

We now consider the case of the hedger’s collateral when the endowments x1 and x2 have opposite
signs. Observe that BSDEs in Propositions 2.3 and 2.7 are derived under different probability
measures (P̃l and P̃b, respectively) and with respect to different families of continuous martingales

used to establish the no-arbitrage property. Consequently, the generators f̂b and ĝb in Proposition
2.7 do not coincide with the corresponding generators fl and gl in Proposition 2.3.

Proposition 2.7 Let x1 ≥ 0, x2 ≤ 0 and Assumptions 2.3 and 2.4 be valid. For any contract (A, q)

where A ∈ A(P̃b), the hedger’s ex-dividend price satisfies Ph(x1, A, q) = Ŷ 1 where (Ŷ 1, Ẑ1) is the
unique solution to the BSDE{

dŶ 1
t = Ẑ1,∗

t dŜb,cld
t + f̂b

(
t, x1, Ŷ

1
t , Ẑ

1
t

)
dt+ dAt,

Ŷ 1
T = 0,

(2.28)

with the generator f̂b given by

f̂b(t, x1, y, z) =
∑d

i=1z
irbtS

i
t − x1rltBl

t − rctq(−y)

+ rlt

(
y + q(−y) + x1B

l
t − z∗St

)+
− rbt

(
y + q(−y) + x1B

l
t − z∗St

)−
and the counterparty’s ex-dividend price satisfies P c(x2,−A,−q;x1) = Ŷ 2 where (Ŷ 2, Ẑ2) is the
unique solution to the BSDE{

dŶ 2
t = Ẑ2,∗

t dŜb,cld
t + ĝb

(
t, x2, Ŷ

2
t , Ẑ

2
t

)
dt+ dAt,

Ŷ 2
T = 0,

(2.29)

with the generator ĝb given by

ĝb(t, x2, y, z) =
∑d

i=1z
irbtS

i
t + x2r

b
tB

b
t − rctq(−Ŷ 1

t )

− rlt
(
− y − q(−Ŷ 1

t ) + x2B
b
t + z∗St

)+
+ rbt

(
− y − q(−Ŷ 1

t ) + x2B
b
t + z∗St

)−
.

Proof. The proof is similar to the proof of Proposition 2.3 and thus it is not presented here. �

2.2.3 Bilateral Pricing with Hedger’s Collateral

We are now in a position to analyze the range of fair bilateral prices when the endowments of
counterparties are of opposite signs. We consider here the cases that were not studied in Proposition
2.3. Part (i) in Proposition 2.8 shows that if x1 = 0 and x2 < 0, then the range of fair bilateral prices
is nonempty since inequality (2.30) is still valid. The message from part (ii) is that if x1 > 0 and
x2 < 0, then inequality (2.30) does not hold, in general, meaning that one can produce an example of
a model with rl < rb and a contract (A, q) such that, for instance, P c

0 (x2,−A,−q;x1) > Ph
0 (x1, A, q),

even when we set q = 0 so that the counterparty’s price is independent of x1. If the contract is
traded at any price from the open interval (Ph

0 (x1, A, q), P
c
0 (x2,−A,−q;x1)), then the two parties,

who replicate (A, q) and (−A,−q), respectively, can generate arbitrage profits at the expense of the
counterparty’s external lender. This feature of Bergman’s model with x1 > 0 and x2 < 0, which can
be referred to as the existence of the funding arbitrage, does not contradict the property that the
model is arbitrage-free for the two parties, in the sense of Definition 1.2 and Proposition 2.6.

Proposition 2.8 Let x1 ≥ 0, x2 ≤ 0 and Assumptions 2.3 and 2.4 be valid.
(i) If x1x2 = 0, then for any contract (A, q) where A ∈ A(P̃b) we have, for all t ∈ [0, T ],

P c
t (x2,−A,−q;x1) ≤ Ph

t (x1, A, q), P̃b − a.s. (2.30)

(ii) Let rl and rb be deterministic and satisfy rlt < rbt for all t ∈ [0, T ]. Then (2.30) holds for all

contracts (A, q) with A ∈ A(P̃b) and all t ∈ [0, T ] if and only if x1x2 = 0.
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Proof. (i) We now consider solutions (Ŷ 1, Ẑ1) and (Ŷ 2, Ẑ2) in the space H2(P̃b) × H2,d(P̃b) to
BSDEs (2.28) and (2.29) and we apply the comparison theorem for BSDEs in order to show that

Ŷ 1 ≥ Ŷ 2. We claim that if x1 ≥ 0 and x2 ≤ 0, then

δ := ĝb(t, x2, Ŷ
1
t , Ẑ

1
t )− f̂b(t, x1, Ŷ 1

t , Ẑ
1
t ) ≥ max

{
− (rbt − rlt)x1Bl

t, (rbt − rlt)x2Bb
t

}
. (2.31)

Simple computations show that

δ = x1r
l
tB

l
t + x2r

b
tB

b
t − rlt(δ+1 + δ+2 ) + rbt (δ

−
1 + δ−2 )

where

δ1 := −Ŷ 1
t − q(−Ŷ 1

t ) + x2B
b
t + Ẑ1,∗

t St,

δ2 := Ŷ 1
t + q(−Ŷ 1

t ) + x1B
l
t − Ẑ

1,∗
t St.

From the postulated inequality rlt ≤ rbt , it follows that

δ ≥ x1rltBl
t + x2r

b
tB

b
t − rlt(δ1 + δ2) = (rbt − rlt)x2Bb

t

and

δ ≥ x1rltBl
t + x2r

b
tB

b
t − rbt (δ1 + δ2) = −(rbt − rlt)x1Bl

t.

We have thus proven that (2.31) is valid. If x1x2 = 0, then from (2.31) we obtain δ ≥ 0. Hence, from

the comparison theorem for BSDEs and the equality (Ph, P c) = (Ŷ 1, Ŷ 2) (see Proposition 2.7), we
deduce that (2.30) is satisfied for every t ∈ [0, T ].

(ii) We now assume that the interest rates rl and rb are deterministic and satisfy rlt < rbt for all
t ∈ [0, T ]. For x1x2 6= 0, we give in Section 7 of [22] an example of a contract (A, q) with q ≡ 0
(this assumption can be relaxed), such that the inequality P c

0 (x2,−A, 0;x1) > Ph
0 (x1, A, 0) holds

and thus the set Rf
0 (x1, x2) is empty. If that contract is traded at any price from the interval

[Ph
0 (x1, A, 0), P c

0 (x2,−A, 0;x1)] of bilaterally profitable prices, then both parties are capable of pro-
ducing profits while hedging their respective positions. This interesting feature is due to the fact
that the borrowing costs of the counterparty are reduced when he enters into the contract (−A,−q).
�

3 Differential Cash Rates and Negotiated Collateral

In this section, we analyze the situation where the endogenous collateral depends on both the
hedger’s and the counterparty’s valuation. Intuitively, the collateral can be seen here as an outcome
of negotiations between the two parties, in the sense that both the choice of the collateral convention
q̄ and the dynamic computation of the collateral amount involve the two parties in the contract.
Formally, Assumption 2.3 of the hedger’s collateral is replaced by the following more encompassing
postulate.

Assumption 3.1 The collateral C is negotiated between the two parties, in the sense that it is
given by

Ct = q̄
(
V 0
t (x1)− V h

t , V
c
t − V 0

t (x2)
)
, t ∈ [0, T ), (3.1)

where q̄ : R2 → R is a Lipschitz continuous function such that q̄(0, 0) = 0.

Example 3.1 As a particular instance of equation (3.1), one may take the convex collateralization
given by q̄(y1, y2) = αy1 + (1− α)y2 for some α ∈ [0, 1], so that

Ct = α(V 0
t (x)− V h

t ) + (1− α)(V c
t − V 0

t (x)) = −(αPh
t + (1− α)P c

t ).
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For convenience, the contract (A,C) with the negotiated collateral will be denoted as (A, q̄).
Since unilateral prices for both parties may now depend on their respective endowments x1 and
x2, in general, they will be denoted as Ph(x1, A, q̄;x2) and P c(x2,−A,−q̄;x1) in what follows. For
x1 ≥ 0 and an arbitrary x2, using the arguments from the proof of Proposition 2.3, we obtain

Ph := Ph(x1, A, q̄;x2) = V (x1, ϕ,A, q̄)− x1Bl = V h − x1Bl.

Similarly, for an arbitrary x1 we have, for x2 ≥ 0

P c := P c(x2,−A,−q̄;x1) = −V (x2, ϕ̃,−A,−q̄) + x2B
l = −V c + x2B

l

and for x2 ≤ 0

P c := P c(x2,−A,−q̄;x1) = −V (x2, ϕ̃,−A,−q̄) + x2B
b = −V c + x2B

b.

We thus conclude that the following equality holds for a nonnegative endowment x1 and an arbitrary
endowment x2

Ct = q̄
(
V 0
t (x1)− V h

t , V
c
t − V 0

t (x2)
)

= q̄(−Ph
t ,−P c

t ) (3.2)

where, of course, the processes Ph and P c depend on the collateral C.

3.1 Nonnegative Endowments

Recall that Proposition 2.1 shows that Bergman’s model is arbitrage-free under Assumption 2.1 (and
thus also under the stronger Assumption 2.2) when endowments are nonnegative. The following
result furnishing BSDEs for unilateral prices in the case of nonnegative endowments is a rather
straightforward extension of Proposition 2.3 and thus its proof is omitted. Let us only mention that
the well-posedness of BSDEs (3.3) follows from Theorem 3.2 in [23]. Note also that the processes Y
and Z in the statement of Proposition 3.1 are R2-valued and Rd×2-valued, respectively.

Proposition 3.1 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 2.2 and 3.1 be valid. For any contract (A, q̄)

where A ∈ A(P̃l), the vector of unilateral prices satisfies (Ph, P c)∗ = Y where the pair (Y,Z) solves
the fully coupled BSDEs {

dYt = Z∗t dS̃
l,cld
t + g

(
t, Yt, Zt

)
dt+ dAt,

YT = 0,
(3.3)

where g = (g1, g2)∗, A = (A,A)∗ and for all y = (y1, y2)∗ ∈ R2 and z = (z1, z2) ∈ Rd×2

g1(t, y, z) = rlt(B
l
t)
−1z∗1St − x1Bl

tr
l
t − rct q̄(−y1,−y2)

+ rlt

(
y1 + q̄(−y1,−y2) + x1B

l
t − (Bl

t)
−1z∗1St

)+
(3.4)

− rbt
(
y1 + q̄(−y1,−y2) + x1B

l
t − (Bl

t)
−1z∗1St

)−
and

g2(t, y, z) = rlt(B
l
t)
−1z∗2St + x2B

l
tr

l
t − rct q̄(−y1,−y2)

− rlt
(
− y2 − q̄(−y1,−y2) + x2B

l
t + (Bl

t)
−1z∗2St

)+
(3.5)

+ rbt

(
− y2 − q̄(−y1,−y2) + x2B

l
t + (Bl

t)
−1z∗2St

)−
.

Obviously, the prices for both parties depend here on the vector (x1, x2) of their endowments, so
that the notation Ph = Ph(x1, A, q;x2) and P c = P c(x2,−A,−q;x1) is appropriate.
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3.1.1 Diffusion Model for Risky Assets

The case of the negotiated collateral is more difficult to handle than the case of hedger’s collateral,
since one has to deal with fully coupled BSDEs. For this reason, in the remaining part of this
section, we place ourselves within the framework of a diffusion model for risky assets, as specified in
Assumptions 3.2 and 3.3. For simplicity of presentation, we examine here the case of one risky asset
driven by the one-dimensional Brownian motion W but, in view of Proposition 5.2 given in Section
5, an extension to the case of d risky assets driven by a d-dimensional Brownian motion does not
present any difficulties.

Assumption 3.2 We assume that:
(i) the ex-dividend price S has the dynamics under P given by the following expression

dSt = µ(t, St) dt+ σ(t, St) dWt, S0 ∈ R, (3.6)

where W is a one-dimensional Brownian motion generating the filtration G,
(ii) the coefficients µ, σ : [0, T ]× R→ R are such that SDE (3.6) has a unique strong solution,

(iii) the dividend process equals A1
t =

∫ t

0
κ(u, Su) du for some function κ : [0, T ]× R→ R.

We observe that S = S1 satisfies

dS̃l,cld
t = (Bl

t)
−1 (dSt − rltSt dt+ dA1

t

)
= (Bl

t)
−1(µ(t, St) + κ(t, St)− rltSt

)
dt+ (Bl

t)
−1σ(t, St) dWt.

Assumption 3.3 We postulate that:
(i) the process l given by

lt := (σ(t, St))
−1(µ(t, St) + κ(t, St)− rltSt

)
(3.7)

satisfies Kazamaki’s criterion (see [18]),
(ii) the process (σ(·, S))−1 and the interest rate processes are continuous,
(iii) the process (σ(·, S))−1S is bounded.

Since under the present assumptions, we have

dS̃l,cld
t = (Bl

t)
−1σ(t, St)(lt dt+ dWt),

the pricing BSDE (3.3) becomes{
dYt = (Bl

t)
−1Ztσ(t, St) dWt +

(
g(t, Yt, Zt) + (Bl

t)
−1σ(t, St)ltZt

)
dt+ dAt,

YT = 0,

or, equivalently, {
dYt = Zt dWt +

(
g
(
t, Yt, (σ(t, St))

−1Bl
tZt

)
+ ltZt

)
dt+ dAt,

YT = 0.
(3.8)

We will focus on bilateral valuation of a collateralized European claim (HT , q̄), which is given by
the cash flows At −A0 = HT1[T,T ](t). Then (3.8) is equivalent to the following BSDE on [0, T )

Yt =

(
−HT

−HT

)
−
∫ T

t

Zs dWs −
∫ T

t

(
g(s, Ys, (σ(s, Ss))

−1Bl
sZs) + lsZs

)
ds

with an additional jump at the terminal date T , which ensures that YT = 0. It is thus clear that it
suffices to examine the following BSDE on [0, T ]{

dYt = Zt dW̃
l
t + g

(
t, Yt, (σ(t, St))

−1Bl
tZt

)
dt,

YT = (−HT ,−HT )∗,
(3.9)
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where W̃ l
t := Wt +

∫ t

0
ls ds is a Brownian motion under the probability measure P̃l given by

dP̃l

dP
= exp

(
−
∫ T

0

lt dWt −
1

2

∫ T

0

l2t dt

)
.

Remark 3.1 The boundedness of the process (σ(·, S))−1S ensures that condition (2.9) is satisfied
since, in view of equation (3.6), the process σ appearing in Assumption 2.2 equals (S)−1σ(·, S)(Bl)−1

and thus it is bounded away from zero. Hence Assumption 2.2 is valid since the Brownian motion W̃ l

is known to have the predictable representation property with respect to G under P̃l. In particular,
Bergman’s model is arbitrage-free for traders with nonnegative endowments.

3.1.2 Bilateral Pricing of European Claims with Negotiated Collateral

In the next result, we study the range of fair bilateral prices for European claims with negotiated col-
lateral. To this end, we will employ Proposition 5.2, which is a convenient version of the comparison
theorem for two-dimensional fully coupled BSDEs driven by a Brownian motion.

Proposition 3.2 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 3.1, 3.2 and 3.3 be valid. Then for a
collateralized European claim (HT , q̄) where HT ∈ L2(Ω,GT , P̃l) we have, for every t ∈ [0, T ],

P c
t (x2,−HT ,−q̄;x1) ≤ Ph

t (x1, HT , q̄;x2), P̃l − a.s. (3.10)

Proof. For brevity, we write σ̄−1t := (σ(t, St))
−1. Since we wish to use Proposition 5.2, we need to

check that the functions h1 and h2 defined by

h1(t, y1, y2, z1, z2) := −g1
(
t, y1, y2, σ̄

−1
t Bl

tz1, σ̄
−1
t Bl

tz2
)

and
h2(t, y1, y2, z1, z2) := −g2

(
t, y1, y2, σ̄

−1
t Bl

tz1, σ̄
−1
t Bl

tz2
)

where g1 and g2 are given by (3.4) and (3.5) with d = 1, respectively, satisfy Assumption 5.1

under P̃l and condition (5.5). The continuity of σ̄−1, g1 and g2 with respect to t implies that, for
y1, y2, z1, z2 ∈ R, the functions h1(t, y1, y2, z1, z2) and h2(t, y1, y2, z1, z2) are continuous with respect
to t. Moreover, since the process σ̄−1S is bounded and the function q̄ is Lipschitz continuous, we
see that the mappings h1(t, y1, y2, z1, z2) and h2(t, y1, y2, z1, z2) are uniformly Lipschitz continuous
with respect to (y1, y2, z1, z2). Finally, from x1, x2 ≥ 0 and q̄(0, 0) = 0, we obtain h1(t, 0, 0, 0, 0) =
h2(t, 0, 0, 0, 0) = 0. We conclude that Assumption 5.1 holds for h1 and h2.

To show that condition (5.5) is satisfied as well, we denote

δ1 := y+1 + y2 + q̄(−y+1 − y2,−y2) + x1B
l
t − σ̄−1t (z1 + z2)St

and
δ2 := −y2 − q̄(−y+1 − y2,−y2) + x2B

l
t + σ̄−1t z2St,

and we observe that

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

= −g1(t, y+1 + y2, y2, σ̄
−1
t Bl

t(z1 + z2), σ̄−1t Bl
tz2) + g2(t, y+1 + y2, y2, σ̄

−1
t Bl

t(z1 + z2), σ̄−1t Bl
tz2)

= −rltσ̄−1t z1St + (x1 + x2)Bl
tr

l
t − rlt(δ+1 + δ+2 ) + rbt (δ

−
1 + δ−2 ).

Since rlt ≤ rbt , we have

rlt(δ
+
1 + δ+2 )− rbt (δ−1 + δ−2 ) ≤ rlt(δ+1 + δ+2 )− rlt(δ−1 + δ−2 ) = rlt(δ1 + δ2)

= rlty
+
1 + (x1 + x2)Bl

tr
l
t − rltσ̄−1t z1St
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and
h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

= −rltσ̄−1t z1St + (x1 + x2)Bl
tr

l
t − rlt(δ+1 + δ+2 ) + rbt (δ

−
1 + δ−2 ) ≥ −rlty+1 ,

so that
−4y−1

(
h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

)
≤ 4rlty

−
1 y

+
1 = 0 ≤M(y−1 )2 + 2z211{y1<0},

which is the desired condition (5.5). �

As an alternative to Proposition 3.2, we also have the following result, which is also a consequence
of Proposition 5.2.

Corollary 3.1 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 3.1, 3.2 and 3.3 be valid. Consider a contract
(A, q̄) where A−A0 is a non-positive, continuous, G-adapted process such that EP̃l

(
supt∈[0,T ] |At|2

)
<

∞. Then we have, for every t ∈ [0, T ],

P c
t (x2,−A,−q̄;x1) ≤ Ph

t (x1, A, q̄;x2), P̃l − a.s.

Proof. Recall that σ̄−1t := (σ(t, St))
−1. We have (Ph, P c)∗ = Y = (Y1, Y2)∗ where (Y,Z) solves

BSDE (3.8). Let Ỹ := Y −A+A0 where A = (A,A)∗ and A0 = (A0, A0)∗, so that{
dỸt = Zt dW̃

l
t + g

(
t, Ỹt +At −A0, σ̄

−1
t Bl

tZt

)
dt,

ỸT = −AT .

Similarly as in the proof of Proposition 3.2, we let

h1(t, y1, y2, z1, z2) := −g1(t, y1 +At −A0, y2 +At −A0, σ̄
−1
t Bl

tz1, σ̄
−1
t Bl

tz2)

and
h2(t, y1, y2, z1, z2) := −g2(t, y1 +At −A0, y2 +At −A0, σ̄

−1
t Bl

tz1, σ̄
−1
t Bl

tz2).

Since A is continuous and EP̃l [supt∈[0,T ] |At|2] < ∞, it is not hard to check that Assumption 5.1 is
satisfied by h1 and h2. Moreover, since A−A0 ≤ 0, we have

−4y−1
(
h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

)
≤ 4rlty

−
1 (y+1 +At −A0) ≤M(y−1 )2 + 2z211{y1<0}.

To complete the proof, it now suffices to use Proposition 5.2. �

3.2 Arbitrary Endowments

The arbitrage-free property of Bergman’s model with any endowments is known to hold under
Assumption 2.4 (see Proposition 2.6) and thus we will now focus on unilateral and bilateral pricing.
In the case of endowments of opposite signs, the fully coupled pricing BSDEs are given in the
following proposition, which can be compared with Proposition 2.7 dealing with the case of the
hedger’s collateral.

Proposition 3.3 Let x1 ≥ 0, x2 ≤ 0 and Assumptions 2.4 and 3.1 be valid. For any contract (A, q̄)

where A ∈ A(P̃b), the vector of unilateral prices satisfies (Ph, P c)∗ = Ŷ where the pair (Ŷ , Ẑ) solves
the fully coupled BSDEs {

dŶt = Ẑ∗t dŜ
b,cld
t + ĝ

(
t, Ŷt, Ẑt

)
dt+ dAt,

ŶT = 0,
(3.11)
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where ĝ = (ĝ1, ĝ2)∗, A = (A,A)∗ and for all y = (y1, y2)∗ ∈ R2 and z = (z1, z2) ∈ Rd×2

ĝ1(t, y, z) =
∑d

i=1z
i
1r

b
tS

i
t − x1Bl

tr
l
t − rct q̄(−y1,−y2)

+ rlt

(
y1 + q̄(−y1,−y2) + x1B

l
t − z∗1St

)+
(3.12)

− rbt
(
y1 + q̄(−y1,−y2) + x1B

l
t − z∗1St

)−
and

ĝ2(t, y, z) =
∑d

i=1z
i
2r

b
tS

i
t + x2B

b
t r

b
t − rct q̄(−y1,−y2)

− rlt
(
− y2 − q̄(−y1,−y2) + x2B

b
t + z∗2St

)+
(3.13)

+ rbt

(
− y2 − q̄(−y1,−y2) + x2B

b
t + z∗2St

)−
.

Proof. The proof is similar to the proof of Proposition 2.3. We also use Theorem 3.2 in [23] to show

the well-posedness of BSDE (3.11) in the space H2(P̃b)×H2,d(P̃b). Although Theorem 3.2 in [23] is
stated for a one-dimensional BSDE, it is clear that it can be easily extended to the multi-dimensional
case. �

We henceforth work under Assumption 3.2 of a diffusion model for risky assets and, in addition,
we make the following postulate, which is aimed to replace Assumption 3.3.

Assumption 3.4 We postulate that:
(i) the process b given by

bt := (σ(t, St))
−1(µ(t, St) + κ(t, St)− rbtSt

)
(3.14)

satisfies Kazamaki’s criterion,
(ii) the processes (σ(·, S))−1 and the interest rate processes are continuous,
(iii) the process (σ(·, S))−1S is bounded.

We observe that the process Ŝb,cld given by (2.26) satisfies

dŜb,cld
t =

(
µ(t, St) + κ(t, St)− rbtSt

)
dt+ σ(t, St) dWt = σ(t, St)

(
bt dt+ dWt

)
= σ(t, St) dW̃

b
t

where W̃ b
t := Wt +

∫ t

0
bs ds. Let us define the probability measure P̃b by

dP̃b

dP
= exp

(
−
∫ T

0

bt dWt −
1

2

∫ T

0

b2t dt

)
.

From the Girsanov theorem, the process W̃ b is the Brownian motion under P̃b and thus Ŝb,cld is a
(P̃b,G)-(local) martingale with the quadratic variation 〈Ŝb,cld〉t =

∫ t

0
|σ(u, Su)|2 du. Moreover, since

the process (σ(·, S))−1S is bounded, Assumption 2.4 holds. We conclude that the model is arbitrage

free under P̃b (see Proposition 2.6).

3.2.1 Bilateral Pricing of European Claims with Negotiated Collateral

We focus on the case of a collateralized European contingent claim (HT , C) = (HT , q̄), although a
similar result holds for the class of contracts introduced in Corollary 3.1. In the present framework,
BSDE (3.11) can be represented as follows{

dYt = Ztσ(t, St) dWt +
(
ĝ
(
t, Yt, Zt

)
+ σ(t, St)btZt

)
dt+ dAt,

YT = 0.
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As in Section 3.1, it is thus sufficient to examine the following BSDE on [0, T ]{
dYt = Zt dW̃

b
t + ĝ

(
t, Yt, (σ(t, St))

−1Zt

)
dt,

YT = (−HT ,−HT )∗.

Proposition 3.4 Let x1 ≥ 0, x2 ≤ 0 satisfy x1x2 = 0. If Assumptions 3.1, 3.2 and 3.4 hold, then
for any collateralized European claim (HT , q̄) where HT ∈ L2(Ω,GT , P̃b) we have, for every t ∈ [0, T ],

P c
t (x2,−HT ,−q̄;x1) ≤ Ph

t (x1, HT , q̄;x2), P̃b − a.s.

Proof. Let σ̄−1t := (σ(t, St))
−1. As in the case of Proposition 3.2, the proof hinges on application

of Proposition 5.2. We thus need to check that the functions

h1(t, y1, y2, z1, z2) := −ĝ1
(
t, y1, y2, σ̄

−1
t z1, σ̄

−1
t z2

)
and

h2(t, y1, y2, z1, z2) := −ĝ2
(
t, y1, y2, σ̄

−1
t z1, σ̄

−1
t z2

)
satisfy Assumption 5.1 and condition (5.5), where ĝ1 and ĝ2 are given by (3.12) and (3.13) with
d = 1, respectively. First, from the continuity σ̄−1, ĝ1 and ĝ2 with respect to t, we deduce
that for y1, y2, z1, z2 ∈ R, the functions h1(t, y1, y2, z1, z2) and h2(t, y1, y2, z1, z2) are also contin-
uous with respect to t. Next, since σ̄−1S is bounded and q̄ is Lipschitz continuous, it is clear
that h1(t, y1, y2, z1, z2) and h2(t, y1, y2, z1, z2) are uniformly Lipschitz continuous with respect to
(y1, y2, z1, z2). Moreover, since x1 ≥ 0, x2 ≤ 0 and q̄(0, 0) = 0, we have that h1(t, 0, 0, 0, 0) =
h2(t, 0, 0, 0, 0) = 0. We thus see that Assumption 5.1 is indeed satisfied by h1 and h2, as was re-
quired to show. It remains to check that condition (5.5) in Proposition 5.2 is met as well. To this
end, we set

δ1 := y+1 + y2 + q̄(−y+1 − y2,−y2) + x1B
l
t − σ̄−1t (z1 + z2)St

and
δ2 := −y2 − q̄(−y+1 − y2,−y2) + x2B

b
t + σ̄−1t z2St.

Then

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

= −ĝ1(t, y+1 + y2, y2, σ̄
−1
t (z1 + z2), σ̄−1t z2) + ĝ2(t, y+1 + y2, y2, σ̄

−1
t (z1 + z2), σ̄−1t z2)

= −σ̄−1t rbt (z1 + z2)St + x1B
l
tr

l
t + rct q̄(−y+1 − y2,−y2)− rltδ+1 + rbtδ

−
1

+ σ̄−1t rbtz2St + x2B
b
t r

b
t − rct q̄(−y+1 − y2,−y2)− rltδ+2 + rbtδ

−
2

= −σ̄−1t rbtz1St + x1B
l
tr

l
t + x2B

b
t r

b
t − rlt(δ+1 + δ+2 ) + rbt (δ

−
1 + δ−2 ).

Since rlt ≤ rbt , we have

rlt(δ
+
1 + δ+2 )− rbt (δ−1 + δ−2 ) ≤ min

{
rlt(δ1 + δ2), rbt (δ1 + δ2)

}
= min

{
rlty

+
1 + x1B

l
tr

l
t + x2B

b
t r

l
t − rltσ̄−1t z1St, r

b
ty

+
1 + x1B

l
tr

b
t + x2B

b
t r

b
t − rbt σ̄−1t z1St

}
.

Thus

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2) ≥ −σ̄−1t rbtz1St

+ max
{
−rlty+1 + x2B

b
t r

b
t − x2Bb

t r
l
t + rltσ̄

−1
t z1St, −rbty+1 + x1B

l
tr

l
t − x1Bl

tr
b
t + rbt σ̄

−1
t z1St

}
.

We then have that

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

≥ −rlty+1 + σ̄−1t St(r
l
t − rbt )z1 + x2B

b
t (rbt − rlt).
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Consequently, if x2 = 0 then, using the boundedness of processes rb, rl and σ̄−1S, we obtain

−4y−1 [h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)]

≤ 4rlty
−
1 y

+
1 − 4y−1 z1σ̄

−1
t St(r

l
t − rbt ) = −4y−1 z1σ̄

−1
t St(r

l
t − rbt )

≤M(y−1 )2 + 2z211{y1<0},

which is the desired inequality (5.5). The same inequality can be obtained when x1 = 0. �

4 Idiosyncratic Funding Costs for Risky Assets

In Section 4, we consider the model with idiosyncratic funding costs for risky assets. Specifically,
we henceforth postulate that: (i) all positive and negative cash flows from a contract (A,C) and a
trading strategy ϕ are immediately reinvested in traded assets; (ii) long cash positions in risky assets
Si are assumed to be funded from their respective funding accounts Bi,b, which can be interpreted
as secured loans in the repo market; (iii) short cash positions in risky assets Si are kept in segregated
accounts and remunerated at rates implied by accounts Bi,l. Although a similar modeling framework
was studied by Bichuch et al. [2] and Crépey [11], it should be noted that the no-arbitrage property,
bilateral pricing and the case of an endogenous collateral were not examined in these papers where
the focus was on computational issues.

Note that the cash position in the ith risky asset is obtained by multiplying the the positive
or negative number of outstanding positions in the ith asset by its current price. Suppose, for
concreteness, that the price of the ith asset is nonnegative. Then a short (resp., long) cash position
occurs whenever ξit is negative (resp., ξit is nonnegative). If the ith risky asset is purchased using
the repo market, then we set

ψi,b
t = −(Bi,b

t )−1(ξit)
+Si

t (4.1)

where Bi,b specifies the interest paid by the hedger when he pledges the risky asset Si as collateral.
A stylized version of short-selling of the risky asset Si corresponds to the equality

ψi,l
t = (Bi,l

t )−1(ξit)
−Si

t (4.2)

where Bi,l specifies the interest paid to the hedger by the broker, who lends shares to the hedger
and keeps cash obtained through short-selling of shares. Note that in practice the interest rate ri,l is
usually very low and it can even be null. We have the following definition of a self-financing strategy
under idiosyncratic funding costs for risky assets.

Definition 4.1 A trading strategy (x, ϕ,A,C) where

ϕ = (ξ1, . . . , ξd, ψ1,l, . . . , ψd,l, ψ1,b, . . . , ψd,b, ψl, ψb, η)

is self-financing if the portfolio’s value V p(x, ϕ,A,C), which is given by (1.1), satisfies the following
conditions for every t ∈ [0, T ]: ψl

t ≥ 0, ψb
t ≤ 0, ψl

tψ
b
t = 0,

ψi,l
t = (Bi,l

t )−1(ξitS
i
t)
−, ψi,b

t = −(Bi,b
t )−1(ξitS

i
t)

+,

and

V p
t (x, ϕ,A,C) = x+

∑d
i=1

∫
(0,t]

ξiu d(Si
u +Ai

u) +
∑d

i=1

∫ t

0

ψi,l
u dBi,l

u +
∑d

i=1

∫ t

0

ψi,b
u dBi,b

u

+

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u +AC

t . (4.3)

The following result is a rather straightforward consequence of Definition 4.1 and Itô’s formula.
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Lemma 4.1 For any self-financing trading strategy (x, ϕ,A,C), the portfolio’s value V p := V p(x, ϕ,A,C)
satisfies

dV p
t =

∑d
i=1ξ

i
t

(
dSi

t + dAi
t

)
+
∑d

i=1r
i,l
t (ξitS

i
t)
− dt−

∑d
i=1r

i,b
t (ξitS

i
t)

+ dt

+ rlt(V
p
t )+ − rbt (V

p
t )− + dAC

t

and the process Y l := (Bl)−1V p(x, ϕ,A,C) satisfies

dY l
t =

∑d
i=1ξ

i
t dS̃

i,l,cld
t +Gl(t, Y

l
t , ξt) dt+ dAC,l

t (4.4)

where the mapping Gl : Ω× [0, T ]× R× Rd → R equals

Gl(t, y, z) = (Bl
t)
−1∑d

i=1r
l
tz

iSi
t + (Bl

t)
−1∑d

i=1r
i,l
t (ziSi

t)
−

− (Bl
t)
−1∑d

i=1r
i,b
t (ziSi

t)
+ − rlty + (Bl

t)
−1(rltBl

ty
+ − rbtBl

ty
−).

Our aim is to show that the methodology developed in preceding sections can be applied to this
setup, although with possibly different conclusions regarding the properties of unilateral prices.

4.1 Arbitrage-Free Property

It appears that Assumption 2.1 (hence also Assumption 2.2) is a sufficient condition for the non-
existence of extended arbitrage opportunities for traders with nonnegative endowments under the
standing assumptions that rl ≤ rb and ri,l ≤ ri,b for all i (see Assumption 1.1).

Proposition 4.1 If Assumption 2.1 holds and ri,l ≤ rl ≤ ri,b, then the model with idiosyncratic
funding costs for risky assets is arbitrage-free for a trader with an arbitrary endowment.

Proof. Let us first consider the case of a trader with a nonnegative endowment. Using Lemma 4.1
and the equality V net = V̂ p + Ṽ p (see (2.5)), we obtain

dV net
t =

∑d
i=1(ξ̂it + ξ̃it)

(
dSi

t + dAi
t

)
+
∑d

i=1r
i,l
t (ξ̂itS

i
t)
− dt+

∑d
i=1r

i,l
t (ξ̃itS

i
t)
− dt

−
∑d

i=1r
i,b
t (ξ̂itS

i
t)

+ dt−
∑d

i=1r
i,b
t (ξ̃itS

i
t)

+ dt+ rlt
(
(V̂ p

t )+ + (Ṽ p
t )+) dt

− rbt
(
(V̂ p

t )− + (Ṽ p
t )−

)
dt.

Recall that rl ≤ rb and thus

dṼ l,net
t = (Bl

t)
−1dV net

t − rlt(Bl
t)
−1V net

t dt

≤ (Bl
t)
−1
(∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
+
∑d

i=1r
i,l
t (ξ̂itS

i
t)
− dt+

∑d
i=1r

i,l
t (ξ̃itS

i
t)
− dt

)
− (Bl

t)
−1
(∑d

i=1r
i,b
t (ξ̂itS

i
t)

+ dt−
∑d

i=1r
i,b
t (ξ̃itS

i
t)

+ dt

)
.

Since we postulate that ri,l ≤ rl ≤ ri,b, we obtain

dṼ l,net
t ≤ (Bl

t)
−1
(∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
+
∑d

i=1r
l
t(ξ̂

i
tS

i
t)
− dt+

∑d
i=1r

l
t(ξ̃

i
tS

i
t)
− dt

)
− (Bl

t)
−1
(∑d

i=1r
l
t(ξ̂

i
tS

i
t)

+ dt−
∑d

i=1r
l
t(ξ̃

i
tS

i
t)

+ dt

)
= (Bl

t)
−1∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t − rltSt dt+ dAi
t

)
.

It is now clear that Assumption 2.1 is sufficient for the model with idiosyncratic funding costs for
risky assets to be arbitrage-free for a trader with a nonnegative endowment.
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For the case of a negative endowment, it suffices to slightly modify the proof. Since rl ≤ rb, we
obtain

dṼ b,net
t = (Bb

t )−1dV net
t − rbt (Bb

t )−1V net
t dt

≤ (Bb
t )−1

(∑d
i=1(ξ̂it + ξ̃it)

(
dSi

t + dAi
t

)
+
∑d

i=1r
i,l
t (ξ̂itS

i
t)
− dt+

∑d
i=1r

i,l
t (ξ̃itS

i
t)
− dt

)
− (Bb

t )−1
(∑d

i=1r
i,b
t (ξ̂itS

i
t)

+ dt−
∑d

i=1r
i,b
t (ξ̃itS

i
t)

+ dt

)
.

Consequently, in view of inequalities ri,l ≤ rl ≤ ri,b, we have

dṼ b,net
t ≤ (Bb

t )−1
(∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
+
∑d

i=1r
l
t(ξ̂

i
tS

i
t)
− dt+

∑d
i=1r

l
t(ξ̃

i
tS

i
t)
− dt

)
− (Bb

t )−1
(∑d

i=1r
l
t(ξ̂

i
tS

i
t)

+ dt−
∑d

i=1r
l
t(ξ̃

i
tS

i
t)

+ dt

)
= (Bb

t )−1
∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t − rltSt dt+ dAi
t

)
,

which leads to the stated assertion. �

Remark 4.1 If rl < ri,l ≤ ri,b, then we obtain

dṼ l,net
t = (Bl

t)
−1dV net

t − rlt(Bl
t)
−1V net

t dt

≤ (Bl
t)
−1
(∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
+
∑d

i=1r
i,l
t (ξ̂itS

i
t)
− dt+

∑d
i=1r

i,l
t (ξ̃itS

i
t)
− dt

)
− (Bl

t)
−1
(∑d

i=1r
i,l
t (ξ̂itS

i
t)

+ dt−
∑d

i=1r
i,l
t (ξ̃itS

i
t)

+ dt

)
= (Bl

t)
−1∑d

i=1(ξ̂it + ξ̃it)
(
dSi

t − r
i,l
t St dt+ dAi

t

)
.

Hence the model with idiosyncratic funding costs for risky assets is arbitrage-free for a trader with a
nonnegative endowment provided that there exists a martingale measure for the processes S̃i,l,cld, i =
1, 2, . . . , d given by

Ŝi,l,cld
t := (Bi,l

t )−1Si
t +

∫
(0,t]

(Bi,l
u )−1 dAi

u.

For the lack of space, we are not going to investigate this case in what follows.

4.2 Hedger’s Collateral

We are now ready to examine the unilateral and bilateral valuation problems under the convention
of the hedger’s collateral. We will study the range of fair bilateral prices, the price independence on
the hedger’s endowment, the positive homogeneity of the price and the model with uncertain cash
rates.

4.2.1 BSDEs for Unilateral Prices

Using Lemma 4.1, one can establish the following result, which furnishes the pricing BSDEs for the
case of hedger’s collateral and nonnegative endowments.

Proposition 4.2 Let Assumptions 2.2 and 2.3 be valid and ri,l ≤ rl ≤ ri,b. If x1 ≥ 0, then for
any contract (A, q) where A ∈ A(P̃l), the hedger’s ex-dividend price equals Ph(x1, A, q) = Y 1 where
(Y 1, Z1) is the unique solution to the BSDE{

dY 1
t = Z1,∗

t dS̃l,cld
t + fl

(
t, x1, Y

1
t , Z

1
t

)
dt+ dAt,

Y 1
T = 0,

(4.5)
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with the generator fl given by

fl(t, x1, y, z) = rlt(B
l
t)
−1z∗St + (Bl

t)
−1∑d

i=1r
i,l
t (ziSi

t)
− − (Bl

t)
−1∑d

i=1r
i,b
t (ziSi

t)
+

− x1Bl
tr

l
t − rctq(−y) + rlt

(
y + q(−y) + x1B

l
t

)+ − rbt(y + q(−y) + x1B
l
t

)−
.

(4.6)

If x2 ≥ 0, then the counterparty’s ex-dividend price equals P c(x2,−A,−q;x1) = Y 2 where (Y 2, Z2)
is the unique solution to the BSDE{

dY 2
t = Z2,∗

t dS̃l,cld
t + gl

(
t, x2, Y

2
t , Z

2
t

)
dt+ dAt,

Y 2
T = 0,

(4.7)

with the generator gl given by

gl(t, x2, y, z) = rlt(B
l
t)
−1z∗St − (Bl

t)
−1∑d

i=1r
i,l
t (−ziSi

t)
− + (Bl

t)
−1∑d

i=1r
i,b
t (−ziSi

t)
+

+ x2B
l
tr

l
t − rctq(−Y 1

t )− rlt
(
− y − q(−Y 1

t ) + x2B
l
t

)+
+ rbt

(
− y − q(−Y 1

t ) + x2B
l
t

)−
.

(4.8)

4.2.2 Bilateral Pricing

We will now show that the range of fair bilateral prices in the model with idiosyncratic funding costs
for risky assets is nonempty when the two parties have nonnegative endowments. The following
result can be seen as a counterpart of Proposition 2.4.

Proposition 4.3 Let Assumptions 2.2 and 2.3 be valid and ri,l ≤ rl ≤ ri,b. If x1 ≥ 0 and x2 ≥ 0,
then for any contract (A, q) where A ∈ A(P̃l) we have, for every t ∈ [0, T ],

P c
t (x2,−A,−q;x1) ≤ Ph

t (x1, A, q), P̃l − a.s. (4.9)

Proof. It is enough to show that gl(t, x2, Y
1, Z1) ≥ fl(t, x1, Y 1, Z1), P̃l ⊗ `− a.e.. We denote

δ := gl(t, x2, Y
1, Z1)− fl(t, x1, Y 1, Z1)

= rlt(x1 + x2)Bl
t + (Bl

t)
−1∑d

i=1(ri,bt − ri,l)|Z
1,i
t Si

t | − rlt(δ+1 + δ+2 ) + rbt (δ
−
1 + δ−2 )

where

δ1 := −Y 1
t − q(−Y 1

t ) + x2B
l
t, δ2 := Y 1

t + q(−Y 1
t ) + x1B

l
t.

Since rl ≤ rb and ri,l ≤ ri,b, we obtain

δ ≥ rlt(x1 + x2)Bl
t + (Bl

t)
−1∑d

i=1(ri,bt − ri,l)|Z
1,i
t Si

t | − rlt(δ1 + δ2)

≥ (Bl
t)
−1∑d

i=1(ri,bt − ri,l)|Z
1,i
t Si

t | ≥ 0,

which completes the proof. �

4.2.3 Price Independence of Hedger’s Endowment

Our next goal is to demonstrate that for a certain class of contracts the hedger’s price is independent
of the nonnegative endowment x1. To this end, we introduce a particular class of contracts with
monotone cash flows.

Assumption 4.1 The following conditions are satisfied by a contract (A,C):

(i) the process A−A0 is decreasing and belongs to the class A(P̃b),
(ii) the collateral C is given by (2.16) with the function q satisfying y + q(−y) ≥ 0 for all y ≥ 0.
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Condition (ii) holds, for instance, when q(y) = (1+α1)y+−(1+α2)y− for some constant haircuts
α1, α2 such that α2 ≤ 0, which means that the collateral posted by the hedger never exceeds the full
collateral. Indeed, it is clear that q is Lipschitz continuous, q(0) = 0, and for all y ≥ 0

y + q(−y) = y − (1 + α2)y = −α2y ≥ 0.

Proposition 4.4 Let Assumptions 2.2 and 2.3 be valid and ri,l ≤ rl ≤ ri,b. If x1 ≥ 0 and a contract
(A, q) satisfies Assumption 4.1, then the hedger’s price Ph

t (x1, A, q) is independent of x1, that is,
Ph
t (x1, A, q) = Ph

t (0, A, q) for every x1 ≥ 0.

Proof. From Proposition 4.2, we know that Ph(x1, A, q) = Y 1 where (Y 1, Z1) is the unique solution
to the BSDE {

dY 1
t = Z1,∗

t dS̃l,cld
t + fl

(
t, x1, Y

1
t , Z

1
t

)
dt+ dAt,

Y 1
T = 0,

where the generator fl is given by (4.6). Since fl(t, x1, 0, 0) = 0 and A−A0 is a decreasing process,
from the comparison theorem for BSDEs, we obtain Y 1 ≥ 0. Therefore, using the inequalities x1 ≥ 0
and y + q(−y) ≥ 0 for all y ≥ 0, we get

fl(t, x1, Y
1
t , Z

1
t ) = rlt(B

l
t)
−1(Z1

t )∗St + (Bl
t)
−1∑d

i=1r
i,l
t (Zi

tS
i
t)
− − (Bl

t)
−1∑d

i=1r
i,b
t (Zi

tS
i
t)

+

− rctq(−Y 1
t ) + rlt

(
Y 1
t + q(−Y 1

t )
)

where the last expression is independent of x1. Consequently, the price Ph
t (x1, A, q) = Y

1

t is also
independent of x1. �

A plausible financial interpretation of Proposition 4.4 is that the hedger will never need to
borrow cash using the account Bb when hedging the contract (A, q) and thus the actual level of his
nonnegative endowment is immaterial for his pricing problem. It is thus clear that a similar result
will not hold when x1 ≤ 0. By the same token, the independence property is unlikely to hold in
Bergman’s model, in general, since in the latter model the funding of positive positions in risky
assets may require borrowing from the cash account Bb.

4.2.4 Positive Homogeneity of Unilateral Price

We consider the hedger’s price and we show that it is positively homogeneous with respect to the
size of the contract and the nonnegative endowment. It is clear that this property is no longer valid
if only the size of the contract, but not the level of the hedger’s endowment, is inflated (or deflated)
through a nonnegative scaling factor λ, unless the price is known to be independent of the hedger’s
endowment as happens, for instance, under the assumptions of Proposition 4.4.

Proposition 4.5 Let Assumptions 2.2 and 2.3 be valid and ri,l ≤ rl ≤ ri,b. Assume that the
function q in (2.16) is positively homogeneous, that is, q(λy) = λq(y) for all λ ≥ 0. If x1 ≥ 0, then

for any contract (A, q) such that A − A0 ∈ A(P̃b) the hedger’s price is positively homogeneous: for
every λ ≥ 0 and t ∈ [0, T ]

Ph
t (λx1, λA, q) = λPh

t (x1, A, q), P̃l − a.s. (4.10)

Proof. It is clear that (4.10) holds for λ = 0. Now we suppose that λ > 0. From Proposition 4.2,
Ph(x1, A, q) = Y 1 where (Y 1, Z1) is the unique solution to BSDE (4.5) with the generator fl given

by (4.6). Therefore, Ph(λx1, λA, q) = Ỹ 1 where (Ỹ 1, Z̃1) is the unique solution to the BSDE{
dỸ 1

t = Z̃1,∗
t dS̃l,cld

t + fl
(
t, λx1, Ỹ

1
t , Z̃

1
t

)
dt+ λ dAt,

Ỹ 1
T = 0.
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Hence for Y := λY 1 and Z = λZ1 we have{
dYt = Z∗t dS̃

l,cld
t + λfl

(
t, x1, λ

−1Yt, λ
−1Zt

)
dt+ λ dAt,

YT = 0.

To complete the proof, it suffices to show that λfl
(
t, x1, λ

−1y, λ−1z
)

= fl(t, λx1, y, z) for every λ > 0.
This can be checked easily using (4.6) and the assumption that q(λy) = λq(y) for every λ > 0. �

4.2.5 Model with an Uncertain Cash Rate

Let r be any G-adapted process such that rt ∈ [rlt, r
b
t ] for every t ∈ [0, T ]. We now consider the

market model with the single cash rate r in which the hedger and the counterparty have prices
Ph,r and P c,r independent of their nonnegative endowments. The price Ph,r = Ȳ 1 can be found by
solving the BSDE {

dȲ 1
t = Z̄1,∗

t dS̃l,cld
t + fr(t, Ȳ 1

t , Z̄
1
t ) dt+ dAt,

YT = 0,
(4.11)

where the generator fr equals

fr(t, y, z) = rlt(B
l
t)
−1z∗St + (Bl

t)
−1∑d

i=1r
i,l
t (ziSi

t)
− − (Bl

t)
−1∑d

i=1r
i,b
t (ziSi

t)
+

+ rty + (rt − rct )q(−y). (4.12)

The price P c,r = Ȳ 2 can be found by solving the BSDE{
dȲ 2

t = Z̄2,∗
t dS̃l,cld

t + gr(t, Ȳ 2
t , Z̄

2
t ) dt+ dAt,

YT = 0,
(4.13)

where the generator gr equals

gr(t, y, z) = rlt(B
l
t)
−1z∗St − (Bl

t)
−1∑d

i=1r
i,l
t (−ziSi

t)
− + (Bl

t)
−1∑d

i=1r
i,b
t (−ziSi

t)
+

+ rty + (rt − rct )q(−Ȳ 1). (4.14)

Standard arguments show that BSDEs (4.11) and (4.13) have unique solutions.

Lemma 4.2 If ri,l ≤ ri,b for all i = 1, 2, . . . , d, then the inequality P c,r ≤ Ph,r holds.

Proof. It suffices to observe that

fr(t, Ȳ 1
t , Z̄

1
t )− gr(t, Ȳ 1

t , Z̄
1
t ) = (Bl

t)
−1∑d

i=1(ri,lt − r
i,b
t )
(
((Z̄1

t )iSi
t)
− + ((Z̄1

t )iSi
t)

+
)
≤ 0

and to apply the comparison theorem for BSDEs. �

We have the following result, which can be seen as an analogue to Proposition 2.5. As in Remark
2.1, we note that inequality (4.15) holds when q is an increasing function and rct ≥ rt for all t ∈ [0, T ].

Proposition 4.6 Let Assumptions 2.2 and 2.3 be valid and ri,l ≤ rl ≤ ri,b.
(i) For any contract (A, q) where A ∈ A(P̃l), the unique no-arbitrage price in the model with the
single cash rate r satisfies Ph,r ≤ Ph(0, A, q).
(ii) If the function q in (2.16) satisfies for all t ∈ [0, T ]

(rt − rct )
[
q(−Ph,r

t )− q(−Ph
t (0, A, q))

]
≤ 0 (4.15)

then also P c(0,−A,−q; 0) ≤ P c,r and thus

P c(0,−A,−q; 0) ≤ P c,r ≤ Ph,r ≤ Ph(0, A, q).
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Proof. The method of the proof is analogous to the proof of Proposition 2.5.

(i) We first consider solutions to BSDEs (4.5) and (4.11) with generators fl and fr given by (4.6)
and (4.12), respectively. Since x1 = 0 and r ∈ [rl, rb], we obtain

fl(t, 0, Ȳ
1
t , Z̄

1
t )− fr(t, Ȳ 1

t , Z̄
1
t ) = (rlt − rt)(Ȳ 1

t + q(−Ȳ 1
t ))+ + (rt − rbt )(Ȳ 1

t + q(−Ȳ 1
t ))− ≤ 0

and thus, from the comparison theorem for BSDEs, we obtain Ph,r = Ȳ 1 ≤ Y 1 = Ph(0, A, q).

(ii) We now consider solutions to BSDEs (4.7) and (4.13) with generators gl and gr given by (4.8)
and (4.14), respectively. Since x1 = x2 = 0, we obtain

gr(t, Ȳ 2
t , Z̄

2
t )− gl(t, 0, Ȳ 2

t , Z̄
2
t ) ≤ (rt − rct )

(
q(−Ȳ 1

t )− q(−Y 1
t )
)
≤ 0

where the last inequality follows from (4.15). We conclude that P c(0,−A,−q; 0) ≤ P c,r. �

4.3 Negotiated Collateral

In the final section, we continue the analysis of the model with idiosyncratic funding costs for risky
assets by focusing on the case where the collateral amount C is negotiated between the counterpar-
ties. Specifically, as in Section 3, we postulate that the collateral satisfies Assumption 3.1. Recall
that in that case we have Ph = Ph(x1, A, q;x2) and P c = P c(x2,−A,−q;x1), meaning that the
unilateral prices depend on the vector (x1, x2) of endowments. Our goal is to give conditions en-
suring that the range of fair bilateral prices for collateralized European claims is nonempty. The
following result, which is a minor extension of Proposition 4.2 (see also Proposition 3.1), furnishes
fully coupled pricing BSDEs for both parties.

Proposition 4.7 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 2.2 and 3.1 be valid. For any contract (A, q̄)

such that A ∈ A(P̃l) we have (Ph, P c)∗ = Y where (Y,Z) solves the two-dimensional fully coupled
BSDE {

dYt = Z∗t dS̃
l,cld
t + g

(
t, Yt, Zt

)
dt+ dAt,

YT = 0,
(4.16)

where g = (g1, g2)∗, A = (A,A)∗ and, for all y = (y1, y2)∗ ∈ R2, z = (z1, z2) ∈ Rd×2,

g1(t, y, z) = rlt(B
l
t)
−1z∗1St + (Bl

t)
−1∑d

i=1r
i,l(zi1S

i
t)
− − (Bl

t)
−1∑d

i=1r
i,b
t (zi1S

i
t)

+ − x1Bl
tr

l
t

− rct q̄(−y1,−y2) + rlt

(
y1 + q̄(−y1,−y2) + x1B

l
t

)+
(4.17)

− rbt
(
y1 + q̄(−y1,−y2) + x1B

l
t

)−
and

g2(t, y, z) = rlt(B
l
t)
−1z∗2St − (Bl

t)
−1∑d

i=1r
i,l(−zi2Si

t)
− + (Bl

t)
−1∑d

i=1r
i,b
t (−zi2Si

t)
+ + x2B

l
tr

l
t

− rct q̄(−y1,−y2)− rlt
(
− y2 − q̄(−y1,−y2) + x2B

l
t

)+
(4.18)

+ rbt

(
− y2 − q̄(−y1,−y2) + x2B

l
t

)−
.

We henceforth work under Assumption 3.2 and 3.3 and thus we deal with a single risky asset,
denoted as S. We study the valuation and hedging of a European contingent claim (HT , q̄). We
note that BSDE (4.16) becomes{

dYt = (Bl
t)
−1Ztσ(t, St) dWt +

(
g
(
t, Yt, Zt

)
+ (Bl

t)
−1σ(t, St)ltZt

)
dt+ dAt,

YT = 0,
(4.19)
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where the process l is given by (3.7). As in Section 3.1, it suffices to examine the following BSDE{
dYt = Zt dW̃

l
t + g

(
t, Yt, (σ(t, St))

−1Bl
tZt

)
dt,

YT = (−HT ,−HT )∗.

We are now in a position to study the range of fair bilateral prices at time t for a collateralized
European claim.

Proposition 4.8 Let x1 ≥ 0, x2 ≥ 0 and Assumptions 3.1, 3.2 and 3.3 be satisfied. Then for any
collateralized European claim (HT , q̄) where HT ∈ L2(Ω,GT , P̃l) we have, for every t ∈ [0, T ],

P c
t (x2,−HT ,−q̄;x1) ≤ Ph

t (x1, HT , q̄;x2), P̃l − a.s.

Proof. As before, we denote σ̄−1t := (σ(t, St))
−1. It is sufficient to check that the functions

h1(t, y1, y2, z1, z2) := −g1
(
t, y1, y2, σ̄

−1
t Bl

tz1, σ̄
−1
t Bl

tz2
)

and

h2(t, y1, y2, z1, z2) := −g2
(
t, y1, y2, σ̄

−1
t Bl

tz1, σ̄
−1
t Bl

tz2
)

where g1 and g2 are given by (4.17) and (4.18) with d = 1, respectively, satisfy Assumption 5.1 and
condition (5.5). It is easy to check that Assumption 5.1 holds. We will check that condition (5.5) is
satisfied as well. We set

δ1 := y+1 + y2 + q̄(−y+1 − y2,−y2) + x1B
l
t

and

δ2 := −y2 − q̄(−y+1 − y2,−y2) + x2B
l
t.

Then

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

= −g1(t, y+1 + y2, y2, σ̄
−1
t Bl

t(z1 + z2), σ̄−1t Bl
tz2) + g2(t, y+1 + y2, y2, σ̄

−1
t Bl

t(z1 + z2), σ̄−1t Bl
tz2)

= −rltσ̄−1t z1St − r1,lt (σ̄−1t (z1 + z2)St)
− − r1,lt (−σ̄−1t z2St)

− + r1,bt (σ̄−1t (z1 + z2)St)
+

+ r1,bt (−σ̄−1t z2St)
+ + (x1 + x2)Bl

tr
l
t − rlt(δ+1 + δ+2 ) + rbt (δ

−
1 + δ−2 ).

Since rlt ≤ rbt , we have

rlt(δ
+
1 + δ+2 )− rbt (δ−1 + δ−2 ) ≤ rlty+1 + (x1 + x2)Bl

tr
l
t.

Consequently, using also the inequalities r1,lt ≤ rlt ≤ ri,b, we obtain

h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

≥ −rlty+1 − rltσ̄
−1
t z1St − r1,lt (σ̄−1t (z1 + z2)St)

− − r1,lt (−σ̄−1t z2St)
−

+ r1,bt (σ̄−1t (z1 + z2)St)
+ + r1,bt (−σ̄−1t z2St)

+ ≥ −rlty+1 ,

where we used the fact that for all real numbers u1, u2 and all t ∈ [0, T ]

−rltu1 − r
1,l
t (u1 + u2)− − r1,lt (−u2)− + r1,bt (u1 + u2)+ + r1,bt (−u2)+

= −rlt(u1 + u2)− rlt(−u2)− r1,lt (u1 + u2)− − r1,lt (−u2)− + r1,bt (u1 + u2)+ + r1,bt (−u2)+

= (rlt − r
1,l
t )(u1 + u2)− + (rlt − r

1,l
t )(−u2)− + (r1,bt − rlt)(u1 + u2)+ + (r1,bt − rlt)(−u2)+ ≥ 0.

By arguing as in the last part of the proof of Proposition 3.2, we conclude that condition (5.5) is
satisfied and thus the asserted inequality follows from Proposition 5.2. �
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5 Backward Stochastic Viability Property

To obtain the range of fair bilateral prices in the case of the negotiated collateral, one needs to
compare the two components of a solution to the fully coupled BSDEs (3.3) or (3.11). For BSDEs
driven by a general continuous martingale, this is a challenging open problem and thus we will
focus on pricing BSDEs driven by a Brownian motion. Under this assumption, using the ideas from
Hu and Peng [15] and the characterization for the backward stochastic viability property given by
Buckdahn et al. [7], we will be able to compare the two one-dimensional components, Y 1 and Y 2, of
a unique solution to BSDE (3.3) by producing first a suitable version of component-wise comparison
theorem (see Proposition 5.2 below).

Let (Ω,G,P) be a probability space endowed with the filtration G generated by a d-dimensional
Brownian motion W . We now consider the following n-dimensional BSDE

Yt = η +

∫ T

t

h(s, Ys, Zs) ds−
∫ T

t

Zs dWs (5.1)

where η is an Rn-valued random variable and the generator h satisfies the following assumption.

Assumption 5.1 Let the mapping h : Ω× [0, T ]× Rn × Rn×d → Rn satisfy:
(i) P-a.s., for all (y, z) ∈ Rn × Rn×d, the process (h(t, y, z))t∈[0,T ] is G-adapted and the mapping
t→ h(t, y, z) is continuous,
(ii) the function h is uniformly Lipschitz continuous with respect to (y, z): there exists a constant
L ≥ 0 such that P-a.s. for all t ∈ [0, T ] and y, y′ ∈ Rn, z, z′ ∈ Rn×d

|h(t, y, z)− h(t, y′, z′)| ≤ L(‖y − y′‖+ ‖z − z′‖),

(iii) the random variable sup t∈[0,T ] |h(t, 0, 0)|2 is square-integrable under P.

Let us recall the definition of the backward stochastic viability property (BSVP, for short) intro-
duced by Buckdahn et al. [7]. In Definition 5.1, by a solution of BSDE (5.1) over [0, U ] we mean a
pair (Y, Z) ∈ H2,n ×H2,n×d where Y is a continuous process such that for every t ∈ [0, U ]

Yt = η +

∫ U

t

h(s, Ys, Zs) ds−
∫ U

t

Zs dWs. (5.2)

Note that Assumption 5.1 ensures that BSDE (5.2) admits a unique solution (Y, Z) over [0, U ] for
every U ∈ [0, T ] (see Proposition 2.1 in [7]).

Definition 5.1 We say that BSDE (5.1) has the backward stochastic viability property in K ⊂ Rn

if for every U ∈ [0, T ] and every square-integrable, GU -measurable random variable η with values in
K, the unique solution (Y,Z) to BSDE (5.1) over [0, U ] satisfies P(Yt ∈ K for all t ∈ [0, U ]) = 1.

For a nonempty, closed, convex set K ⊂ Rn, let ΠK(y) be the projection of a point y ∈ Rn

onto K and let dK(y) be the distance between y and K. The following result was established by
Buckdahn et al. [7] (see Theorem 2.5 in [7]).

Proposition 5.1 Let the generator h satisfy Assumption 5.1. Then BSDE (5.1) has the BSVP in
K if and only if for any t ∈ [0, T ], z ∈ Rn×d and y ∈ Rn such that d2K(·) is twice differentiable at y,
we have

4〈y −ΠK(y), h(t,ΠK(y), z)〉 ≤ 〈D2d2K(y)z, z〉+Md2K(y) (5.3)

where M > 0 is a constant independent of (t, y, z).

Motivated by results in Hu and Peng [15], we will show that Proposition 5.1 can be used to
establish a convenient version of component-wise comparison theorem for the two-dimensional BSDE.
Specifically, we prove the following theorem, in which we denote Y = (Y 1, Y 2)∗, Z = (Z1, Z2)∗ and
h(t, y, z) =

(
h1(t, y1, y2, z1, z2), h2(t, y1, y2, z1, z2)

)∗
.
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Proposition 5.2 Consider the two-dimensional BSDE

Yt = η +

∫ T

t

h(s, Ys, Zs) ds−
∫ T

t

Zs dWs (5.4)

where W is the d-dimensional Brownian motion and the generator h = (h1, h2)∗ satisfies Assumption
5.1. The following statements are equivalent:
(i) for every U ∈ [0, T ] and every square-integrable, GU -measurable random variables η1, η2 such that
η1 ≥ η2, the unique solution (Y,Z) to (5.4) on [0, U ] satisfies Y 1

t ≥ Y 2
t for all t ∈ [0, U ],

(ii) there exists M > 0 such that the following inequality holds, for all y1, y2 ∈ R and z1, z2 ∈ Rd,

−4y−1
(
h1(t, y+1 + y2, y2, z1 + z2, z2)− h2(t, y+1 + y2, y2, z1 + z2, z2)

)
≤M(y−1 )2 + 2‖z1‖21{y1<0}, P− a.s.

(5.5)

Proof. Let us denote Ỹ = (Y 1 − Y 2, Y 2)∗, Z̃ = (Z1 − Z2, Z2)∗, η̃ = (η1 − η2, η2)∗ and h̃(t, y, z) =

(h̃1(t, y, z), h̃2(t, y, z))∗ where

h̃1(t, y, z) := h1(t, y1 + y2, y2, z1 + z2, z2)− h2(t, y1 + y2, y2, z1 + z2, z2)

and
h̃2(t, y, z) := h2(t, y1 + y2, y2, z1 + z2, z2).

Then statement (i) is equivalent to the following condition:
(iii) for any date U ∈ [0, T ] and an arbitrary η̃ = (η̃1, η̃2) such that η̃1 ≥ 0, the unique solution

(Ỹ , Z̃) to the BSDE

Ỹt = η̃ +

∫ U

t

h̃(s, Ỹs, Z̃s) ds−
∫ U

t

Z̃s dWs (5.6)

satisfies Ỹ 1
t ≥ 0 for all t ∈ [0, U ]. By applying Proposition 5.1 to BSDE (5.6) and the closed, convex

set K = R+ × R, we see that (iii) is in turn equivalent to (ii), since (5.3) coincides with (5.5) when
K = R+ × R. �
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