Adaptive Transpose Algorithms for Distributed Multicore Processors John C. Bowman and Malcolm Roberts University of Alberta and Université de Strasbourg

April 15, 2016

www.math.ualberta.ca/~bowman/talks

Acknowledgement: Wendell Horton, Institute for Fusion Studies

1

Matrix Transposes

• The matrix transpose is an essential primitive of highperformance parallel computing.

Matrix Transposes

- The matrix transpose is an essential primitive of highperformance parallel computing.
- Transposes are used to localize the computation of multidimensional fast Fourier transforms onto individual processors.

- The performance of various transpose algorithms depends on:
 - communication bandwidth
 - communication latency
 - network congestion
 - communication packet size
 - local cache size
 - network topology

- The performance of various transpose algorithms depends on:
 - communication bandwidth
 - communication latency
 - network congestion
 - communication packet size
 - local cache size
 - network topology
- It is hard to estimate the relative importance of these factors at compilation time.

- The performance of various transpose algorithms depends on:
 - communication bandwidth
 - communication latency
 - network congestion
 - communication packet size
 - local cache size
 - network topology
- It is hard to estimate the relative importance of these factors at compilation time.
- An adaptive algorithm, dynamically tuned to take advantage of these specific architectural details, is desirable.

8×8 Matrix Transpose over 8 Processors

8×8 Matrix Transpose over 8 Processors

4

8×8 Matrix Transpose over 8 Processors

Direct (All-to-All)

• Advantages:

- efficient for $N \gg P$ (large messages);

– most direct.

Direct (All-to-All)

• Advantages:

- efficient for $N \gg P$ (large messages);

– most direct.

• Disadvantages:

- many small message sizes when $P \geq N$.

Direct (All-to-All)

• Advantages:

- efficient for $N \gg P$ (large messages);

– most direct.

• Disadvantages:

- many small message sizes when $P \geq N$.

• Implementation:

- MPI_ALLTOALL, MPI_SEND/MPI_RECV.

Recursive (Butterfly)

- Advantages:
 - efficient for $N \ll P$ (small messages);
 - recursively subdivides transpose into smaller block transposes;
 - $-\log N$ phases;
 - groups messages together to reduce communication latency.

Recursive (Butterfly)

- Advantages:
 - efficient for $N \ll P$ (small messages);
 - recursively subdivides transpose into smaller block transposes;
 - $-\log N$ phases;
 - groups messages together to reduce communication latency.
- Disadvantages:
 - requires intermediate communications.

Recursive (Butterfly)

- Advantages:
 - efficient for $N \ll P$ (small messages);
 - recursively subdivides transpose into smaller block transposes;
 - $-\log N$ phases;
 - groups messages together to reduce communication latency.
- Disadvantages:
 - requires intermediate communications.
- Implementation:
 - FFTW

Adaptive

• Advantages:

– best of both worlds

– uses subdivision at highest level to increase communication block size;

- *optimally* groups messages together to reduce communication latency.

– directly communicates several sub-blocks at a time.

Adaptive

• Advantages:

– best of both worlds

– uses subdivision at highest level to increase communication block size;

 $-\ optimally$ groups messages together to reduce communication latency.

– directly communicates several sub-blocks at a time.

• Implementation:

- FFTW (sub-optimal), FFTW++ (quasi-optimal).

Hybrid Parallel Architectures (nodes \times threads)

• Advantages:

- MPI between nodes / OpenMP within node;
- exploits modern multicore architectures;

– many algorithms can use memory striding to avoid local transposition within a node;

- compatible with modern trend of less memory/core;

Hybrid Parallel Architectures (nodes \times threads)

• Advantages:

- MPI between nodes / OpenMP within node;
- exploits modern multicore architectures;

– many algorithms can use memory striding to avoid local transposition within a node;

- compatible with modern trend of less memory/core;

• Disadvantages:

– requires both OpenMP and MPI support.

Communication Costs: Direct Transpose

• Suppose an $N \times N$ matrix is distributed over P processes with $P \mid N$.

Communication Costs: Direct Transpose

- Suppose an $N \times N$ matrix is distributed over P processes with $P \mid N$.
- Direct transposition involves P-1 communications per process, each of size N^2/P^2 , for a total per-process data transfer of

$$\frac{P-1}{P^2}N^2.$$

Block Transpose

• Let P = ab. Subdivide $N \times M$ matrix into $a \times a$ blocks each of size $N/a \times M/a$.

Block Transpose

- Let P = ab. Subdivide $N \times M$ matrix into $a \times a$ blocks each of size $N/a \times M/a$.
- Inner: Over each team of b processes, transpose the a individual $N/a \times M/a$ matrices, grouping all a communications with the same source and destination together.

– Requires b communications per process, each of size $(NM/a)/b^2 = aNM/P^2$, for a total per-process data transfer of $(b-1)aNM/P^2$.

Block Transpose

- Let P = ab. Subdivide $N \times M$ matrix into $a \times a$ blocks each of size $N/a \times M/a$.
- Inner: Over each team of b processes, transpose the a individual $N/a \times M/a$ matrices, grouping all a communications with the same source and destination together.

– Requires b communications per process, each of size $(NM/a)/b^2 = aNM/P^2$, for a total per-process data transfer of $(b-1)aNM/P^2$.

• Outer: Over each team of a processes, transpose the $a \times a$ matrix of $N/a \times M/a$ blocks.

– Requires a communications per process, each of size $(NM/b)/a^2 = bNM/P^2$, for a total per-process data transfer of $(a-1)bNM/P^2$.

Communication Costs

• Let τ_{ℓ} be the typical latency of a message and τ_d be the time required to send each matrix element, so that the time to send a message consisting of n matrix elements is

 $\tau_{\ell} + n\tau_d$

•

Communication Costs

• Let τ_{ℓ} be the typical latency of a message and τ_d be the time required to send each matrix element, so that the time to send a message consisting of n matrix elements is

$$\tau_{\ell} + n\tau_d$$

• The time required to perform a direct transpose is

$$T_D = \tau_{\ell}(P-1) + \tau_d \frac{P-1}{P^2} NM = (P-1) \left(\tau_{\ell} + \tau_d \frac{NM}{P^2} \right),$$

whereas a block transpose requires

٠

$$T_B(a) = \tau_\ell \left(a + \frac{P}{a} - 2\right) + \tau_d \left(2P - a - \frac{P}{a}\right) \frac{NM}{P^2}$$

Communication Costs

• Let τ_{ℓ} be the typical latency of a message and τ_d be the time required to send each matrix element, so that the time to send a message consisting of n matrix elements is

$$\tau_{\ell} + n\tau_d$$

• The time required to perform a direct transpose is

$$T_D = \tau_{\ell}(P-1) + \tau_d \frac{P-1}{P^2} NM = (P-1) \left(\tau_{\ell} + \tau_d \frac{NM}{P^2} \right),$$

whereas a block transpose requires

٠

$$T_B(a) = \tau_\ell \left(a + \frac{P}{a} - 2 \right) + \tau_d \left(2P - a - \frac{P}{a} \right) \frac{NM}{P^2}.$$

• Let $L = \tau_{\ell} / \tau_d$ be the effective communication block length.

Direct vs. Block Transposes

• Since

$$T_D - T_B = \tau_d \left(P + 1 - a - \frac{P}{a} \right) \left(L - \frac{NM}{P^2} \right),$$

we see that a direct transpose is preferred when $NM \ge P^2L$, whereas a block transpose should be used when $NM < P^2L$.

Direct vs. Block Transposes

• Since

$$T_D - T_B = \tau_d \left(P + 1 - a - \frac{P}{a} \right) \left(L - \frac{NM}{P^2} \right),$$

we see that a direct transpose is preferred when $NM \ge P^2L$, whereas a block transpose should be used when $NM < P^2L$.

• To find the optimal value of a for a block transpose consider

$$T'_B(a) = \tau_d \left(1 - \frac{P}{a^2}\right) \left(L - \frac{NM}{P^2}\right)$$

Direct vs. Block Transposes

• Since

$$T_D - T_B = \tau_d \left(P + 1 - a - \frac{P}{a} \right) \left(L - \frac{NM}{P^2} \right),$$

we see that a direct transpose is preferred when $NM \ge P^2L$, whereas a block transpose should be used when $NM < P^2L$.

 \bullet To find the optimal value of a for a block transpose consider

$$T'_B(a) = \tau_d \left(1 - \frac{P}{a^2}\right) \left(L - \frac{NM}{P^2}\right).$$

• For $NM < P^2L$, we see that T_B is convex, with a minimum at $a = \sqrt{P}$.

Optimal Number of Threads

• The minimum value of T_B is

$$T_B(\sqrt{P}) = 2\tau_d \left(\sqrt{P} - 1\right) \left(L + \frac{NM}{P^{3/2}}\right)$$
$$\sim 2\tau_d \sqrt{P} \left(L + \frac{NM}{P^{3/2}}\right), \qquad P \gg 1.$$

Optimal Number of Threads

• The minimum value of T_B is

$$T_B(\sqrt{P}) = 2\tau_d \left(\sqrt{P} - 1\right) \left(L + \frac{NM}{P^{3/2}}\right)$$
$$\sim 2\tau_d \sqrt{P} \left(L + \frac{NM}{P^{3/2}}\right), \qquad P \gg 1.$$

• The global minimum of T_B over both a and P occurs at $P \approx (2NM/L)^{2/3}.$

Optimal Number of Threads

• The minimum value of T_B is

$$T_B(\sqrt{P}) = 2\tau_d \left(\sqrt{P} - 1\right) \left(L + \frac{NM}{P^{3/2}}\right)$$
$$\sim 2\tau_d \sqrt{P} \left(L + \frac{NM}{P^{3/2}}\right), \qquad P \gg 1.$$

- The global minimum of T_B over both a and P occurs at $P \approx (2NM/L)^{2/3}.$
- If the matrix dimensions satisfy NM > L, as is typically the case, this minimum occurs above the transition value $(NM/L)^{1/2}$.

Transpose Communication Costs

Implementation

 \bullet Choose optimal block size b that minimizes effects of communication latency.

Implementation

- \bullet Choose optimal block size b that minimizes effects of communication latency.
- Use hybrid OpenMPI/MPI with the optimal number of threads:
 - yields larger communication block size;
 - local transposition is not required within a single MPI node;
 - allows smaller problems to be distributed over a large number of processors;
 - for 3D FFTs, allows for more slab-like than pencil-like models, reducing the size of or even eliminating the need for a second transpose.

Implementation

- \bullet Choose optimal block size b that minimizes effects of communication latency.
- Use hybrid OpenMPI/MPI with the optimal number of threads:

- yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models, reducing the size of or even eliminating the need for a second transpose.

• The use of nonblocking MPI communications allows us to overlap computation with communication: this can yield an additional 10–30% performance gain for 3D convolutions.

1024×1024 Transpose over 1024 Processors

4096×4096 Transpose over 4096 Processors

Applications

• FFT in 2 & higher dimensions

Applications

- \bullet FFT in 2 & higher dimensions
- Pseudospectral Collocation
 - Explicit Dealiasing via Zero Padding
 - Implicit Dealiasing

Conclusions

• Hybrid MPI/OpenMP is often more efficient than pure MPI for distributed matrix transposes.

Conclusions

- Hybrid MPI/OpenMP is often more efficient than pure MPI for distributed matrix transposes.
- The hybrid paradigm provides an optimal setting for nonlocal computationally intensive operations found in applications like the fast Fourier transform.

Conclusions

- Hybrid MPI/OpenMP is often more efficient than pure MPI for distributed matrix transposes.
- The hybrid paradigm provides an optimal setting for nonlocal computationally intensive operations found in applications like the fast Fourier transform.
- The advent of implicit dealiasing of convolutions makes overlapping transposition with FFT computation feasible.

References

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.