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Matrix Transposes

e The matrix transpose is an essential primitive of high-
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Matrix Transposes

e The matrix transpose is an essential primitive of high-
performance parallel computing.

e Transposes are used to localize the computation of multi-
dimensional fast Fourier transforms onto individual processors.
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e The performance of various transpose algorithms depends on:

— communication bandwidth

— communication latency
— network congestion
— communication packet size

— local cache size

— network topology

e It is hard to estimate the relative importance of these factors at
compilation time.

e An adaptive algorithm, dynamically tuned to take advantage of
these specific architectural details, is desirable.
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e Advantages:
— efficient for N > P (large messages);

— most direct.

e Disadvantages:
— many small message sizes when P > V.
e Implementation:

— MPI_ALLTOALL, MPI_SEND/MPI_RECV.
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Recursive (Butterfly)

e Advantages:
— efficient for N < P (small messages);
—recursively subdivides transpose into smaller block transposes;
— log N phases;
— groups messages together to reduce communication latency.
e Disadvantages:
— requires intermediate communications.

e Implementation:

— FF'TW
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Adaptive
e Advantages:

— best of both worlds

— uses subdivision at highest level to increase communication
block size;

— optimally groups messages together to reduce communication
latency.

— directly communicates several sub-blocks at a time.



Adaptive
e Advantages:

— best of both worlds

— uses subdivision at highest level to increase communication
block size;

— optimally groups messages together to reduce communication
latency.

— directly communicates several sub-blocks at a time.

e Implementation:

~ FFTW (sub-optimal), FFTW++ (quasi-optimal).
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— compatible with modern trend of less memory/core;



Hybrid Parallel Architectures (nodes x threads)

e Advantages:
— MPI between nodes / OpenMP within node;
— exploits modern multicore architectures:;

— many algorithms can use memory striding to avoid local
transposition within a node;

— compatible with modern trend of less memory/core;
e Disadvantages:

— requires both OpenMP and MPI support.
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Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—1
P2

NZ.
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Block Transpose

o Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.
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Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

— Requires b communications per process, each of size
(NM/a)/b* = aNM/P? for a total per-process data transfer
of (b —1)aNM /P2

e Outer: Over each team of a processes, transpose the a x a matrix
of N/a x M /a blocks.

— Requires a communications per process, each of size

(NM/b)/a* = bNM/P?, for a total per-process data transfer
of (a — 1)bNM/P*.
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Communication Costs
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required to send each matrix element, so that the time to send
a message consisting of n matrix elements is
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e Let 7/ be the typical latency of a message and 7, be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTy

e The time required to perform a direct transpose is

P—1
P2
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Communication Costs

e Let 7y be the typical latency of a message and 75 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTY

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|—7'd

NM
NM(P—l)(TngTd = )

whereas a block transpose requires

P P\ NM
T = — —2 2P —a — .
B(CL) Tg((l—|—a )"‘Td( a a) P2

o Let L = 7y/7; be the effective communication block length.
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Direct vs. Block Transposes

e Since
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we see that a direct transpose is preferred when NM > P?L,
whereas a block transpose should be used when NM < P?L.
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Direct vs. Block Transposes

e Since

P NM
Ip—Ip=1| P+1—a— — L — :
a P?

we see that a direct transpose is preferred when NM > P?L
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

T,’B(a>7d(1—§> <L—]\;]\24>.

o For NM < P?L, we see that T is convex, with a minimum at

a=+P.
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Optimal Number of Threads

e The minimum value of T is
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Optimal Number of Threads

e The minimum value of T is

14(VP) = 2r(VP - 1) (L ' NM)

P3/2
NM
NQTdﬁ(L+ ) P> 1.

P3/2

e The global minimum of T over both a and P occurs at

P~ (2NM/L)*3.
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Optimal Number of Threads

e The minimum value of T is

Tp(VP) = 2Td(\/? ~ 1) (L + NM)

P3/2
NM
~ QTd\/?(L—I— ) P>1.

P3/2

e The global minimum of T over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)Y?.
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Communication Cost
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Implementation

e Choose optimal block size b that minimizes effects of
communication latency.
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Implementation

e Choose optimal block size b that minimizes effects of
communication latency.

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FF'T's, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.
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Implementation

e Choose optimal block size b that minimizes eflects of
communication latency.

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FF'T's, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield an
additional 10-30% performance gain for 3D convolutions.
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1024 x 1024 Transpose over 1024 Processors
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4096 x 4096 Transpose over 4096 Processors
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Applications
e F'F'T in 2 & higher dimensions
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Applications
e F'F'T in 2 & higher dimensions
e Pseudospectral Collocation
— Explicit Dealiasing via Zero Padding

— Implicit Dealiasing
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Conclusions

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.
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Conclusions

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtorm.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.
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