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1 Introduction

The research presented in this work is motivated by recent papers by Brigo et al. [5, 6], Burgard and
Kjaer [7, 8, 10], Crépey [14, 15], Fujii and Takahashi [20], Piterbarg [36] and Pallavicini et al. [35].
Our goal is to provide a sound theoretical underpinning for some results presented in these papers by
developing a unified framework for the nonlinear approach to hedging and pricing of OTC financial
contracts. Below, we briefly summarize the major aspects of the change that contract valuation and
hedging aspects of the financial markets underwent in the recent years. All the above works, as well
as the present paper, embarked on the task of studying both the theoretical and the practical issues
of valuation and hedging of financial contracts in the present market reality.

Let us consider a bilateral financial contract with cumulative cash flow process, seen from the
perspective of one of the two parties, referred to as the hedger, denoted as A. The classical approach
to hedging the position in such a contract hinged on creation of a self-financing trading strategy, say
φ = (ξ1, . . . , ξd, ψ0), with the corresponding wealth process

Vt(φ) =

d∑
i=1

ξitS
i
t + ψ0

tB
0
t

where S1, . . . , Sd are some relevant traded assets. In particular, this meant that all trades of the
hedger were fully funded by the same money market account B0.

Furthermore, it was assumed that both parties had access to the same traded risky assets, money
market account, and market information. Since, in such a classical setup, the discounted cash flows
were symmetric from the perspective of the two parties in the contract, meaning that the discounted
cash flows, as seen from the perspective of one party, were the negative of the discounted cash flows
as seen from the perspective of the other party, the hedging and pricing exercise was symmetric in
an analogous way.

Alas, things are no longer vanilla. In particular, the following hold:
• contracts now tend to be collateralized;
• parties may need to account for different funding rates;
• counterparty and systemic risks need to be accounted for;
• netting of portfolio positions becomes an important issue.

Consequently, a hedging portfolio will now refer to multiple funding accounts, denoted hereafter
as B1, . . . , Bd. Furthermore, the discounted cash flows (and thus also prices) will typically be
asymmetric relative to the parties in the contract, since their funding sources are no longer assumed
to be identical. Accordingly, the current way to hedge the position in a financial contract would be
to create a trading strategy, say φ = (ξ, ψ) = (ξ1, . . . , ξd, ψ0, . . . , ψd) composed of risky securities
Si, i = 1, 2, . . . , d, the cash account B0 used for unsecured lending/borrowing, and funding accounts
Bi, i = 1, 2, . . . , d, used for (unsecured or secured) funding of the ith asset, with the corresponding
wealth process

Vt(φ) :=
d∑

i=1

ξitS
i
t +

d∑
j=0

ψj
tB

j
t . (1.1)

In fact, a trading strategy represented by (1.1) is merely a special case of more general portfolios
examined in this paper. In particular, the hedger also needs to account for various netting possibil-
ities of short/long positions in the assets comprising the hedging portfolio. Hence the classical form
of the self-financing condition no longer holds, and thus one needs to analyze a suitably modified
version of this condition. Moreover, the collateral posted by a party as part of the cash flows of
the contract may depend on the hedging strategy employed by this party directly or indirectly –
through the wealth process of the hedging portfolio. This feature, in particular, makes the contract
cash flows asymmetric relative to the two parties in the contract; it also makes valuation and the
hedging problem implicit and nonlinear. For an extensive discussion and study of this aspect of
valuation and hedging in the context of valuation and hedging of counterparty risk, the interested
reader is referred to Bielecki et al. [3] and Crépey et al. [16].
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In view of the above-mentioned complexities, the problem of marking to market and hedging a
financial contract in the current market environment is no longer as straightforward as it was in
the past. Yet, as we shall argue, both the classic and the novel approaches are rooted in the same
principles of self-financing trading and no arbitrage, appropriately adapted to ways in which cash
flows are now modified and the ways in which hedging portfolios are now formed. The aim of this
work is thus to provide a framework for a systematic analysis of the presence/absence of arbitrage,
as well as a systematic analysis of hedging and valuation with regard to OTC contracts. Note that
the collateral process may also be present in the security cash flows even if counterparty credit risk
is not explicitly accounted for in the valuation and hedging of a given contract, in the sense that no
CCR adjustments are done.

The goals of this paper are:
• to provide a blueprint for derivation of dynamics of the wealth process corresponding to self-
financing trading strategy and to examine such dynamics under various trading covenants,
• to introduce and discuss the relevant concepts of arbitrage and no-arbitrage valuation,
• to highlight the so-called additive martingale property (see Remark 2.7) and its role in nonlinear
and implicit pricing via BSDEs, and
• to examine how our abstract model-free framework relates to some previous works, specifically,
the paper by Piterbarg [36].

For related research, the interested reader may also consult Bianchetti [2], Brigo et al. [4, 5, 6],
Burgard and Kjaer [7, 8, 9, 10], Castagna [12, 13], Crépey [14, 15], Fujii and Takahashi [20], Fujii
et al. [21], Henrard [22], Hull and White [23, 24], Kenyon [25, 26], Kijima et al. [27] and Mercurio
[28, 29, 30] and Pallavicini et al. [35].

The paper is organized as follows. In Section 2, we start by introducing a generic market model
with several risky assets and multiple funding accounts. We then derive alternative representations
for the dynamics of the wealth process of a self-financing trading strategy for a given process repre-
senting all cash flows of a contract. We first solve this problem in the basic model and subsequently
extend to more advanced models with various forms of netting. In Section 3, we introduce the
concept of an arbitrage-free model, by proposing an essential extension of the classic definition, and
we provide sufficient conditions for the no-arbitrage property of a market model under alternative
assumptions about trading and netting. Surprisingly, this crucial issue was completely neglected in
most existing papers that deal with funding costs and collateralization. The authors focused instead
on the “risk-neutral valuation” under a vaguely specified martingale measure, which was assumed
a priori to exist. By contrast, we propose a precise definition of the hedger’s price via either repli-
cation or a suitable form of superhedging. Moreover, we show that the problem of arbitrage under
funding costs is nontrivial, but it can indeed be dealt with using a judicious definition of arbitrage
opportunities and a specific form of a martingale measure.

As was already mentioned, collateralization of contracts became a widespread market practice.
For this reason, we examine in Section 4 various conventions regarding margin account and we study
the impact of collateralization on the dynamics of the hedger’s portfolio. In our stylized approach
to costs of margining, we consider both the case of segregated margin accounts and the case of
rehypothecation. Moreover, we acknowledge that collateral posted or received is either in the form
of cash or shares of a risky asset.

In Section 5, we deal with the fair pricing under funding costs and collateralization first in an
abstract setup and then for a generic diffusion-type model. Let us stress that the pricing functional
for the hedger will be typically nonlinear, since hedging strategies are typically nonadditive when a
collection of contracts, rather than a single deal, is studied. For instance, in the case of a market
model with partial netting, the pricing problem can be represented in terms of a nonlinear BSDE,
which is shown to admit a unique solution under mild assumptions on the underlying model. For
further results in this vein, the interested reader is referred to Nie and Rutkowski [31, 32, 33, 34]. To
put our framework into perspective, we also analyze the valuation method for collateralized contracts
proposed by Piterbarg [36] and we show that our approach covers as a special case the pricing results
established in [36].
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2 Trading under Funding Costs

Let us first introduce the notation for market models considered in this work.

Probability space. Throughout the paper, we fix a finite trading horizon T for our model of the finan-
cial market. All processes introduced in what follows are implicitly assumed to be G-adapted and
defined on the underlying probability space (Ω,G,G,P) where the filtration G = (Gt)t∈[0,T ] models
the flow of information available to all traders (in particular, any semimartingale is assumed to be
càdlàg). For convenience, we assume that the initial σ-field G0 is trivial, although this assumption
can easily be relaxed.

Risky assets. We denote by Si the ex-dividend price (or simply the price) of the ith risky asset with
the cumulative dividend stream after time 0 represented by the process Ai. Note that we do not
postulate that processes Si, i = 1, 2, . . . , d are positive. Hence by the long cash position (resp. short
cash position), we mean the situation when ξitS

i
t ≤ 0 (resp. ξitS

i
t ≥ 0) where ξit is the number of

hedger positions in asset Si at time t.

Funding accounts. The cash account B0 = B is used for unsecured lending or borrowing of cash.
In the case when the borrowing and lending cash rates are different, we use symbols Bl (resp. Bb)
to denote the process modeling the unsecured lending (resp. borrowing) cash account. Notation Bi

stands for the funding account, which may represent either unsecured or secured funding for the ith
risky asset. A similar convention applies to this account: in the case when borrowing/lending rates
differ, we use symbols Bi,l and Bi,b to denote lending/borrowing accounts associated with the ith
risky asset. As a general rule, we will assume the position of the hedger. Hence the superscripts
l (resp. b) will refer to rates applied to deposits (resp. loans) from the viewpoint of the hedger.
Observe that funding accounts are sometimes referred to as nonrisky assets. Unless explicitly stated
otherwise, we assume that Bl = Bb = B and Bi,l = Bi,b = Bi for all i.

A more detailed mathematical and financial interpretation of funding accounts will be presented
in what follows. Let us only mention here that Si is aimed to represent the price of any traded
security, such as, stock, stock option, interest rate swap, currency option, cross-currency swap,
CDS, CDO, etc. In essence, the rate ri,l (resp. ri,b) corresponding to the lending (resp., borrowing)
account Bi,l (resp. Bi,b) represents the incremental cost of maintaining the long cash position (resp.
short cash position) in asset Si (for a more precise interpretation of this statement, see Remark 2.7).
Hence the actual interpretation of “borrowing” and “lending” accounts Bi,l and Bi,b will depend on
a contract at hand and the relevant features of the financial environment. In particular, the rates
denoted here as ri,l and ri,b may in turn depend on multiple yield curves in several economies and/or
other funding arrangements of a particular party (for instance, the hedger’s internal funding costs).

Assumption 2.1 It is assumed throughout that the price processes of primary assets satisfy the
following:
(i) ex-dividend prices Si for i = 1, 2, . . . , d are semimartingales,
(ii) cumulative dividend streams Ai for i = 1, 2, . . . , d are processes of finite variation with Ai

0 = 0,
(iii) funding accounts Bj for j = 0, 1, . . . , d are strictly positive and continuous processes of finite
variation with Bj

0 = 1.

Definition 2.1 The cumulative dividend price Si,cld is given as

Si,cld
t := Si

t +Bi
t

∫
(0,t]

(Bi
u)

−1 dAi
u, t ∈ [0, T ], (2.1)

and thus the discounted cumulative dividend price Ŝi,cld := (Bi)−1Si,cld satisfies

Ŝi,cld
t = Ŝi

t +

∫
(0,t]

(Bi
u)

−1 dAi
u, t ∈ [0, T ], (2.2)

where we denote Ŝi := (Bi)−1Si.
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If the ith traded asset does not pay any dividend up to time T , then the equality Si,cld
t = Si

t

holds for every t ∈ [0, T ]. Note that the process Si,cld (hence also the process Ŝi,cld) is càdlàg.

Remark 2.1 Note that formula (2.1) hinges on an implicit assumption that positive (resp. negative)
dividends from the ith asset are invested in (resp. funded from) the ith funding account Bi. Since the
main valuation and hedging results for derivative securities obtained in this section are represented
in terms of primitive processes Si, Bi and Ai, rather than Si,cld, the choice of a particular convention
regarding reinvestment of dividends associated with the ith risky asset is in fact immaterial. The
implicit choice made in (2.1) was motivated by the mathematical convenience only.

Remark 2.2 We adopt the following notational conventions:
(i) for any random variable χ, the equality χ = χ+ − χ− is the unique decomposition of χ into its
positive and negative parts,
(ii) for any stochastic process A of finite variation, the equality A = A+ −A− represents the unique
decomposition of A where A+ and A− are increasing processes with A0 = A+

0 −A−
0 .

2.1 Contracts and Trading Strategies

We are in a position to introduce trading strategies based on a finite family of primary assets
satisfying Assumption 2.1. In Sections 2.1 and 2.2, we consider a dynamic portfolio denoted as
φ = (ξ, ψ) = (ξ1, . . . , ξd, ψ0, . . . , ψd), which is composed of risky securities Si, i = 1, 2, . . . , d, the
cash account B used for unsecured lending/borrowing, and funding accounts Bi, i = 1, 2, . . . , d, used
for (either unsecured or secured) funding of the ith asset. Let us first formally define the class of
contracts under our consideration.

Definition 2.2 By a bilateral financial contract, or simply a contract, we mean an arbitrary càdlàg
process A of finite variation. The process A is aimed to represent the cumulative cash flows of a
given contract from time 0 until its maturity date T . By convention, we set A0− = 0.

The process A is assumed to model all cash flows of a given contract, which are either paid out
from the wealth or added to the wealth, as seen from the perspective of the hedger (recall that the
other party is referred to as the counterparty). Note that the process A includes the initial cash flow
A0 of a contract at its inception date t0 = 0. For instance, if a contract has the initial price p and
stipulates that the hedger will receive cash flows Ā1, Ā2, . . . , Āk at future dates t1, t2, . . . , tk ∈ (0, T ],
then we set A0 = p so that

At = p+

k∑
l=1

1[tl,T ](t)Āl. (2.3)

If a unique future cash flow associated with a contract is the terminal payment at time T , which is
denoted as X, then the process A for this security takes the form At = p1[0,T ](t) +X1[T ](t). For
instance, if the hedger sells at time 0 a European call option on the risky asset Si, then the terminal
payoff equals X = −(Si

T − K)+ and thus At = p1[0,T ](t) − (Si
T − K)+1[T ](t). The symbol p is

frequently used to emphasize that all future cash flows Āl for l = 1, 2, . . . , k are explicitly specified
by the contract’s covenants, but the initial cash flow A0 is yet to be formally defined and evaluated.
Valuation of a contract A means, in particular, searching for the range of fair values p at time 0 from
the viewpoint of either the hedger or the counterparty. Although the valuation paradigm will be the
same for the two parties, due either to the asymmetry in their trading costs and opportunities or
the nonlinearity of the wealth dynamics, they will typically obtain different sets of fair prices for A.

By a trading strategy associated with a contract A we mean the triplet (x, φ,A). The wealth
process V (x, φ,A) of a trading strategy depends on the initial endowment x of the hedger, represented
by an arbitrary real number x, his hedging portfolio φ, and contractual cash flows A. Note that by
the hedger’s initial endowment, we mean his exogenously given wealth before the initial price p was
received or paid by him at time 0. This means that V0(x, φ, 0) = x, whereas for a given contract
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A, the initial wealth of the hedger’s strategy at time 0 equals V0(x, φ,A) = x+A0 = x+ p. Before
stating the definition of a self-financing trading strategy, we formulate the standing assumption
regarding the integrability of stochastic processes.

Assumption 2.2 We assume that ξi for i = 1, 2, . . . , d (resp., ψj for j = 0, 1, . . . , d) are arbitrary
G-predictable (resp., G-adapted) processes such that the stochastic integrals used in what follows
are well defined.

Definition 2.3 For the hedger’s initial endowment x, we say that a trading strategy (x, φ,A),
associated with a contract A, is self-financing whenever the wealth process V (x, φ,A), which is
given by the formula

Vt(x, φ,A) =
d∑

i=1

ξitS
i
t +

d∑
j=0

ψj
tB

j
t , (2.4)

satisfies, for every t ∈ [0, T ],

Vt(x, φ,A) = x+
d∑

i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +
d∑

j=0

∫ t

0

ψj
u dB

j
u +At. (2.5)

It is important to stress that a hedging portfolio φ and contractual cash flows A cannot be dealt
with separately, since, in general, the wealth dynamics are obtained by a nonlinear superposition of
φ and A. A possibility of separation of cash flows of A and a hedging portfolio φ for A is, of course,
a well-known (and very handy) feature of the classic (that is, linear) arbitrage pricing theory, which
in turn results in price additivity in a frictionless market model.

Remark 2.3 Obviously, the wealth process always depends on the initial endowment x, a portfolio
φ and contractual cash flows A, so that the notation V (x, φ,A) is adequate. However, for the sake
of brevity, the shorthand notation V (φ,A) (or even V (φ)) will sometimes be used in the remaining
part of Section 2 if there is no danger of confusion.

Remark 2.4 Formula (2.5) yields the following wealth decomposition

Vt(x, φ,A) = x+Gt(x, φ,A) + Ft(x, φ,A) +At (2.6)

where

Gt(x, φ,A) :=

d∑
i=1

∫
(0,t]

ξiu (dS
i
u + dAi

u) (2.7)

represents the gains/losses associated with holding long/short positions in risky assets S1, S2, . . . , Sd

and

Ft(x, φ,A) :=
d∑

j=0

∫ t

0

ψj
u dB

j
u (2.8)

represents the portfolio’s funding costs. This additive decomposition of the wealth process will no
longer hold when more constraints will be imposed on trading.

Remark 2.5 In some related papers (see, for instance, [36]), the process γ, which is given by, for
all t ∈ [0, T ],

γt = x+ Ft(x, φ,A) +
d∑

i=1

∫
(0,t]

ξiu dA
i
u +At,

is referred to as the cash process financing the portfolio φ. In this context, it is important to stress
that the equality

Vt(x, φ,A) =

d∑
i=1

∫
(0,t]

ξiu dS
i
u + γt,

holds but, in general, we have that Vt(x, φ,A) ̸=
∑d

i=1 ξ
i
tS

i
t + γt.
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2.2 Basic Model with Funding Costs

Let us first describe a preliminary setting, which henceforth will be referred to as the basic model
with funding costs or, simply, the basic model.

Definition 2.4 By the basic model with funding costs, we mean a market model in which the lending
and borrowing accounts coincide, so that B = Bl = Bb, the equalities Bi = Bi,l = Bi,b hold for all
i = 1, 2, . . . , d, and trading in funding accounts Bi and risky assets Si is a priori unconstrained.

A thorough analysis of the basic model is merely a first step towards more realistic models with
various trading and/or funding constraints. We will show that explicit formulae for the wealth
dynamics under various constraints can be derived from results for the basic model by progressively
refining the computations involving the wealth process and funding costs. For reasons that will be
explained later, we are interested not only in dynamics of the wealth process, but also in dynamics of
the netted wealth, as given by Definition 2.5. Let us only mention here that the concept of the netted
wealth will be a convenient tool for examining the no-arbitrage features of a market model under
funding costs and collateralization. To be a bit more specific, the concept of a martingale measure
should now be applied to the discounted netted wealth, rather than to the discounted wealth of a
trading strategy since the latter process includes the cash flows of A, whereas in the former case
they are in some sense counterbalanced by the cash flows of −A.

Definition 2.5 The netted wealth V net(x, φ,A) of a trading strategy (x, φ,A) is given by the equal-
ity V net(x, φ,A) = V (x, φ,A) + V (0, φ̃,−A) where (0, φ̃,−A) is the unique self-financing strategy
such that ξit = ψi

t = 0 for every i = 1, 2, . . . , d and all t ∈ [0, T ].

We have the following lemma (for its extension to the case of different lending and borrowing
accounts, see Lemma 3.1).

Lemma 2.1 If B = Bl = Bb then the following equality holds, for all t ∈ [0, T ],

V net
t (x, φ,A) = Vt(x, φ,A)−Bt

∫
[0,t]

B−1
u dAu. (2.9)

Proof. By setting ξit = ψi
t = 0 in (2.4) and (2.5) , we obtain Vt(0, φ̃,−A) = ψ̃0

tBt and

Vt(0, φ̃,−A) =
∫ t

0

ψ̃0
u dBu −At.

Since V0(0, φ̃,−A) = −A0, we obtain (2.9). �

Note that
V net
0 (x, φ,A) = V0(x, φ,A) + V0(0, φ̃,−A) = x+A0 −A0 = x,

so that the initial netted wealth is independent of A0. Nevertheless, the process V net(x, φ,A) may
depend on A0, in general, if the dynamics of the wealth processes V (x, φ,A) and V (0, φ̃,−A) are
nonlinear. Intuitively, the netted wealth V net(x, φ,A) represents the wealth of the hedger, who
takes the back-to-back long and short positions in A, uses a dynamic portfolio φ with the initial
endowment x to hedge the long position, and leaves the short position unhedged, meaning that no
investments in risky assets are undertaken to hedge the short position. In particular, the initial cash
flows A0 and −A0 obviously cancel out, meaning that the initial price received from (or paid to) a
counterparty in contract A is immediately passed on to a counterparty in contract −A. Therefore, in
the context of the computation of the netted wealth process, the value of A0 should be immaterial
for the hedger. This observation motivates us to make the following natural assumption, which
ensures that the netted wealth is independent of A0.

Assumption 2.3 When computing the netted wealth process V net(x, φ,A), we set A0 = 0.
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With Assumption 2.3 in force, the representation (2.9) takes the form

V net
t (x, φ,A) = Vt(x, φ,A)−Bt

∫
(0,t]

B−1
u dAu. (2.10)

In practice, the offset of cash flows at time 0 is only possible when the market prices of A and
−A at time 0 satisfy pm0 (−A) = −pm0 (A). Obviously, by the market price of A (resp. −A), we
mean here the initial price at time 0 of future cash flows of A (resp. −A) on the time interval
(0, T ]. Then the financial interpretation of the netted wealth at time T can be restated as follows:
in order to assess a potential profitability of a given contract A with respect to his market model,
the hedger, who has the initial endowment x, enters at time 0 into a contract A at its market price
pm0 (A), and simultaneously takes a short position in the same contract at its market price −pm0 (A),
so that the net cost of his two positions in the contract at time 0 is null. Subsequently, starting from
his initial endowment x, he implements a dynamic hedging portfolio φ for the long position and,
concurrently, uses only the cash account (in general, the borrowing and lending accounts) to reinvest
the incoming and outgoing cash flows associated with the short position. At terminal date T , the
hedger aggregates the terminal wealth of a dynamically hedged long position in some contract with
the outcome of the unhedged short position in the same contract. Independently of the level of the
initial price of the contract, this gives him an indication of whether entering into this contract could
lead to an arbitrage opportunity for him. For the precise statement of this property and a detailed
discussion, we refer the reader to Section 3.1 (see, in particular, Definition 3.1).

2.2.1 A Preliminary Result

Let introduce the following notation for i = 1, 2, . . . , d:

Ki
t :=

∫
(0,t]

Bi
u dŜ

i
u +Ai

t =

∫
(0,t]

Bi
u dŜ

i,cld
u (2.11)

where the second equality is an immediate consequence of (2.2), and

Kφ
t :=

∫
(0,t]

Bu dṼu(x, φ,A)− (At −A0) =

∫
(0,t]

Bu dṼ
net
u (x, φ,A) (2.12)

where we set Ṽ net(x, φ,A) := B−1V net(x, φ,A) and Ṽ (x, φ,A) := B−1V (x, φ,A), so that the second
equality follows from (2.9). Obviously,

Ṽ net
t (x, φ,A) = x+

∫
(0,t]

B−1
u dKφ

u . (2.13)

The process Ki is equal to the wealth, discounted by the funding account Bi, of a self-financing
strategy that uses the risky security Si and the associated funding account Bi, where Bi

t units of
the cumulative dividend price of the ith asset are held at time t.

The following preliminary result is primarily tailored to cover the valuation and hedging of an
unsecured contract. We thus mainly focus here on funding costs associated with trading in risky
assets. We will argue later that Proposition 2.1 is a convenient starting point to analyze a wide
spectrum of practically appealing situations. To achieve our goals, it will be enough to impose later
specific constraints on trading strategies, which will reflect particular market conditions faced by
the hedger (such as different lending, borrowing and funding rates) and/or additional covenants of
an OTC contract under study (such as a margin account, closeout payoffs, or benefits stemming
from defaults). For a detailed study of trading strategies involving a secured (that is, collateralized )
contract, we refer the reader to Section 4.

Proposition 2.1 (i) For any self-financing strategy φ we have that, for every t ∈ [0, T ],

Kφ
t =

d∑
i=1

∫
(0,t]

ξiu dK
i
u +

d∑
i=1

∫ t

0

(ψi
uB

i
u + ξiuS

i
u)(B̃

i
u)

−1 dB̃i
u (2.14)
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where we set B̃i := B−1Bi.
(ii) The equality

Kφ
t =

d∑
i=1

∫
(0,t]

ξiu dK
i
u, t ∈ [0, T ], (2.15)

holds if and only if
d∑

i=1

∫ t

0

(ψi
uB

i
u + ξiuS

i
u)(B̃

i
u)

−1 dB̃i
u = 0, t ∈ [0, T ]. (2.16)

(iii) In particular, if for each i = 1, 2, . . . , d we have that: either Bi
t = Bt for all t ∈ [0, T ] or

ζit := ψi
tB

i
t + ξitS

i
t = 0, t ∈ [0, T ], (2.17)

then (2.16) is valid and thus (2.15) holds.

(iv) Assume that Bi = B for every i = 1, 2, . . . , d and denote S̃i,cld = B−1Si,cld. Then

dṼ net
t (x, φ,A) =

d∑
i=1

ξit dS̃
i,cld
t . (2.18)

Proof. Recall that (see (2.5))

dVt(x, φ,A) =
d∑

i=1

ξit d(S
i
t +Ai

t) +
d∑

j=0

ψj
t dB

j
t + dAt.

Using (2.4), for the discounted wealth Ṽ (φ,A) = B−1V (φ,A) we obtain

dṼt(x, φ,A) =
d∑

i=1

ξit d((Bt)
−1Si

t) +
d∑

i=1

ξit(Bt)
−1 dAi

t +
d∑

i=1

ψi
t d((Bt)

−1Bi
t) + (Bt)

−1 dAt

=
d∑

i=1

ξit dS̃
i,cld
t +

d∑
i=1

ψi
t dB̃

i
t + (Bt)

−1 dAt

where B̃i = B−1Bi and

S̃i,cld
t = Si

tB
−1
t +

∫
(0,t]

B−1
u dAi

u = S̃i
t +

∫
(0,t]

B−1
u dAi

u.

Consequently,

dKφ
t = Bt dṼt(x, φ,A)− dAt =

d∑
i=1

Btξ
i
t dS̃

i,cld
t +

d∑
i=1

Btψ
i
t dB̃

i
t

=

d∑
i=1

Btξ
i
t d(Ŝ

i
tB̃

i
t) +

d∑
i=1

Btξ
i
t B

−1
t dAi

t +

d∑
i=1

Btψ
i
t dB̃

i
t

=
d∑

i=1

Btξ
i
tŜ

i
t dB̃

i
t +

d∑
i=1

BtB̃
i
tξ

i
t dŜ

i
t +

d∑
i=1

ξit dA
i
t +

d∑
i=1

Btψ
i
t dB̃

i
t

=
d∑

i=1

Btξ
i
tŜ

i
t dB̃

i
t +

d∑
i=1

ξit (B
i
t dŜ

i
t + dAi

t) +
d∑

i=1

Btψ
i
t dB̃

i
t

=
d∑

i=1

ξit dK
i
t +

d∑
i=1

Bt(ψ
i
t + ξitŜ

i
t) dB̃

i
t.

This completes the proof of part (i). Parts (ii) and (iii) now follow easily. By combining formulae
(2.11) and (2.14), we obtain part (iv). Note that (2.18) is the classic condition for a market with a
single cash account B. �
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Remark 2.6 Note that equality Bi = B (resp. equality (2.17)) may correspond to unsecured (resp.
secured) funding of the ith stock, where unsecured funding means that a risky security is not posted
as collateral. In this financial interpretation, condition (2.17) would mean that at any date t the
value of the long or short position in the ith stock should be exactly offset by the value of the ith
secured funding account. Although this condition is aimed to cover the case of the fully secured
funding of the ith risky asset using the corresponding repo rate, it is fair to acknowledge that it is
rather restrictive and thus not always practical. It would be suitable for repo contracts with the
daily resettlement, but it would not cover the case of long term repo contracts.

Note also that if condition (2.17) holds for all i = 1, 2, . . . , d, then the wealth process satisfies
Vt(x, φ,A) = ψ0

tBt for every t ∈ [0, T ]. This is consistent with the interpretation that all gains/losses
are immediately reinvested in the cash account B. To make this setup more realistic, we need, in
particular, to introduce different borrowing and lending rates and add more constraints on trading.
More generally, the ith risky security can be funded in part using Bi and using B for another part,
so that condition (2.17) may fail to hold. However, this case can also be covered by the model in
which condition (2.17) is met by artificially splitting the ith asset into two “subassets” that are
subject to different funding rules. Needless to say, the valuation and hedging results for a derivative
security will depend on the way in which risky assets used for hedging are funded.

2.2.2 Wealth Dynamics in the Basic Model

To obtain some useful representations for the wealth dynamics in the basic model, we first prove
an auxiliary lemma. From equality (2.19), one can deduce that the increment dKi

t represents the
change in the price of the ith asset net of funding cost. For a lack of the better terminology, we
propose calling Ki the netted realized cash flow of the ith asset.

Lemma 2.2 The following equalities hold for all t ∈ [0, T ]:

Ki
t = Si

t − Si
0 +Ai

t −
∫ t

0

Ŝi
u dB

i
u (2.19)

and

Kφ
t = Vt(x, φ,A)− V0(x, φ,A)− (At −A0)−

∫ t

0

Ṽu(x, φ,A) dBu

= Ft(x, φ,A) +Gt(x, φ,A)−
∫ t

0

Ṽu(x, φ,A) dBu. (2.20)

Proof. Formulas (2.2) and (2.11) yield∫
(0,t]

Bi
u dŜ

i,cld
u =

∫
(0,t]

Bi
u dŜ

i
u +Ai

t = Bi
tŜ

i
t −Bi

0Ŝ
i
0 −

∫ t

0

Ŝi
u dB

i
u +Ai

t (2.21)

= Si
t − Si

0 +Ai
t −

∫ t

0

Ŝi
u dB

i
u.

The proof of the second equality is analogous. �

Remark 2.7 For each i, the differential Ki
t admits both “multiplicative” decomposition

Ki
t =

∫
(0,t]

Bi
u dŜ

i,cld
u (2.22)

and “additive” decomposition

Ki
t = Si

t − Si
0 +Ai

t −
∫ t

0

Ŝi
u dB

i
u. (2.23)
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If under some probability measure, say P̂, the process Ŝi,cld is a (local) martingale, then, in view of
(2.22), processKi is also a (local) martingale under the same measure. We call this the multiplicative

martingale property of Ki (under P̂). Because of (2.23), we also say that Ki enjoys the additive

martingale property (under P̂). The financial meaning of this property is rather intuitive considering

that dKi
t = d(Si

t + Ai
t) − Ŝi

t dB
i
t represents change in capital gains/losses of the ith asset, net

of local holding income/holding cost of the asset. Likewise, note that if equality (2.15) is valid,
then the process Kφ is a (local) martingale. In view of (2.20), we call this additive martingale

property of Kφ (under P̂). Again, the financial meaning of this property is fairly clear, since

dKφ
t = dGt(x, φ,A)+dFt(x, φ,A)− Ṽt(x, φ,A) dBt represents total local change in gains/losses and

funding costs, net of local wealth reinvestment income/wealth service charge.

In view of Lemma 2.2, the following corollary to Proposition 2.1 is immediate. Since the funding
costs in the basic model may depend on funding accounts B0, B1, . . . , Bd, we emphasize this depen-
dence by writing F (φ) = F (φ;B0, B1, . . . , Bd). Recall that the processes ζi, i = 1, 2, . . . , d are given
by (2.17).

Corollary 2.1 Formula (2.14) is equivalent to the following expressions

dṼ net
t (x, φ,A) =

d∑
i=1

ξitB̃
i
t dŜ

i,cld
t +

d∑
i=1

ζit(B
i
t)

−1 dB̃i
t, (2.24)

dṼt(x, φ,A) =
d∑

i=1

ξitB̃
i
t dŜ

i,cld
t +

d∑
i=1

ζit(B
i
t)

−1 dB̃i
t + (Bt)

−1 dAt, (2.25)

dVt(x, φ,A) = Ṽt(x, φ,A) dBt +
d∑

i=1

ξit dK
i
t +

d∑
i=1

ζit(B̃
i
t)

−1 dB̃i
t + dAt. (2.26)

Hence the funding costs of φ satisfy

Ft(φ;B
0, B1, . . . , Bd) =

∫ t

0

Ṽu(x, φ,A) dBu +
d∑

i=1

∫ t

0

ζiu(B̃
i
u)

−1 dB̃i
u −

d∑
i=1

∫ t

0

ξiuŜ
i
u dB

i
u. (2.27)

Remark 2.8 Formula (2.24) may suggest that in the basic model with funding costs the dynamics of
the process V net(x, φ,A) do not depend on A. To this end, one could argue as follows: suppose that
we take any processes ξ = (ξ1, . . . , ξd) and ψ = (ψ1, . . . , ψd). Then, under the present assumptions,

for any two external cash flows, say A and Â, we may compute the unique wealth processes V (x, φ,A)

and V (x, φ̂, Â) from (2.25) and, consequently, using (2.4), also the unique processes ψ0 and ψ̂0

such that the full strategies φ and φ̂ are self-financing. Then the wealth processes V (x, φ,A) and

V (x, φ̂, Â) will be manifestly different, but from (2.24) we see that the netted wealth processes

V net(x, φ,A) and V net(x, φ̂, Â) coincide and thus they do not depend on A. This argument is in
fact flawed since, typically, the processes ξ = (ξ1, . . . , ξd) and ψ = (ψ1, . . . , ψd) may also depend on
future cash flows of A. This feature is rather obvious when one addresses the issue of replication of
a contract formally represented by the process A.

To illustrate this remark, let us consider a toy model with the cash account B and one risky asset,
namely, the unit discount bond maturing at T with the price process S1

t = B(t, T ). Let 0 < t0 < T
and let η be a positive Gt0 -measurable random variable. Recall that when dealing with the netted
wealth, we may and do assume that A0 = 0. We set At = ηB(t0, T )1[t0,T ] − η1[T ] and we consider
the portfolio φ = (ξ1, ψ0) where ξ1t = η1[t0,T ](t) and ψ0

t = 0 for all t, meaning that at time t0 the
incoming cash flow η is invested in the discount bond. If we assume that x = 0, then the wealth
process V (0, φ,A) satisfies Vt(0, φ,A) = ηB(t, T )1[t0,T [(t) so that, in particular, VT (0, φ,A) = 0. By
contrast, (2.9) yields

V net
T (0, φ,A) = VT (0, φ,A)−BT

∫
(0,T ]

B−1
t dAt = η

(
1−B(t0, T )

BT

Bt0

)
(2.28)
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and thus the netted wealth manifestly depends on η, that is, on the contract A. Note that by
modifying ξ1t0 so that ψ0

t0 ̸= 0, one can easily produce an example in which VT (0, φ,A) is nonzero
and it also depends on A. The advantage of the netted wealth lies in the fact that it is suitable
when one wishes to identify arbitrage opportunities. For instance, from (2.28), we may deduce that

an arbitrage opportunity arises for the hedger if the inequality B(t0, T ) <
Bt0

BT
holds P-a.s., that is,

when the bond price is too low with respect to the cash account. Needless to say, this conclusion is
trivial and it can be obtained without difficulty through other means. Our goal in this example was
simply to illustrate the potential of the netted wealth as a handy tool, which can be also applied
when nonlinear constraints on trading are imposed, in particular, under netting or collateralization.

Example 2.1 Suppose that the processes Bj , j = 0, 1, . . . , d are absolutely continuous, so that they
can be represented as dBj

t = rjtB
j
t dt for some G-adapted processes rj , j = 0, 1, . . . , d. Then (2.25)

yields

dVt(φ) = rtVt(φ) dt+
d∑

i=1

ζit(r
i
t − rt) dt+

d∑
i=1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ dAt (2.29)

where, for brevity, we write Vt(φ) = Vt(x, φ,A). Equation (2.29) yields

dVt(φ) =
d∑

j=0

rjtψ
j
tB

j
t dt+

d∑
i=1

ξit
(
dSi

t + dAi
t

)
+ dAt, (2.30)

which can also be seen as an immediate consequence of (2.5). We note that the dynamics of funding
costs of φ are given by

dFt(φ;B
0, B1, . . . , Bd) =

d∑
j=0

rjtψ
j
tB

j
t dt. (2.31)

2.2.3 A Common Unsecured Account for Risky Assets

Let us analyze a special case of the basic model with a common unsecured account for risky assets.
To this end, we assume that Bi = B for i = 1, 2, . . . , k for some k ≤ d. This means that all unsecured
accounts B1, B2, . . . , Bk collapse in a single cash account, denoted as B, but the secured accounts
Bk+1, Bk+2, . . . , Bd driven by the repo rates may vary from one asset to another. Formally, it is
now convenient to postulate that ψi = 0 for i = 1, 2, . . . , k, so that a portfolio φ may be represented
as φ = (ξ1, . . . , ξd, ψ0, ψk+1, . . . , ψd). Hence formula (2.4) reduces to

Vt(φ) =
d∑

i=1

ξitS
i
t + ψ0

tBt +
d∑

i=k+1

ψi
tB

i
t

where we write Vt(φ) = Vt(x, φ,A) and the self-financing condition (2.5) becomes

Vt(φ) = V0(φ) +
d∑

i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +

∫ t

0

ψ0
u dBu +

d∑
i=k+1

∫ t

0

ψi
u dB

i
u +At.

Consequently, equality (2.25) takes the following form

dVt(φ) = Ṽt(φ) dBt +

k∑
i=1

ξitBt dS̃
i,cld
t +

d∑
i=k+1

ξitB
i
t dŜ

i,cld
t +

d∑
i=k+1

ζit(B̃
i
t)

−1 dB̃i
t + dAt (2.32)

where we denote

S̃i,cld
t := S̃i

t +

∫
(0,t]

B−1
u dAi

u, t ∈ [0, T ],

where in turn S̃i := B−1Si.
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Example 2.2 If all accounts Bj , j = 0, 1, . . . , d are absolutely continuous so that, in particular,
ri = r for i = 1, 2, . . . , k, then

dVt(φ) =
(
rtψ

0
tBt +

d∑
i=k+1

ritψ
i
tB

i
t

)
dt+

d∑
i=1

ξit
(
dSi

t + dAi
t

)
+ dAt. (2.33)

If, in addition, ζit = 0 for i = k + 1, k + 2, . . . , d, then Vt(φ) =
∑k

i=1 ξ
i
tS

i
t + ψ0

tBt and (2.33) yields

dFt(φ) = rt

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)
dt−

d∑
i=k+1

ξitr
i
tS

i
t dt.

2.3 Different Lending and Borrowing Cash Rates

In the first extension of the basic model, we assume that the unsecured borrowing and lending
cash rates are different. Recall that Bl and Bb stand for the account processes corresponding to
the lending and borrowing rates, respectively. This can be seen as a first example of a generic
market model, in the sense explained in Section 3.1.1; further examples are given in the foregoing
subsections.

It is now natural to represent a portfolio φ as φ = (ξ1, . . . , ξd, ψl, ψb, ψ1, . . . , ψd) where, by
assumption, ψl

t ≥ 0 and ψb
t ≤ 0 for all t ∈ [0, T ]. Since simultaneous lending and borrowing of cash

is either precluded or not efficient (if rb ≥ rl), we also postulate that ψl
tψ

b
t = 0 for all t ∈ [0, T ]. The

wealth process of a trading strategy (φ,A) now equals (recall that we denote Vt(φ) = Vt(x, φ,A))

Vt(φ) =
d∑

i=1

ξitS
i
t +

d∑
i=1

ψi
tB

i
t + ψl

tB
l
t + ψb

tB
b
t , (2.34)

and the self-financing condition reads

Vt(φ) = V0(φ) +

d∑
i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +

d∑
i=1

∫ t

0

ψi
u dB

i
u (2.35)

+

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u +At.

It is worth noting that ψl
t and ψ

b
t satisfy

ψl
t = (Bl

t)
−1

(
Vt(φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t

)+

and

ψb
t = −(Bb

t )
−1

(
Vt(φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t

)−
.

The following corollary furnishes the wealth dynamics under the present assumptions.

Corollary 2.2 (i) Assume that Bl and Bb are account processes corresponding to the lending and
borrowing rates. Let φ be any self-financing strategy such that ψl

t ≥ 0, ψb
t ≤ 0 and ψl

tψ
b
t = 0 for all

t ∈ [0, T ]. Then the wealth process V (φ), which is given by (2.34), has the following dynamics

dVt(φ) =
d∑

i=1

ξitB
i
t dŜ

i,cld
t +

d∑
i=1

ζit(B
i
t)

−1 dBi
t + dAt

+
(
Vt(φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t

)+

(Bl
t)

−1 dBl
t (2.36)

−
(
Vt(φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t

)−
(Bb

t )
−1 dBb

t .
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(ii) If, in addition, ψi
t = 0 for i = 1, 2, . . . , k and ζit = 0 for i = k + 1, k + 2, . . . , d for all t ∈ [0, T ],

then

dVt(φ) =
k∑

i=1

ξit d(S
i
t +Ai

t) +
d∑

i=k+1

ξitB
i
t dŜ

i,cld
t + dAt (2.37)

+
(
Vt(φ)−

k∑
i=1

ξitS
i
t

)+

(Bl
t)

−1 dBl
t −

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)−
(Bb

t )
−1 dBb

t .

Proof. Formula (2.37) can be derived from (2.36), using also the following equality (see (2.21))

Bi
t dŜ

i,cld
t = dSi

t − Ŝi
t dB

i
t + dAi

t.

The details are left to the reader. �

Example 2.3 Under the assumptions of part (ii) in Corollary 2.2 if, in addition, the accounts Bi

for i = k + 1, k + 2, . . . , d as well as Bl and Bb are absolutely continuous, then (2.37) becomes

dVt(φ) =
k∑

i=1

ξit
(
dSi

t + dAi
t

)
+

d∑
i=k+1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ dAt (2.38)

+ rlt

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)+

dt− rbt

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)−
dt

and thus the funding costs satisfy

dFt(φ) = rlt

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)+

dt− rbt

(
Vt(φ)−

k∑
i=1

ξitS
i
t

)−
dt−

d∑
i=k+1

ritξ
i
tS

i
t dt.

In particular, by setting k = 0, we obtain

dVt(φ) =
d∑

i=1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ dAt + rlt

(
Vt(φ)

)+
dt− rbt

(
Vt(φ)

)−
dt. (2.39)

2.4 Trading Strategies with Funding Costs and Netting

So far, long and short positions in funding accounts Bj , j = 0, 1, . . . , d were assumed to bear the
same interest. This assumption will be now relaxed, so that in this section, besides postulating
that Bl ̸= Bb we also postulate that Bi,l ̸= Bi,b, j = 0, 1, . . . , d. Accordingly, we consider trading
portfolio φ = (ξ1, . . . , ξd, ψl, ψb, ψ1,l, ψ1,b, . . . , ψd,l, ψd,b) whenever this is needed, and we define the
corresponding wealth process as

Vt(x, φ,A) = ψl
tB

l
t + ψb

tB
b
t +

d∑
i=1

(ξitS
i
t + ψi,l

t B
i,l
t + ψi,b

t Bi,b
t ). (2.40)

Consequently, we will now deal with the extended framework in which the issue of aggregating long
and short positions in risky assets becomes crucial. The concept of aggregation of long and short
positions can be introduced at various levels of inclusiveness, from the total absence of offsetting
and netting to the most encompassing case of netting of all positions, whenever this is possible.

Let us explain the offsetting/netting terminology adopted in this work. By offsetting, we mean
the compensation of long and short positions either for a given risky asset or for the nonrisky asset.
This concept is irrelevant unless the borrowing and lending rates are different for at least one risky
asset or for the cash account. By netting we mean the aggregation of long or short cash positions
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across various risky assets, which share some funding accounts. Therefore, the possibility of netting
becomes relevant when there exist some risky assets, say Si and Sj , for which at least one of the
following equalities holds: Bi,b = Bj,b, Bi,b = Bj,l, Bi,l = Bj,b or Bi,l = Bj,l. Needless to say,
several variants of models with netting can be introduced and examined. To illustrate this concept,
we will study here only one particular instance of a market model with netting (see Section 2.4.3).

For our further purposes, it will be enough to distinguish between the following cases:
(a) the complete absence of offsetting and netting of long/short positions,
(b) the offsetting of long/short positions for every risky asset but no netting,
(c) the offsetting of long/short positions for every risky asset combined with some form of netting
of long/short cash positions for all risky assets that are funded from common funding accounts.

2.4.1 Absence of Offsetting

To describe case (a) of the total absence of offsetting and netting of long and short positions in all
risky assets, one can postulate that for all i = 1, 2, . . . , d and t ∈ [0, T ],

ξi,bt Si
t + ψi,l

t B
i,l
t = 0, ξi,lt S

i
t + ψi,b

t Bi,b
t = 0 (2.41)

where ξi,bt Si
t ≤ 0, ξi,lt S

i
t ≥ 0, so that ψi,l

t ≥ 0 and ψi,b
t ≤ 0 for all t ∈ [0, T ]. In particular, even

when the equality ξi,lt + ξi,bt = 0 holds for all t, meaning that the net position in the ith asset is null
at any time, an incremental cost of holding open both positions may still arise, due to the spread
between the rates implicit in accounts Bi,l and Bi,b. It is clear that this case is very restrictive and
not practically appealing and thus it will not be analyzed in what follows.

2.4.2 Offsetting of Positions in Risky Assets

Let us now examine the netting convention (b). For this purpose, we postulate that V (φ) =
V (x, φ,A) satisfies

Vt(φ) = ψl
tB

l
t + ψb

tB
b
t +

d∑
i=1

(ξitS
i
t + ψi,l

t B
i,l
t + ψi,b

t Bi,b
t ) = ψl

tB
l
t + ψb

tB
b
t

where ψi,l
t ≥ 0 and ψi,b

t ≤ 0 for t ∈ [0, T ] and, for i = 1, 2, . . . , d and t ∈ [0, T ],

ξitS
i
t + ψi,l

t B
i,l
t + ψi,b

t Bi,b
t = 0. (2.42)

The present netting mechanism can be interpreted as follows: for the purpose of hedging, it would
be pointless to hold simultaneously long and short positions in any asset i; it is enough to look at
the net position in the ith asset. For example, if the hedger already holds the short position in some
asset and the need to take the long position of the same size arises, it is natural to postulate that
the short position is first closed.

Note also that condition (2.42) is fairly restrictive, since it prevents netting of short and long
cash positions across all risky assets which share the same long and short funding accounts. By
definition, the long (resp. short) cash position in the ith asset corresponds to the positive (resp.
negative) sign of ξitS

i
t . Recall that we did not postulate that the price processes Si of risky assets

are nonnegative. See also Remark 2.6 for general comments regarding condition (2.17), which also
apply to condition (2.42).

Since a simultaneous lending and borrowing of cash from the funding account i is precluded (or

not efficient, if ri,b ≥ ri,l), we also postulate that ψi,l
t ψ

i,b
t = 0 for all t ∈ [0, T ] and for i = 0, 1, . . . , d.

This implies that
ψl
t = (Bl

t)
−1(Vt(φ))

+, ψb
t = −(Bb

t )
−1(Vt(φ))

− (2.43)

and, for every i = 1, 2, . . . , d,

ψi,l
t = (Bi,l

t )−1(ξitS
i
t)

−, ψi,b
t = −(Bi,b

t )−1(ξitS
i
t)

+. (2.44)
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Note the essential difference between the present setup and the situation outlined in Section 2.4.1
where it was not postulated that the offsetting equality ψi,l

t ψ
i,b
t = 0 holds for all t ∈ [0, T ]. The

self-financing condition now reads

Vt(φ) =V0(φ) +
d∑

i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u (2.45)

+
d∑

i=0

∫ t

0

ψi,l
u dBi,l

u +
d∑

i=0

∫ t

0

ψi,b
u dBi,b

u +At

and thus the following result is straightforward.

Corollary 2.3 Assume that Bi,l and Bi,b are account processes corresponding to the lending and
borrowing rates. We postulate that ψi,l

t ≥ 0, ψi,b
t ≤ 0 and ψi,l

t ψ
i,b
t = 0 for all i = 0, 1, . . . , d and

t ∈ [0, T ], and equality (2.42) holds for all i = 1, 2, . . . , d. Then the wealth process V (φ) = V (φ,A)
equals Vt(φ) = ψl

tB
l
t + ψb

tB
b
t for all t ∈ [0, T ] and the wealth dynamics are

dVt(φ) =
d∑

i=1

ξit (dS
i
t + dAi

t) +
d∑

i=1

(ξitS
i
t)

−(Bi,l
t )−1 dBi,l

t −
d∑

i=1

(ξitS
i
t)

+(Bi,b
t )−1 dBi,b

t (2.46)

+ (Vt(φ))
+(Bl

t)
−1 dBl

t − (Vt(φ))
−(Bb

t )
−1 dBb

t + dAt.

Remark 2.9 When the equality Bi,l = Bi,b = Bi holds for all i = 1, 2, . . . , d, then formula (2.46)
can be seen as a special case of formula (2.36) with ζit = 0 for all i and t ∈ [0, T ] (see also dynamics
(2.39)).

Example 2.4 Under the assumptions of Corollary 2.3 if, in addition, the processes Bi,l and Bi,b

for i = 0, 1, . . . , d are absolutely continuous, then (2.46) becomes (note that (2.47) extends (2.39))

dVt(φ) =
k∑

i=1

ξit
(
dSi

t + dAi
t

)
+

d∑
i=1

ri,lt (ξitS
i
t)

− dt−
d∑

i=1

ri,bt (ξitS
i
t)

+dt (2.47)

+ rlt(Vt(φ))
+ dt− rbt (Vt(φ))

− dt+ dAt

and thus the funding costs satisfy

dFt(φ) = rlt(Vt(φ))
+ dt− rbt (Vt(φ))

− dt+

d∑
i=1

ri,lt (ξitS
i
t)

− dt−
d∑

i=1

ri,bt (ξitS
i
t)

+dt.

2.4.3 Model with Partial Netting

We will examine here a particular instance of netting convention (c). We now postulate that all
short (but not long) cash positions in risky assets S1, S2, . . . , Sd can be aggregated. To be more
specific, all long cash positions in risky assets Si are assumed to be funded from their respective
accounts Bi,b only. We also postulate that all other incoming and outgoing cash flows, inclusive of
the proceeds from short-selling of risky assets, are added to (or subtracted from) the value process
of the hedger’s portfolio. This convention is not necessarily satisfied in practice, since the proceeds
from short-selling may be kept in the hedger’s margin account with the lender of a risky asset,
thus serving as a protection against nondelivery of the shares by the hedger. Hence the stylized
model proposed here corresponds to the situation when the hedger is considered to be default-free
with respect to his short positions in risky assets, which implies that the lender does not require a
collateral. Since we deal here with the case of the netting of short positions across risky assets, the
trading framework introduced in this subsection will be henceforth referred to as the market model
with partial netting.
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The present setup is formalized by postulating that the wealth process V (φ) = V (x, φ,A) equals

Vt(φ) = ψl
tB

l
t + ψb

tB
b
t +

d∑
i=1

(ξitS
i
t + ψi,b

t Bi,b
t ) (2.48)

where, for every i = 1, 2, . . . , d and t ∈ [0, T ], the process ψi,b
t satisfies

ψi,b
t = −(Bi,b

t )−1(ξitS
i
t)

+ ≤ 0. (2.49)

Note that since in (2.48) we use the net position ξit, rather than ξ
i,l
t and ξi,bt , the offsetting of long

and short positions in every risky asset Si is already implicit in this equation. From (2.48) and
(2.49), we obtain

Vt(φ) = ψl
tB

l
t + ψb

tB
b
t −

d∑
i=1

(ξitS
i
t)

−.

Since, as usual, we postulate that ψl
t ≥ 0 and ψb

t ≤ 0, we obtain the following equalities

ψl
t = (Bl

t)
−1

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)+

, ψb
t = −(Bb

t )
−1

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)−
. (2.50)

Finally, the self-financing condition for the trading strategy (x, φ,A) reads

Vt(φ) = V0(φ) +
d∑

i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +
d∑

i=1

∫ t

0

ψi,b
u dBi,b

u

+

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u +At.

The following result gives the wealth dynamics in the present setup.

Corollary 2.4 Assume that Bi,l = Bl for all i = 1, 2, . . . , d and ψl
t ≥ 0 and ψb

t ≤ 0 for all t ∈ [0, T ].
Then, under assumptions (2.48) and (2.49), the dynamics of V (φ) = V (x, φ,A) are

dVt(φ) =
d∑

i=1

ξit (dS
i
t + dAi

t)−
d∑

i=1

(ξitS
i
t)

+(Bi,b
t )−1 dBi,b

t + dAt (2.51)

+
(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)+

(Bl
t)

−1 dBl
t −

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)−

(Bb
t )

−1 dBb
t .

Note that even under an additional assumption that Bi,b = Bb for all i = 1, 2, . . . , d, expression
(2.51) does not reduce to (2.36), since we work here under postulate (2.49), which explicitly states
that a long cash position in the ith risky asset is funded exclusively from the account Bi,b.

Example 2.5 Under the assumptions of Corollary 2.4 if, in addition, all account processes Bi,l and
Bb are absolutely continuous, then (2.51) becomes

dVt(φ) =
d∑

i=1

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ dAt (2.52)

+ rlt

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)+

dt− rbt

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)−

dt

and thus the funding costs satisfy

dFt(φ) = rlt

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)+

dt− rbt

(
Vt(φ) +

d∑
i=1

(ξitS
i
t)

−
)−

dt−
d∑

i=1

ri,bt (ξitS
i
t)

+ dt.
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3 Pricing under Funding Costs

Our goal in the preceding section was to analyze the wealth dynamics for self-financing strategies
under alternative assumptions about trading and netting. In the next step, we will provide sufficient
conditions for the no-arbitrage property of a market model under various trading specifications.
It is worth stressing that this issue is apparently overlooked in most papers dealing with funding
costs and collateralization. Instead, most authors work under an ad hoc postulate of the existence
of a very vaguely specified “martingale measure” and they focus on the “risk-neutral valuation”
under this probability measure. Most likely, a “martingale measure” in these papers should then be
interpreted as a “pricing” probability measure, which is obtained from the market data via a model’s
calibration, rather than a sound theoretical construct. The main contribution of the existing vast
literature in this vein thus lies in a thorough analysis of market conventions regarding margin account
and closeout payoff at default and numerical implementations of sophisticated models for risky assets
and default times. By contrast, their authors show relatively little interest in searching for a sound
theoretical underpinning of alternative computations of various funding and credit risk adjustments
to the so-called clean prices.

Obviously, this tentative approach to valuation adjustments hinges on mimicking the classic
results for frictionless market models. However, due to peculiarities in the wealth dynamics under
nowadays ubiquitous market frictions, the classic approach should be carefully reexamined, since its
straightforward application is manifestly unjustified. To clarify this statement, we will now analyze
the applicability of classic paradigms when dealing with trading under funding costs. Specifically,
in Sections 3.1 and 3.2, respectively, we will address two different, albeit related, questions.

Our first question reads as follows: given a market model and a contract A with an exogenously
specified market price, is it possible for the hedger to produce a risk-free profit by taking a long
hedged position in A and simultaneously assuming a short unhedged position in the same contract
(note that the level of the market price of A is not relevant for this problem)? If this is the case,
the model is manifestly not viable for the hedger, since for any level of the market price for a
contract A, he would be able to guarantee a risk-free profit for himself. Otherwise, we say that a
model is arbitrage-free for the hedger with respect to a given contract A. Intuitively, the level of a
model’s viability rises when this desirable property holds for a sufficiently large class of contracts
that encompasses A.

The second question reads as follows: assuming that the model is arbitrage-free for the hedger
with respect to a contract A (or some class of contracts that encompasses A), can we describe all
possible levels of a hedger’s price p, such that the hedger cannot make a risk-free profit by selling
the contract at price p and implementing a smart trading strategy (φ,A)? Any number p satisfying
this property is referred to as a fair hedger’s price for a contract A.

We thus see that the first question deals with a possibility of making a risk-free profit by the
hedger through taking back-to-back offsetting positions in a contract A at an exogenously given
market price p for A (and the market price −p for −A), whereas the second problem addresses the
situation when the hedger is an outright seller of a contract A at price p. Let us observe that the
issue of how to quantify a “risk-free profit” should be carefully analyzed as well, especially when
the lending and borrowing rates differ. We will argue that thanks to a judicious specification of
the netted wealth process, it is possible to give formal definitions that also enjoy plausible financial
interpretations. It should be acknowledged, however, that we do not offer a satisfactory solution
to all problems arising in the context of a nonlinear and asymmetric pricing, so several important
issues are merely outlined.

3.1 Hedger’s Arbitrage under Funding Costs

The arbitrage-free property of a model under funding costs is a nontrivial concept, even when no
margin account (collateral) is involved. However, in some cases it can indeed be dealt with using
a judicious description of an arbitrage opportunity and a suitably defined “martingale measure”.
Let us stress that the notion of a martingale measure in the present setup is far from obvious and
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indeed its definition will depend on adopted market conventions. Specifically, for each particular
market convention, an astute choice of a definition is required in order to make this general concept
useful for our purposes, namely, for verifying whether a given market model is arbitrage-free and for
valuing OTC derivatives.

3.1.1 Generic Market Model

By a generic market model, we mean a general class of models encompassing, but not restricted to, all
cases of trading arrangements considered in the preceding section. We assume only that the concept
of the wealth process V (x, φ,A) and the discounted wealth V̂ (x, φ,A) are well defined, where the
choice of a discount factor is fairly arbitrary and thus may depend on particular circumstances at
hand. Hence all market models introduced in Section 2 should now be seen as particular instances
of a generic market model.

Since, in principle, the lending and borrowing accounts Bl and Bb may be different in a generic
market model, the netted wealth is defined by the following natural extension of Definition 2.5. For
the interpretation of the concept of the netted wealth, see Section 2.2.

Definition 3.1 The netted wealth V net(x, φ,A) of a trading strategy (x, φ,A) is given by the equal-
ity V net(x, φ,A) = V (x, φ,A) + V (0, φ̃,−A) where (0, φ̃,−A) is the unique self-financing strategy
satisfying the following conditions:
(i) V0(0, φ̃,−A) = −A0;
(ii) the equalities ξit = ψi

t = 0 hold for every i = 1, 2, . . . , d and all t ∈ [0, T ];

(iii) ψ̃l
t ≥ 0, ψ̃b

t ≤ 0 and ψ̃l
tψ̃

b
t = 0 for all t ∈ [0, T ].

We note that

V net
0 (x, φ,A) = V0(x, φ,A) + V0(0, φ̃,−A) = x+A0 −A0 = x

so that the initial netted wealth V net(x, φ,A) is independent of p. In view of Assumption 2.3, we set
A0 = 0 when using the concept of the netted wealth. According to the financial interpretation, the
initial cash flows A0 and −A0 cancel out if the market prices of A and −A satisfy pm0 (−A) = −pm0 (A),
so that this assumption is reasonable (except that it reduces the generality of our approach slightly).
The following result, which is an extension of Lemma 2.1, is also valid in a model in which some
form of netting of positions in risky assets is postulated.

Lemma 3.1 The following equality holds for all t ∈ [0, T ]

V net
t (x, φ,A) = Vt(x, φ,A) + Ut(A) (3.1)

where the G-adapted process of finite variation U(A) is the unique solution to the following equation

Ut(A) =

∫ t

0

(Bl
u)

−1(Uu(A))
+ dBl

u −
∫ t

0

(Bb
u)

−1(Uu(A))
− dBb

u −At. (3.2)

Proof. We set ξit = ψi
t = 0 in (2.34) and (2.35). Then the process Vt := Vt(0, ψ̃

l, ψ̃b,−A) satisfies

Vt = ψ̃l
tB

l
t + ψ̃b

tB
b
t and

Vt =

∫ t

0

(Bl
u)

−1(Vu)
+ dBl

u −
∫ t

0

(Bb
u)

−1(Vu)
− dBb

u −At.

Hence the assertion of the lemma follows. �

The next definition is an extension of the classic definition of an arbitrage opportunity, which is
suitable when dealing with the basic model with funding costs. Let us stress that we consider here
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only the classic concept of an arbitrage opportunity. For an exhaustive study of alternative versions
of no-arbitrage conditions, the interested reader may consult the recent paper by Fontana [19].

Let x be an arbitrary real number. We denote by V 0(x) the wealth process of a self-financing
strategy (x, φ0, 0) where φ0 is the portfolio with all components equal to zero, except for ψ0 (resp.
ψl and ψb if the lending and borrowing rates are different). It is easy to see that the wealth process
V 0(x) is uniquely specified by x and these conditions, specifically, it equals xB (resp. x+Bl−x−Bb).
For any t ∈ (0, T ], the random variable V 0

t (x) represents the future value at time t of the hedger’s
initial endowment x. For a given contract A, an arbitrage opportunity for the hedger arises if,
through a clever choice of a dynamic portfolio φ, he can generate a higher netted wealth at T than
the future value of his initial endowment. The issue of admissibility of trading strategy needs to be
examined for each model at hand (see, for instance, Definition 3.4).

Definition 3.2 An admissible trading strategy (x, φ,A) is an arbitrage opportunity for the hedger
with respect to A whenever the following conditions are satisfied: P(V net

T (x, φ,A) ≥ V 0
T (x)) = 1 and

P(V net
T (x, φ,A) > V 0

T (x)) > 0.

Definition 3.2 states that the hedger with the initial endowment x can produce an arbitrage
opportunity by entering into a contract A if he can find a strategy (x, φ,A) that is admissible and
such that the netted wealth at the contract’s maturity date T is always no less than V 0

T (x) and is
strictly greater than V 0

T (x) with a positive probability.

Let us consider the classic case when Bl = Bb = Bi,l = Bi,b = B for all i. Then for any contract
A, due to the additivity of self-financing strategies in the classic setting, for any self-financing strategy
(x, φ,A), we obtain

V net(x, φ,A)− V 0(x) = V (x, φ,A) + V (0, φ̃,−A)− V (x, φ0, 0) = V (0, φ+ φ̃− φ0, 0) = V (0, φ̂)

where V (0, φ̂) is the wealth process of a trading strategy φ̂, which is self-financing in the usual sense.
Also, if φ̂ is any self-financing trading strategy in the classic sense, then we may set x = 0 and A = 0,
so that V (0, φ̂) = V net(0, φ̂, 0).

Remark 3.1 It is fair to acknowledge that Definition 3.2 is only the first step towards a more
general view of arbitrage opportunities that might arise in the context of differing funding costs and
credit qualities of potential counterparties. A more sophisticated approach relies on a comparison of
two opposite dynamically hedged positions, so that we would end up with the following condition:
an extended arbitrage opportunity is a pair (x1, φ,A) and (x2, φ̃,−A) of admissible strategies where
x1 + x2 = x and

P(VT (x1, φ,A) + VT (x2, φ̃,−A) ≥ V 0
T (x)) = 1,

P(VT (x1, φ,A) + VT (x2, φ̃,−A) > V 0
T (x)) > 0.

This more general view means that an arbitrage opportunity can also be created by taking advantage
of the presence of two potential counterparties with identical or different creditworthiness. The
extended definition requires the possibility of taking back-to-back offsetting positions in OTC deals
with identical contractual features but initiated with different counterparties. Therefore, a minimal
trading model now includes the hedger and his two counterparties. For further results in this vein,
see Section 3.2 in Nie and Rutkowski [31], where the model with partial netting is examined in
detail.

The arguments in favor of Definition 3.2 can be summarized as follows:
• in specific cases of market models, its implementation is relatively easy;
• it yields explicit conditions that make financial sense, and;
• last but not least, it can be used to clarify and justify the use of the concept of a martingale
measure in the general setup of a market with funding costs, collateralization and default.

To sum up, although Definition 3.2 could be further refined, it nevertheless seems to be a sufficient
tool for dealing with the issue of arbitrage in a nonlinear trading environment.
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Using Definition 3.2, we may now introduce the notion of an arbitrage-free model either with
respect to all contracts that can be covered by a particular model or by first selecting a particular
class A of contracts of our interest. Note that, in principle, the arbitrage-free property may depend
on the hedger’s initial endowment x.

Definition 3.3 We say that a generic market model is arbitrage-free for the hedger with respect to
the class A of financial contracts whenever no arbitrage opportunity associated with any contract
A from the class A exists in the class of all trading strategies admissible for the hedger. In other
words, a model is arbitrage-free if for any contract A ∈ A and any admissible strategy (x, φ,A) for
the hedger, we have that either P

(
V net
T (x, φ,A) = V 0

T (x)
)
= 1 or P

(
V net
T (x, φ,A) < V 0

T (x)
)
> 0.

Let us stress that if a model is arbitrage-free for the hedger, it is not necessarily true that it is
arbitrage-free for the counterparty as well. Observe also that in the classic case when Bl = Bb =
Bi,l = Bi,b = B for all i, Definition 3.3 reduces to the classic definition of an arbitrage-free market
model. Hence, as expected, the methodology developed here agrees with the standard arbitrage
pricing theory if there are no frictions in trading strategies or, at least, when they do not affect the
class of contracts at hand, so that they can be safely ignored.

3.1.2 Basic Model with Funding Costs

Let us now apply the concepts introduced in the preceding subsection to the basic model with
funding costs of Section 2.2 with the cash account B0 = B. We now have that V 0

T (x) = xBT , and
thus the conditions of Definition 3.2 become

P(V net
T (x, φ,A) ≥ xBT ) = 1, P(V net

T (x, φ,A) > xBT ) > 0 (3.3)

or, equivalently,
P(Ṽ net

T (x, φ,A) ≥ x) = 1, P(Ṽ net
T (x, φ,A) > x) > 0

where the netted wealth V net(x, φ,A) is given by Definition 2.5 or, equivalently, Lemma 2.1. Recall
also that for an arbitrary self-financing trading strategy (x, φ,A), equation (2.24) yields

Ṽ net
t (x, φ,A) = x+

d∑
i=1

∫
(0,t]

ξiuB̃
i
u dŜ

i,cld
u +

d∑
i=1

∫ t

0

(ψi
u + ξiuŜ

i
u) dB̃

i
u. (3.4)

We thus observe that to examine the arbitrage-free property of the basic model, it suffices to consider
trading strategies with null initial value. In other words, the no-arbitrage property of the basic model
does not depend on the hedger’s initial endowment. Note that according to (3.4), the hedger’s
trading in risky assets is unrestricted, meaning that each risky asset can be funded from arbitrarily
chosen funding accounts. In addition, we make the usual postulate that a strategy (x, φ,A) needs
to satisfy some form of admissibility. In the framework of the basic model with funding costs, we
adopt the following definition of the class of admissible strategies; they are usually referred to as
tame strategies.

Definition 3.4 A self-financing trading strategy (x, φ,A) is admissible for the hedger whenever the

discounted netted wealth process Ṽ net(x, φ,A) is bounded from below by a constant.

The condition that the discounted netted wealth process Ṽ net(x, φ,A) be bounded from below
by a constant is a commonly used requirement of admissibility, which ensures that if the process
Ṽ net(x, φ,A) is a local martingale under some equivalent probability measure, then it is also a
supermartingale. It is well known that some technical assumption of this kind cannot be avoided
even in the classic case of the Black–Scholes model. Let us stress that the choice of a discount factor
was left unspecified in Definition 3.2. If a constant mentioned in Definition 3.4 equals zero, so that
the netted wealth of an admissible strategy is bound to stay nonnegative, then it suffices to consider
the netted wealth without any discounting, and thus the choice of a discount factor in Definition 3.2
is manifestly irrelevant. Otherwise, this choice will depend on the problem and model under study
(see, for instance, Proposition 3.3).
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Lemma 3.2 Assume that for any admissible trading strategy (φ,A) there exists a probability mea-

sure P̃φ,A on (Ω,GT ) such that P̃φ,A is equivalent to P and the process Ṽ net(x, φ,A) is a (P̃φ,A,G)-
local martingale. Then the basic market model with funding costs is arbitrage-free for the hedger.

A probability measure P̃φ,A is then called an equivalent local martingale measure (ELMM) for the

process Ṽ net(x, φ,A). Of course, the sufficient condition of Lemma 3.2 is very cumbersome to check,
in general, and thus it does not seem to be of practical interest. For this reason, we will search for
more explicit conditions that will be relatively easy to verify. They will refer to the existence of some
universal equivalent local martingale measure for a given trading framework and for a sufficiently
large class of contracts under study.

To this end, we will first re-examine the concepts of an arbitrage opportunity and arbitrage price,
since, as we will argue in what follows, the classic definitions do not adequately reflect the present
general framework. In particular, we show that the study of the arbitrage-free property of a market
model cannot be separated from an analysis of hedging strategies for a given class of contracts.
This is due to the fact that the presence of either incoming or outgoing cash flows associated with
a contract (that is, external cash flows A) may exert a nonadditive impact on the dynamics of the
wealth process and thus also on the total gains and/or losses from the hedger’s trading activities.

Obviously, if there exists Bk ̸= B, then an arbitrage opportunity arises. Indeed, it is easy to
produce it by taking ξ1 = · · · = ξd = 0 and ψj = 0 for every j, except for j = k. Then we obtain

Ṽ net
t (x, φ,A) = x+

∫ t

0

ψk
u dB̃

k
u

and thus we see that the existence of an ELMM P̃φ,A for the process Ṽ net(x, φ,A) is by no means
ensured, in general. Therefore, additional conditions need to be imposed on the class of trading
strategies and/or funding rates to guarantee that the basic model with funding costs is arbitrage-
free. In the next result, we thus preclude the occurrence of a mixed funding for any risky asset.
Recall that condition (2.16) holds if, for instance, the equality ψi

tB
i
t + ξitS

i
t = 0 is satisfied for all

t ∈ [0, T ]. We write Q ∼ P to denote that the probability measures Q and P are equivalent on
(Ω,GT ).

Proposition 3.1 Assume that all strategies available to the hedger are admissible and satisfy con-
dition (2.16). If there exists a probability measure P̃ on (Ω,GT ) such that P̃ ∼ P and the processes

Ŝi,cld, i = 1, 2, . . . , d are (P̃,G)-local martingales then the basic model with funding costs is arbitrage-
free for the hedger.

Proof. It suffices to observe that, under the present assumptions, equation (3.4) reduces to

Ṽ net
t (x, φ,A) = x+

d∑
i=1

∫
(0,t]

ξiuB̃
i
u dŜ

i,cld
u (3.5)

and to apply the usual argument that any local martingale (or even a sigma-martingale, which may
arise as a stochastic integral in (3.5) when the semimartingales S1, S2, . . . , Sd are not continuous)
that is bounded from below by a constant is necessarily a supermartingale. �

3.2 Hedger’s Fair Valuation under Funding Costs

In the next step, we focus on fair pricing of contracts. The fair pricing of contracts in a market
model that allows for arbitrage opportunities is obviously not viable, so we henceforth work under
the standing assumption that a model under study is arbitrage-free for the hedger with a given initial
endowment x and for a sufficiently large class A of contracts, which encompasses a given contract
A (see Definition 3.3).
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Our goal is to propose a realistic definition of a hedger’s fair price and to show how to apply it
to some models with funding costs. Let us observe that the definition of an arbitrage-free model is
not symmetric, that is, a model in which no arbitrage opportunities for the hedger exist may still
allow for arbitrage opportunities for the counterparty. Moreover, even when the market conditions
are identical for both parties, they have the same initial endowment and a given model is arbitrage-
free for both parties, the cash flows of a contract are obviously asymmetric and thus the range of
fair prices computed by the two counterparties may be different. By the usual convention adopted
throughout this paper, we will focus the following discussion on one party, which is called the hedger.

3.2.1 Generic Market Model

Our next goal is to describe the range of the hedger’s arbitrage prices of a contract with cash flows
A. Let x be the hedger’s initial endowment and let p stand for a generic price of a contract at time
0 from the perspective of the hedger. A positive value of p means that the hedger receives at time
0 the cash amount p from the counterparty, whereas a negative value of p means that he makes the
payment −p to the counterparty at time 0. It is clear from the next definition that a hedger’s price
may depend on the hedger’s initial endowment x and it may fail to be unique, in general.

It is important to stress that the admissibility of a trading strategy is now defined using the
discounted wealth, as opposed to the discounted netted wealth, as was the case in Section 3.1. For
this reason, to avoid the possibility of confusion with Definition 3.4, we decided to state the ad-
missibility condition explicitly each time when it is relevant. Moreover, the choice of a discount
factor depends on the model under consideration, but it is otherwise fairly arbitrary, so that the
discounted wealth process, formally represented by the generic symbol V̂ (x, φ,A), is not necessar-
ily given as B−1V (x, φ,A). For instance, in Section 3.4, the discounted wealth will be given by

V̂ (x, φ,A) := (Bl)−1V (x, φ,A). As a rule of thumb, we suggest that the choice of discounting
should be the same when we address either the first or the second question stated at the beginning
of this section.

Definition 3.5 We say that a real number p̄0 = A0 is a hedger’s fair price for A at time 0 whenever,
for any self-financing trading strategy (x, φ,A) such that the discounted wealth process V̂ (x, φ,A)
is bounded from below by a constant, we have that either

P
(
VT (x, φ,A) = V 0

T (x)
)
= 1 (3.6)

or
P
(
VT (x, φ,A) < V 0

T (x)
)
> 0. (3.7)

One may observe that the two conditions in Definition 3.5 are analogous to the conditions of
Definition 3.3, although they are not identical and, indeed, they have quite different financial inter-
pretations. Recall that Definition 3.3 deals with the possibility of offsetting a dynamically hedged
contract A by an unhedged contract −A, whereas Definition 3.5 is concerned with finding a fair
price for A from the viewpoint of the hedger as a contract’s seller. In the latter case, it is natural
to say that a price level p̄0 is too high for the hedger if he can produce an arbitrage opportunity (in
the sense that is implicit in Definition 3.5) by selling A at price p̄0 and devising a suitable hedging
strategy for his short position. Once again, the hedger’s profits are measured with respect to his
idiosyncratic cost of raising cash or, more precisely, with respect to the future value of his current
endowment x, as represented by the random variable V 0

T (x). This leads to the following natural
definition of a hedger’s arbitrage opportunity for A at price p. As usual in the arbitrage pricing
theory, we need to postulate that trading strategies are admissible.

Definition 3.6 We say that a quadruplet (p, x, φ,A), where p = A0 is a real number and (x, φ,A)

is an admissible trading strategy such that the discounted wealth process V̂ (x, φ,A) is bounded from
below by a constant, is a hedger’s arbitrage opportunity for A at price p if

P
(
VT (x, φ,A) ≥ V 0

T (x)
)
= 1
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and

P
(
VT (x, φ,A) > V 0

T (x)
)
> 0.

Assume that the hedger has the initial endowment x and he sells the contract A at price p̄0.
Then p̄0 is a hedger’s fair price for A, in the sense of Definition 3.5, whenever he is not able to find
an arbitrage opportunity for A at price p = p̄0, in the sense of Definition 3.6.

In practice, the hedger’s initial endowment x < 0 can be interpreted as the amount of cash
borrowed by the trading desk from the bank’s internal funding unit, which should be repaid with
interest Bb

T at a given horizon date T . Therefore, an arbitrage opportunity at price p̄0 for A means
that the price p̄0 is high enough to allow the hedger to make a risk-free profit, where the “profits”
are assessed in relation to the hedger’s idiosyncratic cost of capital, as formally represented by the
account Bb.

3.2.2 Basic Model with Funding Costs

In the basic model with funding costs, we obtain the following result, which bears a close resemblance
to its classic counterpart, which deals with a market model with a single cash account. Note that
we work here under the assumptions of Proposition 3.1 so that the basic model with funding costs
is arbitrage-free for the hedger with respect to any contract A. Recall that here Bl = Bb = B, so
that the discounted wealth is defined as Ṽ (x, φ,A) = B−1V (x, φ,A), the admissibility is specified
by Definition 3.4, and trading strategies are assumed to satisfy condition (2.16).

Proposition 3.2 Under the assumptions of Proposition 3.1, a real number p̄0 is a hedger’s fair
price whenever, for any admissible trading strategy (x, φ,A) satisfying condition (2.16), we have
that either

P
(
p̄0 +

d∑
i=1

∫
(0,T ]

ξiuB̃
i
u dŜ

i,cld
u +

∫
(0,T ]

B−1
u dAu = 0

)
= 1

or

P
(
p̄0 +

d∑
i=1

∫
(0,T ]

ξiuB̃
i
u dŜ

i,cld
u +

∫
(0,T ]

B−1
u dAu < 0

)
> 0.

Proof. It suffices to combine Definition 3.5 with (2.25). �

Note that, in this basic framework where Bl = Bb = B, the set of all hedger’s fair prices does not
depend on the hedger’s initial endowment x, although it manifestly depends on funding accounts
Bi, i = 1, 2, . . . , d. Also, the real-world probability measure P can be replaced by an ELMM P̃ for
processes Ŝi,cld, i = 1, 2, . . . , d.

As an example, let us take At = −X1{t=T}, and let us assume Bi = B for every i = 1, 2, . . . , d.
Then we obtain the following characterization of a hedger’s price p̄0: for any admissible trading
strategy (φ,A), either

P
(
p̄0 +

d∑
i=1

∫
(0,T ]

ξiu dS̃
i,cld
u = B−1

T X

)
= 1

or

P
(
p̄0 +

d∑
i=1

∫
(0,T ]

ξiu dS̃
i,cld
u < B−1

T X

)
> 0.

We recognize here the classic case, namely, the notion of the hedger’s fair price as an arbitrary level
of p̄0 that does not allow for creation of a hedger’s superhedging strategy for a European claim X.
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3.3 Example: Valuation of FRA

As a simple illustration of pricing problems studied in this section, we propose considering the
extension of the Black–Scholes model to the case of different lending and borrowing rates, which
satisfy rb ≥ rl ≥ 0. It is known that this model is arbitrage-free in the classic sense when only
self-financing trading strategies with a nonnegative wealth are allowed (see, for instance, Bergman
[1] and Example 1.1 in El Karoui et al. [17]). We assume that the hedger’s initial endowment equals
x > 0 and we complement the model by the contract A with only two cash flows after time 0, namely,
the outgoing cash flow of Ā1 := α units of cash at time 0 < t0 < T for some α > 0 and the incoming
cash flow of Ā2 := αer̂(T−t0) units of cash at time T . The contract A initiated at time 0 is thus the
forward rate agreement (FRA) over [t0, T ] with the continuously compounded forward rate r̂ (note
that the existence of the account associated with the rate r̂ is not postulated). The process A is thus
given by At = p− Ā11[t0,T ](t) + Ā21[T ](t) for every t ∈ [0, T ] where p is undetermined (see (2.2)).

3.3.1 Hedger’s Arbitrage

We first focus on the hedger’s arbitrage, in the sense of Definition 3.2, when the FRA is available to
the hedger. In this subsection, the initial value p of this contract at time 0 is left unspecified since,
without loss of generality, we may assume that its market value equals zero when analyzing the
hedger’s arbitrage using the concept of the netted wealth. Let us consider a self-financing strategy
(x, φ̂, A) in which the initial endowment x is invested in lending and borrowing accounts Bl and
Bb only and a part of this investment is used by the hedger at time t0 to deliver α units of cash
to the counterparty. It is postulated that no investment in the risky asset is ever made by the
hedger. Hence, from (2.4) and (2.5), we obtain Vt(x, φ̂, A) = ψl

tB
l
t + ψb

tB
b
t where, by assumption,

ψl
t ≥ 0, ψb

t ≤ 0 and ψi,l
t ψ

i,b
t = 0 and

Vt(x, φ̂, A) = x+

∫ t

0

ψl
u dB

l
u +

∫ t

0

ψb
u dB

b
u +At. (3.8)

If we assume that xer
lt0 ≥ α, then the unique strategy φ̂ = (ψl, ψb) satisfying these assumptions is

given as follows: ψb
t = 0 for all t ∈ [0, T ], and

ψl
t = x1[0,t0) +

x̃

Bl
t0

1[t0,T ) +
x̂

Bl
T

1[T,T ], t ∈ [0, T ],

where
x̃ := xer

lt0 − α, x̂ := xer
lT − αer

l(T−t0) + αer̂(T−t0).

Hence, in this case, the wealth of the hedger’s strategy (φ̂, A) at time T equals

VT (x, φ̂, A) =
(
xer

lt0 − α
)
er

l(T−t0) + αer̂(T−t0) = xer
lT − αer

l(T−t0) + αer̂(T−t0). (3.9)

If, on the contrary, the inequality xer
lt0 < α is valid, then the hedger’s wealth at T necessarily

satisfies

VT (x, φ̂, A) =
(
xer

lt0 − α
)
er

b(T−t0) + αer̂(T−t0) = xer
lt0er

b(T−t0) − αer
b(T−t0) + αer̂(T−t0)

since now the unique portfolio φ̂ = (ψl, ψb) available to the hedger involves borrowing of α− xer
lt0

units of cash at time t0 (this is needed to pay α units of cash to the counterparty). Similar arguments
show that if we set x = 0 and consider the contract −A, then the wealth at T of the unique portfolio
φ̃ = (ψ̃l, ψ̃b) available to the hedger equals

VT (0, φ̃,−A) = αer
l(T−t0) − αer̂(T−t0).

We thus see that, if xer
lt0 ≥ α, then the netted wealth equals

V net
T (x, φ̂, A) = VT (x, φ̂, A) + VT (0, φ̃,−A)

= xer
lT − αer

l(T−t0) + αer̂(T−t0) + αer
l(T−t0) − αer̂(T−t0)

= xer
lT = V 0

T (x)
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and for xer
lt0 < α it satisfies

V net
T (x, φ̂, A) = VT (x, φ̂, A) + VT (0, φ̃,−A)

= xer
lt0er

b(T−t0) − αer
b(T−t0) + αer̂(T−t0) + αer

l(T−t0) − αer̂(T−t0)

= xer
lT +

(
α− xer

lt0
)(
er

l(T−t0) − er
b(T−t0)

)
≤ xer

lT = V 0
T (x)

where the last inequality is strict whenever rb > rl. This means that the strategy (φ̂, A) is not an
arbitrage opportunity for the hedger, in the sense of Definition 3.2. Of course, more sophisticated
hedger strategies (φ,A) should be examined as well, but it is unlikely that an arbitrage opportunity
for the hedger may arise when a possibility of investing in the risky asset is also taken into account
if the hedger’s model without the contract A is arbitrage-free.

3.3.2 Hedger’s Fair Valuation

We will now focus on fair valuation of the FRA from the hedger’s perspective. If we assume, in

addition, that r̂ > rl and xer
lt0 ≥ α, then (3.9) with A0 = 0 yields VT (x, φ̂, A) > xer

lT , and thus
it is obvious that p = 0 is not the fair hedger’s price for the contract, in the sense of Definition
3.5. It is thus natural to expect that any hedger’s fair price for A is a strictly negative number. We
maintain the assumption that the hedger does not invest in the risky asset and we postulate that

x+ p ≥ 0, (x+ p)er
lt0 > α. (3.10)

Then for A0 = p the unique hedger’s strategy satisfies

VT (x, φ̂, A) =
(
(x+ p)er

lt0 − α
)
er

l(T−t0) + αer̂(T−t0) = (x+ p)er
lT − αer

l(T−t0) + αer̂(T−t0)

and thus the equality VT (x, φ̂, A) = xer
lT holds whenever

p = αe−rlT
(
er

l(T−t0) − er̂(T−t0)
)
. (3.11)

Observe that p given by (3.11) is strictly negative, since we assumed that r̂ > rl. It is thus natural
to conjecture that the value given by (3.11) is the upper bound for the hedger’s fair prices for A, in
the sense of Definition 3.5, provided that p given by (3.11) is such that conditions (3.10) are also
met, that is, the absolute value of p is indeed sufficiently small with respect to x. Otherwise, the
computations leading to the fair value of p should be modified accordingly, and a different result
is expected. This example, albeit not completely solved, makes it clear that the classic arbitrage
pricing paradigm relying on “taking the risk-neutral expected value of cash flows discounted using
the risk-free rate” is not applicable when dealing with more realistic models of trading by financial
institutions. This statement will be further illustrated and examined in the foregoing sections (for
a more detailed study of nonlinear pricing rules, we refer the reader to related works [31, 32]).

3.4 Model with Funding Costs and Partial Netting

To provide a nontrivial illustration of the novel concepts introduced in this section, we will now
consider the market model with partial netting of short cash positions, which was introduced in
Section 2.4.3. Recall that, in principle, the choice of a discount factor is unrestricted, so any
particular choice is motivated by its convenience in handling a particular problem.

Let the hedger’s initial endowment be x ≥ 0. We will first show that, under mild assumptions,
the model is arbitrage-free for the hedger with respect to a contract A. To this end, we define the
discounted wealth and the discounted wealth of (φ,A) by setting Ṽ l

t (x, φ,A) := (Bl
t)

−1Vt(x, φ,A)

and Ṽ l,net
t (x, φ,A) := (Bl

t)
−1V net

t (x, φ,A), respectively. The choice of Bl for discounting is related
here to the assumption that x ≥ 0; when x < 0 it is more natural to take Bb instead, since in that
case the hedger has a debt at time 0 that has to be repaid with interest determined by Bb.
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3.4.1 Hedger’s Arbitrage

The following result hinges on a plausible assumption that all borrowing rates ri,b are higher than the
common lending rate rl. Note that we assume here that all cash accounts are absolutely continuous.

Proposition 3.3 Assume that x ≥ 0, rlt ≤ rbt and rlt ≤ ri,bt for i = 1, 2, . . . , d. Let us denote

S̃i,l,cld
t = (Bl

t)
−1Si

t +

∫
(0,t]

(Bl
u)

−1 dAi
u. (3.12)

If there exists a probability measure P̃l ∼ P such that the processes S̃i,l,cld, i = 1, 2, . . . , d are (P̃l,G)-
local martingales, then the market model of Section 2.4.3 is arbitrage-free for the hedger with respect
to any contract A.

Proof. From Corollary 2.4, we know that the wealth process V (x, φ,A) of a self-financing strategy
(x, φ,A) satisfies (see (2.52))

dVt(x, φ,A) =

d∑
i=1

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ dAt

+ rlt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)+

dt− rbt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)−

dt.

Since we assumed that rlt ≤ rbt , we obtain

dVt(x, φ,A) ≤
d∑

i=1

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ dAt

+ rlt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)+

dt− rlt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)−

dt

= rltVt(x, φ,A) dt+
d∑

i=1

ξit
(
dSi

t + dAi
t

)
+ dAt −

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ rlt

d∑
i=1

(ξitS
i
t)

− dt

≤ rltVt(x, φ,A) dt+

d∑
i=1

ξit
(
dSi

t − rltS
i
t dt+ dAi

t

)
+ dAt

where the last inequality holds, since it is also postulated that rlt ≤ ri,bt . Consequently, the discounted

wealth Ṽ l
t (x, φ,A) = (Bl

t)
−1Vt(x, φ,A) satisfies

dṼ l
t (x, φ,A) ≤

d∑
i=1

ξit(B
l
t)

−1
(
dSi

t − rltS
i
t dt+ dAi

t

)
+ (Bl

t)
−1 dAt

and thus, in view of (3.12), we obtain

dṼ l
t (x, φ,A) ≤

d∑
i=1

ξit dS̃
i,l,cld
t + (Bl

t)
−1 dAt.

Furthermore, the netted wealth equals V net
t (x, φ,A) = Vt(x, φ,A) + Ut(A) (see Lemma 3.1) where

the G-adapted process of finite variation U(A) is the unique solution to the following equation

Ut(A) =

∫ t

0

(Bl
u)

−1(Uu(A))
+ dBl

u −
∫ t

0

(Bb
u)

−1(Uu(A))
− dBb

u −At (3.13)
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where U(A) = (U(A))+ − (U(A))− is the decomposition of the process U(A) into its increasing and

decreasing components. Hence the netted discounted wealth Ṽ l,net
t (x, φ,A) := (Bl

t)
−1V net

t (x, φ,A)
satisfies

dṼ l,net
t (x, φ,A) = dṼ l

t (x, φ,A) + d((Bl
t)

−1Ut(A))

≤
d∑

i=1

ξit dS̃
i,l,cld
t + (Bl

t)
−2(Ut(A))

+ dBl
t − (Bl

t)
−1(Bb

t )
−1(Ut(A))

− dBb
t + Ut(A) d(B

l
t)

−1

=
d∑

i=1

ξit dS̃
i,l,cld
t + rlt(B

l
t)

−1(Ut(A))
+ dt− rbt (B

l
t)

−1(Ut(A))
− dt− rlt(B

l
t)

−1Ut(A) dt

=
d∑

i=1

ξit dS̃
i,l,cld
t + (rlt − rbt )(B

l
t)

−1(Ut(A))
− dt

and thus

Ṽ l,net
t (x, φ,A)− Ṽ l,net

0 (x, φ,A) ≤
d∑

i=1

∫
(0,t]

ξiu dS̃
i,l,cld
u . (3.14)

The arbitrage-free property of the model for the hedger can now be established using the standard
arguments. First, from (3.14) and the assumption that the process Ṽ l,net(x, φ,A) is bounded from

below by a constant, we deduce that the right-hand side in (3.14) is a (P̃l,F)-supermartingale, which
is null at t = 0. Next, since the initial endowment x is nonnegative, we have that V 0

T (x) = Bl
Tx.

From inequality (3.14), we obtain

(Bl
T )

−1
(
V net
T (x, φ,A)− V 0

T (x)
)
≤

d∑
i=1

∫ T

0

ξit dS̃
i,l,cld
t .

Since P̃l is equivalent to P, we conclude that either the equality V net
T (x, φ,A) = V 0

T (x) holds or the
inequality P(V net

T (x, φ,A) < V 0
T (x)) > 0 is satisfied. This means that arbitrage opportunities are

indeed precluded and thus the market model with partial netting is arbitrage-free for the hedger
with respect to any contract A. �

Remark 3.2 We claim that the assertion of Proposition 3.3 is also true for x ≤ 0 under the stronger
assumption that rb ≤ ri,b for all i, provided that the processes S̃i,l,cld, i = 1, 2, . . . , d are replaced by
S̃i,b,cld, i = 1, 2, . . . , d, where the process S̃i,b,cld is obtained by replacing Bl by Bb in the right-hand
side of (3.12). Since rl ≤ rb ≤ ri,b, we now obtain

dVt(x, φ,A) ≤
d∑

i=1

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ dAt

+ rbt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)+

dt− rbt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)−

dt

= rbtVt(x, φ,A) dt+
d∑

i=1

ξit
(
dSi

t + dAi
t

)
+ dAt −

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ rbt

d∑
i=1

(ξitS
i
t)

− dt

≤ rbtVt(x, φ,A) dt+
d∑

i=1

ξit
(
dSi

t − rbtS
i
t dt+ dAi

t

)
+ dAt.

Therefore, the discounted wealth Ṽ b
t (x, φ,A) = (Bb

t )
−1Vt(x, φ,A) satisfies

dṼ b
t (x, φ,A) ≤

d∑
i=1

ξit dS̃
i,b,cld
t + (Bb

t )
−1 dAt
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and for the netted discounted wealth Ṽ b,net
t (x, φ,A) := (Bb

t )
−1V net

t (x, φ,A), using (3.13), we obtain

dṼ b,net
t (x, φ,A) = dṼ b

t (x, φ,A) + d((Bb
t )

−1Ut(A))

≤
d∑

i=1

ξit dS̃
i,b,cld
t + (Bb

t )
−1(Bl

t)
−1(Ut(A))

+ dBl
t − (Bb

t )
−2(Ut(A))

− dBb
t + Ut(A) d(B

b
t )

−1

=
d∑

i=1

ξit dS̃
i,b,cld
t + rlt(B

b
t )

−1(Ut(A))
+ dt− rbt (B

b
t )

−1(Ut(A))
− dt− rbt (B

b
t )

−1Ut(A) dt.

Since rl ≤ rb, this yields

(Bb
T )

−1
(
V net
T (x, φ,A)− V 0

T (x)
)
≤

d∑
i=1

∫ T

0

ξit dS̃
i,b,cld
t

where V 0
T (x) = Bb

Tx since x ≤ 0. Hence the conclusion follows if there exists a probability measure

P̃b ∼ P such that the processes S̃i,b,cld, i = 1, 2, . . . , d are (P̃b,G)-local martingales.

3.4.2 Hedger’s Fair Valuation

We now address the issue of the hedger’s fair valuation of a contract A. In the present setup,
Definition 3.5 is applied to the discounted wealth V̂ (x, φ,A) with A0 = p̄0, which is given by the
following equation

V̂t(x, φ,A) = Ṽ l
t (x, φ,A) = (Bl

t)
−1Vt(x, φ,A),

that is, the admissibility of a trading strategy (x, φ,A) is defined using the discounted wealth

Ṽ l(x, φ,A). In view of Corollary 2.4 (see also (2.52)), the set of hedger’s fair prices p̄0 in the
model with partial netting can be characterized as follows: for any admissible strategy (x, φ,A), we
have that either

P
(
x+ p̄0 +

d∑
i=1

∫
(0,T ]

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

∫ T

0

ri,bt (ξitS
i
t)

+ dt+

∫
(0,T ]

dAt

+

∫ T

0

rlt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)+

dt−
∫ T

0

rbt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)−

dt < V 0
T (x)

)
> 0

or

P
(
x+ p̄0 +

d∑
i=1

∫
(0,T ]

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

∫ T

0

ri,bt (ξitS
i
t)

+ dt+

∫
(0,T ]

dAt

+

∫ T

0

rlt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)+

dt−
∫ T

0

rbt

(
Vt(x, φ,A) +

d∑
i=1

(ξitS
i
t)

−
)−

dt = V 0
T (x)

)
= 1.

It is clear that that
∫
(0,T ]

dAu = AT −A0. However, the terms p̄0 and −A0 do not cancel out in the

formulae above, since p̄0 is the yet unknown initial fair price of the contract, whereas the random
variable AT − A0 represents all contracts’ cash flows on (0, T ], and thus it is explicitly specified
through the contracts’ covenants. Of course, this formal characterization of a fair price p̄0 does not
offer any specific computational algorithm. Hence one needs to develop more explicit methods for
finding fair prices (for instance, via a suitable extension of the BSDE approach, which is examined
in Section 5.2).

4 Trading under Funding Costs and Collateralization

In this section, we will examine the situation when the hedger enters a contract with cash flows A
and either receives or posts collateral with the value formally represented by a stochastic process C.
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The process C is called the margin account or the collateral amount and the mechanism of either
posting or receiving a collateral is referred to as margining. Let

Ct = Ct1{Ct≥0} + Ct1{Ct<0} = C+
t − C−

t (4.1)

be the usual decomposition of the random variable Ct into the positive and negative components.
By convention, C+

t is the cash value of collateral received by the hedger, whereas C−
t represents the

cash value of collateral posted by him.

For simplicity of presentation, it is postulated throughout that only shares of particular collateral
assets, henceforth denoted by Sd+1 (resp., Sd+2) may be delivered (resp., received) by the hedger as
a collateral. In principle, this assumption can be relaxed to cover the case where a collateral asset
is not predetermined, but it may be chosen from a larger class of assets. However, the notation and
computations would become heavier, so we decided to consider a simple case only. Unless explicitly
stated otherwise, we work under the following standing assumptions:
(a) lending and borrowing cash rates Bl and Bb are equal, so that Bl = Bb = B,
(b) long and short funding rates for each risky asset Si are identical, that is, Bi,l = Bi,b = Bi for
i = 1, 2, . . . , d.

We make the following standing assumption regarding the behavior of the margin account at the
contract’s maturity date.

Assumption 4.1 We postulate that the G-adapted collateral amount process satisfies CT = 0.
Hence any particular specification of the collateral amount Ct discussed in that follows will be valid
only for 0 ≤ t < T and, invariably, we set CT = 0.

The postulated equality CT = 0 is a convenient way of ensuring that any collateral amount
posted is returned in full to its owner when a contract matures, provided that the default event
does not occur at T . Of course, if the default event is also modeled, then one needs to specify
the closeout payoff. Let us mention that the case of an exogenously given collateral was studied in
[31, 32], whereas the case of an endogenous collateral (as given, for instance by (4.10) below) was
examined in [33].

4.1 Collateral Conventions

In the market practice, the complexity of the issue of collateralization is enormous and obviously
beyond the scope of this work, in which we will focus only on the impact of collateralization on the
dynamics of the hedger’s portfolio and thus on the valuation from the perspective of the hedger. Let
us first make some comments regarding the crucial features of the margin accounts that underpin
our stylized approach to the costs of margining. As usual, we take the perspective of the hedger.

• The current financial practice typically requires the collateral amounts to be held in segregated
margin accounts, so that the hedger, when he is a collateral taker, cannot make use of the
collateral amount for trading. Therefore, under segregation the hedger’s wealth dynamics do
not depend on whether the collateral amount was posted by the counterparty in cash or shares
of a risky asset Sd+2. By contrast, the character of delivered assets always matters to him
when the hedger is a collateral giver.

• Another collateral convention encountered in practice is rehypothecation, which refers to the
situation where a bank is allowed to reuse the collateral pledged by its counterparties as
collateral for its own borrowing. In our approach to rehypothecation, we will distinguish
between the case when the collateral amount was delivered to the hedger in the form of shares
of a risky asset (and thus it can be reused only as a collateral) and the case of cash collateral
where it can be used for an outright trading.

• If the hedger is a collateral giver, then a particular convention regarding segregation or rehy-
pothecation is immaterial for the wealth dynamics of his portfolio. Of course, the distinction
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between segregation and rehypothecation becomes important when the closeout payoff at de-
fault of either the hedger or the counterparty is evaluated. However, the latter issue, as well
as a rather complex mechanism of updating the margin account, are left aside, since they were
already thoroughly studied in the literature.

We first introduce the general notation, which will be used when analyzing various conventions
regarding collateralization. Let us make clear that we are set here to introduce an abstract setup,
which is flexible enough to cover various collateral conventions. By contrast, we do not pretend that
any particular convention should be seen as either a prevailing or a desirable one.

Definition 4.1 A collateralized hedger’s trading strategy is a quadruplet (x, φ,A,C) where a port-
folio φ, given by

φ =
(
ξ1, . . . , ξd+1, ψ0, . . . , ψd+1, ηb, ηl, ηd+2

)
(4.2)

is composed of the risky assets Si, i = 1, 2, . . . , d + 1, the unsecured cash account B0 = B, the
funding accounts Bi, i = 1, 2, . . . , d + 1, the borrowing account Bd+1 for the posted cash collateral,
the collateral accounts Bc,b and Bc,l, and the lending account Bd+2 associated with the received
collateral asset Sd+2.

Remark 4.1 The collateral account Bc,b (resp. Bc,l) plays the following role: if the hedger receives
(resp. posts) cash or risky collateral with the equivalent cash value C+ (resp. C−), then he pays
(resp. receives) interest on this nominal amount, as specified by the process Bc,b (resp. Bc,l).

All funding and collateral accounts are assumed to be continuous processes of finite variation,
whereas the price of the collateral asset Sd+1 is assumed to be a càdlàg semimartingale. Let us
formulate two definitions, which clarify the distinction between the conventions of the risky asset
collateral and the cash collateral and introduce the notation, which will be used in what follows.

Definition 4.2 The risky collateral is described by the following postulates:

• If the hedger receives at time t the number ξd+2
t > 0 of shares of the risky asset Sd+2 as

collateral, then he pays to the counterparty interest determined by the amount C+
t = ξd+2

t Sd+2
t

and the collateral account Bc,b. Formally, there is no reason to postulate that the process
ξd+2 is a component of the hedger’s trading strategy. However, in cases where the collateral
amount is related to the hedging strategy, this process is explicitly given in terms of the wealth
of the hedger’s portfolio. Under segregation, the hedger also receives (possibly null) interest
determined by the amount C+

t and the account Bd+2,s, whereas under rehypothecation, he also
receives interest determined by the amount C+

t and the secured funding account Bd+2,h.

• If the hedger posts a collateral at time t, then he delivers ξd+1
t > 0 of shares of the risky asset

Sd+1 funded from the (unsecured) funding account Bd+1 and he receives interest determined
by the amount C−

t = ξd+1
t Sd+1

t and the collateral account Bc,l. Formally, we thus postulate
that

ξd+1
t Sd+1

t = C−
t , ξd+1

t Sd+1
t + ψd+1

t Bd+1
t = 0. (4.3)

This implies, in particular, that the equality ψd+1
t Bd+1

t = −C−
t holds for all t.

Note that the lending account Bd+2 is equal to Bd+2,s or Bd+2,h, depending on the adopted
collateral convention. In practice, deliverable collateral assets should have low credit risk and should
be uncorrelated with the underlying trading portfolio. For this reason, it is assumed in Definition 4.2
that, even under rehypothecation, the received risky asset Sd+2 cannot be used for hedging purposes.
We assume instead that it yields interest, denoted by Bd+2,h, by being pledged as collateral in a
repo contract and thus raising an equivalent amount C+ of cash. Note that the hedger’s relative
advantages when Sd+2 can be pledged as collateral in another contract are not examined here. For
this purpose, one would need to consider a portfolio of the hedger’s contracts, rather than to study
a single contract. Under segregation, the account Bd+2,s reflects a (perhaps unlikely in practice)
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possibility that the hedger receives interest from the collateral custodian whenever he maintains a
positive equivalent cash amount C+ in the segregated account. We now proceed to the case when
all collateral amounts are delivered in cash.

Definition 4.3 The cash collateral is described by the following postulates:

• If the hedger receives at time t the amount C+
t as collateral in cash, then he pays to the coun-

terparty interest determined by the amount C+
t and the account Bc,b. Under segregation, he

receives interest determined by the amount C+
t and the account Bd+2,s. When rehypotheca-

tion is considered, the hedger may temporarily (that is, before the contract’s maturity date or
the default time, whichever comes first) utilize the cash amount C+

t for his trading purposes.

• If the hedger posts cash collateral at time t, then the collateral amount is borrowed from
the dedicated collateral borrowing account Bd+1 (which, of course, may coincide with B). He
receives interest determined by the amount C−

t and the collateral account Bc,l. Instead of
(4.3), we now postulate that

ξd+1
t = 0, ψd+1

t Bd+1
t = −C−

t . (4.4)

In the context of a collateralized contract, we find it convenient to introduce the following three
processes:
• the process Vt(x, φ,A,C) representing the hedger’s wealth at time t,
• the process V p(x, φ,A,C) representing the value of hedger’s portfolio at time t, and
• the adjustment process V c

t (x, φ,A,C) := Vt(x, φ,A,C)−V p
t (x, φ,A,C), which measures the impact

of the margin account.

An explicit specification of the process V c(x, φ,A,C) depends on the adopted collateral con-
vention; however, we always have that V c(x, φ,A,C) = 0 when C vanishes, so that the adjust-
ment is not needed. Let us consider, for example, the case where V c

t (x, φ,A,C) = −Ct. Then
the portfolio’s value satisfies V p

t (x, φ,A,C) = Vt(x, φ,A,C) + Ct, meaning that the hedger also
invests in his portfolio of traded assets the collateral amount C+

t received at time t. By con-
trast, when he posts collateral at time t, then the portfolio’s value is computed by subtracting
the posted amount C−

t from his wealth. At time 0, for the hedger with the initial endowment x,
we have V0(x, φ, 0, 0) = x, V0(x, φ,A,C) = x + A0 and V p

0 (x, φ,A,C) = x + A0 + C0, where the
first two equalities are always true and the last one is a special case of the general relationship:
V p
0 (x, φ,A,C) = x+A0 − V c

0 (x, φ,A,C).

We are now in a position to formally define the processes V (x, φ,A,C), V p
t (x, φ,A,C) and

V c
t (x, φ,A,C) in our framework. For alternative explicit specifications of the process ηd+2, we

refer the reader to Propositions 4.1, 4.2 and 4.3. Similarly, in the next definition, we formally iden-
tify Bd+2,h with Bd+2,s and we denote them generically as Bd+2. This is possible, since these two
accounts will play a similar role in our further computations, although their financial interpretation
is different and thus in practice they are not necessarily equal.

Definition 4.4 The hedger’s portfolio’s value V p(x, φ,A,C) is given by

V p
t (x, φ,A,C) =

d+1∑
i=1

ξitS
i
t +

d+1∑
j=0

ψj
tB

j
t . (4.5)

The hedger’s wealth V (x, φ,A,C) equals

Vt(x, φ,A,C) =

d+1∑
i=1

ξitS
i
t +

d+1∑
j=0

ψj
tB

j
t + ηbtB

c,b
t + ηltB

c,l
t + ηd+2

t Bd+2
t . (4.6)

The adjustment process V c(x, φ,A,C) satisfies

V c
t (x, φ,A,C) = ηbtB

c,b
t + ηltB

c,l
t + ηd+2

t Bd+2
t = −Ct + ηd+2

t Bd+2
t (4.7)

where ηbt = −(Bc,b
t )−1C+

t and ηlt = (Bc,l
t )−1C−

t (see Remark 4.1).
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Various specifications of the adjustment process V c(φ) are now encoded in the process denoted
generically as ηd+2, which will sometimes be complemented by superscripts s or h, so that it can
also be denoted as ηd+2,s or ηd+2,h. For explicit specifications of these processes, we refer the reader
to Propositions 4.1, 4.2 and 4.3.

The self-financing property of the hedger’s strategy is defined in terms of the dynamics of the
value process of his portfolio. This definition is a natural extension of Definition 2.3 the case of
collateralized contracts. Note that here we use the process V p(x, φ,A,C), and not V (x, φ,A,C) as
in Definition 2.3, to emphasize the role of V p(x, φ,A,C) as the value of the hedger’s portfolio of
traded assets (recall also that V p(x, φ,A,C) = V (x, φ,A,C) when the process C vanishes).

Definition 4.5 A collateralized hedger’s trading strategy (x, φ,A,C) with φ given by (4.2) is self-
financing whenever the portfolio’s value V p(x, φ,A,C), which is given by (4.5), satisfies, for every
t ∈ [0, T ],

V p
t (x, φ,A,C) = x+

d+1∑
i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +
d+1∑
j=0

∫ t

0

ψj
u dB

j
u +At (4.8)

+

∫ t

0

ηbu dB
c,b
u +

∫ t

0

ηlu dB
c,l
u +

∫ t

0

ηd+2
u dBd+2

u − V c
t (x, φ,A,C).

It is clear that the terms
∫ t

0
ηbu dB

c,b
u ,

∫ t

0
ηlu dB

c,l
u and

∫ t

0
ηd+2
u dBd+2

u represent the cumulative
interest due to the presence of the margin account. The first two processes are given explicitly in
terms of C since ηbt = −(Bc,b

t )−1C+
t and ηlt = (Bc,l

t )−1C−
t , whereas the last one depends on the

collateral convention.

Remark 4.2 As was already mentioned, the process V c(x, φ,A,C) is aimed to measure the impact
of the margin account on the part of the hedger’s wealth that can be used for trading in primary
traded assets. Typically, it is given as V c

t (φ) = g(Ct(φ)) for some real function g (typically, g(x) =
−x or g(x) = x−). Hence, in view of Assumption 4.1, the equality VT (x, φ,A,C) = V p

T (x, φ,A,C) is
always satisfied provided that g(0) = 0. In the remainder of this work (with one exception, namely,
Section 5.3.4), we have that either V c(x, φ,A,C) = −C or V c(x, φ,A,C) = C− for an exogenously
given process C. Then (4.5) and (4.8) are autonomous, so that they uniquely specify the portfolio’s
value V p(φ), meaning that we do not use (4.6) for this purpose. One can observe that we formally
deal here with an example of a self-financing strategy with the wealth V p

t (x, φ,A,C), in the sense
of Definition 2.3, but where the process A is substituted with A− V c(x, φ,A,C).

Although these are obviously very important practical issues, neither an explicit specification of
the process C nor the rules governing the way in which the margin account is adjusted are studied in
detail here. Let us remark only that the collateral amount is typically tied to the regularly updated
marked-to-market value of a contract, whose level at time t is henceforth denoted as Mt. In that
case, the process C can be specified as follows

Ct = (1 + δ1t )Mt1{Mt>0} + (1 + δ2t )Mt1{Mt<0} = (1 + δ1t )M
+
t − (1 + δ2t )M

−
t (4.9)

for some nonnegative haircut processes δ1 and δ2. In our theoretical framework, the goal is to develop
valuation of a contract based on hedging, so that it is natural to relate the marked-to-market value
to the (so far unspecified) hedger’s value of a contract. To be more specific, since the wealth process
V (φ) of the hedger is aimed to cover his future liabilities, it is natural to postulate that the stylized
“market value” of a contract, as seen by the hedger, coincides with the negative of his wealth.
Consequently, we formally identify the marked-to-market value M with the negative of the wealth
of the hedger’s portfolio. More precisely, one may setMt = V 0

t (x)−V (x, φ,A,C) (see also Definition
5.3 of the ex-dividend price of a contract (A,C) for a justification of this postulate). Then formula
(4.9) becomes

Ct = Ct(φ) := (1 + δ1t )(V
0
t (x)− Vt(x, φ,A,C))

+ − (1 + δ2t )(V
0
t (x)− Vt(x, φ,A,C))

−. (4.10)
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The case of a fully collateralized contract is obtained by setting δ1t = δ2t = 0 for all t in (4.10), which
implies that the process C(φ) is implicitly given by the equation C(φ) = V 0

t (x)− V (x, φ,A,C). Of
course, an analogous analysis can be done for the counterparty. However, since the market conditions
will typically be different for the two parties, it is unlikely that their computations of the contract’s
value (hence the collateral amount) will yield the same value. Obviously, specification (4.10) of
collateral amount with the wealth V (φ) computed by the hedger makes practical sense only when
it is bilaterally accepted in the contract’s CSA (Credit Support Annex).

The remaining part of this section is organized as follows. First, in Proposition 4.1, which covers
both segregation and rehypothecation, we derive more explicit representation for the dynamics of
the hedger’s wealth in the case of a risky collateral. Subsequently, in Propositions 4.2 and 4.3, we
examine the case of cash collateral under segregation and rehypothecation, respectively.

4.2 Risky Collateral

In this subsection, we work under the assumption that the collateral amount is delivered by the
hedger in the form of shares of the risky asset Sd+1 and we follow the conventions described in
Definition 4.2. In particular, from (4.3), we see that the net wealth invested in risky asset Sd+1 and
the account Bd+1 is null. We denote by Fh the process given by

Fh
t := F c

t +

∫ t

0

C+
u (Bd+2,h

u )−1 dBd+2,h
u (4.11)

where F c is the cumulative interest of margin account

F c
t :=

∫ t

0

C−
u (Bc,l

u )−1 dBc,l
u −

∫ t

0

C+
u (Bc,b

u )−1 dBc,b
u . (4.12)

We will show that the process Fh represents all positive and negative cash flows from the margin ac-
count under rehypothecation, as specified by Definition 4.2. Note that if segregation of the delivered
asset Sd+2 is postulated, then all statements in Proposition 4.1 remain valid if Bd+2,h is substituted
with Bd+2,s and thus this result also covers the case of a segregated risky collateral. In the latter
case, the symbol Fh will be replaced by F s.

Proposition 4.1 Consider the case of the segregated margin account when the collateral is posted
in shares of a risky asset Sd+1 and received in any form. Assume that a trading strategy (x, φ,A,C)
is self-financing and the following equalities hold for all t ∈ [0, T ]:

ξd+1
t = (Sd+1

t )−1C−
t , ψd+1

t = −(Bd+1
t )−1C−

t , ηd+2
t = (Bd+2,h

t )−1C+
t . (4.13)

Then the hedger’s wealth V (φ) = V (x, φ,A,C) equals, for every t ∈ [0, T ],

Vt(φ) = V p
t (φ) + C−

t =
d∑

i=1

ξitS
i
t +

d∑
j=0

ψj
tB

j
t + C−

t (4.14)

and the dynamics of the portfolio’s value V p(φ) = V p(x, φ,A,C) are

dV p
t (φ) = Ṽ p

t (φ) dBt +
d∑

i=1

ξit dK
i
t + (Sd+1

t )−1C−
t dKd+1

t +
d∑

i=1

ζit(B̃
i
t)

−1 dB̃i
t + dAh

t − dC−
t (4.15)

where Ṽ p
t (φ) := (Bt)

−1V p
t (φ) and A

h := A+Fh. In particular, under assumption (2.16), we obtain

dVt(φ) = Ṽt(φ) dBt +
d∑

i=1

ξitB
i
t dŜ

i,cld
t + (Sd+1

t )−1C−
t B

d+1
t dŜd+1,cld

t + dF̄h
t + dAt (4.16)
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where

F̄h
t := F c

t +

∫ t

0

C+
u (Bd+2,h

u )−1 dBd+2,h
u −

∫ t

0

C−
u (Bu)

−1 dBu. (4.17)

The hedger’s wealth admits the following decomposition

Vt(φ) = x+Gt(φ) + Ft(φ) + Fh
t +At (4.18)

where Gt(φ) is given by (2.7) with d replaced by d + 1 and Ft(φ) satisfies (2.8) with d replaced by
d+ 1.

Proof. Equality (4.14) is an immediate consequence of the specification of φ and assumptions
(4.13). We now focus on dynamics of the process V p(φ). First, we observe that, in view of (4.13),
we have ζd+1

t := ξd+1
t Sd+1

t + ψd+1
t Bd+1

t = 0. Second, the term Fh, which is deduced from (4.8)
and (4.13), may be combined with A to yield Ah = A + Fh. We are now in a position to apply
Corollary 2.1 to the process V p(φ) satisfying (4.5)–(4.8). This yields equality (4.15), which in turn
after simple computations becomes (4.16) when ζi = 0 for all i = 1, 2, . . . , d. Finally, decomposition
is immediate from (4.14) and (4.8). �

Remark 4.3 If the assumption that Bl = Bb = B is relaxed, then the dynamics of the portfolio’s
value (hence also the hedger’s wealth) should be adjusted along the same lines as in Section 2.3.
Specifically, if ζi = 0 for all i, then we obtain the following equality, which combines formulae (2.35)
and (4.15),

dV p
t (φ) = ψl

t dB
l
t + ψb

t dB
b
t +

d∑
i=1

ξit dK
i
t + (Sd+1

t )−1C−
t dKd+1

t + dAh
t − dC−

t (4.19)

where the processes ψl
t and ψ

b
t satisfy

ψl
t = (Bl

t)
−1

(
V p
t (φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t − C−

t

)+

and

ψb
t = −(Bb

t )
−1

(
V p
t (φ)−

d∑
i=1

ξitS
i
t −

d∑
i=1

ψi
tB

i
t − C−

t

)−
.

Formula (4.19) leads to a suitable extension of Proposition 4.1. Similar extensions can be derived
for the case of cash collateral; since they are rather straightforward, they are left to the reader.

4.3 Cash Collateral

In this section, we work under the conventions of cash collateral, as specified in Definition 4.3. Of
course, the risky asset Sd+1 plays no role in this subsection, and thus its existence can be safely
ignored. Formally, we will postulate that ξd+1

t = 0 for all t.

4.3.1 Margin Account under Segregation

Assume first that the cash amount received by the hedger as collateral cannot be used for trading.
Then only the interest on C+, denoted as Bd+2,s, matters and the fact that the collateral is received
in cash is immaterial here. The cash amount C− posted by the hedger is borrowed from the account
Bd+1 and it yields interest paid by the counterparty, as determined by the process Bc,l. These
features of the margin account are reflected through equalities (4.20) in the statement of the next
result. Recall that the process F s is given by (4.11) with the superscript h substituted with s.
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Proposition 4.2 Consider the case of the segregated margin account when the collateral is posted
by the hedger in cash borrowed from the account Bd+1 and it is received in any form. Assume that
a trading strategy (φ,A,C) is self-financing and the following equalities hold, for all t ∈ [0, T ],

ξd+1
t = 0, ψd+1

t = −(Bd+1
t )−1C−

t , ηd+2,s
t = (Bd+2,s

t )−1C+
t . (4.20)

Then the hedger’s wealth V (φ) = V (x, φ,A,C) equals, for every t ∈ [0, T ],

Vt(φ) = V p
t (φ) + C−

t =

d∑
i=1

ξitS
i
t +

d+1∑
j=0

ψj
tB

j
t + C−

t (4.21)

and the dynamics of the portfolio’s value V p(φ) = V p(x, φ,A,C) are

dV p
t (φ) = Ṽ p

t (φ) dBt +

d∑
i=1

ξit dK
i
t +

d∑
i=1

ζit(B̃
i
t)

−1 dB̃i
t − C−

t (Bd+1
t )−1 dBd+1

t + dAs
t − dC−

t (4.22)

where Ṽ p
t (φ) := (Bt)

−1V p
t (φ) and A

s := A+ F s. In particular, under assumption (2.16) we obtain

dVt(φ) = Ṽt(φ) dBt +
d∑

i=1

ξitB
i
t dŜ

i,cld
t − C−

t (Bd+1
t )−1 dBd+1

t + dF s
t + dAt (4.23)

or, equivalently,

dVt(φ) = Ṽt(φ) dBt +

d∑
i=1

ξitB
i
t dŜ

i,cld
t + dF̂ s

t + dAt (4.24)

where

F̂ s
t := F c

t +

∫ t

0

C+
u (Bd+2,s

u )−1 dBd+2,s
u −

∫ t

0

C−
u (Bd+1

u )−1 dBd+1
u .

The hedger’s wealth admits the following decomposition

Vt(φ) = x+Gt(φ) + Ft(φ) + F̂ s
t +At (4.25)

where Gt(φ) is given by (2.7) and Ft(φ) satisfies (2.8).

Proof. We use arguments similar to those in the proof of Proposition 4.1. We start by noting that
(4.21) yields

V p
t (φ) =

d∑
i=1

ξitS
i
t + ψ0

tBt +

d+1∑
i=1

ψi
tB

i
t.

Hence, in view of (4.8), we may observe that here we deal with a self-financing strategy (φ,A)
introduced in Definition 4.5 with d replaced by d+1 and As = A+F s such that ζd+1

t = ψd+1
t Bd+1

t =
−C−

t . An application of Corollary 2.1 gives (4.22). The equivalence of (4.23) and (4.24) follows by
direct computations using the equality V (φ) = V p(φ) + C− and the assumptions that B and Bd+1

are continuous processes of finite variation. �

4.3.2 Margin Account under Rehypothecation

In the case of cash collateral under rehypothecation, we assume that the hedger, when he is a
collateral taker, is granted unrestricted use of the full collateral amount C+. As usual, we postulate
that the hedger then pays interest to the counterparty determined by the collateral amount C+ and
Bc,b. Furthermore, we assume that when the hedger is a collateral giver, then collateral is delivered
in cash and he receives interest specified by C− and Bc,l. We maintain the assumption that the
hedger borrows cash for collateral delivered to the counterparty from the dedicated account Bd+1.
Of course, the case when Bd+1 = B is not excluded, but we decided to use a different symbol for the
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dedicated account to facilitate identification of each cash flow. Recall that the process Fh, which is
now given by expression (4.11) with Bd+2,h = B, is aimed at representing the cash flows from the
margin account under rehypothecation, as specified by Definition 4.3. The proof of the next result
is also based on Corollary 2.1 and thus it is omitted.

Proposition 4.3 Consider the case of a rehypothecated margin account when the cash collateral is
posted and received by the hedger. We assume that a trading strategy (φ,A,C) is self-financing and
the following equalities hold for all t ∈ [0, T ]:

ξd+1
t = 0, ψd+1

t = −(Bd+1
t )−1C−

t , ηd+2,h
t = 0. (4.26)

Then the hedger’s wealth V (φ) = V (x, φ,A,C) equals, for every t ∈ [0, T ],

Vt(φ) = V p
t (φ)− Ct =

d∑
i=1

ξitS
i
t +

d+1∑
j=0

ψj
tB

j
t − Ct (4.27)

and the dynamics of the portfolio’s value V p(φ) = V p(x, φ,A,C) are

dV p
t (φ) = Ṽ p

t (φ) dBt +
d∑

i=1

ξit dK
i
t +

d∑
i=1

ζit(B̃
i
t)

−1 dB̃i
t − C−

t (Bd+1
t )−1 dBd+1

t + dAh
t + dCt (4.28)

where Ṽ p
t (φ) := (Bt)

−1V p
t (φ) and A

h := A+ Fh. In particular, under assumption (2.16) we obtain

dVt(φ) = Ṽt(φ) dBt +
d∑

i=1

ξitB
i
t dŜ

i,cld
t − C−

t (Bd+1
t )−1 dBd+1

t + dFh
t + dAt (4.29)

or, equivalently,

dVt(φ) = Ṽt(φ) dBt +

d∑
i=1

ξitB
i
t dŜ

i,cld
t + dF̂h

t + dAt (4.30)

where

F̂h
t := F c

t +

∫ t

0

C+
u (Bu)

−1 dBu −
∫ t

0

C−
u (Bd+1

u )−1 dBd+1
u . (4.31)

The hedger’s wealth admits the following decomposition

Vt(φ) = x+Gt(φ) + Ft(φ) + F̂h
t +At (4.32)

where Gt(φ) is given by (2.7) and Ft(φ) satisfies (2.8).

5 Pricing under Funding Costs and Collateralization

We will now focus on valuation of a collateralized contract that can be replicated by the hedger
with the initial endowment x at time 0. We consider throughout the hedger’s self-financing trading
strategies (x, φ,A,C), as specified by Definition 4.5 and, unless explicitly stated otherwise, we
postulate that condition (2.16) is met. It will be implicitly assumed that all trading strategies
considered in what follows are admissible, in a suitable sense.

As usual, the price of a contract will be defined from the perspective of a hedger. We assume that
p0 = A0 is an unknown real number, which should be found through contract replication, whereas
the cumulative dividend stream A − A0 of a contract A is predetermined. Therefore, by pricing of
A, we in fact mean valuation of the cumulative dividend stream A−A0 (or A−At if we search for
the price of A at time t), which is supplemented by the collateral process C.
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Definition 5.1 For a fixed t ∈ [0, T ], let pt be a Gt-measurable random variable. We say that a
self-financing trading strategy (V 0

t (x) + pt, φ,A−At, C) replicates the collateralized contract (A,C)
on [t, T ] whenever VT (V

0
t (x) + pt, φ,A−At, C) = V 0

T (x).

In the next definition, we consider the situation when the hedger with the initial wealth x at
time 0 enters the contract A at time t.

Definition 5.2 Any Gt-measurable random variable pt for which a replicating strategy for (A,C)
over [t, T ] exists is called the ex-dividend price at time t of the contract A associated with φ and it
is denoted by St(x, φ,A,C).

It is worth noting that for t = 0 we always have that p0 = A0 and thus, for any portfolio φ, the
strategies (x+ p0, φ,A−A0, C) and (x, φ,A,C) are in fact identical. Therefore, we may simply say
that a self-financing trading strategy (x, φ,A,C) replicates (A,C) on [0, T ] whenever the equality
VT (x, φ,A,C) = V 0

T (x) holds. This equality is in fact consistent with (3.6) in Definition 3.5 of a
hedger’s fair price, so we conclude that any ex-dividend price p0 of A at time 0 is also a hedger’s
fair price p̄0 for A at time 0 (though the converse does not hold in general).

Remark 5.1 In general, the ex-dividend price St(x, φ,A,C) depends on x, so that the knowledge
of the hedger’s initial endowment is essential for our (nonlinear) pricing rule. In the special case
when x = 0, the price pt at time t corresponds to the existence of a trading strategy φ such that
VT (pt, φ,A−At, C) = 0. In particular, when x = 0, C = 0 and the process A−At is given as a single
cash flow X at time T , then pt is the initial wealth of a self-financing strategy φ with the wealth
equal to −X just prior to T , more precisely, the wealth satisfying the equality VT−(φ) = −X (since
here ∆AT = AT − AT− = X). In a frictionless market model, we thus obtain the classic definition
of the replicating price of a European claim X.

It is not difficult to check that necessarily ST (x, φ,A,C) = 0 for any contract A. By contrast, it
is not clear a priori whether St(x, φ,A,C) for some t < T depends on the initial endowment x and a
portfolio φ (recall also that C = C(φ), in general). In models where the uniqueness of St(x, φ,A,C)
fails to hold, it would be natural to search for the least expensive way of replication for a given initial
endowment x. One could also address the issue of finding the least expensive way of superhedging
a contract A by imposing the weaker condition that VT (x, φ,A,C) ≥ V 0

T (x) instead of insisting on
the equality VT (x, φ,A,C) = V 0

T (x).

If we assume that the hedger can replicate the contract A on [0, T ] using a trading strategy
initiated at time 0, then it is not necessarily true that, starting with the initial endowment V 0

t (x) at
some date 0 < t < T , he can also replicate the cumulative dividend stream A−At representing the
contract A restricted to the interval [t, T ]. Let us thus consider the situation when a contract (A,C)
can be replicated on [0, T ]. Then we may propose an alternative definition of an ex-dividend price
at time t. In fact, Definition 5.3 mimics the classic definition of arbitrage price obtained through
replication of a contingent claim when x = 0. Of course, in the classic case, we may assume, without
loss of generality that x = 0, since arbitrage prices obtained through replication are independent of
the hedger’s initial endowment.

Definition 5.3 Assume that a self-financing trading strategy (x, φ,A,C) replicates (A,C) on [0, T ].
Then the process p̂t := Vt(x, φ,A,C)−V 0

t (x) is called the valuation ex-dividend price of A associated

with φ and it is denoted by Ŝt(x, φ,A,C).

We note that the equality ŜT (x, φ,A,C) = 0 is always satisfied. Furthermore, when x = 0,
Definition 5.3 states that the reduced ex-dividend price of A associated with φ is simply the wealth
V (0, φ,A,C) of a replicating strategy. Observe also that a replicating strategy for the hedger with
null initial endowment starts from the initial wealth p0 at time 0 and terminates with null wealth at
time T . We will argue that Definitions 5.1 and 5.3 of ex-dividend prices are equivalent in the basic
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model with funding costs (where indeed the ex-dividend prices will be shown to be independent of
x and φ, provided that the collateral process C is exogenously given), but the two prices do not
necessarily coincide in a generic market model with different borrowing and lending rates and/or
other restrictions on trading. The latter observation and the aim of covering all sorts of market
restrictions, not necessarily exemplified in what follows, motivated us to introduce a more general
Definition 5.1, which is subsequently used in Definition 5.3, which is sufficient in simpler models.

5.1 Basic Model with Funding Costs and Collateralization

We consider the basic model with funding costs introduced in Section 3.2.2 and we postulate the
following:
(i) the assumptions of Proposition 3.1 are met, so that the model is arbitrage-free for the hedger;
(ii) the collateral process C is exogenously given; that is, it is independent of a hedger’s portfolio φ.

We assume that the random variables whose conditional expectations are evaluated are integrable
and we write Ẽt(·) := EP̃( · | Gt) where P̃ is any martingale measure for the processes Ŝi,cld, i =

1, 2, . . . , d (for the existence of P̃, see Proposition 3.1). We use a generic symbol Âc to denote one

of the processes A + F̄h, A + F̂ s or A + F̂h, depending on the adopted convention for the margin
account, and we assume that the process Âc is bounded. Also, we postulate that the cash account
process B is increasing.

We first show that, under mild technical assumptions, the price can be computed using the
conditional expectation under P̃. It is worth noting that the impact of collateralization is relatively
easy to handle in the present setting by quantifying additional gains or losses generated by the
margin account, as explicitly given by one of the processes F̄h, F̂ s or F̂h, and aggregating them
with the cumulative cash flows A. We write here S(A,C), rather than S(x, φ,A,C), in order to
emphasize that, under the present assumptions, the price does not depend on (x, φ).

Proposition 5.1 Under assumptions (i)–(ii), if the collateralized contract (A,C) can be replicated
by an admissible trading strategy (x, φ,A,C) on [0, T ] and the stochastic integrals with respect to

Ŝi,cld, i = 1, 2, . . . , d in (5.4) (or with respect to Ŝi,cld, i = 1, 2, . . . , d+1 in (5.5)) are P̃-martingales,
then its ex-dividend price process S(x, φ,A,C) is independent of (x, φ) and equals, for all t ∈ [0, T ],

St(A,C) = −Bt Ẽt

(∫
(t,T ]

B−1
u dÂc

u

)
. (5.1)

Proof. Assume that a strategy (x, φ,A,C) replicates the collateralized contract (A,C) on [t, T ]. By
applying (4.16), we obtain

dṼt(x, φ,A,C) =
d∑

i=1

ξitB̃
i
t dŜ

i,cld
t +B−1

t (Sd+1
t )−1C−

t B
d+1
t dŜd+1,cld

t +B−1
t dÂc

t (5.2)

whereas (4.24) and (4.30) yield

dṼt(x, φ,A,C) =
d∑

i=1

ξitB̃
i
t dŜ

i,cld
t +B−1

t dÂc
t (5.3)

where the specification of the process Âc depends on the convention regarding the margin account.
Using (2.25) in Corollary 2.1 with ζi = 0 for all i and a suitable choice of A, we deduce that the
trading strategy given by (5.3) is self-financing, in the sense of Definition 2.3 and, obviously, it
satisfies condition (2.16).

For a fixed 0 ≤ t < T , equality VT (V
0
t (x) + pt, φ,A − At, C) = V 0

T (x) where V 0
t (x) = xBt,

combined with (5.3), yields

−B−1
t pt =

d∑
i=1

∫
(t,T ]

ξiuB̃
i
u dŜ

i,cld
u +

∫
(t,T ]

B−1
u dÂc

u. (5.4)
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By the definition of P̃, the processes Ŝi,cld, i = 1, 2, . . . , d are P̃-local martingales. Consequently,
equality (5.1) follows provided that the integrals with respect to Ŝi,cld, i = 1, 2, . . . , d are martingales

under P̃, rather than merely local (or sigma) martingales. The arguments used in the case of a risky
collateral, as described by (5.2), are analogous. We now obtain

−B−1
t pt =

d∑
i=1

∫
(t,T ]

ξiuB̃
i
u dŜ

i,cld
u +

∫
(t,T ]

B−1
u (Sd+1

u )−1C−
u B

d+1
u dŜd+1,cld

u +

∫
(t,T ]

B−1
u dÂc

u (5.5)

and we postulate that all integrals with respect to Ŝi,cld, i = 1, 2, . . . , d+ 1 in (5.5) are martingales

under P̃. The last postulate is indeed justified, since we assumed, in particular, that a replicating
strategy is admissible. �

Note that the minus sign in (5.1) is due to the fact that all cash flows and prices are considered
from the viewpoint of the hedger. For instance, a negative payoff X at T , which represents the
hedger’s liability at time T to his counterparty, is compensated by a positive price collected by the
hedger at time 0.

The existence of a replicating strategy can be ensured by postulating that the local martingales
Ŝi,cld, i = 1, 2, . . . , d have the predictable representation property with respect to G under P̃. More-
over, since the ex-dividend price is independent of x and φ, it is easy to verify that the equality
St(A,C) = Ŝt(A,C) holds for every t ∈ [0, T ]. In essence, we deal here with only a minor modifi-
cation of the standard linear pricing rule, which is very well understood in a market model with a
single cash account. A more complex situation where the pricing mechanism is nonlinear is a subject
of the next subsection.

Remark 5.2 Proposition 5.1 sheds some light on the connection between arbitrage-free property of
the model, in the sense of Definition 3.3, and existence and representation of the hedger’s fair price,
in the sense of Definition 3.5.

5.2 Model with Partial Netting and Collateralization

We now consider the market model from Section 3.4, and we work under the assumptions of Propo-
sition 3.3. Specifically, we assume that x ≥ 0, 0 ≤ rl ≤ rb, and rl ≤ ri,b for i = 1, 2, . . . , d, and
we postulate the existence of a probability measure P̃l that is equivalent to P and such that the
processes S̃i,l,cld, i = 1, 2, . . . , d are (P̃l,G)-local martingales, where

S̃i,l,cld
t = (Bl

t)
−1Si

t +

∫
(0,t]

(Bl
u)

−1 dAi
u.

For a collateralized contract (A,C), we search for the value process of a replicating strategy (of
course, we will also need to show that such a strategy exists). We consider here the special case of
an exogenous margin account with rehypothecated cash collateral C.

5.2.1 Dynamics of Discounted Portfolio’s Wealth

By applying a slight extension of Definition 4.5 (see also Proposition 4.3) to the case of different
lending and borrowing rates, one notes that a hedger’s trading strategy (x, φ,A,C) is self-financing
whenever the hedger’s wealth, which is given by the equality

V (x, φ,A,C) =
d∑

i=1

ξitS
i
t + ψl

tB
l
t + ψb

tB
b
t +

d∑
j=1

ψj
tB

j
t − Ct = V p

t (x, φ,A
c)− Ct

where ψl
t ≥ 0, ψb

t ≤ 0 and ψl
tψ

b
t = 0 for all t ∈ [0, T ], is such that the portfolio’s value satisfies

V p
t (x, φ,A

c) = x+

d∑
i=1

∫
(0,t]

ξiu d(S
i
u +Ai

u) +

∫ t

0

ψl
t dB

l
t +

∫ t

0

ψb
t dB

b
t +

d∑
j=1

∫ t

0

ψj
u dB

j
u +Ac

t
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where we set Ac = A+ C + F c and the process F c is given by (4.12).

Observe that here V p
t (x, φ,A

c) = Vt(x, φ,A,C) + Ct for every t ∈ [0, T ) and V p
T (x, φ,A

c) =
VT (x, φ,A,C) since, by Assumption 4.1, the equality CT = 0 holds. The following lemma shows,

in particular, that one could also write Ṽ p,l
t (x, φ,Ac) = Ṽ p,l

t (x, ξ, Ac) in order to emphasize that
within the present framework the process ξ uniquely determines the trading strategy φ, as can be
seen from Corollary 2.4 and (2.49)–(2.50) in Section 2.4.3.

Lemma 5.1 The discounted wealth Yt := Ṽ p,l
t (φ,Ac) = (Bl

t)
−1V p

t (x, φ,A
c) satisfies

dYt =
d∑

i=1

ξit dS̃
i,l,cld
t + f̃l(t, Yt, ξt) dt+ (Bl

t)
−1 dAc

t (5.6)

where
f̃l(t, Yt, ξt) := (Bl

t)
−1fl(t, B

l
tYt, ξt)− rltYt (5.7)

where in turn for any process X (note that fl depends on (t, ω) through rlt, r
b
t , r

i,b
t and Si

t)

fl(t,Xt, ξt) :=
d∑

i=1

rltξ
i
tS

i
t −

d∑
i=1

ri,bt (ξitS
i
t)

+ + rlt

(
Xt +

d∑
i=1

(ξitS
i
t)

−
)+

− rbt

(
Xt +

d∑
i=1

(ξitS
i
t)

−
)−
.

Proof. We note that the processes C and F c, which represent additional cash flows due to the
presence of the margin account, do not depend on φ. It thus follows from (2.52) that the portfolio’s
value V p(φ,Ac) satisfies

dV p
t (φ,A

c) =
d∑

i=1

ξit
(
dSi

t + dAi
t

)
−

d∑
i=1

ri,bt (ξitS
i
t)

+ dt+ dAc
t

+ rlt

(
V p
t (φ,A

c) +
d∑

i=1

(ξitS
i
t)

−
)+

dt− rbt

(
V p
t (φ,A

c) +
d∑

i=1

(ξitS
i
t)

−
)−

dt

so that we may represent the dynamics of V p(φ,Ac) as follows

dV p
t (φ,A

c) =
d∑

i=1

ξit
(
dSi

t − rltS
i
t dt+ dAi

t

)
+ fl

(
t, ξt, V

p
t (φ,A

c)
)
dt+ dAc

t .

Consequently, the discounted wealth Ṽ p,l
t (φ,Ac) = (Bl

t)
−1V p

t (φ,A
c) is governed by

dṼ p,l
t (φ,Ac) =

d∑
i=1

ξit dS̃
i,l,cld
t − rltṼ

p,l
t (φ,Ac) dt+ (Bl

t)
−1fl

(
t, Bl

tṼ
p,l
t (φ,Ac), ξt

)
dt+ (Bl

t)
−1 dAc

t ,

which means that

dṼ p,l
t (φ,Ac) =

d∑
i=1

ξit dS̃
i,l,cld
t + f̃l

(
t, Ṽ p,l

t (φ,Ac), ξt
)
dt+ (Bl

t)
−1 dAc

t

where the mapping f̃l is given by (5.7). �

Remark 5.3 Using analogous arguments, it is possible to show that the discounted wealth process
Ŷt := Ṽ p,b

t (φ,Ac) = (Bb
t )

−1V p
t (x, φ,A

c) satisfies

dŶt =
d∑

i=1

ξit dS̃
i,b,cld
t + f̃b(t, Ŷt, ξt) dt+ (Bb

t )
−1 dAc

t (5.8)
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where the mapping f̃b is given by

f̃b(t, Ŷt, ξt) := (Bb
t )

−1fb(t, B
b
t Ŷt, ξt)− rbt Ŷt (5.9)

where in turn fb is given by, for any process X,

fb(t,Xt, ξt) :=
d∑

i=1

rbtξ
i
tS

i
t −

d∑
i=1

ri,bt (ξitS
i
t)

+ + rlt

(
Xt +

d∑
i=1

(ξitS
i
t)

−
)+

− rbt

(
Xt +

d∑
i=1

(ξitS
i
t)

−
)−
.

5.2.2 An Auxiliary BSDE

We focus here on the case where x ≥ 0; an analogous analysis can be done for the case where
x < 0 examined in Remark 5.3. Assume that the processes M i, i = 1, 2, . . . , d are continuous local
martingales on the filtered probability space (Ω,G,G, P̃l). To proceed further, we need to address
the problem of existence and uniqueness of a solution (Y, Z) to the following BSDE

dYt =

d∑
i=1

Zi
t dM

i
t + f̃l(t, Yt, Zt) dt+ dUt

with a terminal value YT = η and a given process U . Equivalently,

Yt = η −
∫ T

t

d∑
i=1

Zi
u dM

i
u −

∫ T

t

f̃l(u, Yu, Zu) du− (UT − Ut). (5.10)

If we set Ŷt = Yt − Ut, then (5.10) can be written as

Ŷt = ŶT −
∫ T

t

d∑
i=1

Zi
u dM

i
u −

∫ T

t

f̂l(t, Ŷu, Zu) du (5.11)

where the terminal value satisfies ŶT = η − UT and where the driver f̂l satisfies

f̂l(t, Ŷt, Zt) := f̃l(t, Ŷt + Ut, Zt). (5.12)

Equation (5.11) is a special case of general BSDE studied in El Karoui and Huang [18] (see also

Carbone et al. [11]). Note, that if a pair (Ŷ , Z) is a solution to (5.11) with terminal condition

ŶT = η − UT , then the pair (Y,Z) with Y := Ŷ + U is a solution to (5.10) with terminal condition
YT = η.

Under the assumption that the processes rl, rb and ri,b, i = 1, 2, . . . , d are nonnegative and
bounded, and the prices of risky assets are bounded, it is easy to check that the mapping f̃l :
[0, T ] × R × Rd × Ω → R given by (5.7) is a standard driver (in the terminology of El Karoui and
Huang [18]). Consequently, under mild integrability assumptions imposed on the process U , the

mapping f̂l : [0, T ] × R × Rd × Ω → R given by (5.12) is a standard driver as well. Therefore,

the existence and uniqueness of a solution (Ŷ , Z) to BSDE (5.11) in a suitable space of stochastic
processes hold, provided that the Rk-valued local martingale M = (M1, . . . ,Md) is continuous

and has the predictable representation property with respect to the filtration G under P̃l (see, for
instance, El Karoui and Huang [18]) and the terminal condition η−YT satisfies a suitable integrability
condition. We conclude that the existence and uniqueness of a solution (Y, Z) to BSDE (5.10) hold
under mild technical assumptions. For technical details, the reader is referred to Nie and Rutkowski
[31, 32]. We also observe that if BSDE (5.10) has a solution (Y,Z), then the process

M̄t :=
d∑

i=1

∫ t

0

Zi
u dM

i
u
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is a P̃l-martingale, since the property that M̄ is a square-integrable martingale is a part of the
definition of a solution to BSDE (5.10) . Consequently, the process Y admits the following recursive
representation

Yt = − Ẽl
t

(∫ T

t

f̃l(u, Yu, Zu) du+ UT − Ut

)
where we denote Ẽl

t(·) := EP̃l( · | Gt).

5.2.3 Pricing and Hedging Result

Assume that the processes S̃i,l,cld, i = 1, 2, . . . , d are continuous. In the next result, we assume that
the d-dimensional continuous local martingale S̃l,cld has the predictable representation property with
respect to the filtration G under P̃l, meaning that any square-integrable (P̃l,G)-martingale N admits
the following integral representation for some process (η1, . . . , ηd)

Nt = N0 +
d∑

i=1

∫ t

0

ηiu dS̃
i,l,cld
u .

For the sake of concreteness, one may assume, for instance, that under P̃l the processes S̃i,l,cld satisfy,
for every i = 1, 2, . . . , d and t ∈ [0, T ],

dS̃i,l,cld
t =

d∑
j=1

S̃i,l,cld
t σij

t dW̃ j
t

where (W̃ 1, . . . , W̃ d) is the d-dimensional standard Brownian motion generating the filtration G and
the matrix-valued process σ = [σij ] is nonsingular.

We are in a position to establish the following pricing result, in which we write St(x,A,C) instead
of St(x, φ,A,C) in order to emphasize that, for any fixed x ≥ 0, the replicating strategy ξx for the
collateralized contract (A,C) is unique. Note also that the price St(x,A,C) manifestly depends on
the hedger’s initial endowment x through the terminal condition in BSDE (5.13). For the existence
and uniqueness of a solution to (5.13) and further properties of the price St(x,A,C), the reader is
referred to the follow-up papers by Nie and Rutkowski [31, 34].

Proposition 5.2 Let the random variables

UT :=

∫
(0,T ]

(Bl
t)

−1dAc
t and

∫ T

0

(Ut)
2 dt

be square-integrable under P̃l. Then, for any fixed real number x ≥ 0, the unique replicating strategy
ξx equals Zx and the ex-dividend price satisfies, for every t ∈ [0, T ),

St(x,A,C) = Bl
t(Y

x
t − x)− Ct

where the pair (Y x, Zx) is the unique solution to the BSDE

Y x
t = x−

∫ T

t

d∑
i=1

Zx,i
u dS̃i,l,cld

u −
∫ T

t

f̃l
(
u, Y x

u , Z
x
u

)
du−

∫
(t,T ]

(Bl
u)

−1 dAc
u. (5.13)

Consequently, the following representation is valid

St(x,A,C) = −Bl
t Ẽl

t

(∫ T

t

f̃l(u, Y
x
u , ξ

x
u) du+

∫
(t,T ]

(Bl
u)

−1dAc
u

)
− Ct. (5.14)
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Proof. For a fixed 0 ≤ t < T , we consider replication on the interval [t, T ] and valuation at time t.
Recall that V p

t (x, φ,A
c) = Vt(x, φ,A,C)+Ct for every t ∈ [0, T ) and V p

T (x, φ,A
c) = VT (x, φ,A,C).

On the one hand, the definition of replication on the interval [t, T ] requires that

VT (V
0
t (x) + pt, φ,A−At, C) = V 0

T (x)

where V 0(x) = xBl (recall that we work here under the assumption that x ≥ 0), so that

Ṽ l
T (V

0
t (x) + pt, φ,A−At, C)− Ṽ l

t (V
0
t (x) + pt, φ,A−At, C) = x− (Bl

t)
−1(pt + xBl

t) = −(Bl
t)

−1pt.

On the other hand, V (x, φ,A,C) = V p(x, φ,Ac)− C and thus, since CT = 0,

Ṽ l
T (V

0
t (x) + pt, φ,A−At, C)− Ṽ l

t (V
0
t (x) + pt, φ,A−At, C) = Ṽ p,l,x

T − Ṽ p,l,x
t + (Bl

t)
−1Ct

where the dynamics of the process Ṽ p,l,x are given by (5.6) with the terminal condition

Ṽ p,l,x
T = (Bl

T )
−1(VT (V

0
t (x) + pt, φ,A−At, C) + CT ) = (Bl

T )
−1V 0

T (x) = x

where the last equality is obvious, since V 0
T (x) = Bl

Tx for every x ≥ 0. Therefore, the ex-dividend
price pt = St(x, φ,A,C) satisfies

−(Bl
t)

−1St(x, φ,A,C) = Ṽ p,l,x
T − Ṽ p,l,x

t + (Bl
t)

−1Ct.

This in turn implies that St(x, φ,A,C) equals

St(x, φ,A,C) = Bl
tṼ

p,l,x
t − Ct − xBl

t = Bl
t(Y

x
t − x)− Ct

where the pair (Y x, Zx) solves the BSDE (5.13) with the terminal condition Y x
T = x. This in turn

yields equality (5.14). �

For any fixed t ∈ [0, T ), equation (5.14) can also be rewritten as follows

St(x,A,C) = −Bl
t Ẽl

t

(∫ T

t

f̃l
(
u, Y x

u , ξu
)
du+

∫
(t,T ]

(Bl
u)

−1(dAu + dF c
u)

)
(5.15)

−Bl
t Ẽl

t

(∫
[t,T ]

(Bl
u)

−1dC [t]
u

)
where the process C [t] is given by C

[t]
u := Cu for u ∈ [t, T ] and C

[t]
u := 0 for u ∈ [0, t). Equation

(5.15) follows easily from (5.14) and the fact that, for any fixed t, the process C [t] in (5.15) has

the jump at time t equal to ∆C
[t]
t = C

[t]
t − C

[t]
t− = C

[t]
t = Ct. Note also that the last integral in

this equation is taken over [t, T ], whereas the penultimate one is taken over (t, T ]. This discrepancy
is due to markedly different financial interpretations of the cumulative cash flows process A and
the collateral process C. Alternative collateral conventions can also be covered through a suitable
modification of BSDE (5.14). Although here we do not offer any general result in this vein, some
special cases are presented in Section 5.3.

Remark 5.4 In contrast to the linear case studied in Section 5.1, here we no longer claim that the
ex-dividend price S(x, φ,A,C) and the valuation ex-dividend price Ŝ(x, φ,A,C) necessarily coincide
in the present nonlinear setting.

Remark 5.5 In view of Remarks 3.2 and 5.3, it is easy to check that if x ≤ 0, then the ex-dividend
price St(x,A,C) satisfies, for every t ∈ [0, T ),

St(x,A,C) = Bb
t (Y

x
t − x)− Ct

where (Y x, Zx) is the unique solution to the following BSDE under P̃b

Y x
t = x−

∫ T

t

d∑
i=1

Zx,i
u dS̃i,b,cld

u −
∫ T

t

f̃b
(
u, Y x

u , Z
x
u

)
du−

∫
(t,T ]

(Bb
u)

−1 dAc
u

where the mapping f̃b is given by (5.9). It can be checked that for x = 0 the pricing algorithm of
Proposition 5.2 and the one outlined in this remark coincide, as was expected.
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5.2.4 Illustrative Example

As a sanity check for pricing (5.14), let us consider a toy model where Si = 0 for all i, so that
Ac = A. We assume that the interest rates rl and rb are constant and, for simplicity, we set rc,l = rl

and rc,b = rb. We fix 0 ≤ t0 < T , and we first consider the contract (A,C) where

At = 1[t0,T ](t)− er
l(T−t0)1[T ](t)

and for some constant 0 ≤ α < 1

Ct = −αer
l(t−t0)1[t0,T )(t).

Let us assume that x = 0. We claim that the contract is fair, in the sense that the hedger’s price at
time t0 is null. To this end, we observe that the hedger may easily replicate his net liability at time
T by investing 1− α units of cash received from the counterparty at time t0 in the lending account

Bl. When the collateral amount αer
l(T−t0) is returned to him at time T , the hedger will have the

right amount er
l(T−t0) of units of cash to deliver to the counterparty.

We thus expect that the price St(0, A, C) equals zero for every t < t0. Under the present
assumptions, equation (5.6) reduces to

dṼ p,l
t (φ,Ac) = (rl − rb)

(
Ṽ p,l
t (φ,Ac)

)−
dt+ (Bl

t)
−1 dAc

t (5.16)

where Ac = A+ C + F c where F c
t = −

∫ t

0
rlCu du (note that C = −C−). For x = 0, the portfolio’s

wealth V p(φ,Ac) is always nonnegative, so that dṼ p,l
t (φ,Ac) = (Bl

t)
−1 dAc

t . Using (5.15) with f̃ = 0,
we obtain, for every t < t0,

(Bl
t)

−1St(0, A, C) = −
∫
(t,T ]

(Bl
u)

−1d(Au + F c
u)−

∫
[t,T ]

(Bl
u)

−1dCu

= −(Bl
t0)

−1 + (Bl
T )

−1er
l(T−t0) − α

∫ T

t0

(Bl
u)

−1rler
l(u−t0) du+ α(Bl

t0)
−1

+ α

∫ T

t0

(Bl
u)

−1d
(
er

l(u−t0)
)
− α(Bl

T )
−1er

l(T−t0) = 0.

If we take instead the process

At = −1[t0,T ](t) + er
b(T−t0)1[T ](t),

then the hedger pays one unit of cash at time t0, and thus if C = 0 then his wealth will be

negative, specifically, V p
t (φ,A, 0) = −erb(t−t0) for t ∈ [t0, T ). Hence (5.16) and (5.15) with f̃(t, Yt) =

(rl − rb)(Yt)
− now yield, for t < t0,

(Bl
t)

−1St(0, A, 0) = −
∫ T

t0

(Bl
u)

−1(rl − rb)er
b(u−t0) du−

∫
[t0,T ]

(Bl
u)

−1dAu

= e−rbt0
(
e(r

b−rl)T − e(r
b−rl)t0

)
+ e−rlt0 − e−rlT er

b(T−t0) = 0.

Once again, this was expected since if the hedger borrows one unit of cash at time t0 then his debt
at time T will match the cash amount, which he receives from the counterparty at this date.

5.3 Diffusion-Type Market Models

To give an illustration of the general hedging and pricing methodology developed in the preceding
sections, we will now present a detailed study of the valuation problem under various conventions
regarding collateralization. A special case of this model was previously examined by Piterbarg [36].
We assume that the processes Bj , j = 0, 1, . . . , d are absolutely continuous, so that they can be
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represented as dBj
t = rjtB

j
t dt for some G-adapted processes rj , j = 0, 1, . . . , d + 1 (see Example

2.1). It is also postulated in this section that the lending and borrowing rates are identical, that is,
rl = rb = r for some nonnegative G-adapted process r. For this reason, here we can mimic (but also
slightly extend) the approach developed in Section 5.1.

We postulate the existence of d + 2 traded risky assets Si, i = 1, 2, . . . , d + 2, where the asset
Sd+1 (resp., Sd+2) can be posted by the hedger (resp., the counterparty) as collateral. Of course,
the situation where Sd+1 = Sd+2 is not excluded. However, if the risky assets Sd+1 and Sd+2 are
distinct, then we do not need to model the dynamics of Sd+2; it suffices to know the identity of this
asset or, more precisely, the corresponding repo rate rd+2,h. By contrast, an explicit specification of
the dynamics of Sd+2 (but not of Sd+1) would be needed if the valuation problem were solved from
the perspective of the counterparty. Unless explicitly stated otherwise, we postulate in this section
that condition (2.16) is satisfied for i = 1, 2, . . . , d+ 1.

5.3.1 Martingale Measure

We assume that each risky asset Si, i = 1, 2, . . . , d+1 continuously pays dividends at stochastic rate
κi and has the (ex-dividend) price dynamics under the real-world probability P

dSi
t = Si

t

(
µi
t dt+ σi

t dW
i
t

)
, Si

0 > 0,

where W 1,W 2, . . . ,W d are correlated Brownian motions and the volatility processes σ1, σ2, . . . , σd

are positive and bounded away from zero. The corresponding dividend processes are given by

Ai
t =

∫ t

0

κiuS
i
u du.

As usual, we write Ŝi
t = (Bi

t)
−1Si

t and Ŝ
i,cld
t = (Bi

t)
−1Si,cld

t . Recall that we denote by P̃ a martingale
measure for the basic model with funding costs (see Proposition 3.1).

Lemma 5.2 The price process Si satisfies under P̃

dSi
t = Si

t

(
(rit − κit) dt+ σi

t dW̃
i
t

)
where W̃ i is a Brownian motion under P̃. Equivalently, the process Ŝi,cld satisfies

dŜi,cld
t = Ŝi,cld

t σi
t dW̃

i
t . (5.17)

The process Ki given by (2.11) satisfies

dKi
t = dSi

t − ritS
i
t dt+ κitS

i
t dt = Si

tσ
i
t dW̃

i
t (5.18)

and thus it is a (local) martingale under P̃.

Proof. By the definition of a martingale measure P̃, the discounted cumulative-dividend price Ŝi,cld

is a (local) martingale under P̃. Recall that the process Ŝi,cld is given by

Ŝi,cld
t = Ŝi

t +

∫
(0,t]

(Bi
u)

−1 dAi
u, t ∈ [0, T ].

Consequently,

Ŝi,cld
t = Ŝi

t +

∫ t

0

κiu(B
i
u)

−1Si
u du = Ŝi

t +

∫ t

0

κiuS̃
i
u du.

Since

dŜi
t = Ŝi

t

(
(µi

t − rit) dt+ σi
t dW

i
t

)
, (5.19)
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we obtain
dŜi,cld

t = dŜi
t + κitŜ

i
t dt = Ŝi

t

(
(µi

t + κit − rit) dt+ σi
t dW

i
t

)
.

Hence Ŝi,cld is a (local) martingale under P̃ provided that the process

dW̃ i
t = dW i

t + (σi
t)

−1(µi
t + κit − rit) dt (5.20)

is a Brownian motion under P̃. By combining (5.19) with (5.20) we obtain expression (5.17). Other
asserted formulae now follow easily. �

5.3.2 Wealth Dynamics for Collateralized Contracts

We postulate, in addition, that the processes Bc,b, Bc,l, Bd+2,s and Bd+2,s are absolutely continuous
as well, so that

dBc,b
t = rc,bt Bc,b

t dt, dBc,l
t = rc,lt Bc,l

t dt,

dBd+2,s
t = rd+2,s

t Bd+2,s
t dt, dBd+2,h

t = rd+2,h
t Bd+2,h

t dt,

for some processes rc,b, rc,l, rd+2,s and rd+2,h, which are assumed to be nonnegative.

• Risky collateral.

We first consider the case of risky collateral under the assumptions of Proposition 4.1. Formally,
the cases of rehypothecation and segregation differ only in the choice of either rd+2,s or rd+2,h as
the hedger’s interest on the collateral amount posted by the counterparty. In practice, it is clear
that the repo rate rd+2,h is positive, whereas the conventional rate rd+2,s is likely to be zero. In the
case of rehypothecation, F̄h

t is given here by the following expression (see (4.17))

F̄h
t =

∫ t

0

(
rd+2,h
u − rc,bu

)
C+

u du−
∫ t

0

(
rd+1
u − ru

)
C−

u du

and thus, as expected, the term F̄h
t vanishes when the equalities rd+2,h = rc,b and rd+1 = r hold,

since then the negative and positive cash flows related to the margin account cancel out. From
equation (5.2), we obtain the dynamics of the hedger’s wealth V (φ) = V (x, φ,A,C)

dVt(φ) = rtVt(φ) dt+

d∑
i=1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ (Sd+1

t )−1C−
t

(
dSd+1

t − rd+1
t Sd+1

t dt+ dAd+1
t

)
+ dF̄h

t + dAt.

If the collateral C is predetermined, then the sum of the last three terms in the formula above defines
a single process Āc,h, which represents all cash flows associated with a collateralized contract except
for the gains or losses from trading in risky assets S1, S2, . . . , Sd. Then we may rewrite the last
equation as follows

dVt(φ) = rtVt(φ) dt+
d∑

i=1

ξitS
i
tσ

i
t dW̃

i
t + dĀc,h

t . (5.21)

We note that the process Āc,h depends also on the dynamics of the risky asset Sd+1. As was already
mentioned, the dynamics of the asset Sd+2 are irrelevant, so they are left unspecified.

• Cash collateral under segregation.

We now consider the case of cash collateral under segregation and we place ourselves within the
setup of Proposition 4.2. Under the present assumptions, the expression for F̂ s reduces to

F̂ s
t =

∫ t

0

(
rd+2,s
u − rc,bu

)
C+

u du−
∫ t

0

(
rd+1
u − rc,lu

)
C−

u du.
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Formula (4.24) yields

dVt(φ) = rtVt(φ) dt+
d∑

i=1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ dF̂ s

t + dAt,

so, if we denote the sum of the last three terms by Âc,s, then we obtain

dVt(φ) = rtVt(φ) dt+

d∑
i=1

ξitS
i
tσ

i
t dW̃

i
t + dÂc,s

t (5.22)

where the process Âc,s does not depend on the dynamics of the risky asset Sd+1.

• Cash collateral under rehypothecation.

Recall that the case of cash collateral under rehypothecation was examined in Proposition 4.3.
Under the present assumptions, we deduce from (4.31) that

F̂h
t =

∫ t

0

C+
u

(
ru − rc,bu

)
du−

∫ t

0

C−
u

(
rd+1
u − rc,lu

)
du (5.23)

and thus (4.30) becomes

dVt(φ) = rtVt(φ) dt+
d∑

i=1

ξit
(
dSi

t − ritS
i
t dt+ dAi

t

)
+ dF̂h

t + dAt. (5.24)

If we denote the sum of the last three terms by Âc,h, then, also using (5.18), we obtain

dVt(φ) = rtVt(φ) dt+
d∑

i=1

ξitS
i
tσ

i
t dW̃

i
t + dÂc,h

t (5.25)

where, once again, the process Âc,h does not depend on the dynamics of Sd+1.

5.3.3 Pricing with an Exogenous Collateral

Our goal is to value and hedge a collateralized contract within the framework of a diffusion-type
model. We postulate that the process A is adapted to the filtration FS generated by risky assets
S1, S2, . . . , Sd. We first assume that a collateral process C is predetermined, so it does not depend
on the hedger’s trading strategy. We use the generic symbol Ac to denote one of the processes
Āc,h, Âc,h, Âc,s introduced in the preceding subsection. Assume that all short-term rates and the
processes A and C are bounded, so that the process Ac is bounded as well. In fact, it would be
enough to postulate that the conditional expectation in (5.26) is well defined for all t ∈ [0, T ]. The
following result can be seen as a corollary to Proposition 5.1.

Proposition 5.3 A collateralized contract (A,C) with the predetermined collateral process C can
be replicated by an admissible trading strategy. The ex-dividend price S(A,C) satisfies, for every
t ∈ [0, T ),

St(A,C) = −Bt Ẽt

(∫
(t,T ]

B−1
u dAc

u

)
. (5.26)

Proof. We formally consider Ac as the total cash flow process associated with the contract A.
Hence it suffices to check that the assumptions of Proposition 5.1 are met. For the existence of an
admissible replicating strategy under the cash collateral convention, we note that the processes C
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and A are adapted with respect to filtration generated by risky assets S1, S2, . . . , Sd and thus the
predictable representation property of the Brownian filtration entails that∫

(0,T ]

B−1
u dAc

u = S0 +

d∑
i=1

∫ T

0

ξiuS
i
uσ

i
u dW̃

i
u.

In the case of the risky collateral, the trading strategy is complemented by ξd+1 = (Sd+1
t )−1C−

t , so
that we now use the following representation∫

(0,T ]

B−1
u (dF̄h

t + dAu) = S̃0 +
d+1∑
i=1

∫ T

0

ξiuS
i
uσ

i
u dW̃

i
u (5.27)

where, by assumption, the process A is adapted to the filtration FS generated by the risky assets
S1, S2, . . . , Sd, and thus the right-hand side in (5.27) defines a bounded FS

T -measurable random
variable. Hence the existence of an admissible replicating strategy satisfying condition (2.16) follows.
�

For the sake of concreteness, let us consider a particular instance of a collateralized contract,
specifically, the valuation of a single cash flow X at maturity date T under the convention of
cash collateral with rehypothecation. We assume that X is a bounded random variable which is
measurable with respect to the σ-field FS

T . It is natural to assume that rd+1 = r, meaning that
the cash for collateral posted is borrowed from the risk-free account. We first obtain the nonlinear
pricing formula (5.28). Under an additional assumption of symmetry, rc,b = rc,l = rc, we denote by
Bc the process satisfying dBc

t = rctB
c
t dt, and we obtain the linear pricing formula (5.29).

Corollary 5.1 A collateralized contract with the cumulative dividend At = p1[0,T ](t) + X1[T ](t)
and the predetermined collateral process C can be replicated by an admissible trading strategy. The
ex-dividend price S(A,C) satisfies, for every t ∈ [0, T ),

St(A,C) = −Bt Ẽt

(
B−1

T X +

∫ T

t

B−1
u C+

u

(
ru − rc,bu

)
du−

∫ T

t

B−1
u C−

u

(
rd+1
u − rc,lu

)
du

)
. (5.28)

In particular, if rd+1 = r and rc,b = rc,l = rc, then

St(A,C) = −Bt Ẽt

(
B−1

T X +

∫ T

t

B−1
u (ru − rcu)Cu du

)
. (5.29)

Proof. Equality (5.28) is an immediate consequence of (5.23) and (5.26). To obtain (5.29), it suffices
to observe that equalities rd+1 = r and rc,b = rc,l = rc imply that

F̂h
t =

∫ t

0

Cu

(
ru − rcu

)
du

and thus (5.29) is an immediate consequence of (5.28). �

Remark 5.6 Piterbarg [36] examined a diffusion-type market model with three cash accounts

Bt = e
∫ t
0
ru du, B1

t = e
∫ t
0
r1u du, Bc

t = e
∫ t
0
rcu du,

where the spreads r1 − rc, r1 − r, rc − r represent the bases between the funding rates, that is, the
funding bases. No distinction between the borrowing and lending rates is made in [36]; in particular,
r2 = r and rc,b = rc,l = rc. Our formulae agree with those derived by Piterbarg [36], although our
convention for the collateral amount is slightly different from that adopted in [36], specifically, our
collateral process C corresponds to the process −C in [36].
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Remark 5.7 Observe that the equivalence of formulae (5.29) and (5.37) shows that the choice of a
particular discount factor can be rather arbitrary, as long as the (cumulative) cash flow process of a
security under valuation is appropriately adjusted. In the case of formula (5.29), the discount factor
is chosen as the price process B representing a traded asset, whereas in the case of formula (5.37),
we deal with the process Bc, which does not even represent the price process of a traded asset in
the present setup.

Suppose, for instance, that d = 1 and the dividend rate κ1 = 0. Then none of the two above
mentioned choices of the discount factor corresponds to the usual martingale measure for the stock
price which corresponds to the choice of B1 as the discount factor.

5.3.4 Pricing with Hedger’s Collateral

As already mentioned in Section 4, the collateral amount C can be specified in terms of the marked-
to-market value of a contract and thus, at least in theory, it can be given in terms of the wealth
process V (φ) of the hedger’s strategy. To this end, we introduce the process V̂ (φ) := V (φ) − xB;

for the interpretation of the process V̂ (φ), see Definition 5.3. Then, for instance, the process C may
be given as follows (see (4.10))

Ct(φ) = (1 + δ1t )V̂
−
t (φ)− (1 + δ2t )V̂

+
t (φ) = δ̄1t V̂

−
t (φ)− δ̄2t V̂

+
t (φ) (5.30)

for some bounded, FS-adapted processes δ1 and δ2, where for brevity we set δ̄it = 1+ δit. Hence the

generic process Ac, which, as before, is aimed at representing one of the processes Āc,h, Âc,h, Âc,s,
depends here in a nonlinear manner on the hedger’s wealth when he implements a replicating port-
folio. Consequently, the conditional expectation in (5.26) can now be informally interpreted as a
BSDE with the shorthand notation

Vt(φ) = −Bt Ẽt

(∫
(t,T ]

B−1
u dAc

u(V̂ (φ))

)
(5.31)

where the notation Ac(V̂ (φ)) is used to emphasize that the process Ac depends on V̂ (φ). A more
explicit form of BSDE (5.31) can be derived as soon as a particular convention for the margin account
is adopted. Let us consider, for instance, the special case of cash collateral with rehypothecation
(recall that this was also our choice in Section 5.2). To simplify expressions, we also assume that

rd+1 = r and rc,b = rc,l = rc, so that the process F c satisfies F c
t =

∫ t

0
rcuCu du for all t ∈ [0, T ].

Then, from (5.23) and (5.24), the wealth process of a self-financing strategy φ satisfies

dVt(φ) = rtVt(φ) dt+

d∑
i=1

ξitS
i
tσ

i
t dW̃

i
t + (rt − rct )(δ̄

1
t V̂

−
t (φ)− δ̄2t V̂

+
t (φ)) dt+ dAt. (5.32)

In the next pricing result, we once again focus on a collateralized contract (A,C) where At =
p1[0,T ](t) + X1[T ](t). For any fixed t ∈ [0, T ], we search for a Gt-measurable random variable pt
such that

VT (V
0
t (x) + pt, φ,A−At, C) = V 0

T (x)

for some admissible trading strategy φ. Obviously, for any fixed t ∈ [0, T ), we have Au − At =
X1[T ](u) for all u ∈ [t, T ].

It is worth noting that in Proposition 5.4 we obtain a nonlinear pricing rule, although we work
there under the assumption that the lending and borrowing rates are identical. Due to this postulate,
the price process S(x,A,C) is in fact independent of the hedger’s initial endowment – this property
can be easily deduced from equation (5.33). The nonlinearity of the pricing rule is now due to
specification (5.30) of the collateral amount C, which implies that the nonlinear BSDEs (5.13) and
(5.33) have different shapes. For a detailed study of pricing BSDEs and fair prices for both parties
when C is given by an extension of (5.30), the interested reader is referred to Nie and Rutkowski
[33].
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Proposition 5.4 Let X be an FS
T -measurable, bounded random variable. The BSDE

dY x
t = rY x

t dt+
d∑

i=1

Zx,i
t Si

tσ
i
t dW̃

i
t + (rt − rct )(δ̄

1
t (Y

x
t − xBt)

− − δ̄2t (Y
x
t − xBt)

+) dt (5.33)

with the terminal condition xBT −X has a unique solution (Y x, Zx). For any fixed x and t ∈ [0, T ),
the contract At = p1[0,T ](t)+X1[T ](t) with the collateral process C given by (5.30) can be replicated
on [t, T ] by an admissible trading strategy ξx = Zx and the ex-dividend price satisfies St(x,A,C) =
Y x
t −xBt. Furthermore, the price St(x,A,C) admits the following representation for every t ∈ [0, T ):

St(x,A,C) = −Bt Ẽt

(
B−1

T X +

∫ T

t

B−1
u (ru − rcu)

(
δ̄1u(Y

x
u − xBu)

− − δ̄2u(Y
x
u − xBu)

+
)
du

)
. (5.34)

Equivalently, the price St(x,A,C) = Yt for every t ∈ [0, T ), where the process Y solves the following
BSDE

dYt = rYt dt+
d∑

i=1

Zi
tS

i
tσ

i
t dW̃

i
t + (rt − rct )

(
δ̄1t Y

−
t − δ̄2t Y

+
t

)
dt (5.35)

with the terminal condition YT = −X. Consequently, the price S(x,A,C) = S(A,C) is independent
of the hedger’s initial endowment x.

Proof. The proof is similar to the proof of Proposition 5.3 and thus we omit the details. Let us
observe only that the uniqueness of a solution to BSDE (5.35) follows from the general theory of
BSDEs with Lipschitz continuous coefficients (see, e.g., [18]). �

In view of (5.30), equation (5.32) may also be represented as follows

dVt(φ) = rctVt(φ) dt+
d∑

i=1

ξitS
i
tσ

i
t dW̃

i
t + (rt − rct )(Ct + Vt(φ)− xBt) dt+ dAt. (5.36)

This yield the following representation (note that we may write here V (φ) = V (ξx))

St(A,C) = −Bc
t Ẽt

(
(Bc

T )
−1X +

∫ T

t

(Bc
u)

−1(ru − rcu)(Cu + Vu(ξ
x)− xBu) du

)
. (5.37)

Furthermore, in the case of the fully collateralized contract, we postulate that δ1t = δ2t = 0 so that
the equalities

Ct = −V̂t(ξx) = xBt − Vt(ξ
x)

are satisfied for all t ∈ [0, T ]. Hence (5.36) reduces to

dVt(φ) = rctVt(φ) dt+

d∑
i=1

ξitS
i
tσ

i
t dW̃

i
t + dAt

and this in turn yields the following explicit representation for the ex-dividend price of the fully
collateralized contract for every t ∈ [0, T ):

St(A,C) = −Bc
t Ẽt

(
(Bc

T )
−1X

)
. (5.38)

Note that the price given by (5.38) not only does not depend on the initial endowment x, but it is
also linear as a mapping from the space of contingent claims to the space of processes representing
their prices.
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