
Adaptive Transpose Algorithms for
Distributed Multicore Processors

John C. Bowman and Malcolm Roberts

University of Alberta and Université de Strasbourg

April 15, 2016

www.math.ualberta.ca/∼bowman/talks

Acknowledgement: Wendell Horton, Institute for Fusion Studies

1



Matrix Transposes

•The matrix transpose is an essential primitive of high-
performance parallel computing.

2



Matrix Transposes

•The matrix transpose is an essential primitive of high-
performance parallel computing.

•Transposes are used to localize the computation of multi-
dimensional fast Fourier transforms onto individual processors.

2



•The performance of various transpose algorithms depends on:

– communication bandwidth

– communication latency

– network congestion

– communication packet size

– local cache size

– network topology

3



•The performance of various transpose algorithms depends on:

– communication bandwidth

– communication latency

– network congestion

– communication packet size

– local cache size

– network topology

• It is hard to estimate the relative importance of these factors at
compilation time.

3



•The performance of various transpose algorithms depends on:

– communication bandwidth

– communication latency

– network congestion

– communication packet size

– local cache size

– network topology– network topology

• It is hard to estimate the relative importance of these factors at
compilation time.

•An adaptive algorithm, dynamically tuned to take advantage of
these specific architectural details, is desirable.

3



8× 8 Matrix Transpose over 8 Processors

0

1

2

3

4

5

6

7

P
ro
ce
ss
or

4



8× 8 Matrix Transpose over 8 Processors

0

1

2

3

4

5

6

7

P
ro
ce
ss
or

4



8× 8 Matrix Transpose over 8 Processors

0

1

2

3

4

5

6

7

P
ro
ce
ss
or

4



Direct (All-to-All)

•Advantages:
– efficient for N ≫ P (large messages);

– most direct.

5



Direct (All-to-All)

•Advantages:
– efficient for N ≫ P (large messages);

– most direct.

•Disadvantages:
– many small message sizes when P ≥ N .

5



Direct (All-to-All)

•Advantages:
– efficient for N ≫ P (large messages);

– most direct.– most direct.

•Disadvantages:
– many small message sizes when P ≥ N .

• Implementation:

– MPI ALLTOALL, MPI SEND/MPI RECV.

5



Recursive (Butterfly)

•Advantages:
– efficient for N ≪ P (small messages);

– recursively subdivides transpose into smaller block transposes;

– logN phases;

– groups messages together to reduce communication latency.

6



Recursive (Butterfly)

•Advantages:
– efficient for N ≪ P (small messages);

– recursively subdivides transpose into smaller block transposes;

– logN phases;

– groups messages together to reduce communication latency.

•Disadvantages:
– requires intermediate communications.

6



Recursive (Butterfly)

•Advantages:
– efficient for N ≪ P (small messages);

– recursively subdivides transpose into smaller block transposes;

– logN phases;

– groups messages together to reduce communication latency.– groups messages together to reduce communication latency.

•Disadvantages:
– requires intermediate communications.

• Implementation:

– FFTW

6



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

7



Adaptive

•Advantages:
– best of both worlds

– uses subdivision at highest level to increase communication
block size;

– optimally groups messages together to reduce communication
latency.

– directly communicates several sub-blocks at a time.

8



Adaptive

•Advantages:
– best of both worlds

– uses subdivision at highest level to increase communication
block size;

– optimally groups messages together to reduce communication
latency.

– directly communicates several sub-blocks at a time.

• Implementation:

– FFTW (sub-optimal), FFTW++ (quasi-optimal).

8



Hybrid Parallel Architectures (nodes × threads)

•Advantages:
– MPI between nodes / OpenMP within node;

– exploits modern multicore architectures;

– many algorithms can use memory striding to avoid local
transposition within a node;

– compatible with modern trend of less memory/core;

9



Hybrid Parallel Architectures (nodes × threads)

•Advantages:
– MPI between nodes / OpenMP within node;

– exploits modern multicore architectures;

– many algorithms can use memory striding to avoid local
transposition within a node;

– compatible with modern trend of less memory/core;

•Disadvantages:
– requires both OpenMP and MPI support.

9



Communication Costs: Direct Transpose

• Suppose an N ×N matrix is distributed over P processes with
P | N .

10



Communication Costs: Direct Transpose

• Suppose an N ×N matrix is distributed over P processes with
P | N .

•Direct transposition involves P−1 communications per process,
each of size N 2/P 2, for a total per-process data transfer of

P − 1

P 2
N 2.

10



Block Transpose

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

11



Block Transpose

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

• Inner: Over each team of b processes, transpose the a individual
N/a×M/a matrices, grouping all a communications with the
same source and destination together.

– Requires b communications per process, each of size
(NM/a)/b2 = aNM/P 2, for a total per-process data transfer
of (b− 1)aNM/P 2.

11



Block Transpose

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

• Inner: Over each team of b processes, transpose the a individual
N/a×M/a matrices, grouping all a communications with the
same source and destination together.

– Requires b communications per process, each of size
(NM/a)/b2 = aNM/P 2, for a total per-process data transfer
of (b− 1)aNM/P 2.

•Outer: Over each team of a processes, transpose the a×amatrix
of N/a×M/a blocks.

– Requires a communications per process, each of size
(NM/b)/a2 = bNM/P 2, for a total per-process data transfer
of (a− 1)bNM/P 2.

11



Communication Costs

•Let τℓ be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τℓ + nτd

.

12



Communication Costs

•Let τℓ be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τℓ + nτd

.

•The time required to perform a direct transpose is

TD = τℓ(P − 1) + τd
P − 1

P 2
NM = (P − 1)

(

τℓ + τd
NM

P 2

)

,

whereas a block transpose requires

TB(a) = τℓ

(

a +
P

a
− 2

)

+ τd

(

2P − a− P

a

)

NM

P 2
.

12



Communication Costs

•Let τℓ be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τℓ + nτd

.

•Let τℓ be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τℓ + nτd

.

•The time required to perform a direct transpose is

TD = τℓ(P − 1) + τd
P − 1

P 2
NM = (P − 1)

(

τℓ + τd
NM

P 2

)

,

whereas a block transpose requires

TB(a) = τℓ

(

a +
P

a
− 2

)

+ τd

(

2P − a− P

a

)

NM

P 2
.

•Let L = τℓ/τd be the effective communication block length.
12



Direct vs. Block Transposes

• Since

TD − TB = τd

(

P + 1− a− P

a

)(

L− NM

P 2

)

,

we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.

13



Direct vs. Block Transposes

• Since

TD − TB = τd

(

P + 1− a− P

a

)(

L− NM

P 2

)

,

we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.

•To find the optimal value of a for a block transpose consider

T ′
B(a) = τd

(

1− P

a2

)(

L− NM

P 2

)

.

13



Direct vs. Block Transposes

• Since

TD − TB = τd

(

P + 1− a− P

a

)(

L− NM

P 2

)

,

we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.
we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.

•To find the optimal value of a for a block transpose consider

T ′
B(a) = τd

(

1− P

a2

)(

L− NM

P 2

)

.

•For NM < P 2L, we see that TB is convex, with a minimum at
a =

√
P .

13



Optimal Number of Threads

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)

(

L +
NM

P 3/2

)

∼ 2τd
√
P

(

L +
NM

P 3/2

)

, P ≫ 1.

14



Optimal Number of Threads

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)

(

L +
NM

P 3/2

)

∼ 2τd
√
P

(

L +
NM

P 3/2

)

, P ≫ 1.

•The global minimum of TB over both a and P occurs at

P ≈ (2NM/L)2/3.

14



Optimal Number of Threads

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)

(

L +
NM

P 3/2

)

∼ 2τd
√
P

(

L +
NM

P 3/2

)

, P ≫ 1.

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)

(

L +
NM

P 3/2

)

∼ 2τd
√
P

(

L +
NM

P 3/2

)

, P ≫ 1.

•The global minimum of TB over both a and P occurs at

P ≈ (2NM/L)2/3.

• If the matrix dimensions satisfy NM > L, as is typically
the case, this minimum occurs above the transition value
(NM/L)1/2.

14



Transpose Communication Costs

104

105

106

C
om

m
u
n
ic
at
io
n
C
os
t

101 102 103

P

100

101

102

103

Zero Latency

Direct

Block

Threads

15



Implementation

•Choose optimal block size b that minimizes effects of
communication latency.

16



Implementation

•Choose optimal block size b that minimizes effects of
communication latency.

•Use hybrid OpenMPI/MPI with the optimal number of threads:

– yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number
of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

16



Implementation

•Choose optimal block size b that minimizes effects of
communication latency.

•Choose optimal block size b that minimizes effects of
communication latency.

•Use hybrid OpenMPI/MPI with the optimal number of threads:

– yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number
of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

•The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield an
additional 10–30% performance gain for 3D convolutions.

16



1024× 1024 Transpose over 1024 Processors

250

300

350

ti
m
e
(µ
s)

1024× 1 512× 2 256× 4 128× 8
nodes × threads

FFTW: 10242

hybrid: 10242

17



4096× 4096 Transpose over 4096 Processors

2000

2500

3000

ti
m
e
(µ
s)

1024× 1 512× 2 256× 4 128× 8
nodes × threads

FFTW: 40962

hybrid: 40962

18



Applications

•FFT in 2 & higher dimensions

19



Applications

•FFT in 2 & higher dimensions

•Pseudospectral Collocation
– Explicit Dealiasing via Zero Padding

– Implicit Dealiasing

19



Conclusions

•Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

20



Conclusions

•Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

•The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transform.

20



Conclusions

•Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

•Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

•The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transform.

•The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

20



References
[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.


