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Shell Models of Turbulence: Modes

• Shell models are systems of ODEs which mimic the Fourier-
transformed Navier–Stokes equation.
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Shell Models of Turbulence: Modes

• Shell models are systems of ODEs which mimic the Fourier-
transformed Navier–Stokes equation.

•Collections of modes {uk : k ∈ [λn, λn+1)} are represented by
a single quantity un:
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Shell Models of Turbulence: Interaction

•The convolution is replaced with a quadratic function of u:
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cp,qupuq − νk2
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(
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n−1 − λan+1unun+1 + bnun−1un − λbn+1u
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)∗ − νk2
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•The GOY [Gledzer 1973, Yamada & Ohkitani 1987] model adds
next-nearest-neighbour interactions and conserves the helicity
H = 1

2

∑

n(−1)nkn |un|2:
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Shell Models: Kolmogorov Scaling

• Simulations reproduce a k−5/3 Kolmogorov inertial range:
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Shell Models: Kolmogorov Scaling
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• Shell models are simpler and easier to simulate than the Navier–
Stokes equations [Bowman et al. 2006]. 4



Shell Models: Intermittency

•They also reproduce statistical properties of Navier–Stokes

turbulence: the moments 〈|un|p〉 ∼ k
−ζp
n

1

2

ζp

100 102 104 106 108 1010

k

scale very much like experimental structure exponents for 3D
turbulence (dashed lines) [Herweijer & van de Water 1995].
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Spectral Reduction

•Navier–Stokes simulations at high Reynolds number require
more modes than current computers can handle.
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• Instead of evolving un directly, we study a generalization of
spectral reduction [Bowman et al. 1999]:

un,1
.
=

u2n + σ∗
nu2n+1

1 + |σn|2
, σn

.
=

u2n+1

u2n
.
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•We use shell models as testbeds for developing numerical
techniques.

• Instead of evolving un directly, we study a generalization of
spectral reduction [Bowman et al. 1999]:

un,1
.
=

u2n + σ∗
nu2n+1

1 + |σn|2
, σn

.
=

u2n+1

u2n
.un,1

.
=

u2n + σ∗
nu2n+1

1 + |σn|2
, σn

.
=

u2n+1

u2n
.

•Then u2n = un,1 and u2n+1 = σnun,1.

•This reduces the number of active modes by half:
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Fixed Point

• Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.
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Fixed Point

• Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.

•Further reduction is straightforward:

un,ℓ+1
.
=

u2n,ℓ + σ∗
n,ℓu2n+1,ℓ

1 + |σn,ℓ|2
, σn,ℓ

.
=

u2n+1,ℓ

u2n,ℓ
.

GOY
reduction

DN
reduction

DN
reduction

DN
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Decimation

• Spectral reduction provides us with evolution equations for the
velocity amplitudes un,1.
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i.e. we set the decimated mode to be the average of the
undecimated modes.
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velocity amplitudes un,1.
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σn = 1 ⇒ un,1 =
u2n + u2n+1

2
,

i.e. we set the decimated mode to be the average of the
undecimated modes.
i.e. we set the decimated mode to be the average of the
undecimated modes.

•The energy E1
.
=

1

2

∑

n

|un,1|2 is conserved.

•Binning modifies the viscous term and the interaction
coefficients:

(α, β, γ) → (a, b)
.
=
( γ

λ2
,−α

λ

)

→ (a, b)

2
.
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Decimation
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Decimation: Interpolation

•Approximating the (unresolved) quantity u2n+1 by
√

un+1,1un,1

yields

σn ≈
√

un+1,1

un,1
.
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√

|un+1,1|
|un,1|

.σn ≈
√

|un+1,1|
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.

•We use ratios of time-averaged moments to avoid instabilities:

σn ≈
(

〈

|un+1,1|2
〉

〈

|un,1|2
〉

)1/4

.

•A cubic spline can be used for smoother interpolation.
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Decimation: Interpolation

•Under interpolation, the evolution equation is of the form

dun,1

dt
=

kn,1

1 + |σn|2
[

a
(

σn−1u
2
n,1 − λ2σnun,1un+1,1

)

+ b
(

σn−1un−1,1un,1 − λ2σnu
2
n+1,1

)]∗ − νn,1k
2
n,1un,1.
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• Interaction coefficients are modified by binning:

(α, β, γ) → (a, b)
.
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(
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γ
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α

λ

)
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∣
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Decimation: Interpolation
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Decimation: Interpolation Instability

•Using interpolation to determine the value of σ produces an
instability:

σn−1 ≈
∣

∣

∣

un

un−1

∣

∣

∣

1/2

decreases
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•Energy transfer to mode n is suppressed by positive feedback
mechanism!
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•Energy transfer to mode n is suppressed by positive feedback
mechanism!

•We therefore abandon a posteriori interpolatation of the
unresolved modes and revert to using σn = 1. 21
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•The method of spectral reduction, with σn = 1, allows us to
decimate uniformly.

•We can combine full-resolution and decimated simulations to
achieve our goal.

Undecimated grid

Decimated grid

•The grids are advanced using separate integrators and
synchronized via projection and prolongation.

Undecimated grid

Decimated grid
t t + τ t + 2τ
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The Multispectral Method
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Decimating the Navier–Stokes equations

• Interpolation has not been shown to work, so we use piecewise-
constant spectral reduction (σ = 1).
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• Interpolation has not been shown to work, so we use piecewise-
constant spectral reduction (σ = 1).

• Spectral reduction means representing a function using a
restricted basis for L2.

•The grids must be chosen so that there exist projection and
prolongation operators between the grids that locally conserve
energy and other quadratic invariants.
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•The multispectral method allows us to combine DNS with
decimated simulations.

•The multispectral method has been tested on shell models of
turbulence.

•Piecewise-constant spectral reduction (with σn = 1) has already
been applied to 2D NS simulations, but it requires a uniform
grid.
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•The multispectral method has been tested on shell models of
turbulence.

•Piecewise-constant spectral reduction (with σn = 1) has already
been applied to 2D NS simulations, but it requires a uniform
grid.

•The ultimate goal is to implement the multispectral method for
Navier–Stokes turbulence.
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