Casimir Cascades in Two-Dimensional Turbulence

John C. Bowman (University of Alberta)
Acknowledgements:
Jahanshah Davoudi (University of Toronto)
Malcolm Roberts (University of Alberta)

June 3, 2011
www.math.ualberta.ca/~bowman/talks

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega=\hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=-\nu \nabla^{2} \omega+f
$$

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega=\hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=-\nu \nabla^{2} \omega+f
$$

- In Fourier space:

$$
\frac{\partial \omega_{k}}{\partial t}=S_{k}-\nu k^{2} \omega_{k}+f_{k}
$$

where $S_{\boldsymbol{k}}=\sum_{\boldsymbol{p}} \frac{\hat{\boldsymbol{z}} \times \boldsymbol{p} \cdot \boldsymbol{k}}{p^{2}} \omega_{\boldsymbol{p}}^{*} \omega_{-\boldsymbol{k}-\boldsymbol{p}}^{*}$.

2D Turbulence in Fourier Space

- Navier-Stokes equation for vorticity $\omega=\hat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \boldsymbol{u}$:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=-\nu \nabla^{2} \omega+f
$$

- In Fourier space:

$$
\frac{\partial \omega_{k}}{\partial t}=S_{k}-\nu k^{2} \omega_{k}+f_{k}
$$

where $S_{\boldsymbol{k}}=\sum_{\boldsymbol{p}} \frac{\hat{\boldsymbol{z}} \times \boldsymbol{p} \cdot \boldsymbol{k}}{p^{2}} \omega_{\boldsymbol{p}}^{*} \omega_{-\boldsymbol{k}-\boldsymbol{p}}^{*}$.

- When $\nu=0$ and $f_{k}=0$:
energy $E=\frac{1}{2} \sum_{k} \frac{\left|\omega_{k}\right|^{2}}{k^{2}}$ and enstrophy $Z=\frac{1}{2} \sum_{k}\left|\omega_{k}\right|^{2}$ are conserved.

Kraichnan-Leith-Batchelor Theory

- In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:
- large-scale $k^{-5 / 3}$ energy cascade;
- small-scale k^{-3} enstrophy cascade.

Kraichnan-Leith-Batchelor Theory

- In an infinite domain
[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:
- large-scale $k^{-5 / 3}$ energy cascade;
- small-scale k^{-3} enstrophy cascade.
- In a bounded domain, the situation may be quite different...

Long-Time Behaviour in a Bounded Domain

Tran and Bowman, PRE 69, 036303, 1-7 (2004).

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$
\begin{aligned}
\frac{d}{d t} \int f(\omega) d \boldsymbol{x} & =\int f^{\prime}(\omega) \frac{\partial \omega}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(\omega) \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega d \boldsymbol{x} \\
& =-\int \boldsymbol{u} \cdot \boldsymbol{\nabla} f(\omega) d \boldsymbol{x}=\int f(\omega) \boldsymbol{\nabla} \cdot \boldsymbol{u} d \boldsymbol{x}=0 .
\end{aligned}
$$

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$
\begin{aligned}
\frac{d}{d t} \int f(\omega) d \boldsymbol{x} & =\int f^{\prime}(\omega) \frac{\partial \omega}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(\omega) \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega d \boldsymbol{x} \\
& =-\int \boldsymbol{u} \cdot \boldsymbol{\nabla} f(\omega) d \boldsymbol{x}=\int f(\omega) \boldsymbol{\nabla} \cdot \boldsymbol{u} d \boldsymbol{x}=0
\end{aligned}
$$

- Do these invariants also play a fundamental role in the turbulent dynamics, in addition to the quadratic (energy and enstrophy) invariants? Do they exhibit cascades?

Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

$$
\begin{aligned}
\frac{d}{d t} \int f(\omega) d \boldsymbol{x} & =\int f^{\prime}(\omega) \frac{\partial \omega}{\partial t} d \boldsymbol{x}=-\int f^{\prime}(\omega) \boldsymbol{u} \cdot \boldsymbol{\nabla} \omega d \boldsymbol{x} \\
& =-\int \boldsymbol{u} \cdot \boldsymbol{\nabla} f(\omega) d \boldsymbol{x}=\int f(\omega) \boldsymbol{\nabla} \cdot \boldsymbol{u} d \boldsymbol{x}=0
\end{aligned}
$$

- Do these invariants also play a fundamental role in the turbulent dynamics, in addition to the quadratic (energy and enstrophy) invariants? Do they exhibit cascades?
- Polyakov [1992] has suggested that the higher-order Casimir invariants cascade to large scales, while Eyink [1996] suggests that they might cascade to small scales.

High-Wavenumber Truncation

- Only the quadratic invariants survive high-wavenumber truncation (Montgomery calls them rugged invariants).

$$
\frac{\partial \omega_{k}}{\partial t}=\sum_{p, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k p q}}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*}
$$

where $\epsilon_{\boldsymbol{k} p \boldsymbol{q}}=(\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta(\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q})$.

High-Wavenumber Truncation

- Only the quadratic invariants survive high-wavenumber truncation (Montgomery calls them rugged invariants).

$$
\frac{\partial \omega_{k}}{\partial t}=\sum_{p, q} \frac{\epsilon_{k p q}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*}
$$

where $\epsilon_{\boldsymbol{k p q}}=(\hat{\boldsymbol{z}} \cdot \boldsymbol{p} \times \boldsymbol{q}) \delta(\boldsymbol{k}+\boldsymbol{p}+\boldsymbol{q})$.

- Enstrophy evolution:

$$
\frac{1}{2} \frac{d}{d t} \sum_{k}\left|\omega_{\boldsymbol{k}}\right|^{2}=\operatorname{Re} \sum_{\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k} \boldsymbol{q} \boldsymbol{q}}}{q^{2}} \omega_{\boldsymbol{k}}^{*} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*}=0
$$

- Invariance of $Z_{3}=\int \omega^{3} d x$ follows from:

$$
0=\sum_{\boldsymbol{k}, \boldsymbol{r}, \boldsymbol{s}}\left[\sum_{\boldsymbol{p}, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*} \omega_{r}^{*} \omega_{s}^{*}+2 \text { other similar terms }\right] .
$$

- Invariance of $Z_{3}=\int \omega^{3} d x$ follows from:

$$
0=\sum_{\boldsymbol{k}, \boldsymbol{r}, \boldsymbol{s}}\left[\sum_{\boldsymbol{p}, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*} \omega_{r}^{*} \omega_{s}^{*}+2 \text { other similar terms }\right] .
$$

- The absence of an explicit $\omega_{\boldsymbol{k}}$ in the first term means that setting $\omega_{\ell}=0$ for $\ell>K$ breaks the symmetry in the summations!
- Invariance of $Z_{3}=\int \omega^{3} d x$ follows from:

$$
0=\sum_{\boldsymbol{k}, \boldsymbol{r}, \boldsymbol{s}}\left[\sum_{\boldsymbol{p}, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k} p \boldsymbol{q}}}{q^{2}} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*} \omega_{\boldsymbol{r}}^{*} \omega_{s}^{*}+2 \text { other similar terms }\right] .
$$

- The absence of an explicit $\omega_{\boldsymbol{k}}$ in the first term means that setting $\omega_{\ell}=0$ for $\ell>K$ breaks the symmetry in the summations!
- This means that high-wavenumber truncation destroys the invariance of Z_{3}.
- Invariance of $Z_{3}=\int \omega^{3} d x$ follows from:

$$
0=\sum_{\boldsymbol{k}, \boldsymbol{r}, \boldsymbol{s}}\left[\sum_{\boldsymbol{p}, \boldsymbol{q}} \frac{\epsilon_{\boldsymbol{k} \boldsymbol{p} \boldsymbol{q}}}{q^{2}} \omega_{\boldsymbol{p}}^{*} \omega_{\boldsymbol{q}}^{*} \omega_{\boldsymbol{r}}^{*} \omega_{s}^{*}+2 \text { other similar terms }\right] .
$$

- The absence of an explicit $\omega_{\boldsymbol{k}}$ in the first term means that setting $\omega_{\ell}=0$ for $\ell>K$ breaks the symmetry in the summations!
- This means that high-wavenumber truncation destroys the invariance of Z_{3}.
- However, since the missing terms involve $\omega_{\boldsymbol{p}}$ and $\omega_{\boldsymbol{q}}$ for p and q higher than the truncation wavenumber K, one might expect almost exact invariance of Z_{3} for a well-resolved simulation.
- Invariance of $Z_{3}=\int \omega^{3} d x$ follows from:

$$
0=\sum_{k, r, s}\left[\sum_{p, \boldsymbol{q}} \frac{\epsilon_{k p q}}{q^{2}} \omega_{p}^{*} \omega_{q}^{*} \omega_{r}^{*} \omega_{s}^{*}+2 \text { other similar terms }\right] .
$$

- The absence of an explicit $\omega_{\boldsymbol{k}}$ in the first term means that setting $\omega_{\ell}=0$ for $\ell>K$ breaks the symmetry in the summations!
- This means that high-wavenumber truncation destroys the invariance of Z_{3}.
- However, since the missing terms involve $\omega_{\boldsymbol{p}}$ and $\omega_{\boldsymbol{q}}$ for p and q higher than the truncation wavenumber K, one might expect almost exact invariance of Z_{3} for a well-resolved simulation.
- We find that this is indeed the case.

Enstrophy Balance

$$
\frac{\partial \omega_{k}}{\partial t}+\nu k^{2} \omega_{k}=S_{k}+f_{k},
$$

- Multiply by ω_{k}^{*} and integrate over wavenumber angle \Rightarrow enstrophy spectrum $Z(k)=\frac{1}{2} \int\left|\omega_{k}\right|^{2} k d \theta$ evolves as:

$$
\frac{\partial}{\partial t} Z(k)+2 \nu k^{2} Z(k)=T(k)+F(k),
$$

where $T(k)=\operatorname{Re} \int S_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*} k d \theta$ and $F(k)=\operatorname{Re} \int f_{\boldsymbol{k}} \omega_{\boldsymbol{k}}^{*} k d \theta$.

Nonlinear Enstrophy Transfer Function

$$
\frac{\partial}{\partial t} Z(k)+2 \nu k^{2} Z(k)=T(k)+F(k) .
$$

- Let

$$
\Pi(k) \doteq \int_{k}^{\infty} T(p) d p
$$

represent the nonlinear transfer of enstrophy into $[k, \infty)$.

Nonlinear Enstrophy Transfer Function

$$
\frac{\partial}{\partial t} Z(k)+2 \nu k^{2} Z(k)=T(k)+F(k) .
$$

- Let

$$
\Pi(k) \doteq \int_{k}^{\infty} T(p) d p
$$

represent the nonlinear transfer of enstrophy into $[k, \infty)$.

- Integrate from k to ∞ :

$$
\frac{d}{d t} \int_{k}^{\infty} Z(p) d p=\Pi(k)-\epsilon_{Z}(k)
$$

where $\epsilon_{Z}(k) \doteq \int_{k}^{\infty}\left[2 \nu p^{2} Z(p)-F(p)\right] d p$ is the total enstrophy transfer, via dissipation and forcing, out of wavenumbers higher than k.

- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
-When $\nu=0$ and $f_{k}=0$:

$$
0=\frac{d}{d t} \int_{0}^{\infty} Z(p) d p=\int_{0}^{\infty} T(p) d p
$$

so that

$$
\Pi(k)=\int_{k}^{\infty} T(p) d p=-\int_{0}^{k} T(p) d p
$$

- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- When $\nu=0$ and $f_{k}=0$:

$$
0=\frac{d}{d t} \int_{0}^{\infty} Z(p) d p=\int_{0}^{\infty} T(p) d p
$$

so that

$$
\Pi(k)=\int_{k}^{\infty} T(p) d p=-\int_{0}^{k} T(p) d p
$$

- Note that $\Pi(0)=\Pi(\infty)=0$.
- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- When $\nu=0$ and $f_{k}=0$:

$$
0=\frac{d}{d t} \int_{0}^{\infty} Z(p) d p=\int_{0}^{\infty} T(p) d p
$$

so that

$$
\Pi(k)=\int_{k}^{\infty} T(p) d p=-\int_{0}^{k} T(p) d p
$$

- Note that $\Pi(0)=\Pi(\infty)=0$.
- In a steady state, $\Pi(k)=\epsilon_{Z}(k)$.
- A positive (negative) value for $\Pi(k)$ represents a flow of enstrophy to wavenumbers higher (lower) than k.
- When $\nu=0$ and $f_{k}=0$:

$$
0=\frac{d}{d t} \int_{0}^{\infty} Z(p) d p=\int_{0}^{\infty} T(p) d p
$$

so that

$$
\Pi(k)=\int_{k}^{\infty} T(p) d p=-\int_{0}^{k} T(p) d p
$$

- Note that $\Pi(0)=\Pi(\infty)=0$.
- In a steady state, $\Pi(k)=\epsilon_{Z}(k)$.
- This provides an excellent numerical diagnostic for when a steady state has been reached.

Forcing at $k=2$, friction for $k<3$, viscosity for $k \geq k_{H}=300$ (1023×1023 dealiased modes)

 ———cascade/t4c

cascade/t4cnu
cascade/t4c

Cutoff viscosity ($k \geq k_{H}=300$)

$$
\begin{aligned}
& -\Pi_{Z} \\
& ---\epsilon_{Z}
\end{aligned}
$$

Cutoff viscosity $\left(k \geq k_{H}=300\right)$

$$
=\Pi_{Z}
$$

Molecular viscosity $\left(k \geq k_{H}=0\right)$

Vorticity Field with Molecular Viscosity

Vorticity Field with Viscosity Cutoff

Vorticity Surface Plot with Molecular Viscosity

Nonlinear Casimir Transfer

- Fourier decompose the fourth-order Casimir invariant $Z_{4}=N^{3} \sum_{j} \omega^{4}\left(x_{\boldsymbol{j}}\right)$ in terms of N spatial collocation points $x_{\boldsymbol{j}}$:

$$
Z_{4}=\sum_{\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}} \omega_{\boldsymbol{k}} \omega_{\boldsymbol{p}} \omega_{\boldsymbol{q}} \omega_{-\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}}
$$

$$
\begin{aligned}
\frac{d}{d t} Z_{4} & =\sum_{\boldsymbol{k}}\left[S_{\boldsymbol{k}} \sum_{\boldsymbol{p}, \boldsymbol{q}} \omega_{\boldsymbol{p}} \omega_{\boldsymbol{q}} \omega_{-\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}}+3 \omega_{\boldsymbol{k}} \sum_{\boldsymbol{p}, \boldsymbol{q}} S_{\boldsymbol{p}} \omega_{\boldsymbol{q}} \omega_{-\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}}\right] \\
\frac{d}{d t} Z_{4} & =N^{2} \sum_{\boldsymbol{k}}\left[S_{\boldsymbol{k}} \sum_{\boldsymbol{j}} \omega^{3}\left(x_{\boldsymbol{j}}\right) e^{2 \pi i \boldsymbol{j} \cdot \boldsymbol{k} / N}+3 \omega_{\boldsymbol{k}} \sum_{\boldsymbol{j}} S\left(x_{\boldsymbol{j}}\right) \omega^{2}\left(x_{\boldsymbol{j}}\right) e^{2 \pi i \boldsymbol{j} \cdot \boldsymbol{k} / N}\right]
\end{aligned}
$$

$\doteq \sum_{k} T_{4}(k) . \quad$ Here S_{k} is the nonlinear source term in $\frac{\partial}{\partial t} \omega_{k}$.

Downscale Transfer of Z_{4}

Nonlinear transfer Π_{4} of Z_{4} averaged over $t \in[250,740]$.

Dealiasing: Explicit 2/4 Zero Padding

- Computing the transfer of Z_{4} requires a ternary convolution: the Fourier transform of the cubic quantity ω^{3}.

Dealiasing: Explicit 2/4 Zero Padding

- Computing the transfer of Z_{4} requires a ternary convolution: the Fourier transform of the cubic quantity ω^{3}.
- Dealiasing a ternary convolution requires a $2 / 4$ zero padding rule (instead of the usual $2 / 3$ rule for a quadratic convolution).

For a truncation wavenumber of 512 in each direction an explicitly dealiased pseudospectral simulation would require a buffer of size 2048×2048.

Dealiasing: Explicit 2/4 Zero Padding

- Computing the transfer of Z_{4} requires a ternary convolution: the Fourier transform of the cubic quantity ω^{3}.
- Dealiasing a ternary convolution requires a $2 / 4$ zero padding rule (instead of the usual $2 / 3$ rule for a quadratic convolution).

For a truncation wavenumber of 512 in each direction an explicitly dealiased pseudospectral simulation would require a buffer of size 2048×2048.

- Instead, use implicit padding [Bowman \& Roberts 2011]: roughly twice as fast, $1 / 2$ of the memory required by conventional explicit padding.

Dealiasing: Explicit 2/4 Zero Padding

- Computing the transfer of Z_{4} requires a ternary convolution: the Fourier transform of the cubic quantity ω^{3}.
- Dealiasing a ternary convolution requires a $2 / 4$ zero padding rule (instead of the usual $2 / 3$ rule for a quadratic convolution).

For a truncation wavenumber of 512 in each direction an explicitly dealiased pseudospectral simulation would require a buffer of size 2048×2048.

- Instead, use implicit padding [Bowman \& Roberts 2011]: roughly twice as fast, $1 / 2$ of the memory required by conventional explicit padding.
- Memory savings: in dimensions implicit padding asymptotically uses $(2 / 3)^{d-1}$ or $(1 / 2)^{d-1}$ of the memory require by conventional explicit padding.
- Highly optimized implicitly dealiased convolution routines have been implemented as a software layer FFTW++ on top of the FFTW library and released under the Lesser GNU Public License.

Transfer vs. Flux

- Distinguish between transfer and flux.

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.

Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$
\Pi(k)=\int_{k}^{\infty} T(k) d k=-\int_{0}^{k} T(k) d k
$$

- In a steady state, $\Pi(k)$ will trivially be constant within a true inertial range.
- In contrast, the enstrophy flux through a wavenumber k is the amount of enstrophy transferred to small scales via triad interactions involving mode k.

Flux Decomposition for a Single $(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q})$ Triad

$$
\begin{gathered}
L_{k}=T_{k} \\
S_{k}=0
\end{gathered}
$$

$$
\begin{aligned}
& L_{k}=-T_{p} \\
& S_{k}=-T_{q}
\end{aligned}
$$

$$
\begin{gathered}
L_{k}=0 \\
S_{k}=T_{k}
\end{gathered}
$$

- Note that energy is conserved: $L_{k}+S_{k}=T_{k}=-T_{p}-T_{q}$. Thus

$$
L_{k}=\operatorname{Re} \sum_{\substack{|k|=k \\|p-k\\| k-p \mid<k}} M_{\boldsymbol{k}, \boldsymbol{p}} \omega_{\boldsymbol{p}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}}^{*}-\operatorname{Re} \sum_{\substack{|k|=k \\|p-k k\\| k-p \mid>k}} M_{\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{k}} \omega_{\boldsymbol{k}-\boldsymbol{p}} \omega_{\boldsymbol{p}}^{*} .
$$

Conclusions

- Even though higher-order Casimir invariants do not survive wavenumber truncation, it is possible, with sufficiently well resolved simulations, to check whether they cascade to large or small scales.

Conclusions

- Even though higher-order Casimir invariants do not survive wavenumber truncation, it is possible, with sufficiently well resolved simulations, to check whether they cascade to large or small scales.
- Numerical evidence suggests that in the enstrophy inertial range there is a direct cascade of the globally integrated ω^{4} inviscid invariant to small scales.

Conclusions

- Even though higher-order Casimir invariants do not survive wavenumber truncation, it is possible, with sufficiently well resolved simulations, to check whether they cascade to large or small scales.
- Numerical evidence suggests that in the enstrophy inertial range there is a direct cascade of the globally integrated ω^{4} inviscid invariant to small scales.
- However, for the globally integrated ω^{3} inviscid invariant, we found no systematic cascade: it appears to slosh back and forth between the large and small scales. This is expected since ω^{3} does not have a definite sign.

Conclusions

- Even though higher-order Casimir invariants do not survive wavenumber truncation, it is possible, with sufficiently well resolved simulations, to check whether they cascade to large or small scales.
- Numerical evidence suggests that in the enstrophy inertial range there is a direct cascade of the globally integrated ω^{4} inviscid invariant to small scales.
- However, for the globally integrated ω^{3} inviscid invariant, we found no systematic cascade: it appears to slosh back and forth between the large and small scales. This is expected since ω^{3} does not have a definite sign.
- One should distinguish between nonlocal transfer and flux. To compute this decomposition efficiently, one needs to develop a restricted Fast Fourier transform.

Asymptote: 2D \& 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince
http://asymptote.sf.net (freely available under the GNU public license)

References

[Batchelor 1969] G. K. Batchelor, Phys. Fluids, 12 II:233, 1969.
[Bowman \& Roberts 2011]
J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Eyink 1996]
G. L. Eyink, Physica D., p. 97, 1996.
[Falkovich \& Lebedev 1994] G. Falkovich \& V. Lebedev, Phys. Rev. E, 50:3883, 1994.
[Falkovich 1994]
G. Falkovich, Phys. Rev. E, 49:2468, 1994.
[Kraichnan 1967]
R. H. Kraichnan, Phys. Fluids, 10:1417, 1967.
[Leith 1968]
C. E. Leith, Phys. Fluids, 11:671, 1968.
[Polyakov 1992]
A. Polyakov, 1992, PUPT-1369.
[Tran \& Bowman 2004]
C. V. Tran \& J. C. Bowman, Physical Review E, 69:1, 2004.

