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2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.
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ẑ×p·k

p2
ω∗
p ω

∗
−k−p.

2



2D Turbulence in Fourier Space

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:
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•When ν = 0 and fk = 0:

energy E = 1
2

∑

k

|ωk|
2

k2
and enstrophy Z = 1

2

∑
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|ωk|
2 are

conserved.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:

– large-scale k−5/3 energy cascade;

– small-scale k−3 enstrophy cascade.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:

– large-scale k−5/3 energy cascade;

– small-scale k−3 enstrophy cascade.

• In a bounded domain, the situation may be quite different. . .
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Long-Time Behaviour in a Bounded Domain

Tran and Bowman, PRE 69, 036303, 1–7 (2004).
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
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•Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:
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dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?
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∫
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dx = −

∫

f ′(ω)u·∇ω dx

=−

∫

u·∇f(ω) dx =

∫

f(ω)∇·u dx = 0.

•Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?

•Polyakov [1992] has suggested that the higher-order Casimir
invariants cascade to large scales, while Eyink [1996] suggests
that they might cascade to small scales.

5



High-Wavenumber Truncation

•Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

∂ωk

∂t
=
∑

p,q

ǫkpq
q2

ω∗
p ω

∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).
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High-Wavenumber Truncation

•Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).

∂ωk

∂t
=
∑

p,q

ǫkpq
q2

ω∗
p ω

∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).

•Enstrophy evolution:

1

2

d

dt

∑

k

|ωk|
2 = Re

∑

k,p,q

ǫkpq
q2

ω∗
kω

∗
p ω

∗
q = 0.
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• Invariance of Z3 =
∫

ω3 dx follows from:

0 =
∑

k,r,s

[

∑

p,q

ǫkpq
q2

ω∗
p ω

∗
qω

∗
rω

∗
s + 2 other similar terms

]

.
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•The absence of an explicit ωk in the first term means that setting
ωℓ = 0 for ℓ > K breaks the symmetry in the summations!
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•However, since the missing terms involve ωp and ωq for p and q
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.
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•This means that high-wavenumber truncation destroys the
invariance of Z3.

•However, since the missing terms involve ωp and ωq for p and q
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.

•We find that this is indeed the case.
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Enstrophy Balance

∂ωk

∂t
+ νk2ωk = Sk + fk,

•Multiply by ω∗
k and integrate over wavenumber angle ⇒

enstrophy spectrum Z(k) =
1

2

∫

|ωk|
2 k dθ evolves as:

∂

∂t
Z(k) + 2νk2Z(k) = T (k) + F (k),

where T (k) = Re

∫

Skω
∗
k k dθ and F (k) = Re

∫

fkω
∗
k k dθ.
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = T (k) + F (k).

•Let

Π(k)
.
=

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = T (k) + F (k).

•Let

Π(k)
.
=

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).

• Integrate from k to ∞:

d

dt

∫ ∞

k

Z(p) dp = Π(k)− ǫZ(k),

where ǫZ(k)
.
=

∫ ∞

k

[2νp2Z(p) − F (p)] dp is the total enstrophy

transfer, via dissipation and forcing, out of wavenumbers higher
than k.
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•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.
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•Note that Π(0) = Π(∞) = 0.•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = ǫZ(k).

•This provides an excellent numerical diagnostic for when a
steady state has been reached.
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Forcing at k = 2, friction for k < 3, viscosity for
k ≥ kH = 300 (1023× 1023 dealiased modes)
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Vorticity Field with Molecular Viscosity
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Vorticity Field with Viscosity Cutoff
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Vorticity Surface Plot with Molecular Viscosity

18



Nonlinear Casimir Transfer

•Fourier decompose the fourth-order Casimir invariant

Z4 = N 3
∑

j

ω4(xj) in terms of N spatial collocation points xj:

Z4 =
∑

k,p,q

ωk ωp ωq ω−k−p−q.

d

dt
Z4=

∑

k



Sk

∑

p,q

ωp ωq ω−k−p−q + 3ωk

∑

p,q

Sp ωq ω−k−p−q





d

dt
Z4=N 2

∑

k



Sk

∑

j

ω3(xj)e
2πij·k/N + 3ωk

∑

j

S(xj)ω
2(xj)e

2πij·k/N





.
=
∑

k

T4(k). Here Sk is the nonlinear source term in ∂
∂tωk.
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Downscale Transfer of Z4
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Nonlinear transfer Π4 of Z4 averaged over t ∈ [250, 740].
20



Dealiasing: Explicit 2/4 Zero Padding

•Computing the transfer of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity ω3.
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rule (instead of the usual 2/3 rule for a quadratic convolution).

For a truncation wavenumber of 512 in each direction an explicitly
dealiased pseudospectral simulation would require a buffer of size
2048× 2048.
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dealiased pseudospectral simulation would require a buffer of size
2048× 2048.

For a truncation wavenumber of 512 in each direction an explicitly
dealiased pseudospectral simulation would require a buffer of size
2048× 2048.

• Instead, use implicit padding [Bowman & Roberts 2011]:
roughly twice as fast, 1/2 of the memory required by
conventional explicit padding.

•Memory savings: in d dimensions implicit padding
asymptotically uses (2/3)d−1 or (1/2)d−1 of the memory
require by conventional explicit padding.
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•Highly optimized implicitly dealiased convolution routines have
been implemented as a software layer FFTW++ on top of the FFTW
library and released under the Lesser GNU Public License.

http://fftwpp.sourceforge.net
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Transfer vs. Flux

•Distinguish between transfer and flux.
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Transfer vs. Flux

•Distinguish between transfer and flux.

•The mean rate of enstrophy transfer to [k,∞) is given by
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T (k) dk = −
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0

T (k) dk.
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•Distinguish between transfer and flux.•Distinguish between transfer and flux.

•The mean rate of enstrophy transfer to [k,∞) is given by

Π(k) =

∫ ∞

k

T (k) dk = −

∫ k

0

T (k) dk.Π(k) =

∫ ∞

k

T (k) dk = −

∫ k

0

T (k) dk.

• In a steady state, Π(k) will trivially be constant within a true
inertial range.

• In contrast, the enstrophy flux through a wavenumber k is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Flux Decomposition for a Single (k,p, q) Triad
E
(k
)

k

Tp

Tk

p

q

k

Lk=Tk

Sk=0

E
(k
)

k

−Tp

−Tq

p

q

k

Lk=−Tp

Sk=−Tq

E
(k
)

k

Tk

Tqp

q

k

Lk=0
Sk=Tk

•Note that energy is conserved: Lk+Sk = Tk = −Tp−Tq. Thus

Lk = Re
∑

|k|=k
|p|<k

|k−p|<k

Mk,pωp ωk−p ω
∗
k − Re

∑

|k|=k
|p|<k

|k−p|>k

Mp,k−p ωk ωk−p ω
∗
p.
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Conclusions

•Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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•However, for the globally integrated ω3 inviscid invariant, we
found no systematic cascade: it appears to slosh back and forth
between the large and small scales. This is expected since ω3

does not have a definite sign.
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there is a direct cascade of the globally integrated ω4 inviscid
invariant to small scales.

•Numerical evidence suggests that in the enstrophy inertial range
there is a direct cascade of the globally integrated ω4 inviscid
invariant to small scales.

•However, for the globally integrated ω3 inviscid invariant, we
found no systematic cascade: it appears to slosh back and forth
between the large and small scales. This is expected since ω3

does not have a definite sign.

•One should distinguish between nonlocal transfer and flux. To
compute this decomposition efficiently, one needs to develop a
restricted Fast Fourier transform.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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