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Abstract

Bielecki and Rutkowski (2015) introduced and studied a generic non-linear market model,
which includes several risky assets, multiple funding accounts and margin accounts. In this
paper, we examine the pricing and hedging of contract both from the perspective of the hedger
and the counterparty with arbitrary initial endowments. We derive inequalities for unilateral
prices and we study the range of fair bilateral prices. We also examine the positive homogeneity
and monotonicity of unilateral prices with respect to the initial endowments. Our study hinges
on results from Nie and Rutkowski (2014a) for BSDEs driven by continuous martingales, but
we also derive the pricing PDEs for path-independent contingent claims of a European style in
a Markovian framework.
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1 Introduction

Bielecki and Rutkowski (2015) introduce and study a generic non-linear trading model for collat-
eralized contracts, which includes several risky assets, multiple funding accounts and the margin
account (for a related research, see also Brigo et al. (2011), Brigo and Pallavicini (2014), Burgard
and Kjaer (2009, 2011), Crépey et al. (2014), Pallavicini et al. (2012), and Piterbarg (2010)).
Using a suitable version of the concept of no-arbitrage, they first discuss the hedger’s fair price for
a contract in the market model without collateralization. Subsequently, under the assumption that
a collateralized contract can be replicated, they define the hedger’s ex-dividend price. They also
show that the theory of backward stochastic differential equations (BSDEs) is an important tool to
compute the ex-dividend price (see Propositions 5.2 and 5.4 in Bielecki and Rutkowski (2015)). It
is worth mentioning that the pricing and hedging arguments in Bielecki and Rutkowski (2015) are
given from the perspective of the hedger and no attempt was made there to study the range of fair
bilateral prices.

In this work, we examine the issue of pricing and hedging of an over-the-counter contract from
the perspective of the hedger and his counterparty. Since we work within a non-linear trading set-up,
where the non-linearity may arise due to the different cash interest rates, funding costs for risky
assets and asymmetric remuneration of the margin account (that is, collateral), the prices computed
by the two parties will typically be different. One of our goals is to compare the unilateral prices
and to derive the range for no-arbitrage prices. In the case of a model with different lending and
borrowing rates, as studied by Bergman (1995), the no-arbitrage price of any contingent claims must
belong to an arbitrage-free range with the lower (resp., upper) bound given by the counterparty’s
(resp., the hedger’s) price of the contract. In a recent work by Mercurio (2013), the author extended
the results from Bergman (1995) by examining the pricing of collateralized European options.

Bielecki and Rutkowski (2015) argue that the initial endowments of the counterparties play an
important role in derivatives pricing within a non-linear set-up. Indeed, one may show that the ex-
dividend price may depend on an initial endowment, in general. Note in this regard that the results
established in Bergman (1995) and Mercurio (2013) only cover the case of null initial endowments.
One of our main goals is to examine how the initial endowment of each party affects his unilateral
price. For the sake of concreteness, we consider the model with partial netting and rehypothecated
cash collateral, which was introduced in Bielecki and Rutkowski (2015). For a similar analysis
within the set-up of Bergman’s model, we refer to Nie and Rutkowski (2015). Although we study
collateralized contracts, we focus on general properties of prices under funding costs, rather than the
impact of the counterparty credit risk. For this reason, the default times and close-out payoffs are
not introduced in our set-up (as opposed, for instance, to recent papers by Crépey (2015a, 2015b)
or Bichuch et al. (2015a, 2015b)).

This work is organized as follows. In Section 2, we describe the non-linear trading model consid-
ered in this work. In Section 3, we study the no-arbitrage property and we extend some preliminary
results from Bielecki and Rutkowski (2015) to contracts with an exogenous margin account. We also
introduce and discuss the concepts of fair bilateral prices and bilaterally profitable prices. In Section
4, we show that the pricing and hedging problems for both parties can be represented by solutions
of certain BSDEs and we establish the existence and uniqueness results for these BSDEs. Although
the BSDEs are well known to be a convenient tool to deal with prices and hedging strategies (see,
for instance, El Karoui et al. (1997)), we stress that the BSDEs studied in this work are formally de-
rived using no-arbitrage arguments under a judiciously chosen martingale measure, whereas in some
recent papers on funding costs the existence of a ‘risk-neutral probability’ is postulated a priori. In
Section 5, which is the main part of this work, we examine the properties of unilateral prices. We
establish there several inequalities for unilateral prices, which in turn allow us to obtain the range
for fair bilateral prices. We also examine the monotonicity and positive homogeneity of prices with
respect to the initial endowment. In Section 6, we derive the pricing PDEs for both parties within
a Markovian framework. We conclude the paper by presenting an example of a contract with a
non-empty interval of bilaterally profitable prices.
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2 Trading under Funding Costs and Collateralization

Let T > 0 be a fixed finite trading horizon date for our model of the financial market. We denote
by (Ω,G,G,P) a filtered probability space where the filtration G = (Gt)t∈[0,T ] satisfies the usual
conditions of right-continuity and completeness. For convenience, we assume that the initial σ-field
G0 is trivial. All probability measures are assumed to be defined on (Ω,GT ). Moreover, all processes
introduced in what follows are implicitly assumed to be G-adapted. We use the following notation
for the market data where i = 1, 2, . . . , d:
Bl (resp., Bb) – the unsecured lending (resp., borrowing) cash account,
Si – the ex-dividend price of the ith risky asset with the cumulative dividend stream Ai,
Bi,b – the funding account for long (cash) positions in the ith risky asset,
Bc,l (resp., Bc,b) – the collateral remuneration processes specifying the interest received (resp., paid)
on the cash collateral pledged (resp., received) by the hedger.

The processes S1, S2, . . . , Sd model prices of arbitrary traded securities, such as, stocks, stock
options, interest rate swaps, currency options, cross-currency swaps, CDSs, etc., and thus they are
not assumed to be strictly positive.

Assumption (M.1) We postulate that:
(i) for each i = 1, 2, . . . , d, the price process Si is a semimartingale and the cumulative dividend
stream Ai is a process of finite variation with Ai

0 = 0,
(ii) Bl, Bb, Bc,l, Bc,b and Bi,b are strictly positive, continuous processes of finite variation with

Bl
0 = Bb

0 = Bc,l
0 = Bc,b

0 = Bi,b
0 = 1 for i = 1, 2 . . . , d.

Definition 2.1 By a bilateral financial contract, or simply a contract, we mean an arbitrary càdlàg
process A of finite variation, which represents the cumulative cash flows of a given contract from
time 0 till its maturity date T .

The process A models all cash flows, which are either paid out from the wealth or added to the
wealth, as seen from the perspective of the hedger. Hence the process −A plays an analogous role
for the counterparty. We assume for the moment that a contract is uncollateralized; additional cash
flows due to the presence of the margin account will be studied in foregoing subsections. Note also
that the process A includes the initial cash flow A0 of a contract at its inception date t0 = 0. For
instance, if a contract has the initial price p0 and stipulates that the hedger will receive the cash
flows Ā1, Ā2, . . . , Āk at times t1, t2, . . . , tk ∈ (0, T ], then we set A0 = p0 so that

At = p01[0,T ](t) +

k∑
l=1

Āl 1[tl,T ](t).

We use the symbol p0, rather than Ā0, in order to emphasize that all future cash flows Āl for
l = 1, 2, . . . , k are explicitly specified by the contract’s covenants, but the initial cash flow (i.e., the
contract’s price) is yet to be formally defined and computed.

Unilateral valuation of a derivative contract A at time t means searching for the range of fair
values of all future cash flows of A (in general, given as A − At) from the viewpoint of either the
hedger or the counterparty. Although we adopt the same valuation paradigm for the two parties, due
either to the asymmetry in their trading costs and opportunities or simply the asymmetry of cash
flows and a non-linear dynamics of wealth processes, the two parties will typically obtain different
values for their respective unilateral prices for A.

2.1 Collateral with Rehypothecation

Let us now examine the situation when the hedger and the counterparty enter a collateralized
contract with the collateral process C representing the margin account. It is convenient to decompose
C as follows

(2.1) Ct = Ct1{Ct≥0} + Ct1{Ct<0} = C+
t − C−

t
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where for any real number x we denote x+ = max(x, 0) and x− = max(−x, 0), so that x = x+−x−.
By convention, C+

t := Ct1{Ct≥0} is the cash collateral received at time t by the hedger, whereas

C−
t := −Ct1{Ct<0} represents the cash collateral provided at time t by the hedger. We postulate

that CT = 0 to ensure that the collateral is returned in full to the pledging party when a contract
matures, provided that the default event has not occurred prior to or at time T . The cash flows A are
supplemented by the collateral process C, so that a collateralized contract is hereafter represented
as a pair (A,C). The prevailing market practice is rehypothecation, which refers to the situation
where a bank is allowed to reuse the collateral pledged by its counterparties as collateral for its own
borrowing, as opposed to segregation where the use of collateral is not possible. We work under a
stylized convention of full rehypothecation, meaning that the cash collateral received by the hedger
is used for trading without any restrictions. If the hedger is a collateral provider, then a particular
convention regarding segregation or rehypothecation is obviously immaterial for the dynamics of the
value process of his portfolio of traded assets.

The collateral account Bc,l (resp., Bc,b) plays the following role: if the hedger provides (resp.,
receives) cash collateral with the amount C− (resp., C+), then he receives (resp., pays) interest
on this amount, as specified by the process Bc,l (resp., Bc,b). This means that if the counterparty
provides (resp., receives) collateral, then he receives (resp., pays) to the hedger the interest deter-
mined by Bc,b (resp., Bc,l). Hence the counterparties are exposed to different conditions, unless Bc,l

coincides with Bc,b. For the sake of simplicity, the hedger and counterparty are implicitly assumed
to be default-free before the maturity date T of a contract at hand. In the presence of default events,
we would need to specify the close-out payoff and to deal with the pricing BSDE up to a random
time horizon. Finally, it is worth stressing that none of the processes C,Bc,l and Bc,b is assumed to
be a traded asset – they should rather be seen as market frictions.

2.2 Market Model with Partial Netting

We are now in a position to introduce trading strategies based on a finite family of traded assets. A
trading strategy is discussed from the perspective of the hedger who enters into a contract (A,C)
at time 0. To examine the situation of his counterparty, it suffices to replace (A,C) by (−A,−C)
in the foregoing considerations. Our first goal is to obtain the dynamics of the value process of
the hedger’s trading strategy. For concreteness, we focus on a stylized market model with partial
netting, which was introduced in Bielecki and Rutkowski (2015). Specifically, we assume that:
(i) short cash positions in risky assets S1, S2, . . . , Sd are aggregated and the proceeds from short-
selling are used for trading,
(ii) long cash positions in risky assets Si are assumed to be funded from their respective funding
accounts Bi,b, which can be interpreted as secured loans in the repo market,
(iii) all positive and negative cash flows from a contract (A,C) and a trading strategy φ, inclusive
of the proceeds from short-selling of risky assets, are reinvested in traded assets.

A hedger’s trading strategy is formally composed of his initial endowment x, a process φ =(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb, ηl, ηb

)
and a contract (A,C). The components of φ represent posi-

tions in the risky assets Si, i = 1, 2, . . . , d, the funding accounts Bi,b, i = 1, 2, . . . , d for risky assets,
the unsecured lending cash account Bl, the unsecured borrowing cash account Bb, and the collateral
remuneration accounts Bc,l and Bc,b. The following standing assumption formalizes the postulates
of the trading model studied in this work.

Assumption (M.2) We postulate that:
(i) ψl

t ≥ 0, ψb
t ≤ 0 and ψl

tψ
b
t = 0 for all t ∈ [0, T ],

(ii) for every i = 1, 2, . . . , d and all t ∈ [0, T ]

(2.2) ψi,b
t = −(Bi,b

t )−1(ξitS
i
t)

+,

(iii) ηlt = (Bc,l
t )−1C−

t and ηbt = −(Bc,b
t )−1C+

t for all t ∈ [0, T ].

The hedger’s initial endowment x is interpreted as either a positive or negative amount of cash
he owns before entering into a contract (A,C). After he engages in a transaction at time 0, his
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initial wealth amounts to V0 := x + p0 where p0 is the initial price of (A,C). Finally, since the
collateral amount C0 is either pledged or received and, in the latter case, it is rehypothecated by
the hedger at time 0, the initial value of the hedger’s trading strategy is equal to V p

0 := x+ p0 +C0

where the superscript p stands for portfolio. Note also that in the case of a segregated collateral,
the initial value of the hedger’s portfolio would be equal to x + p0 − C−

0 since when the hedger is
collateral taker, he is not allowed to use for his trading purposes the cash collateral pledged by the
counterparty.

The next definition introduces a suitable version of the self-financing property for a trading strat-
egy. Observe that the integrals

∫ t

0
ηlu dB

c,l
u and

∫ t

0
ηbu dB

c,b
u represent the accrued interest generated

by the margin account. Note also that Bc,l and Bc,b do not appear in (2.3), since they are not traded
assets, although they impact the dynamics of the value process, as can be seen from (2.4). Formally,
the hedger’s portfolio of traded assets is given as the vector

(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb

)
, but

the value process of a portfolio depends on all four components of a self-financing trading strategy
(x, φ,A,C) and thus it is denoted as V p(x, φ,A,C).

Definition 2.2 A hedger’s trading strategy (x, φ,A,C) is self-financing whenever the portfolio’s
value V p(x, φ,A,C), which is given by

(2.3) V p
t (x, φ,A,C) =

d∑
i=1

ξitS
i
t +

d∑
i=1

ψi,b
t Bi,b

t + ψl
tB

l
t + ψb

tB
b
t ,

satisfies, for every t ∈ [0, T ],

V p
t (x, φ,A,C) = x+

d∑
i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +

d∑
i=1

∫ t

0

ψi,b
u dBi,b

u +

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u

+

∫ t

0

ηlu dB
c,l
u +

∫ t

0

ηbu dB
c,b
u + Ct +At.(2.4)

From equations (2.2) and (2.3), we obtain

V p
t (x, φ,A,C) = ψl

tB
l
t + ψb

tB
b
t −

d∑
i=1

(ξitS
i
t)

−.

Since we postulated that ψl
t ≥ 0, ψb

t ≤ 0 and ψl
tψ

b
t = 0 for all t ∈ [0, T ], we also have that

(2.5) ψl
t = (Bl

t)
−1

(
V p
t (x, φ,A,C) +

d∑
i=1

(ξitS
i
t)

−
)+

and

(2.6) ψb
t = −(Bb

t )
−1

(
V p
t (x, φ,A,C) +

d∑
i=1

(ξitS
i
t)

−
)−
.

Consequently, we obtain the following result showing that, for a given triplet (x,A,C), the choice of
the process ξ uniquely determines the trading strategy (x, φ,A,C) and thus also the unique value
process V p(x, φ,A,C).

Lemma 2.3 Under Assumptions (M.1)–(M.2), the dynamics of a self-financing trading strategy
(x, φ,A,C) are uniquely determined by the initial endowment x and processes ξ, A and C through
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the following equation

dV p
t (x, φ,A,C) =

d∑
i=1

ξit (dS
i
t + dAi

t)−
d∑

i=1

(ξitS
i
t)

+(Bi,b
t )−1 dBi,b

t + dAC
t

+
(
V p
t (x, φ,A,C) +

d∑
i=1

(ξitS
i
t)

−
)+

(Bl
t)

−1 dBl
t(2.7)

−
(
V p
t (x, φ,A,C) +

d∑
i=1

(ξitS
i
t)

−
)−

(Bb
t )

−1 dBb
t

where AC := A+ C + FC and

FC
t :=

∫ t

0

ηlu dB
c,l
u +

∫ t

0

ηbu dB
c,b
u =

∫ t

0

C−
u (Bc,l

u )−1 dBc,l
u −

∫ t

0

C+
u (Bc,b

u )−1 dBc,b
u .

We also set (−A)−C := −A − C + F−C , so that the dynamics for the self-financing trading
strategy (x, φ,−A,−C) can be obtained by simply replacing AC by (−A)−C in equation (2.7). Note
that F−C ̸= −FC and thus also (−A)−C ̸= −AC , in general.

Definition 2.4 The process ΘC is given by the equation

ΘC
t := AC

t + (−A)−C
t = FC

t + F−C
t =

∫ t

0

|Cu|(Bc,l
u )−1 dBc,l

u −
∫ t

0

|Cu|(Bc,b
u )−1 dBc,b

u .

To examine the no-arbitrage property of a model, we need to introduce the process V (x, φ,A,C)
representing the hedger’s wealth. In the financial interpretation, the hedger’s wealth Vt(x, φ,A,C)
represents the cash value of the hedger’s holdings under the assumption that the portfolio was
liquidated at time t, the collateral Ct was returned to the pledging party and the contract was
deemed to be void. At time 0, the hedger’s wealth equals x+ p, as was already mentioned.

Definition 2.5 For any self-financing trading strategy (x, φ,A,C), the hedger’s wealth is given by
the equality V (x, φ,A,C) = V p(x, φ,A,C)− C.

Obviously, the equality V (x, φ,A,C) = V p(x, φ,A,C) holds when the process C vanishes. Also,
the equality VT (x, φ,A,C) = V p

T (x, φ,A,C) is always satisfied since CT = 0.

Remark 2.6 Formally, the self-financing property of the hedger’s strategy can be defined either in
terms of the dynamics of the portfolio’s value process V p(x, φ,A,C) or, equivalently, in term of the
dynamics of the hedger’s wealth V (x, φ,A,C). We prefer to focus on the process V p(x, φ,A,C) to
emphasize the fact that the self-financing property is primarily concerned with specifying the manner
in which the hedger’s portfolio of traded assets can be continuously rebalanced by the hedger.

The following assumption will allow us to derive more explicit expressions for the wealth dynamics
and thus also to compute the so-called generator (also known as the driver) for the associated BSDEs.

Assumption (M.3) We postulate that:
(i) the processes Bl, Bb and Bi,b are absolutely continuous and

dBl
t = rltB

l
t dt, dBb

t = rbtB
b
t dt, dBi,b

t = ri,bt Bi,b
t dt,

for some G-adapted processes rl, rb and ri,b such that 0 ≤ rl ≤ rb and rl ≤ ri,b for i = 1, 2, . . . , d,
(ii) the processes Bc,b and Bc,l are absolutely continuous and

dBc,b
t = rc,bt Bc,b

t dt, dBc,l
t = rc,lt Bc,l

t dt,
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for some G-adapted processes rc,b and rc,l satisfying rc,l ≤ rc,b.

We henceforth work under Assumptions (M.1)–(M.3). From part (ii) in Assumption (M.3), we
infer the following representation for the process ΘC

(2.8) ΘC
t =

∫ t

0

(rc,lu − rc,bu )|Cu| du.

The inequality rc,l ≤ rc,b means that the counterparty enjoys an advantage over the hedger with
reference to the margin account. Indeed, when pledging (resp., receiving) the collateral, the coun-
terparty obtains a higher (resp., lower) interest than the hedger in analogous circumstances. Since
rc,l ≤ rc,b, the process ΘC is decreasing with ΘC

0 = 0, so that ΘC
t ≤ 0 for all t ∈ [0, T ]. It is worth

noting that if rc,l ≥ rc,b, so that the hedger has an advantage over the counterparty in regard to the
margin account, the process ΘC is increasing and some comparison results established in what fol-
lows are no longer valid. We will sometimes work under the following additional assumption, which
restores the symmetry between the two parties in regard to remuneration of the margin account.

Assumption 2.7 The collateral accounts Bc,l and Bc,b satisfy Bc,l = Bc,b = Bc where dBc
t =

rctB
c
t dt so that, for all t ∈ [0, T ],

FC
t = −

∫ t

0

Cu(B
c
u)

−1 dBc
u = −

∫ t

0

rcuCu du = −F−C
t

and thus the equality (−A)−C = −AC holds.

The discounted cumulative prices of risky assets are given by the following expressions

S̃i,l,cld
t := (Bl

t)
−1Si

t +

∫
(0,t]

(Bl
u)

−1 dAi
u

and

S̃i,b,cld
t := (Bb

t )
−1Si

t +

∫
(0,t]

(Bb
u)

−1 dAi
u.

We also denote

(2.9) AC,l
t :=

∫
(0,t]

(Bl
u)

−1 dAC
u , AC,b

t :=

∫
(0,t]

(Bb
u)

−1 dAC
u .

In view (2.7), the following lemma is straightforward (see Lemma 5.1 in Bielecki and Rutkowski
(2015)).

Lemma 2.8 The discounted wealth Y l := Ṽ p,l(x, φ,A,C) = (Bl)−1V p(x, φ,A,C) satisfies

dY l
t =

d∑
i=1

ξit dS̃
i,l,cld
t + f̃l(t, Y

l
t , ξt) dt+ dAC,l

t

where the mapping f̃l : Ω× [0, T ]× R× Rd → R is given by

(2.10) f̃l(t, y, z) := (Bl
t)

−1fl(t, B
l
ty, z)− rlty

and fl : Ω× [0, T ]× R× Rd → R equals

fl(t, y, z) :=
d∑

i=1

rltz
iSi

t −
d∑

i=1

ri,bt (ziSi
t)

+ + rlt

(
y +

d∑
i=1

(ziSi
t)

−
)+

− rbt

(
y +

d∑
i=1

(ziSi
t)

−
)−
.
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When studying a party with a negative initial endowment, the following lemma can be used
instead of Lemma 2.8 (see Remark 5.3 in Bielecki and Rutkowski (2015)).

Lemma 2.9 The discounted wealth Y b := Ṽ p,b(x, φ,A,C) = (Bb)−1V p(x, φ,A,C) satisfies

dY b
t =

d∑
i=1

ξit dS̃
i,b,cld
t + f̃b(t, Y

b
t , ξt) dt+ dAC,b

t

where the mapping f̃b : Ω× [0, T ]× R× Rd → R is given by

(2.11) f̃b(t, y, z) := (Bb
t )

−1fb(t, B
b
t y, z)− rbty

and fb : Ω× [0, T ]× R× Rd → R equals

fb(t, y, z) :=

d∑
i=1

rbtz
iSi

t −
d∑

i=1

ri,bt (ziSi
t)

+ + rlt

(
y +

d∑
i=1

(ziSi
t)

−
)+

− rbt

(
y +

d∑
i=1

(ziSi
t)

−
)−
.

3 Arbitrage Opportunities and Ex-Dividend Prices

We henceforth consider self-financing trading strategies (x, φ,A,C), as specified by Definition 2.2.
In all results presented in what follows, we work under Assumptions (M.1)–(M.3). By contrast,
Assumption 2.7 is not postulated, unless explicitly stated otherwise.

3.1 Netted Wealth and Arbitrage Opportunities

We first extend some concepts and results from Section 3 of Bielecki and Rutkowski (2015) to
the case of a collateralized contract. For a detailed financial interpretation of the netted wealth,
the reader is referred to that paper. Recall that p0 ∈ R stands for a generic price of a contract
at time 0, as seen from the perspective of the hedger. We wish to address the issue whether he
can consistently outperform the benchmark strategy of investing his initial endowment in the cash
account by taking long and short positions in a contract and cleverly choosing hedging strategies
for both legs. According to Definition 3.1, the answer to this question does not depend on an
initial price p0 of a contract (A,C). Moreover, in the case of a linear trading model (even with
idiosyncratic funding costs for risky assets and collateral), Definition 3.1 reduces to the classical
one. For any initial endowment x ∈ R, we define the benchmark wealth process V 0(x) by setting
V 0
t (x) = xBl

t1{x≥0} + xBb
t1{x<0}. It is clear that V 0(x) represents the wealth of the hedger if he

decides not to engage in any contract and simply invest his initial endowment x in the cash account.

Definition 3.1 An extended arbitrage opportunity with respect to a contract (A,C) for the hedger
with an initial endowment x is a pair (x̂, φ̂, A,C) and (x̃, φ̃,−A,−C) of trading strategies such that
x = x̂+ x̃ and

(3.1) P(V net
T ≥ V 0

T (x)) = 1 and P(V net
T > V 0

T (x)) > 0

where the netted wealth V net = V net(x̂, x̃, φ̂, φ̃, A,C) is given by

V net(x̂, x̃, φ̂, φ̃, A,C) := V (x̂, φ̂, A,C) + V (x̃, φ̃,−A,−C).

Observe that

V net
0 (x, φ,A,C) = V0(x, φ,A,C) + V0(0, φ̃,−A,−C) = x+ p0 + C0 − p0 − C0 = x,

meaning that the initial netted wealth V net
0 (x, φ,A,C) is independent of the pair (p0, C0) and it

coincides with the hedger’s initial endowment. The next technical definition is a natural extension
of the standard concept of admissibility of a trading strategy.
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Definition 3.2 A pair (x̂, φ̂, A,C) and (x̃, φ̃,−A,−C) of self-financing trading strategies is admis-
sible for the hedger if x = x̂+ x̃ and the discounted netted wealth

V̂ net(x̂, x̃, φ̂, φ̃, A,C) := (Bl)−1V net(x̂, x̃, φ̂, φ̃, A,C)1{x≥0} + (Bb)−1V net(x̂, x̃, φ̂, φ̃, A,C)1{x<0}

is bounded from below by a constant.

The following assumption will be used to study the no-arbitrage property of the model.

Assumption 3.3 There exists a probability measure P̃l, which is equivalent to P on (Ω,GT ), and

such that the processes S̃i,l,cld, i = 1, 2, . . . , d are (P̃l,G)-local martingales.

It appears that Assumption 3.3 is a sufficient condition for the non-existence of an extended
arbitrage opportunity for the hedger with a non-negative initial endowment provided that rl ≤ ri,b

for all i.

Proposition 3.4 If Assumption 3.3 holds, then no extended arbitrage opportunity in regard to any
contract (A,C) exists for the hedger with a non-negative initial endowment.

Proof. Observe that the process V̂ p := V p(x̂, φ̂, A,C) is governed by

dV̂ p
t =

d∑
i=1

ξ̂it
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt+ dAC
t

+ rlt

(
V̂ p
t +

d∑
i=1

(ξ̂itS
i
t)

−
)+

dt− rbt

(
V̂ p
t +

d∑
i=1

(ξ̂itS
i
t)

−
)−

dt,

whereas the process Ṽ p := V p(x̃, φ̃,−A,−C) has the following dynamics

dṼ p
t =

d∑
i=1

ξ̃it
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̃itS
i
t)

+ dt+ d(−A)−C
t

+ rlt

(
Ṽ p
t +

d∑
i=1

(ξ̃itS
i
t)

−
)+

dt− rbt

(
Ṽ p
t +

d∑
i=1

(ξ̃itS
i
t)

−
)−

dt.

The netted wealth V net = V net(x̂, x̃, φ̂, φ̃, A,C) satisfies

V net := V (x̂, φ̂, A,C) + V (x̃, φ̃,−A,−C) = V̂ p − C + Ṽ p + C = V̂ p + Ṽ p

and thus

dV net
t =

d∑
i=1

(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt−
d∑

i=1

ri,bt (ξ̃itS
i
t)

+ dt

+ rlt

(
V̂ p
t +

d∑
i=1

(ξ̂itS
i
t)

−
)+

dt− rbt

(
V̂ p
t +

d∑
i=1

(ξ̂itS
i
t)

−
)−

dt

+ rlt

(
Ṽ p
t +

d∑
i=1

(ξ̃itS
i
t)

−
)+

dt− rbt

(
Ṽ p
t +

d∑
i=1

(ξ̃itS
i
t)

−
)−

dt+ dΘC
t .

Since rl ≤ rb and rc,l ≤ rc,b, we also have that

dV net
t ≤

d∑
i=1

(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt−
d∑

i=1

ri,bt (ξ̃itS
i
t)

+ dt

+ rlt

(
V̂ p
t + Ṽ p

t +
d∑

i=1

(ξ̂itS
i
t)

− +
d∑

i=1

(ξ̃itS
i
t)

−
)
dt(3.2)
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and

dV net
t ≤

d∑
i=1

(ξ̂it + ξ̃it)
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt−
d∑

i=1

ri,bt (ξ̃itS
i
t)

+ dt

+ rbt

(
V̂ p
t + Ṽ p

t +
d∑

i=1

(ξ̂itS
i
t)

− +
d∑

i=1

(ξ̃itS
i
t)

−
)
dt.(3.3)

Using (3.2) and the equality V net = V̂ p + Ṽ p, for the process Ṽ l,net := (Bl)−1V net we obtain

dṼ l,net
t = (Bl

t)
−1dV net

t − rlt(B
l
t)

−1V net
t dt

≤ (Bl
t)

−1

( d∑
i=1

ξ̂it
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt+
d∑

i=1

rlt(ξ̂
i
tS

i
t)

− dt

)

+ (Bl
t)

−1

( d∑
i=1

ξ̃it
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξ̃itS
i
t)

+ dt+
d∑

i=1

rlt(ξ̃
i
tS

i
t)

− dt

)

= (Bl
t)

−1

( d∑
i=1

ξ̂it
(
dSi

t + dAi
t − rltS

i
t dt

)
−

d∑
i=1

ri,bt (ξ̂itS
i
t)

+ dt+

d∑
i=1

rlt(ξ̂
i
tS

i
t)

+ dt

)

+ (Bl
t)

−1

( d∑
i=1

ξ̃it
(
dSi

t + dAi
t − rltS

i
t dt

)
−

d∑
i=1

ri,bt (ξ̃itS
i
t)

+ dt+

d∑
i=1

rlt(ξ̃
i
tS

i
t)

+ dt

)
.

Since rl ≤ ri,b, we conclude that

(3.4) Ṽ l,net
t − Ṽ l,net

0 ≤
d∑

i=1

∫
(0,t]

(ξ̂iu + ξ̃iu) dS̃
i,l,cld
u .

The assumption that the process Ṽ l,net is bounded from below, implies that the right-hand side in
(3.4) is a (P̃l,G)-supermartingale, which is null at t = 0. Since x ≥ 0, we have V 0

T (x) = Bl
Tx and

thus, from (3.4), we obtain

(Bl
T )

−1
(
V net
T (x, φ,A)− V 0

T (x)
)
≤

d∑
i=1

∫
(0,T ]

ξit dS̃
i,l,cld
t .

Since P̃l is equivalent to P, we conclude that either V net
T (x, φ,A,C) = V 0

T (x) or P(V net
T (x, φ,A,C) <

V 0
T (x)) > 0. This means that an extended arbitrage opportunity may not arise and thus the market

model with partial netting is arbitrage-free for the hedger in regard to any contract (A,C). �

The following version of Assumption 3.3 appears to be more suitable when dealing with the
hedger with a negative initial endowment.

Assumption 3.5 There exists a probability measure P̃b, which is equivalent to P on (Ω,GT ), and

such that the processes S̃i,b,cld, i = 1, 2, . . . , d are (P̃b,G)-local martingales.

An analogue of Proposition 3.4 for the hedger with a negative initial endowment can be estab-
lished if we postulate that Assumption 3.5 is met and the inequality rb ≤ ri,b holds for every i. It
then suffices to use inequality (3.3) and to consider the discounted process Ṽ b,net := (Bb)−1V net

in the last step of the proof of Proposition 3.4. Note, however, that the postulate that rb ≤ ri,b

is too strong from the practical point of view and thus we will focus on the case of nonnegative
endowments in what follows.
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3.2 Fair and Profitable Bilateral Prices

Our next goal is to examine the concept of the range of arbitrage prices for a collateralized contract.
We first first recall the definition of a fair price.

Definition 3.6 We say that a real number pA,C = A0 is a hedger’s fair price for (A,C) at time 0
whenever for any self-financing trading strategy (x, φ,A,C), such that the discounted wealth

V̂ (x, φ,A,C) := (Bl)−1V (x, φ,A,C)1{x≥0} + (Bb)−1V (x, φ,A,C)1{x<0}

is bounded from below, we have that

(3.5) P
(
VT (x, φ,A,C) = V 0

T (x)
)
= 1 or P

(
VT (x, φ,A,C) < V 0

T (x)
)
> 0.

It is rather clear that a hedger’s fair price may depend on the hedger’s initial endowment x and
it may fail to be unique, in general. One may observe that the two conditions appearing in (3.1) are
analogous to conditions in (3.5), but in fact they have different financial interpretation (for a more
detailed discussion, see Bielecki and Rutkowski (2015)). Let us recall a generic concept of replication
of a contract on [t, T ] (see Definition 5.1 in Bielecki and Rutkowski (2015)).

Definition 3.7 For a fixed t ∈ [0, T ], a self-financing trading strategy (V 0
t (x)+ pA,C

t , φ,A−At, C),

where pA,C
t is a Gt-measurable random variable, is said to replicate a collateralized contract (A,C)

on [t, T ] whenever VT (V
0
t (x) + pA,C

t , φ,A−At, C) = V 0
T (x).

We henceforth denote the initial endowment of the hedger (resp., the counterparty) by x1 (resp.,
x2) where x1, x2 ∈ R. In the next definition, we consider the situation when the hedger with the
initial endowment x1 at time 0 enters into a contract (A,C) at time t and he is able to replicate it.

Definition 3.8 Any Gt-measurable random variable for which a replicating strategy for (A,C) over
[t, T ] exists is called a hedger’s ex-dividend price at time t for the contract (A,C) and it is denoted
by Ph

t (x1, A,C), so that for some strategy φ replicating (A,C)

VT (V
0
t (x1) + Ph

t (x1, A, C), φ,A−At, C) = V 0
T (x1).

Similarly, for an arbitrary level x2 of the counterparty’s initial endowment and any trading
strategy φ replicating (−A,−C), the counterparty’s ex-dividend price P c

t (x2,−A,−C) at time t for
the contract (−A,−C) is implicitly given by the equality

VT (V
0
t (x2)− P c

t (x2,−A,−C), φ,−A+At,−C) = V 0
T (x2).

It is clear that we deal here with unilateral prices evaluated by the hedger and the counterparty,
respectively. Note that if x1 = x2 = x, then Ph

t (x,A,C) = pA,C
t and P c

t (x,−A,−C) = −p−A,−C
t .

Due to this convention, the equality Ph
t (x1, A, C) = P c

t (x1,−A,−C) holds when Definition 3.8 is
applied to a standard market model with a single cash account where in fact the arbitrage prices
are known to be independent of initial endowments x1 and x2. Definition 3.9 hinges on an implicit
assumption that the unilateral prices of (A,C) are unique; we will address this important issue in
the next section.

Definition 3.9 The hedger is willing to sell (resp., to buy) a contract (A,C) if Ph
t (x1, A, C) ≥ 0

(resp., Ph
t (x1, A, C) ≤ 0). The counterparty is willing to sell (resp., to buy) a contract (−A,−C) if

P c
t (x2,−A,−C) ≤ 0 (resp., P c

t (x2,−A,−C) ≥ 0).

Since we place ourselves in a non-linear framework, a natural asymmetry arises between the
hedger and his counterparty. No wonder that the price discrepancy may occur, that is, it may
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happen that Ph
t (x1, A,C) ̸= P c

t (x2,−A,−C). However, it is expected that, typically, the two prices
will yield a no-arbitrage range determined by the (higher) seller’s price and the (lower) buyer’s price,
although it may also happen that both parties are willing to be sellers (or both are willing to be
buyers) of a given contract. In addition, since a positive excess cash generated by one contract
may be offset (either partially or completely) by a negative excess cash associated with another
contract, it is natural to conjecture that the seller’s (resp., buyer’s) price for the combination of
two contracts should be lower (resp., higher) than the sum of the seller’s (resp., buyer’s) prices of
individual contracts.

Remark 3.10 Consider a contract (A,C) with the process A given by

At = p01[0,T ](t) +X1[T ](t).

If X = −(Si
T − K)+, then we deal with a European call option sold by the hedger. A natural

guess is that the prices Ph
0 (x1, A, C) and P c

0 (x2,−A,−C) should be positive. Similarly, if X =
(Si

T −K)+, so that the counterparty is the option’s seller, it is natural to expect that Ph
0 (x1, A,C)

and P c
0 (x2,−A,−C) should be negative. Furthermore, if C = 0 and

At = p01[0,T ](t)− (Si
T −K)+1[T ](t)

then we conjecture that the price Ph
0 (x1, A, 0) should be independent of x1, provided that x1 ≥ 0.

Indeed, as a consequence of (2.2), the hedger cannot use his initial endowment to buy shares for
the purpose of hedging. Note that, in view of that constraint, the model considered here does not
cover the standard case of different borrowing and lending rates when ri,b = rb > rl and trading is
assumed to be unrestricted, so that the hedger’s initial endowment can be used to purchase shares.
In the standard Bergman’s model, we expect that the hedger’s price of the call option will depend
on the hedger’s initial endowment x1. To conclude, the properties of ex-dividend prices may be
very different in each particular market model, but several features of prices can be analyzed using
general results for BSDEs.

Recall that x1 and x2 stand for the initial endowments of the hedger and the counterparty, re-
spectively. Due to a generic nature of a contract (A,C), it is impossible to make any plausible a priori
conjectures about relative sizes and/or signs of prices. The equality Ph

t (x1, A, C) = P c
t (x2,−A,−C)

means that both parties agree on a common price for the contract. Otherwise, that is, if the equality
Ph
t (x1, A, C) = P c

t (x2,−A,−C) fails to hold, then the following situations may arise:

(H.1) 0 ≤ P c
t (x2,−A,−C) < Ph

t (x1, A,C),

(H.2) P c
t (x2,−A,−C) ≤ 0 < Ph

t (x1, A,C),

(H.3) P c
t (x2,−A,−C) < Ph

t (x1, A, C) ≤ 0,

and, symmetrically,

(C.1) 0 ≤ Ph
t (x1, A, C) < P c

t (x2,−A,−C),
(C.2) Ph

t (x1, A, C) ≤ 0 < P c
t (x2,−A,−C),

(C.3) Ph
t (x1, A, C) < P c

t (x2,−A,−C) ≤ 0.

Before analyzing each situation, let us recall that the cash flows of a contract (A,C) are invariably
considered from the perspective of the hedger, so the counterparty faces the cash flows given by
(−A,−C). Consequently, in case (H.1), we may say that the hedger is the seller of (A,C) and
the counterparty is the buyer of (−A,−C), but the counterparty is not willing to pay the amount
demanded by the hedger. In case (H.2), both parties are willing to be sellers of the contract, meaning
in practice that the hedger is ready to sell (A,C) and the counterparty is willing to sell (−A,−C).
Finally, case (H.3) refers to the situation the counterparty is willing to be the seller of (−A,−C),
whereas the hedger can now be seen as a buyer of (A,C), but he is not willing to pay the price that
is needed by the counterparty to replicate the contract.
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Assume that the market model is arbitrage-free for both parties in the sense of Definition 3.1.
Then in all three cases, (H.1)–(H.3), any Gt-measurable random variable P f

t satisfying

(3.6) P f
t ∈

[
P c
t (x2,−A,−C), Ph

t (x1, A, C)
]

can be considered to be a fair price for both the hedger and his counterparty, in the sense that a
bilateral transaction executed at P f

t will not generate an arbitrage opportunity for either of them.
Hence the interval [P c

t (x2,−A,−C), Ph
t (x1, A, C)] represents the range of fair prices of the contract

(A,C) for both parties, as seen from the perspective of the hedger (a particular instance of this
interval is called the arbitrage-band in Bergman (1995)).

Definition 3.11 The Gt-measurable intervalRf
t (x1, x2) :=

[
P c
t (x2,−A,−C), Ph

t (x1, A,C)
]
is called

the range of fair bilateral prices at time t of an OTC contract (A,C) between the hedger and the
counterparty.

Although the analysis for the cases (C.1)–(C.3) can be done analogously, the financial interpre-
tation and conclusions are quite different. In case (C.1), the hedger is willing to be the seller of
(A,C) and the counterparty is willing to be the buyer and he is ready to pay even more than it is
asked for by the hedger. In case (C.2), both parties are ready to be buyers at their respective prices,
meaning that each party is ready to pay a positive premium to another. Finally, in case (C.3), the
counterparty is willing to be the seller, whereas the hedger can now be seen as a buyer of (A,C)
and he is ready to pay more than the counterparty requests. Therefore, any Gt-measurable random
variable P p

t satisfying

(3.7) P p
t ∈

[
Ph
t (x1, A,C), P

c
t (x2,−A,−C)

]
can be interpreted as a bilaterally acceptable price. Note that, unless Ph

t (x1, A, C) = P c
t (x2,−A,−C),

the price P p
t is not a fair bilateral price, in the sense explained above, since an arbitrage opportunity

may arise for at least one party involved when an OTC contract (A,C) is traded between them at
the price P p

t . This observation motivates the following definition.

Definition 3.12 Assume that the inequality Ph
t (x1, A, C) ̸= P c

t (x2,−A,−C) holds. Then the Gt-
measurable interval Rp

t (x1, x2) :=
[
Ph
t (x1, A,C), P

c
t (x2,−A,−C)

]
is called the range of bilaterally

profitable prices at time t of an OTC contract (A,C) between the hedger and the counterparty.

Note that in our discussion so far, we dealt with three different types of arbitrage:

(A.1) A classical arbitrage opportunity produced by trading in the primary assets.

(A.2) An extended arbitrage opportunity, which may arise when the long and short hedged positions
in some contract are combined. The contract’s price at time 0 is here considered to be exogenously
given by the market and its value is immaterial (see Definition 3.1).

(A.3) A bilateral arbitrage opportunity originating from the fact that the hedger and the counter-
party may require different premia to implement their respective replicating strategies. Note that
here arbitrage opportunities are available simultaneously to both parties who execute a contract at
a bilaterally negotiated price (see Definition 3.12).

Let us finally observe that if (C.2) occurs, then a reselling arbitrage opportunity arises for the
third party. Specifically, if Ph

t (x1, A, C) ≤ 0 and P c
t (x2,−A,−C) > 0, then a third party can make

a deal with the hedger to face (−A,−C) and receive −Ph
t (x1, A, C) ≥ 0 and, at the same time,

enter the contract with the counterparty to face (A,C) and get P c
t (x2,−A,−C) > 0. This offsetting

strategy generates an immediate profit of P c
t (x2,−A,−C)− Ph

t (x1, A, C) > 0 to the third party.

4 Pricing BSDEs and Replicating Strategies

Our next aim is to show that the hedger’s and counterparty’s prices and their replicating strategies
can be found by solving pricing BSDEs. We will use for this purpose auxiliary results on solutions
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to BSDEs driven by multi-dimensional continuous martingales. In Propositions 4.5 and 4.7, we will
show that if x1 ≥ 0 and x2 ≥ 0, then the price processes Ph(x1, A, C) and P

c(x2,−A,−C) are given
by the solutions of two BSDEs that are driven by the (P̃l,G)-local martingale S̃l,cld.

4.1 Modeling of Risky Assets

To establish the existence of a solution to pricing BSDEs for the hedger and the counterparty
with positive endowments, we work under Assumption 3.3 complemented by additional technical
conditions on the underlying market model. To be more specific, we will introduce Assumption 4.2,
which will allow us to use results from Section 5 in Nie and Rutkowski (2014a). We first recall the
following standard definition.

Definition 4.1 We say that a process γ satisfies the ellipticity condition if there exists a constant
Λ > 0 such that for all t ∈ [0, T ] and every a ∈ Rd

(4.1)
d∑

i,j=1

(γtγ
∗
t )ij aiaj ≥ Λ∥a∥2 = Λa∗a.

Let the matrix-valued process S be given by

St :=


S1
t 0 . . . 0
0 S2

t . . . 0
...

...
. . .

...
0 0 . . . Sd

t

 .

We consider the following assumption, which corresponds to Assumption 5.1 in Nie and Rutkowski
(2014a). Recall that the existence of a probability measure P̃l was postulated in Assumption 3.3.

Assumption 4.2 We postulate that:
(i) the process S̃l,cld is a continuous, square-integrable, (P̃l,G)-martingale and has the predictable

representation property with respect to the filtration G under P̃l,
(ii) there exists an Rd×d-valued, G-adapted process ml such that

(4.2) ⟨S̃l,cld⟩t =
∫ t

0

ml
u(m

l
u)

∗ du

where the G-adapted process ml is such that ml(ml)∗ is invertible and satisfies the equality ml(ml)∗ =
Sγγ∗S where a d-dimensional square matrix γ of G-adapted processes satisfies condition (4.1).

An alternative version of Assumption 4.2 can be obtained by replacing the superscript l by b
everywhere.

Remark 4.3 We will show that Assumption 4.2 can be easily met when the prices of risky assets
are given by the diffusion-type model. For example, we may assume that each risky asset Si, i =
1, 2, . . . , d has the ex-dividend price dynamics under the real-world probability P given by

dSi
t = Si

t

(
µi
t dt+

d∑
j=1

σij
t dW j

t

)
, Si

0 > 0,

or, equivalently, the d-dimensional process S = (S1, . . . , Sd)∗ satisfies

dSt = St(µt dt+ σt dWt)
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whereW = (W 1, . . . ,W d)∗ is the d-dimensional Brownian motion, µ = (µ1, . . . , µd)∗ is an Rd-valued,
FW -adapted process, σ = [σij ] is a d-dimensional square matrix of FW -adapted processes satisfying
the ellipticity condition. In addition, we assume that the processes µ, σ and κ are bounded. We
now set G = FW and we recall that the d-dimensional Brownian motion W enjoys the predictable
representation property with respect to its natural filtration FW ; this property is shared by the
process W̃ defined by (4.4).

Assuming that the corresponding dividend processes are given by Ai
t =

∫ t

0
κiuS

i
u du, we obtain

dS̃i,l,cld
t = (Bl

t)
−1

(
dSi

t + dAi
t − rltS

i
t dt

)
= (Bl

t)
−1Si

t

((
µi
t + κit − rlt

)
dt+

d∑
j=1

σij
t dW j

t

)
.

Hence, if we denote S̃l,cld = (S̃1,l,cld, . . . , S̃d,l,cld)∗ and µ+ κ− rl = (µ1 + κ1 − rl, . . . , µd + κd − rl)∗,
then

dS̃l,cld
t = (Bl

t)
−1St

((
µt + κt − rlt

)
dt+ σt dWt

)
.

Let us define lt := σ−1
t (µt + κt − rlt) for all t ∈ [0, T ]. Since µ, σ, κ are bounded and σ satisfies the

ellipticity condition, we see that the process l is bounded and thus we can define the probability
measure P̃l on (Ω,FW

T ) by setting

(4.3)
dP̃l

dP
= exp

(
−
∫ T

0

lt dWt −
1

2

∫ T

0

|lt|2 dt
)
.

Then the probability measure P̃l is equivalent to P on (Ω,FW
T ) and, from Girsanov’s theorem, the

process W̃ l := (W̃ l,1, W̃ l,2, . . . , W̃ l,d)∗ is a d-dimensional Brownian motion under P̃l, where

(4.4) dW̃ l
t := dWt + lt dt = dWt + σ−1

t (µt + κt − rlt) dt.

It is clear that under P̃l

dS̃l,cld
t = (Bl

t)
−1Stσt dW̃ l

t .

Hence the processes S̃i,l,cld, i = 1, 2, . . . , d are continuous, square-integrable, (P̃l,G)-martingales.

Furthermore, the quadratic variation of S̃l,cld equals

⟨S̃l,cld⟩t =
∫ t

0

ml
u(m

l
u)

∗ du

where ml(ml)∗ = Sγγ∗S with γ := (Bl)−1σ. Obviously, the matrix ml(ml)∗ is invertible and thus
Assumption 4.2 is satisfied.

4.2 Hedger’s Price and Replicating Strategy

We denote by H2,d(P) the subspace of all Rd-valued, G-adapted processes X with

(4.5) ∥X∥2H2,d(P) := EP

[ ∫ T

0

∥Xt∥2 dt
]
<∞.

For simplicity, we denote H2(P) := H2,1(P). Also, let L2(P) stand for the space of all real-valued,
GT -measurable random variables η such that ∥η∥2L2(P) = EP(η

2) < ∞. In the present set-up, we

have Qt = t for every t ∈ [0, T ] in Assumption 3.1 in Nie and Rutkowski (2014a) and thus also in
all results in Sections 3–5 therein. This is consistent with equation (4.2) in Assumption 4.2. We
henceforth assume that the processes rl, rb and ri,b for i = 1, 2, . . . , d are non-negative and bounded.

Definition 4.4 A contract (A,C) is admissible under P̃l if the process AC,l given by (2.9) belongs

to H2(P̃l) and the random variable AC,l
T belongs to L2(P̃l).
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The next result describes the price and the replicating strategy for the hedger.

Proposition 4.5 Let Assumptions 3.3 and 4.2 be satisfied. Then for any initial endowment x1 ≥ 0
and any contract (A,C) admissible under P̃l, the hedger’s ex-dividend price satisfies, for every t ∈
[0, T ),

Ph
t (x1, A, C) = Bl

t(Y
h,l,x1

t − x1)− Ct

where the pair (Y h,l,x1 , Zh,l,x1) is the unique solution to the BSDE

(4.6)

{
dY h,l,x1

t = Zh,l,x1,∗
t dS̃l,cld

t + f̃l
(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ dAC,l

t ,

Y h,l,x1

T = x1,

with the generator f̃l given by (2.10). The unique replicating strategy equals

φ =
(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb, ηb, ηl

)
where, for every t ∈ [0, T ] and i = 1, 2, . . . , d,

ξit = Zh,l,x1,i
t , ψi,b

t = −(Bi,b
t )−1(ξitS

i
t)

+, ηlt = (Bc,l
t )−1C−

t , η
b
t = −(Bc,b

t )−1C+
t ,

and

ψl
t = (Bl

t)
−1

(
Bl

tY
h,l,x1

t +
d∑

i=1

(ξitS
i
t)

−
)+

,

ψb
t = −(Bb

t )
−1

(
Bl

tY
h,l,x1

t +
d∑

i=1

(ξitS
i
t)

−
)−
.

Proof. From Theorems 4.1 and 5.1 in Nie and Rutkowski (2014a), we know that if Assump-

tions 3.3 and 4.2 are satisfied, AC,l ∈ H2(P̃l) and AC,l
T ∈ L2(P̃l), then BSDE (4.6) has a unique

solution (Y h,l,x1 , Zh,l,x1). Thus, from Proposition 5.2 in Bielecki and Rutkowski (2015), we obtain
Ph(x1, A, C) = Bl(Y h,l,x1 −x1)−C. Moreover, the unique replicating strategy φ can be constructed
using Lemma 2.3. Note that the uniqueness of φ is in the sense explained in Remark 4.6. �

Remark 4.6 Let us comment on the uniqueness of a replicating strategy in Proposition 4.5. The
uniqueness of a solution of BSDE (4.6) means that if (Y 1, Z1) and (Y 2, Z2) are two solutions to
BSDE (4.6), then

(4.7) EP̃l

[ ∫ T

0

|Y 1
t − Y 2

t |2 dt+
∫ T

0

∥(ml
t)

∗Z1
t − (ml

t)
∗Z2

t ∥2 dt
]
= 0.

Under Assumption 4.2, we have that ml(ml)∗ = Sγγ∗S and thus

EP̃l

[ ∫ T

0

∥(ml
t)

∗(Z1
t − Z2

t )∥2 dt
]
= EP̃l

[ ∫ T

0

(Z1
t − Z2

t )
∗Sγγ∗S(Z1

t − Z2
t ) dt

]
.

Since γ satisfies the ellipticity condition, there exists a constant Λ > 0 such that

EP̃l

[ ∫ T

0

(Z1
t − Z2

t )
∗Stγγ∗St(Z1

t − Z2
t ) dt

]
≥ ΛEP̃l

[ ∫ T

0

∥StZ1
t − StZ2

t ∥2 dt
]
.

We conclude that under Assumption 4.2 for any two solutions of BSDE (4.6) we have

(4.8) EP̃l

[ ∫ T

0

∥StZ1
t − StZ2

t ∥2 dt
]
= 0

Using the structure of the replicating strategy in Proposition 4.5, we conclude that the uniqueness of
φ =

(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb, ηb, ηl

)
holds up to an equivalence with respect to the product

measure Pl ⊗ ℓ. Moreover, for ξ = (ξ1, . . . , ξd)∗, ψl, ψb and ψ = (ψ1,b, . . . , ψd,b)∗ the uniqueness
holds in the following norm

∥φ∥2 := EP̃l

[ ∫ T

0

∥Stξt∥2dt+
∫ T

0

(|ψl
t|2 + |ψb

t |2)dt+
∫ T

0

∥ψt∥2dt
]
.
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4.3 Counterparty’s Price and Replicating Strategy

In order to compare the prices computed by the hedger and his counterparty, we will postulate that
Assumption 2.7 is satisfied as well, so that (−A)−C = −AC . Notice that no arbitrage opportunity
may arise for either of the parties if Assumption 3.3 is postulated. Arguing as in the proof of
Proposition 4.5, one can easily establish the following result for the counterparty’s price of the
contract.

Proposition 4.7 Let Assumptions 2.7, 3.3 and 4.2 be satisfied. Then for any initial endowment
x2 ≥ 0 the counterparty’s ex-dividend price satisfies, for every t ∈ [0, T ),

P c
t (x2,−A,−C) = −Bl

t(Y
c,l,x2

t − x2)− Ct

where the pair (Y c,l,x2 , Zc,l,x2) is the unique solution to the BSDE

(4.9)

{
dY c,l,x2

t = Zc,l,x2,∗
t dS̃l,cld

t + f̃l
(
t, Y c,l,x2

t , Zc,l,x2

t

)
dt+ d(−A)l,−C

t ,

Y c,l,x2

T = x2,

where

(−A)l,−C
t :=

∫
(0,t]

(Bl
u)

−1 d(−A)−C
u = −AC,l

t

and where the generator f̃l is given by (2.10). The unique replicating strategy for the counterparty
equals

φ =
(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb, ηb, ηl

)
where, for every t ∈ [0, T ] and i = 1, 2, . . . , d,

ξt = Zc,l,x2

t , ψi,b
t = −(Bi,b

t )−1(ξitS
i
t)

+, ηlt = (Bc,l
t )−1C+

t , η
b
t = −(Bc,b

t )−1C−
t ,

and

ψl
t = (Bl

t)
−1

(
Bl

tY
c,l,x2

t +

d∑
i=1

(ξitS
i
t)

−
)+

,

ψb
t = −(Bb

t )
−1

(
Bl

tY
c,l,x2

t +

d∑
i=1

(ξitS
i
t)

−
)−
.

5 Properties of Unilateral and Bilateral Prices

Recall that we consider the special case of an exogenous margin account with rehypothecated cash
collateral. This means, in particular, that the process C does not depend on trading strategies chosen
by the hedger and the counterparty. As before, we denote the initial endowments of the hedger and
the counterparty by x1 and x2, respectively. Unless explicitly stated otherwise, we assume that
x1 ≥ 0 and x2 ≥ 0. The first goal is to show that the range of fair bilateral prices is non-empty
under mild assumptions. Next, we will study the monotonicity property of unilateral prices with
respect to the initial endowments, the asymptotic properties and the independence of the initial
endowments. We continue working under the standing Assumptions (M.1)–(M.3).

5.1 Range of Fair Bilateral Prices

In the next result, we deal with both unilateral prices and thus we work under Assumption 2.7.
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Proposition 5.1 Let Assumptions 2.7, 3.3 and 4.2 be satisfied. If x1 ≥ 0 and x2 ≥ 0, then for any
contract (A,C) admissible under P̃l we have, for all t ∈ [0, T ],

(5.1) P c
t (x2,−A,−C) ≤ Ph

t (x1, A,C), P̃l − a.s.,

so that the range of fair bilateral prices Rf
t (x1, x2) is non-empty almost surely.

Proof. From Propositions 4.5 and 4.7, we already know that the hedger’s price equals Ph(x1, A, C) =
Bl(Y h,l,x1 − x1)− C where the pair (Y h,l,x1 , Zh,l,x1) is the unique solution to the BSDE

(5.2)

{
dY h,l,x1

t = Zh,l,x1,∗
t dS̃l,cld

t + f̃l
(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ dAC,l

t ,

Y h,l,x1

T = x1,

where the mapping f̃l : Ω × [0, T ] × R × Rd → R is given by equation (2.10). Similarly, the
counterparty’s price equals P c(x2,−A,−C) = −Bl(Y c,l,x2 −x2)−C where the pair (Y c,l,x2 , Zc,l,x2)
is the unique solution to the BSDE

(5.3)

{
dY c,l,x2

t = Zc,l,x2,∗
t dS̃l,cld

t + f̃l
(
t, Y c,l,x2

t , Zc,l,x2

t

)
dt− dAC,l

t ,

Y c,l,x2

T = x2.

Therefore, to establish inequality (5.1), it suffices to show that

−Bl
t(Y

c,l,x2

t − x2)− Ct ≤ Bl
t(Y

h,l,x1

t − x1)− Ct,

which in turn is equivalent to −Y c,l,x2

t + x2 ≤ Y h,l,x1

t − x1. If we denote Ȳ h,l,x1 := Y h,l,x1 − x1 and
Z̄h,l,x1 = Zh,l,x1 , then the pair (Ȳ h,l,x1 , Z̄h,l,x1) is the unique solution of the following BSDE

(5.4)

{
dȲ h,l,x1

t = Z̄h,l,x1,∗
t dS̃l,cld

t + f̃l
(
t, Ȳ h,l,x1

t + x1, Z̄
h,l,x1

t

)
dt+ dAC,l

t ,

Ȳ h,l,x1

T = 0.

Similarly, the pair (Ȳ c,l,x2 , Z̄c,l,x2) :=
(
− Y c,l,x2 + x2, Z̄

c,l,x2

t = −Zc,l,x2
)
is the unique solution of

the BSDE

(5.5)

{
dȲ c,l,x2

t = Z̄c,l,x2,∗
t dS̃l,cld

t − f̃l
(
t,−Ȳ c,l,x2

t + x2,−Z̄c,l,x2

t

)
dt+ dAC,l

t ,

Ȳ c,l,x2

T = 0.

Note that (5.4) and (5.5) have the same term dAC,l
t and identical terminal conditions Ȳ h,l,x1

T =

Ȳ c,l,x2

T = 0. It is also easy to check that the generator f̃l satisfies the assumptions of Theorem 3.3
in Nie and Rutkowski (2014a). Therefore, if either (see Theorem 3.3 in Nie and Rutkowski (2014a))

(5.6) −f̃l
(
t, Ȳ h,l,x1

t + x1, Z̄
h,l,x1

t

)
≥ f̃l

(
t,−Ȳ h,l,x1

t + x2,−Z̄h,l,x1

t

)
, P̃l ⊗ ℓ− a.e.

or (see Remark 3.2 therein)

(5.7) −f̃l
(
t, Ȳ c,l,x2

t + x1, Z̄
c,l,x2

t

)
≥ f̃l

(
t,−Ȳ c,l,x2

t + x2,−Z̄c,l,x2

t

)
, P̃l ⊗ ℓ− a.e.

then the inequality Ȳ h,l,x1 ≥ Ȳ c,l,x2 holds P̃l⊗ ℓ−a.e. To establish both (5.6) and (5.7), it is enough
to show that

(5.8) −f̃l
(
t, y + x1, z

)
≥ f̃l

(
t,−y + x2,−z

)
for all (y, z) ∈ R× Rd, P̃l ⊗ ℓ− a.e.

To complete the proof, it suffices to note that (5.8) holds, as is shown in Lemma 5.2. �

Lemma 5.2 Assume that x1 ≥ 0 and x2 ≥ 0. Then the mapping f̃l : Ω× [0, T ]×R×Rd → R given
by equation (2.10) satisfies inequality (5.8).
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Proof. Let us denote z̃it = (Bl
t)

−1ziSi
t . Then

δ := f̃l
(
t, y + x1, z

)
+ f̃l

(
t,−y + x2,−z

)
= −rlt(y + x1) + fl(t, B

l
t(y + x1), z)− rlt(−y + xz) + fl(t, B

l
t(−y + x2),−z)

= −rlt(x1 + x2)−
d∑

i=1

ri,bt |z̃it|+ rlt(δ
+
1 + δ+2 )− rbt (δ

−
1 + δ−2 )

where we write

δ1 := y + x1 +
d∑

i=1

(z̃it)
−, δ2 := −y + x2 +

d∑
i=1

(−z̃it)−.

From rl ≤ rb, we have

δ = −rlt(x1 + x2)−
d∑

i=1

ri,bt |z̃it|+ rlt(δ
+
1 + δ+2 )− rbt (δ

−
1 + δ−2 )

≤ −rlt(x1 + x2)−
d∑

i=1

ri,bt |z̃it|+ rlt(δ1 + δ2)

= −rlt(x1 + x2)−
d∑

i=1

ri,bt |z̃it|+ rlt(x1 + x2) +
d∑

i=1

rlt|z̃it|

=
d∑

i=1

(rlt − ri,bt )|z̃it| ≤ 0.

We thus conclude that δ ≤ 0 and thus inequality (5.8) is satisfied. �

5.2 Monotonicity of the Price with Respect to the Initial Endowment

We continue working under Assumption 2.7. We will now examine in more details the impact of
initial endowments of the two parties on their respective ex-dividend prices. From Propositions 4.5
and 4.7, it follows that Ph(x1, A, C) = Bl(Y h,l,x1 − x1) − C where (Y h,l,x1 , Zh,l,x1) is the unique
solution to BSDE (5.2), whereas P c(x2,−A,−C) = −Bl(Y c,l,x2 − x2)−C where (Y c,l,x2 , Zc,l,x2) is

the unique solution to BSDE (5.3). If we denote Ỹ h,l,x1 = Bl(Y h,l,x1 − x1), then Ph(x1, A, C) =

Ỹ h,l,x1 − C. It is easy to check that

dS̃i,l,cld
t = (Bl

t)
−1

(
dSi

t − rltS
i
t dt+ dAi

t

)
.

Therefore, using also (2.9) and (2.10), we obtain

dỸ h,l,x1

t = −x1 dBl
t + Y h,l,x1

t dBl
t +Bl

t dY
h,l,x1

t

= − x1r
l
tB

l
t dt+ rltB

l
tY

h,l,x1

t dt+Bl
tZ

h,l,x1,∗
t dS̃l,cld

t +Bl
tf̃l

(
t, Y h,l,x1

t , Zh,l,x1

t

)
dt+ dAC

t

= − x1r
l
tB

l
t dt+Bl

tZ
h,l,x1,∗
t dS̃l,cld

t + fl
(
t, Bl

tY
h,l,x1

t , Zh,l,x1

t

)
dt+ dAC

t

= Bl
tZ

h,l,x1,∗
t dS̃l,cld

t + g(t, x1, B
l
tY

h,l,x1

t , Zh,l,x1

t ) dt+ dAC
t

where

g(t, x, y, z) := −xrltBl
t + fl

(
t, y, z

)
= −xrltBl

t +
d∑

i=1

rltz
iSi

t −
d∑

i=1

ri,bt (ziSi
t)

+

+ rlt

(
y +

d∑
i=1

(ziSi
t)

−
)+

− rbt

(
y +

d∑
i=1

(ziSi
t)

−
)−
.(5.9)
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Upon denoting Z̃h,l,x1 = BlZh,l,x1 , we obtain

dỸ h,l,x1

t = Z̃h,l,x1,∗
t dS̃l,cld

t + g
(
t, x1, Ỹ

h,l,x1

t + x1B
l
t, (B

l
t)

−1Z̃h,l,x1

t

)
dt+ dAC

t .

We conclude that if x1 ≥ 0, then for any contract (A,C) admissible under P̃l we have Ph(x1, A, C) =

Ỹ h,l,x1 − C where the pair (Ỹ h,l,x1 , Z̃h,l,x1) is the unique solution of the following BSDE

(5.10)

{
dỸ h,l,x1

t = Z̃h,l,x1,∗
t dS̃l,cld

t + gh,l(t, x1, Ỹ
h,l,x1

t , Z̃h,l,x1

t ) dt+ dAC
t ,

Ỹ h,l,x1

T = 0,

where gh,l(t, x, y, z) := g(t, x, y + xBl
t, z(B

l
t)

−1). Using analogous arguments, one can show that if

x2 ≥ 0, then P c(x2,−A,−C) = Ỹ c,l,x2 −C where the pair (Ỹ c,l,x2 , Z̃c,l,x2) is the unique solution to
the BSDE

(5.11)

{
dỸ c,l,x2

t = Z̃c,l,x2,∗
t dS̃l,cld

t + gc,l(t, x2, Ỹ
c,l,x2

t , Z̃c,l,x2

t ) dt+ dAC
t ,

Ỹ c,l,x2

T = 0,

where gc,l(t, x, y, z) := −g(t, x,−y + xBl
t,−z(Bl

t)
−1). It is easy to check that the admissibility of

(A,C) under P̃l implies that AC ∈ H2(P̃l) and AC
T ∈ L2(P̃l). Moreover, one can show that gh,l

and gc,l satisfy the conditions of Theorems 4.1 in Nie and Rutkowski (2014a). Consequently, the
well-posedness of BSDEs (5.10) and (5.11) holds.

In the next result, Assumption 2.7 is not required for the hedger’s inequality (5.12), but it is
needed when analyzing the counterparty’s price.

Proposition 5.3 Let Assumptions 2.7, 3.3 and 4.2 be satisfied and let a contract (A,C) be admis-

sible under P̃l. Then the hedger’s price satisfies: if x̄ ≥ x ≥ 0, then for all t ∈ [0, T ]

(5.12) Ph
t (x̄, A,C) ≤ Ph

t (x,A,C),

and the counterparty’s price satisfies: if x̄ ≥ x ≥ 0, then for all t ∈ [0, T ]

(5.13) P c
t (x̄,−A,−C) ≥ P c

t (x,−A,−C).

Proof. We wish to show that the mapping x 7→ gh,l(t, x, y, z) is increasing and the mapping

x 7→ gc,l(t, x, y, z) is decreasing, for any fixed (t, y, z) ∈ [0, T )× R× Rd, P̃l-a.s. Let us denote

K0(t, z) := (Bl
t)

−1
d∑

i=1

rltz
iSi

t − (Bl
t)

−1
d∑

i=1

ri,bt (ziSi
t)

+,

K(t, y, z) := y + (Bl
t)

−1
d∑

i=1

(ziSi
t)

−.

For conciseness, we write K := K(t, y, z) and K̃ := K(t,−y,−z). Then

gh,l(t, x, y, z) = K0(t, z)− xrltB
l
t + rlt(xB

l
t +K)+ − rbt (xB

l
t +K)−

= K0(t, z)− rlt(xB
l
t +K) + rlt(xB

l
t +K)+ − rbt (xB

l
t +K)− + rltK

= K0(t, z) + rlt(xB
l
t +K)− − rbt (xB

l
t +K)− + rltK

= K0(t, z) + (rlt − rbt )(xB
l
t +K)− + rltK

and

gc,l(t, x, y, z) = −K0(t,−z) + xrltB
l
t − rlt(xB

l
t + K̃)+ + rbt (xB

l
t + K̃)−

= −K0(t,−z) + rlt(xB
l
t + K̃)− rlt(xB

l
t + K̃)+ + rbt (xB

l
t + K̃)− − rltK̃

= −K0(t,−z) + (rbt − rlt)(xB
l
t + K̃)− − rltK̃.
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Therefore, the function gh,l is increasing with respect to x, whereas the function gc,l is decreasing
with respect to x. Consequently, from the comparison theorem for BSDEs, if x̄ ≥ x ≥ 0, then
Ỹ h,l,x ≤ Ỹ h,l,x̄ where (Ỹ h,l,x, Z̃h,l,x) is the unique solution of BSDE (5.10). Moreover, Ỹ c,l,x ≥ Ỹ c,l,x̄

where (Ỹ c,l,x, Z̃c,l,x) is the unique solution of BSDE (5.11). It is now clear that inequalities (5.12)
and (5.13) hold. �

By combining Propositions 5.1 and 5.3, we obtain the following result, which summarizes the
properties of unilateral prices.

Corollary 5.4 Let Assumptions 2.7, 3.3 and 4.2 be satisfied. Then for any contract (A,C) admis-

sible under P̃l the following statement is valid: if x̄ ≥ x ≥ 0, then for all t ∈ [0, T ]

(5.14) P c
t (x,−A,−C) ≤ P c

t (x̄,−A,−C) ≤ Ph
t (x̄, A, C) ≤ Ph

t (x,A,C).

In particular, for any x ≥ 0 and any date t ∈ [0, T ]

(5.15) P c
t (0,−A,−C) ≤ P c

t (x,−A,−C) ≤ Ph
t (x,A,C) ≤ Ph

t (0, A, C),

so that Rf
t (x, x) ⊂ Rf

t (0, 0).

Corollary 5.4 shows that an investor with a positive initial endowment has a relative advantage
over an investor with null initial endowment when entering into an arbitrary contract (A,C) at any
time t. This conclusion is intuitively plausible, since the borrowing rate is higher than the lending
rate and thus for the same strategy, when an investor with null initial endowment needs to borrow
money in order to hedge a contract, an investor with a positive initial endowment may use cash
from his initial endowment for the same purpose and this creates a comparative advantage for him.

5.3 Asymptotic Properties of Unilateral Prices

Using Proposition 5.3, we will examine the asymptotic properties of Ph
t (x,A,C) and P

c
t (x,−A,−C)

when the initial endowment x tends to ∞. In practice, this can be interpreted as pricing of a contract
with a relatively small nominal value.

Proposition 5.5 Let Assumptions 2.7, 3.3 and 4.2 be satisfied. Then for any contract (A,C)

admissible under P̃l and any date t ∈ [0, T ], there exist G-adapted processes, denoted by Ph,A,C,+
t

and P c,−A,−C,+
t , such that

Ph,A,C,+
t , P c,−A,−C,+

t ∈ [P c
t (0,−A,−C), Ph

t (0, A, C)] = Rf
t (0, 0)

and

lim
x→+∞

P c
t (x,−A,−C) = P c,−A,−C,+

t ≤ Ph,A,C,+
t = lim

x→+∞
Ph
t (x,A,C).

Proof. The statement easily follows from Proposition 5.3 and Corollary 5.4. �

5.4 Price Independence of an Initial Endowment

We will now show that for a certain class of contracts a unilateral price is independent of an initial
endowment. It is worth noting that an analogous result fails to hold in Bergman’s model studied
by Nie and Rutkowski (2015). Recall that in Bergman’s model the lending and borrowing rates rl

and rb are different, but the funding rates ri,b for risky assets are not introduced. Since we now deal
with the hedger’s price only, Assumption 2.7 is relaxed.



22 T. Nie and M. Rutkowski

Proposition 5.6 Let Assumptions 3.3 and 4.2 be satisfied. Consider an arbitrary contract (A,C)

admissible under P̃l and such that the process AC − AC
0 is decreasing. The price Ph

t (x1, A,C) is
independent of the hedger’s initial endowment x1 ≥ 0, so that Ph

t (x1, A, C) = Ph
t (0, A, C) for all

x1 ≥ 0 and t ∈ [0, T ].

Proof. Since x1 ≥ 0, the hedger’s price of any contract (A,C) admissible under P̃l satisfies

Ph(x1, A, C) = Ỹ h,l,x1 − C where (Ỹ h,l,x1 , Z̃h,l,x1) is the unique solution to BSDE (5.10). Since
gh,l(t, x1, 0, 0) = 0 and the process AC −AC

0 is decreasing, we deduce from the comparison theorem
for BSDEs (see Theorem 3.3 in Nie and Rutkowski (2014a) with U1 = AC − AC

0 and U2 = 0) that

Ỹ h,l,x1 ≥ 0. Since x1 ≥ 0, BSDE (5.10) can also be represented as follows

(5.16)

{
dỸ h,l,x1

t = Z̃h,l,x1,∗
t dS̃l,cld

t + g̃h,l(t, x1, Ỹ
h,l,x1

t , Z̃h,l,x1

t ) dt+ dAC
t ,

Ỹ h,l,x1

T = 0,

where the generator g̃h,l(t, x1, y, z) equals (recall that z̄
i
t = ziSi

t)

g̃h,l(t, x1, y, z) := rlty + (Bl
t)

−1

( d∑
i=1

rltz̄
i
t −

d∑
i=1

ri,bt (z̄it)
+ + rlt

d∑
i=1

(z̄it)
−
)
.

Since g̃h,l does not depend on x1, the unique solution to BSDE (5.16) is independent of x1 as well,

and thus the price Ph(x1, A, C) = Ỹ h,l,x1 − C has the same property. �

Remark 5.7 Note that the conclusion of Proposition 5.6 hinges on the assumption that x1 ≥ 0.
Indeed, when x1 ≤ 0 and the process AC − AC

0 is decreasing, then the price Ph(x1, A,C) does
not enjoy the independence property. Moreover, if the process AC − AC

0 is increasing, then the
counterparty’s price P c(x2,−A,−C) is independent of the initial wealth x2 ≤ 0.

Let us comment on the financial interpretation of Proposition 5.6. We conjecture that the
independence of the hedger’s price of his non-negative positive wealth is a consequence of the trading
constraint implicit in equation (2.2) and the fact that the portfolio’s value V p is always greater than
or equal to x1B

l
t. On the one hand, equation (2.2) states that the hedger cannot use his initial

endowment to buy shares for the purpose of hedging. When he sells shares to replicate a contract
(for instance, in order to hedge a put option) then, obviously, the fact that his initial endowment
is positive is also irrelevant. On the other hand, the decreasing property of AC − AC

0 and x1 ≥ 0

make the price Ph
t (x1, A,C) high enough, so that V p

t − x1B
l
t = Ph

t (x1, A,C) +Ct = Ỹ h,l,x1

t ≥ 0. In
view of equation (2.6), this means that no borrowing of cash is required for replication of (A,C),
even when the initial endowment is null. This in turn essentially means that the initial endowment
x1 can simply be invested in the account Bl and thus its level has no bearing on the hedger’s price
Ph
t (x1, A, C).

5.5 Positive Homogeneity of the Hedger’s Price

We conclude this section by showing that the hedger’s price is positively homogeneous with respect
to the contract’s size and the non-negative initial endowment. Let us stress that this property is
no longer true if only the contract’s size, but not the initial endowment, is scaled by a non-negative
number λ (of course, unless the price is independent of the initial endowment as, for instance, under
the assumptions of Proposition 5.6).

Proposition 5.8 Let Assumptions 3.3 and 4.2 be satisfied and let (A,C) be an arbitrary contract

admissible under P̃l. If x1 ≥ 0 and C ∈ Ĥ2
0, then the hedger’s price is positively homogeneous, in

the sense that the equality Ph
t (λx1, λA, λC) = λPh

t (x1, A,C) is valid for all λ ∈ R+.
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Proof. It is obvious that the asserted equality holds for λ = 0. Suppose that λ > 0. We know
that Ph(x1, A, C) = Ỹ h,l,x1 − C where (Ỹ h,l,x1 , Z̃h,l,x1) is the unique solution to (5.10). Moreover,

Ph(λx1, λA, λC) = Ỹ h,l,λx1 − λC where (Ỹ h,l,λx1 , Z̃h,l,λx1) is the unique solution of the following
BSDE {

dỸ h,l,λx1

t = Z̃h,l,λx1,∗
t dS̃l,cld

t + gh,l(t, λx1, Ỹ
h,l,λx1

t , Z̃h,l,λx1

t ) dt+ λ dAC
t ,

Ỹ h,l,λx1

T = 0.

Then Ph(x1, A, C) = Y 1 where (Y 1, Z1) is the unique solution to the BSDE (since (A,C) is admis-

sible under P̃l, the well-posedness of this BSDE is easy to check){
dY 1

t = Z1,∗
t dS̃l,cld

t + gh,l(t, x1, Y
1
t + Ct, Z

1
t ) dt+ d(At + FC

t ),

Y 1
T = 0.

Similarly, Ph(λx1, λA, λC) = Y 2 where (Y 2, Z2) is the unique solution to the BSDE

(5.17)

{
dY 2

t = Z2,∗
t dS̃l,cld

t + gh,l(t, λx1, Y
2
t + λCt, Z

2
t ) dt+ λ d(At + FC

t ),

Y 2
T = 0.

For Y := λY 1 and Z := λZ1, we have

(5.18)

{
dYt = Z∗

t dS̃
l,cld
t + λgh,l(t, x1, λ

−1Yt + Ct, λ
−1Zt) dt+ λ d(At + FC

t ),

YT = 0.

Therefore, to complete the proof, it suffices to observe that the equality

λgh,l(t, x1, λ
−1y + Ct, λ

−1z) = gh,l(t, λx1, y + λCt, z)

is satisfied for all λ > 0. �

6 Quasi-Linear Pricing PDEs for European Claims

For simplicity of presentation, we henceforth assume that d = 1, so that there is only one risky asset
S = S1. It is clear, however, that the results obtained in this section can be easily extended to
a model with several risky assets. We now postulate that the lending and borrowing rates rl and
rb, as well as the funding rate r1,b, are bounded deterministic functions of time. We examine the
valuation and hedging of an uncollateralized European contingent claim starting from a fixed time
t ∈ [0, T ]. A generic path-independent claim of European style pays a single cash flow H(ST ) at its
expiration date T > 0, so that

At −A0 = −H(ST )1[T,T ](t).

For any fixed t < T , the risky asset S has the ex-dividend price dynamics under P given by the
following expression, for u ∈ [t, T ],

(6.1) dSu = µ(u, Su) du+ σ(u, Su) dWu, St = s ∈ O,

where W is a one-dimensional Brownian motion and O ∈ R is the domain of real values that are
attainable by the diffusion process S (typically, O = R+ when S models a stock price). Finally, the
dividend process for the asset S is given by the equality A1

u =
∫ u

t
κ(v, Sv) dv.

Throughout this section, we assume that the coefficients µ, σ, κ : [0, T ]×R → R and H : R → R
satisfy the following conditions: µ(t, s), σ(t, s), κ(t, s) and H(s) are uniformly Lipschitz continuous
in s, and supt∈[0,T ]{|µ(t, 0)|+ |σ(t, 0)|+ |κ(t, 0)|+ |H(0)|} is bounded. Our first goal is to derive the
hedger’s and counterparty’s pricing PDEs for a path-independent European claim. We observe that

dS̃l,cld
u = (Bl

u)
−1

(
dSu + dA1

u − rlu du
)

= (Bl
u)

−1
((
µ(u, Su) + κ(u, Su)− rlu

)
du+ σ(u, Su) dWu

)
.
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Let us denote
l(u, Su) := (σ(u, Su))

−1
(
µ(u, Su) + κ(u, Su)− rlu

)
.

Under suitable assumptions on µ, σ, κ, the process l satisfies Novikov’s condition

EP

{
exp

(
1

2

∫ T

0

|l(t, St)|2 dt
)}

<∞

and thus we may define the probability measure P̃l as

dP̃l

dP
= exp

(
−
∫ T

t

l(u, Su) dWu − 1

2

∫ T

t

|l(u, Su)|2 du
)
.

Then, from Girsanov’s theorem, P̃l is equivalent to P on (Ω,FW
T ) and the process W̃ l is a Brownian

motion on [t, T ] under P̃l, where dW̃ l
u := dWu + l(u, Su) du. It is clear that

dS̃l,cld
u = (Bl

u)
−1σ(u, Su) dW̃

l
u

and thus S̃l,cld is a (P̃l,G)-martingale and ⟨S̃l,cld⟩u =
∫ u

t
(Bl

v)
−2σ2(v, Sv) dv. Hence Assumptions

3.3 and 4.2 are satisfied, provided that we assume that the Brownian motion W̃ l has the predictable
representation property with respect to the filtration G under P̃l. Of course, the latter assumption
is not restrictive in the present set-up.

6.1 Hedger’s Pricing PDE

Since A has only a single cash flow at time T and C = 0, for any initial endowment x1 ≥ 0, the
hedger’s ex-dividend price satisfies Ph

t (x1, A, 0) = Ỹ h,l,x1

t for every t ∈ [0, T ) where (Ỹ h,l,x1 , Z̃h,l,x1)
is the unique solution to the BSDE (see (5.10))

(6.2)

{
dỸ h,l,x1

u = Z̃h,l,x1
u (Bl

u)
−1σ(u, Su) dW̃

l
u + gh,l(u, x1, Ỹ

h,l,x1
u , Z̃h,l,x1

u ) du,

Ỹ h,l,x1

T = H(ST ),

where

gh,l(u, x1, s, y, z) := −rlux1Bl
u + (Bl

u)
−1(rluzs− r1,bu (zs)+)

+ rlu

(
y + x1B

l
u + (Bl

u)
−1(zs)−

)+

− rbu

(
y + x1B

l
u + (Bl

u)
−1(zs)−

)−
.

It is clear that the solution (Ỹ h,l,x1 , Z̃h,l,x1) will now depend on the asset’s initial price s at time t;

to emphasize this feature, we write (Ỹ h,l,x1,s, Z̃h,l,x1,s). Furthermore, if we set (Y h,x1,s
u , Zh,x1,s

u ) :=

(Ỹ h,l,x1,s
u , Z̃h,l,x1,s

u (Bl
u)

−1σ(u, Ss,t
u )), then BSDE (6.2) yields

(6.3)

{
dY h,x1,s

u = Zh,x1,s
u dW̃ l

u + gh,l(u, x1, S
s,t
u , Y h,x1,s

u , Zh,x1,s
u ) du,

Y h,x1,s
T = H(Ss,t

T ).

where

gh,l(u, x1, s, y, z) := gh,l(u, x1, s, y, zB
l
uσ

−1(u, s))

:= −rlux1Bl
u + rluzsσ

−1(u, s)− r1,bu (zsσ−1(u, s))+

+ rlu

(
y + x1B

l
u + (zsσ−1(u, s))−

)+

− rbu

(
y + x1B

l
u + (zsσ−1(u, s))−

)−
.

The well-posedness of BSDE (6.3) (or, equivalently, (6.2)) holds under mild assumptions, since

we postulated that W̃ l has the predictable representation property under (G, P̃l). For instance,
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if sσ−1(u, s) is uniformly bounded, then the generator gh,l is uniformly Lipschitz continuous with

respect to (y, z). Noticing that H(Ss,t
T ) is also square-integrable under P̃l, we deduce from Theorem

2.1 in El Karoui et al. (1997) that BSDE (6.3) (or, equivalently, BSDE (6.2)) has a unique solution
in a suitable space of stochastic processes.

Proposition 4.5 and the equality Z̃h,l,x1 = BlZh,l,x1 show that the unique replicating strategy
for the hedger equals φ =

(
ξ, ψl, ψb, ψ1,b

)
where ξu = (Bl

u)
−1Z̃h,l,x1

u , ψ1,b
u = −(B1,b

u )−1(ξuSu)
+ and

ψl
u = (Bl

u)
−1

(
Ỹ h,l,x1
u + x1B

l
u + (ξuSu)

−)+, ψb
u = −(Bb

u)
−1

(
Ỹ h,l,x1
u + x1B

l
u + (ξuSu)

−)−.
In the next step, we fix t ∈ [0, T ) and we assume that Ss,t

t = s ∈ O. Note that under P̃l we have,
for all u ∈ [t, T ],

dSs,t
u = (rlu − κ(u, Ss,t

u )) du+ σ(u, Ss,t
u ) dW̃ l

u.

We now invoke the non-linear Feynman-Kac formula (see Peng (1991) or Pardoux and Peng (1992))
to argue that, under additional conditions imposed on σ, the hedger’s pricing function v(t, s) :=

Y h,x1,s
t is the unique viscosity solution of the following pricing PDE

(6.4)

{
∂v
∂t (t, s) + Lv(t, s) = gh,l

(
t, x1, s, v(t, s), σ(t, s)

∂v
∂s

)
, (t, s) ∈ [0, T ]×O,

v(T, s) = H(s), s ∈ O,

where the differential operator L is given by the following expression

L :=
1

2
σ2(t, s)

∂2

∂s2
+ (rlt − κ(t, s))

∂

∂s
.

For example, if the map sσ−1(u, s) is uniformly continuous in s and uniformly bounded, one can
check that the generator gh,l(u, x1, s, y, z) satisfies the conditions of Theorem 4.2 in El Karoui et

al. (1997) and thus the hedger’s pricing function v(t, s) := Y h,x1,s
t is the unique viscosity solution

to PDE (6.4). For the existence of a classical solution to PDE (6.4), the reader is referred to
monographs by Krylov (1987) and Ladyzenskaya et al. (1968) and the references therein.

In view of the definition of gh,l, it is clear that PDE (6.4) is in turn equivalent to, for (t, s) ∈
[0, T ]×O,

(6.5)


∂v
∂t (t, s) +

1
2σ

2(t, s)∂
2v

∂s2 (t, s) = κ(t, s)∂v∂s (t, s)− x1r
l
tB

l
t − r1,bt

(
s∂v∂s (t, s)

)+
+ rlt

(
v(t, s) + x1B

l
t +

(
s∂v∂s (t, s)

)−)+

− rbt

(
v(t, s) + x1B

l
t +

(
s∂v∂s (t, s)

)−)−
,

v(T, s) = H(s), s ∈ O.

Conversely, if v ∈ C1,2([0, T ]×O) solves PDE (6.5) and both v(u, s) and ∂v
∂s (u, s) have polynomial

growth in s, then the pair (v(u, Su), σ(u, Su)
∂v
∂s (u, Su)) is the unique solution to BSDE (6.3) on u ∈

[t, T ] where, for brevity, we write S = Ss,t. From the above considerations, (v(u, Su), B
l
u
∂v
∂s (u, Su)) is

also the unique solution to BSDE (6.2) on u ∈ [t, T ] for any initial asset’s price St = s. Consequently,
the unique replicating strategy for the hedger can be represented as follows: φ =

(
ξ, ψl, ψb, ψ1,b

)
where for all u ∈ [t, T ]

ξu =
∂v

∂s
(u, Su), ψ1,b

t = −(B1,b
u )−1

(
Su
∂v

∂s
(u, Su)

)+

,

ψl
u = (Bl

u)
−1

(
v(u, Su) + x1B

l
u +

(
Su
∂v

∂s
(u, Su)

)−)+

,(6.6)

ψb
u = −(Bb

u)
−1

(
v(u, Su) + x1B

l
u +

(
Su
∂v

∂s
(u, Su)

)−)−
.
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6.2 Counterparty’s Pricing PDE

Let us now focus on the pricing PDE for the counterparty with an initial endowment x2 ≥ 0. Recall
that P c

t (x2,−A, 0) = Ỹ c,l,x2

t for all t ∈ [0, T ) where (Ỹ c,l,x2 , Z̃c,l,x2) is the unique solution to the

following BSDE under P̃l (see (5.11))

(6.7)

{
dỸ c,l,x2

u = Z̃c,l,x2
u (Bl

u)
−1σ(u, Su) dW̃

l
u + gc,l(u, x2, Su, Ỹ

c,l,x2
u , Z̃c,l,x2

u ) du,

Ỹ c,l,x2

T = H(Ss,t
T ),

with the generator given by

gc,l(u, x1, s, y, z) := rlux2B
l
u + (Bl

u)
−1(rluzs− r1,bu (−zs)+)

− rlu

(
− y + x2B

l
u + (Bl

u)
−1(−zs)−

)+

+ rbu

(
− y + x2B

l
u + (Bl

u)
−1(−zs)−

)−
.

Hence the unique replicating strategy for the counterparty is given as φ =
(
ξ, ψl, ψb, ψ1,b

)
where

ξu = −(Bl
u)

−1Z̃c,l,x2
u , ψ1,b

u = −(B1,b
u )−1(ξuSu)

+ and

ψl
u = (Bl

u)
−1

(
− Ỹ h,x2

u + x2B
l
u + (ξuSu)

−
)+

, ψb
u = −(Bb

u)
−1

(
− Ỹ h,x2

u + x2B
l
u + (ξuSu)

−
)−
.

For a fixed (t, s) ∈ [0, T )×O, we write (Y c,x2,s
u , Zc,x2,s

u ) := (Ỹ c,l,x2
u , Z̃c,l,x2

u (Bl
u)

−1σ(u, Ss,t
u )) and

gc,l(u, x2, s, y, z) = gc,l(u, x2, s, y, z(B
l
u)

−1σ−1(u, s)).

Then BSDE (6.7) becomes

(6.8)

{
dY c,x2,s

u = Zc,x2,s
u dW̃ l

u + gc,l(u, x2, S
s,t
u , Y c,x2,s

u , Zc,x2,s
u ) du,

Y c,x2,s
T = H(Ss,t

T ).

Using the same arguments as for the hedger, we deduce that the pricing function v(t, s) := Y c,x2,s
t

is the unique viscosity solution to the following PDE

(6.9)

{
∂v
∂t (t, s) + Lv(t, s) = gc,l

(
t, x2, s, v(t, s), σ(t, s)

∂v
∂s

)
, (t, s) ∈ [0, T ]×O,

v(T, s) = H(s), s ∈ O,

or, more explicitly, for (t, s) ∈ [0, T ]×O,

(6.10)



∂v
∂t (t, s) +

1
2σ

2(t, s)∂
2v

∂s2 (t, s) = κ(t, s)∂v∂s (t, s) + x2r
l
tB

l
t + r1,bt

(
− s∂v∂s (t, s)

)+
− rlt

(
− v(t, s) + x2B

l
t +

(
− s∂v∂s (t, s)

)−)+

+ rbt

(
− v(t, s) + x2B

l
t +

(
− s∂v∂s (t, s)

)−)−
,

v(T, s) = H(s), s ∈ O.

Conversely, if a function v ∈ C1,2([0, T ] × O) solves PDE (6.10) such that v(u, s) and ∂v
∂s (u, s)

have polynomial growth in s, then (v(u, Su), σ(u, Su)
∂v
∂s (u, Su)) is the unique solution to BSDE (6.8)

on u ∈ [t, T ] where we write S = Ss,t. Consequently, the pair (v(u, Su), B
l
u
∂v
∂s (u, Su)) solves BSDE

(6.7). We conclude that the unique replicating strategy for the hedger equals φ =
(
ξ, ψl, ψb, ψ1,b

)
where, for every u ∈ [t, T ],

ξu = −∂v
∂s

(u, Su), ψ1,b
u = −(B1,b

u )−1
(
− Su

∂v

∂s
(u, Su)

)+

,

ψl
u = (Bl

u)
−1

(
− v(u, Su) + x2B

l
u +

(
− Su

∂v

∂s
(u, Su)

)−)+

,(6.11)

ψb
u = −(Bb

u)
−1

(
− v(u, Su) + x2B

l
u +

(
− Su

∂v

∂s
(u, Su)

)−)−
.
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We are now in a position to formulate the following proposition, which summarizes pricing and
hedging results for a European claim. We denote by vh and vc the solutions to the hedger’s and
counterparty’s pricing PDEs, respectively.

Proposition 6.1 (i) Let vh(t, s) ∈ C1,2([0, T ] × O) be the solution to the quasi-linear PDE (6.5),

such that vh(t, s) and ∂vh

∂s (t, s) have a polynomial growth in s. Then the hedger’s price of the
European contingent claim H(ST ) is given by vh(t, St) and the unique replicating strategy φ =(
ξ, ψl, ψb, ψ1,b

)
for the hedger is given by (6.6) with v = vh.

(ii) Let vc(t, s) ∈ C1,2([0, T ]×O) be the solution to the quasi-linear PDE (6.10), such that vc(t, s) and
∂vc

∂s (t, s) have a polynomial growth in s. Then the counterparty’s price of the European contingent
claim H(ST ) is given by vc(t, St) and the unique replicating strategy φ =

(
ξ, ψl, ψb, ψ1,b

)
for the

counterparty is given by (6.11) with v = vc.

We notice that PDE (6.5) depends on the initial endowment x1. In the special case where
rl = rb = r, it reduces to the following PDE independent of x1

(6.12)


∂v
∂t (t, s) +

1
2σ

2(t, s)∂
2v

∂s2 (t, s) = κ(t, s)∂v∂s (t, s)− r1,bt

(
s∂v∂s (t, s)

)+
+ rtv(t, s) + rt

(
s∂v∂s (t, s)

)−
, (t, s) ∈ [0, T ]×O,

v(T, s) = H(s), s ∈ O.

Note that PDE (6.12) characterizes the price and the hedging strategy for a European contingent
claim when the borrowing rate and the lending rates are equal, but the funding rate for the risky
asset may differ from r. If we further assume that r1,b = r, then PDE (6.12) becomes

(6.13)

{
∂v
∂t (t, s) +

1
2σ

2(t, s)∂
2v

∂s2 (t, s) + (rts− κ(t, s))∂v∂s (t, s)− rtv(t, s) = 0, (t, s) ∈ [0, T ]×O,

v(T, s) = H(s), s ∈ O.

Obviously, PDE (6.13) is simply the classical Black and Scholes PDE. We mentioned in Remark
3.10 that the market model with partial netting does not cover the standard Bergman’s model with
different borrowing and lending rates when ri,b = rb > rl and trading is unrestricted. However, when
the equalities ri,b = rb = rl are postulated, then the associated PDEs for a European contingent
claim are identical so, as expected, the prices and hedging strategies coincide as well.

One can also obtain Proposition 6.1 by applying classical arguments rather than a BSDE ap-
proach as was done, for instance, in Bergman (1995). In essence, both methods hinge on the same
mathematical tool, namely, the non-linear Feynman-Kac formula. If a solution of a PDE under
study is not smooth, then a BSDE approach gives a probabilistic representation for the viscosity
solution of a PDE.

7 Initial Endowments of Opposite Signs

In the final section, we examine a particular instance of valuation when the initial endowments of the
hedger and the counterparty have opposite signs. Our goal is to show that the range of bilaterally
profitable prices Rp

0(x1, x2) (see Definition 3.12) may be non-empty, due to the asymmetry in initial
endowments of counterparties.

As usual, we work under Assumptions (M.1)–(M.3). For simplicity, we assume that the lending
and borrowing rates rl and rb are deterministic and satisfy rlt < rbt for all t ∈ [0, T ]. Our goal is to
find a contract (A,C) and a date t̂ ∈ [0, T ] such that the inequality P c

t̂
(x2,−A,−C) ≤ Ph

t̂
(x1, A,C)

fails to hold when x1 > 0 and x2 < 0. To this end, we consider an uncollateralized contract (hence
C = 0) with the following cash flows

At = p1[0,T ](t)− α1[t0,T ](t) + αe
∫ T
t0

ru du
1[T ](t)
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where t0 ∈ (0, T ) is a fixed date and the auxiliary function r satisfies ru ∈ (rlu, r
b
u) for all u ∈ [0, T ].

Moreover, a constant α > 0 is chosen in such a way that the following inequalities hold

x1B
l
t0 − αe

∫ T
t0

(ru−rlu) du ≥ 0, x1 + α(Bl
t0)

−1 − α(Bl
T )

−1e
∫ T
t0

ru du ≥ 0,

x2B
b
t0 + αe

∫ T
t0

(ru−rbu) du ≤ 0, x2 − α(Bb
t0)

−1 + α(Bb
T )

−1e
∫ T
t0

ru du ≤ 0,

which in turn is equivalent to: α > 0 and

(7.1) x2κ
−1
2 ≤ α ≤ min

{
x1B

l
t0e

−
∫ T
t0

(ru−rlu) du, −x2Bb
t0e

−
∫ T
t0

(ru−rbu) du, x1κ
−1
1

}
where

κ1 := −(Bl
t0)

−1 + (Bl
T )

−1e
∫ T
t0

ru du
, κ2 := (Bb

t0)
−1 − (Bb

T )
−1e

∫ T
t0

ru du
.

Note that κ1 > 0 and κ2 > 0, since from the inequalities rl < r < rb we obtain

−
∫ t0

0

rlu du−
(∫ T

t0

ru du−
∫ T

0

rlu du
)
= −

∫ T

t0

(ru − rlu) du < 0.

and

−
∫ t0

0

rbu du−
(∫ T

t0

ru du−
∫ T

0

rbu du
)
= −

∫ T

t0

(ru − rbu) du > 0,

Therefore, a constant α > 0 satisfying (7.1) exists and for the number x given by

x := x1 + α(Bl
t0)

−1 − α(Bl
T )

−1e
∫ T
t0

ru du ≥ 0,

we have that
xBl

t0 − α = x1B
l
t0 − αe

∫ T
t0

(ru−rlu) du ≥ 0.

We define the strategy φ =
(
ξ1, . . . , ξd, ψ1,b, . . . , ψd,b, ψl, ψb, ηb, ηl

)
where ξi = ψi,b = ψb = ηb =

ηl = 0 for i = 1, 2, . . . , d and

ψl
t = x1[0,t0) + (Bl

t0)
−1

(
xBl

t0 − α
)
1[t0,T ) + (Bl

T )
−1

(
xBl

T − αe
∫ T
t0

rlu du
+ αe

∫ T
t0

ru du
)
1[T,T ].

Then the hedger’s wealth process satisfies

VT (x, φ,A,C) =
(
xBl

t0 − α
)
e
∫ T
t0

rlu du
+ αe

∫ T
t0

ru du
= xBl

T − αe
∫ T
t0

rlu du
+ αe

∫ T
t0

ru du

=
(
x1 + α(Bl

t0)
−1 − α(Bl

T )
−1e

∫ T
t0

ru du
)
Bl

T − αe
∫ T
t0

rlu du
+ αe

∫ T
t0

ru du

= x1B
l
T = V 0

T (x1).

It is thus clear that the self-financing strategy (x, φ,A,C) replicates (A,C) on [0, T ]. Moreover, from
the uniqueness of a solution to the pricing BSDE, we know that the replicating strategy is unique.
From Definition 3.8, it now follows that

Ph
0 (x1, A, C) = x− x1 = α(Bl

t0)
−1 − α(Bl

T )
−1e

∫ T
t0

ru du
= −ακ1 < 0.

Let us now focus on the counterparty’s valuation problem. If we set

x̃ := x2 − α(Bb
t0)

−1 + α(Bb
T )

−1e
∫ T
t0

ru du ≤ 0,

then we obtain
x̃Bb

t0 + α = x2B
b
t0 + αe

∫ T
t0

(ru−rbu) du ≤ 0.

We define the strategy φ̃ =
(
ξ̃1, . . . , ξ̃d, ψ̃1,b, . . . , ψ̃d,b, ψ̃l, ψ̃b, η̃b, η̃l

)
where ξ̃i = ψ̃i,b = ψ̃l = η̃b =

η̃l = 0 for i = 1, 2, . . . , d and

ψ̃b
t = x̃1[0,t0) + (Bb

t0)
−1

(
x̃Bb

t0 + α
)
1[t0,T ) + (Bb

T )
−1

(
x̃Bb

T + αe
∫ T
t0

rbu du − αe
∫ T
t0

ru du
)
1[T,T ].
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Then we have

VT (x̃, φ̃,−A,−C) =
(
x̃Bb

t0 + α
)
e
∫ T
t0

rbu du − αe
∫ T
t0

ru du
= x̃Bb

T + αe
∫ T
t0

rbu du − αe
∫ T
t0

ru du

=
(
x2 − α(Bb

t0)
−1 + α(Bb

T )
−1e

∫ T
t0

ru du
)
Bb

T + αe
∫ T
t0

rbu du − αe
∫ T
t0

ru du

= x2B
b
T = V 0

T (x2).

It is clear that (x̃, φ̃,−A,−C) is the unique self-financing strategy replicating (−A,−C) on [0, T ].
From the definition of the counterparty’s ex-dividend price, we obtain

P c
0 (x2,−A,−C) = x2 − x̃ = α(Bb

t0)
−1 − α(Bb

T )
−1e

∫ T
t0

ru du
= ακ2 > 0.

We have thus established the following inequalities

P c
0 (x2,−A,−C) > ακ2 > 0 > −ακ1 = Ph

0 (x1, A,C),

so that the range of bilaterally profitable prices Rp
0(x1, x2) = [Ph

0 (x1, A, C), P
c
0 (x2,−A,−C)] is

indeed non-empty. Observe that here both parties are willing to pay a strictly positive cash amount
to the other party when the contract is initiated at time 0. This is not surprising, since both parties
are able to make profits after entering the contract at the expense of the counterparty’s funder who
will suffer a loss due to reduced servicing costs for the counterparty’s debt. To summarize, limited
arbitrages opportunity of type (A.3) (see Section 3.2) arise for the hedger and his counterparty, but
their gains are offset by the losses of the counterparty’s funder.
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