Adaptive Transpose Algorithms for
Distributed Multicore Processors

John C. Bowman and Malcolm Roberts

University of Alberta and Université de Strasbourg

April 15, 2016

www.math.ualberta.ca/~bowman/talks

Acknowledgement: Wendell Horton, Institute for Fusion Studies

Matrix Transposes

e The matrix transpose is an essential primitive of high-
performance parallel computing.

Matrix Transposes

e The matrix transpose is an essential primitive of high-
performance parallel computing.

e Transposes are used to localize the computation of multi-
dimensional fast Fourier transforms onto individual processors.

e The performance of various transpose algorithms depends on:

— communication bandwidth

— communication latency
— network congestion
— communication packet size

— local cache size

— network topology

e The performance of various transpose algorithms depends on:

— communication bandwidth

— communication latency
— network congestion
— communication packet size

— local cache size

— network topology

e It is hard to estimate the relative importance of these factors at
compilation time.

e The performance of various transpose algorithms depends on:

— communication bandwidth

— communication latency
— network congestion
— communication packet size

— local cache size

— network topology

e It is hard to estimate the relative importance of these factors at
compilation time.

e An adaptive algorithm, dynamically tuned to take advantage of
these specific architectural details, is desirable.

8 X 8 Matrix Transpose over 8 Processors

Processor

N O Ot s W N = O

8 X 8 Matrix Transpose over 8 Processors

Processor

8 X 8 Matrix Transpose over 8 Processors

Processor

N O Ot s W N = O

Direct (All-to-All)

e Advantages:
— efficient for N > P (large messages);

— most direct.

Direct (All-to-All)

e Advantages:
— efficient for N > P (large messages);

— most direct.

e Disadvantages:

— many small message sizes when P > V.

Direct (All-to-All)

e Advantages:
— efficient for N > P (large messages);

— most direct.

e Disadvantages:
— many small message sizes when P > V.
e Implementation:

— MPI_ALLTOALL, MPI_SEND/MPI_RECV.

Recursive (Butterfly)

e Advantages:
— efficient for N < P (small messages);
—recursively subdivides transpose into smaller block transposes;
— log N phases;

— groups messages together to reduce communication latency.

Recursive (Butterfly)

e Advantages:
— efficient for N < P (small messages);
—recursively subdivides transpose into smaller block transposes;
— log N phases;
— groups messages together to reduce communication latency.
e Disadvantages:

— requires intermediate communications.

Recursive (Butterfly)

e Advantages:
— efficient for N < P (small messages);
—recursively subdivides transpose into smaller block transposes;
— log N phases;
— groups messages together to reduce communication latency.
e Disadvantages:
— requires intermediate communications.

e Implementation:

— FF'TW

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

SIS
RNNAS

N N SN

S —~ AN m F 0 O b=

8 X 8 Block Transpose over 8 processors

SS9001]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

S —~ AN m F 0 O b=

8 X 8 Block Transpose over 8 processors

SS9001]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

Adaptive
e Advantages:

— best of both worlds

— uses subdivision at highest level to increase communication
block size;

— optimally groups messages together to reduce communication
latency.

— directly communicates several sub-blocks at a time.

Adaptive
e Advantages:

— best of both worlds

— uses subdivision at highest level to increase communication
block size;

— optimally groups messages together to reduce communication
latency.

— directly communicates several sub-blocks at a time.

e Implementation:

~ FFTW (sub-optimal), FFTW++ (quasi-optimal).

Hybrid Parallel Architectures (nodes x threads)

e Advantages:
— MPI between nodes / OpenMP within node;
— exploits modern multicore architectures:;

— many algorithms can use memory striding to avoid local
transposition within a node;

— compatible with modern trend of less memory/core;

Hybrid Parallel Architectures (nodes x threads)

e Advantages:
— MPI between nodes / OpenMP within node;
— exploits modern multicore architectures:;

— many algorithms can use memory striding to avoid local
transposition within a node;

— compatible with modern trend of less memory/core;
e Disadvantages:

— requires both OpenMP and MPI support.

Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

10

Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—1
P2

NZ.

10

Block Transpose

o Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

11

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

— Requires b communications per process, each of size
(NM/a)/b* = aNM/P? for a total per-process data transfer
of (b —1)aNM /P2

11

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

— Requires b communications per process, each of size
(NM/a)/b* = aNM/P? for a total per-process data transfer
of (b —1)aNM /P2

e Outer: Over each team of a processes, transpose the a x a matrix
of N/a x M /a blocks.

— Requires a communications per process, each of size

(NM/b)/a* = bNM/P?, for a total per-process data transfer
of (a — 1)bNM/P*.

11

Communication Costs

e Let 7/ be the typical latency of a message and 7, be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTy

12

Communication Costs

e Let 7/ be the typical latency of a message and 7, be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTy

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|—7'd

NM
NM@LJ(W+MPQ>

whereas a block transpose requires

P P\ NM
Ty(a) = ~ 9 OP —q — |
B(a) Tg((l—l—a)-I—Td< a a) 53

12

Communication Costs

e Let 7y be the typical latency of a message and 75 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTY

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|—7'd

NM
NM(P—l)(TngTd =)

whereas a block transpose requires

P P\ NM
T = — —2 2P —a — .
B(CL) Tg((l—|—a)"‘Td(a a) P2

o Let L = 7y/7; be the effective communication block length.

12

Direct vs. Block Transposes

e Since

P NM
Ip—Ip=1| P+1—a— — L — :
a P?

we see that a direct transpose is preferred when NM > P?L,
whereas a block transpose should be used when NM < P?L.

13

Direct vs. Block Transposes

e Since

P NM
Ip—Ip=1| P+1—a— — L — :
a P?

we see that a direct transpose is preferred when NM > P?L,
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

T,’B(a>7d(1—§> <L—]\;]\24>.

13

Direct vs. Block Transposes

e Since

P NM
Ip—Ip=1| P+1—a— — L — :
a P?

we see that a direct transpose is preferred when NM > P?L
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

T,’B(a>7d(1—§> <L—]\;]\24>.

o For NM < P?L, we see that T is convex, with a minimum at

a=+P.

13

Optimal Number of Threads

e The minimum value of T is

T5(VP) = 2m(VP —1) (“]JX?{\/Q

NM
NQTdﬁ(L+) P> 1.

P3/2

14

Optimal Number of Threads

e The minimum value of T is

14(VP) = 2r(VP - 1) (L ' NM)

P3/2
NM
NQTdﬁ(L+) P> 1.

P3/2

e The global minimum of T over both a and P occurs at

P~ (2NM/L)*3.

14

Optimal Number of Threads

e The minimum value of T is

Tp(VP) = 2Td(\/? ~ 1) (L + NM)

P3/2
NM
~ QTd\/?(L—I—) P>1.

P3/2

e The global minimum of T over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)Y?.

14

Communication Cost

[
-
oy

—_
-]
ot

p—t
-)
S

Transpose Communication Costs

I

I IIIIIIII I IIIIIIII

I IIIIIIII

T T TTTI

llllllll

L

1

I T TrTi

| lll:llll

T

|

T T TTI1

11 1 111

10*

P

102

10

10°

10*

$0°

Zero Latency

Direct
Block
Threads

15

Implementation

e Choose optimal block size b that minimizes effects of
communication latency.

16

Implementation

e Choose optimal block size b that minimizes effects of
communication latency.

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FF'T's, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

16

Implementation

e Choose optimal block size b that minimizes eflects of
communication latency.

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FF'T's, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield an
additional 10-30% performance gain for 3D convolutions.

16

1024 x 1024 Transpose over 1024 Processors

350 -

s

— 300 -

me

ti

250 -

-~ -FFTW: 10242
—e— hybrid: 10242

1024 x 1

512 x 2

256 X 4

nodes x threads

128 x 8

17

4096 x 4096 Transpose over 4096 Processors

3000 1~

time (us)

2500 -

2000 -

- - - FFTW: 40962
—— hybrid: 40962

1024 x 1

512 x 2 256 x 4
nodes X threads

128 x 8

18

Applications
e F'F'T in 2 & higher dimensions

19

Applications
e F'F'T in 2 & higher dimensions
e Pseudospectral Collocation
— Explicit Dealiasing via Zero Padding

— Implicit Dealiasing

19

Conclusions

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

20

Conclusions

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtorm.

20

Conclusions

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtorm.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

20

References

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, STAM J. Sci. Comput., 33:386, 2011.

